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Abstract
Variational logistic regression is a popular method
for approximate Bayesian inference seeing wide-
spread use in many areas of machine learning
including: Bayesian optimization, reinforcement
learning and multi-instance learning to name a
few. However, due to the intractability of the
Evidence Lower Bound, authors have turned to
the use of Monte Carlo, quadrature or bounds to
perform inference, methods which are costly or
give poor approximations to the true posterior. In
this paper we introduce a new bound for the ex-
pectation of softplus function and subsequently
show how this can be applied to variational logis-
tic regression and Gaussian process classification.
Unlike other bounds, our proposal does not rely
on extending the variational family, or introducing
additional parameters to ensure the bound is tight.
In fact, we show that this bound is tighter than the
state-of-the-art, and that the resulting variational
posterior achieves state-of-the-art performance,
whilst being significantly faster to compute than
Monte-Carlo methods.

1. Introduction
Logistic regression involves modelling the probability of
a binary response yi ∈ {0, 1} given a set of covariates
xi ∈ Rp for i = 1, . . . , n. Formally,

yi ∼ Bernoulli(pi), pi = s(f(xi)) =
1

1 + exp(−f(xi))

where pi is the probability of observing yi = 1, f : Rp → R
is the unknown model function, and s(·) is the sigmoid
function.

In the context of Bayesian inference the goal is to com-
pute the posterior distribution of f given the data D =
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{(yi, xi)}ni=1. In simple settings, such as when f takes
the parametric form, f(x) = x⊤β, where β ∈ Rp is the
coefficient vector, methods such as Markov Chain Monte
Carlo (MCMC) can be used to sample from the posterior
distribution. However, for large p MCMC is known to per-
form poorly. Alternatively, when f takes a non-parametric
form, as in Logistic Gaussian Process (GP) Classification,
MCMC does not scale well with n (Kuss & Rasmussen,
2005; Rasmussen & Williams, 2006).

To address these limitations practitioners have turned to
Variational Inference (VI), which seeks to approximate the
posterior distribution with an element from a family of dis-
tributions known as the variational family (Blei et al., 2017;
Zhang et al., 2019a). Formally, this involves computing an
approximate variational posterior, given by the minimizer of
the Kullback-Leibler (KL) divergence between the posterior,
π(·|D), and a distribution within the variational family, Q′,

q̃(·) = argmin
q(·)∈Q′

DKL(q(·) || π(·|D)). (1)

Typically, the variational family, Q′, is chosen to be a family
of Gaussian distributions,

Q′ =
{
Nd(µ,Σ) : µ ∈ Rd,Σ ∈ Sd+

}
, (2)

whereupon restricting Σ = diag(σ2
1 , . . . , σ

2
d), gives rise to

a mean-field Gaussian variational family, which we denote
by Q. This choice is typically made for computational con-
venience and often leads to tractable optimization problems
(Bishop, 2007).

In practice however, the KL divergence in (1) is intractable
and cannot be optimized directly, and so the Evidence Lower
Bound (ELBO),

ELBO(q(·)) = Eq(·) [ℓ(D|·)]−DKL(q(·)∥p(·)) (3)

is maximized instead, where ℓ(D|·) = log
∏n

i=1 p(yi|xi, ·)
is the log-likelihood function and p(·) is the prior, which
we set to a Gaussian with zero mean vector and identity
covariance throughout.

In the context of variational logistic regression there is a
further limitation wherein the expected value of the log-
likelihood is intractable. This arises through the need to
compute the expectation EX [log(1+exp(X))] for some X .
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(c) Value of l such that the relative error < 1%

Figure 1. Error of bounds. Comparison of Jaakkola & Jordan (2000) bound ( ), proposed bound ( ) with l = 10, and Monte Carlo
estimate ( ) for (a) τ = 2.0 and ϑ ∈ [−3, 3], (b) ϑ = 1.0 and τ ∈ [0.1, 3.0]. (c) The number terms (l) needed such that the relative
error is below 1%.

This limitation has led to numerous methods which seek to
make this expectation tractable (Depraetere & Vandebroek,
2017). Most notably is the seminal work of Jaakkola &
Jordan (2000), which introduced the quadratic bound,

log(1 + exp(x)) = − log s(−x)

≤− log s(t) +
x+ t

2
+

a(t)

2
(x2 − t2)

(4)

where a(t) = s(t)−1/2
t and t is a variational parameter that

must be optimized to ensure the bound is tight. The bound
introduced by Jaakkola & Jordan (2000) is tractable under
the expectation with respect to q ∈ Q′, meaning an analytic
form of the ELBO in (3) can be derived and optimized with
respect to the variational parameters.

As a result, this bound has seen widespread use in the ma-
chine learning community, with applications ranging from
Thomson sampling for logistic contextual bandits (Chen
et al., 2021), high-dimensional variational logistic regres-
sion (Ray et al., 2020; Komodromos et al., 2023) and multi-
instance learning with Gaussian processes (Haußmann et al.,
2017) to name a few.

More recently, a connection between (4) and conditionally
conjugate Polya-Gamma (PG) logistic regression has been
established (Polson et al., 2013; Durante & Rigon, 2019).
Notably, Durante & Rigon (2019) showed that the ELBO
maximized by Jaakkola & Jordan (2000) is equivalent to
the ELBO under an extended Polya-Gamma variational
family, Q′×{

∏n
i=1 PG(1, ti)} where PG(1, ti) is the Polya-

Gamma distribution. In turn, this means that (4) has a
clear probabilistic interpretation, and in fact, is equivalent to
optimizing a genuine ELBO rather than a surrogate bound
of the ELBO. However, this equivalence highlights the use
of a mean-field extension, which in general is known to
underestimate the posterior variance (Giordano et al., 2018;
Durante & Rigon, 2019).

Nevertheless, the Polya-Gamma formulation has been ap-
plied to both logistic regression (Durante & Rigon, 2019)

and Logistic Gaussian Processes (Wenzel et al., 2017). How-
ever, fundamentally these methods optimize the same objec-
tive as in Jaakkola & Jordan (2000), meaning methods such
as those of Wenzel et al. (2017) coincide with earlier works,
e.g. those seen in Gibbs & MacKay (2000).

Beyond these bounds authors have also considered the use
of alternative link functions to make computations tractable.
For example, via the probit link function which leads to an
analytically tractable ELBO (Wang & Pinar, 2021). How-
ever, this approach is not without its limitations, as the probit
link function is known to be sensitive to outliers (Bishop,
2007).

Contributions: In this paper we introduce a new bound
for the expectation of the softplus function. Unlike other
bounds, our proposal does not rely on extending the varia-
tional family, or introducing additional parameters to ensure
the bound is tight. In fact, our bound is exact in the limit
and can be truncated to any order to ensure a desired level
of accuracy.

Subsequently we apply this new bound to variational logistic
regression and (sparse) logistic Gaussian Process classifica-
tion, referring to the resulting methods as Variational Infer-
ence with Probabilistic Error Reduction (VI-PER). Through
extensive simulations we demonstrate that VI-PER leads to
more accurate posterior approximations and improves on
the well known issue of variance underestimation within the
variational posterior, which can be of critical importance in
real world applications as demonstrated in Section 4 (Blei
et al., 2017; Durante & Rigon, 2019).

2. Proposal
In this section we propose a new bound for the expec-
tation of the softplus function, log(1 + exp(X)) where
X ∼ N(ϑ, τ2), and subsequently show how this bound
can be used to compute a tight approximation to the ELBO
in variational logistic regression and GP classification.
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2.1. A New Bound

At its core variational logistic regression relies on the compu-
tation of a one dimensional integral, namely the expectation
of the log-likelihood function, EX [yX − log(1+ exp(X))]
for some uni-dimensional random variable X . However,
this expectation is intractable as the softplus function
log(1 + exp(X)) does not have a closed form integral. To
this end, we propose a new bound for this expectation, which
is summarized in the following theorem, a proof of which is
given in Section A.1 of the Appendix.
Theorem 2.1. Let X ∼ N(ϑ, τ2) then for any l ≥ 1,
EX [log(1 + exp(X))] ≤ ηl(ϑ, τ) where

ηl(ϑ, τ) =
τ√
2π

e−
ϑ2

2τ2 + ϑΦ

(
ϑ

τ

)
+

2l−1∑
k=1

(−1)k−1

k

[
ekϑ+k2τ2/2Φ

(
−ϑ

τ
− kτ

)

+e−kϑ+k2τ2/2Φ

(
ϑ

τ
− kτ

)] (5)

and Φ(·) is the cumulative distribution function of the stan-
dard normal distribution.

Notably, unlike the bound introduced by Jaakkola & Jordan
(2000) (or the PG formulation), our bound does not rely on
additional variational parameters, meaning no further opti-
mization is necessary to guarantee tightness of the bound.
In fact, irrespective of this, the proposed bound is at least as
tight as that of Jaakkola & Jordan (2000) as seen in Figure 1
(a) and (b), which is particularly evident when ϑ and τ are
large (further corroborated in Appendix B.1). In turn, this
means that the proposed bound is able to achieve a better
approximation to the true expectation, which leads to more
accurate posterior approximations as shown in Section 3.

Furthermore, although (5) is presented as a bound of the
expectation, it is in fact exact in the limit when l → ∞. This
follows as a consequence of the following Lemma, a proof
of which is given in Section A.2 of the Appendix.
Lemma 2.2. Let ak be the absolute value of the k-th term
of the sum in Theorem 2.1, then for k → ∞ we have

ak =
1

k

[
ekϑ+ k2τ2

2 Φ

(
−ϑ

τ
−kτ

)

+ e−kϑ+ k2τ2

2 Φ

(
ϑ

τ
−kτ

)]
∼ 1

k2
→

k→∞
0

(6)

As a result, Theorem 2.1 converges to the true expectation
in the limit, as summarized below.
Corollary 2.3. Let

SK =
τ√
2π

e−
ϑ2

2τ2 + ϑΦ

(
ϑ

τ

)
+

K∑
k=1

(−1)(k−1)ak. (7)

where ak is defined (6), then

lim
K→∞

S2K = EX log(1 + exp(X)) (8)

In practice however, the sum is truncated at some l ≥ 1,
which can be chosen such that the relative error is below
a given threshold. Figure 1 (c) shows that a relative error
below 1% can be achieved when l = 12, which occurs about
the origin when the variance τ2 is small. Further details on
the choice of l are given in Section B.2 of the Appendix.

2.2. Applications to Classification

Two applications of Theorem 2.1, namely variational lo-
gistic regression and Gaussian process classification are
presented next. In both cases we show that the proposed
bound can be used to compute a tight approximation to the
ELBO without the need for additional parameters, costly
Monte Carlo or quadrature methods.

2.2.1. VARIATIONAL LOGISTIC REGRESSION

In the context of variational logistic regression f(x) = x⊤β
and β ∼ Np(m,S) a priori where m ∈ Rp and S ∈ Sp+
are the prior mean and covariance respectively. Hence,
inference involves approximating the posterior of β with
a distribution from the variational family Q′ = Nd(µ,Σ)
with d = p, i.e. a single co-ordinate in the variational family
is associated with a co-ordinate from the coefficient vector.
Under this formulation the ELBO is given by,

Eq(β)

[
n∑

i=1

yix
⊤
i β − log(1 + exp(x⊤

i β))

]
− DKL(q(β)||p(β))

(9)

where

DKL(q(β)∥p(β)) =
1

2

(
log

|S|
|Σ|

− p+ tr(S−1Σ)

+ (µ−m)⊤S−1(µ−m)
)
.

(10)

Using the fact that x⊤
i β ∼ N(x⊤

i µ, x
⊤
i Σxi) the expectation

of the softplus function in (9) can be bounded by applying
Theorem 2.1 with ϑi = x⊤

i µ and τ2i = x⊤
i Σxi. Thus,

giving a tractable lower bound to the ELBO of the form,

ELBO(q(β)) ≥ Fl(µ,Σ) :=
n∑

i=1

(
yix

⊤
i µ− ηl(ϑi, τi)

)
−DKL(q(β)||p(β)).

(11)

In turn (11) can be maximized in place of the ELBO with
respect to the variational parameters µ and Σ to give a sur-
rogate variational posterior. This can be done in a number
of ways e.g. via co-ordinate ascent variational inference
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or stochastic variational inference (Blei et al., 2017; Zhang
et al., 2019a). Here we turn to gradient descent for simplic-
ity by computing the gradient of Fl(µ,Σ) with respect to
µ and Σ and updating the parameters accordingly. Notably,
although (11) is a lower bound on the ELBO the use of
surrogate lower bounds is a common technique in VI (Ko-
modromos et al., 2022; Depraetere & Vandebroek, 2017).

2.2.2. GAUSSIAN PROCESS CLASSIFICATION

In the context of Logistic Gaussian Process classification
a GP prior is placed on f , formally f ∼ GP(m(·), k(·, ·))
where m(·) is the mean function and k(·, ·) is the kernel.
Inference now involves computing the posterior distribution
π(f |D), however, due to the lack of conjugacy and the
fact that the computational complexity is O(n3), sparse
variational inference is used to approximate the posterior
(Titsias, 2009; Hensman et al., 2015; Wenzel et al., 2017).

In this vein we follow Hensman et al. (2015) and let the vari-
ational family be an M dimensional Gaussian distribution,
where M are the number of inducing points (i.e. points used
to perform the sparse approximation). Under this formula-
tion the variational posterior is given by q(u) = NM (µ,Σ)
where u are the inducing points and µ ∈ RM and Σ ∈ SM+ .

Using the fact that the random variables u are points on
the function in exactly the same way as f are, the joint
distribution can be written as

p(f, u) = N

([
f
u

]∣∣∣∣[m(x)
m(z)

]
,

[
Knn Knm

K⊤
nm Kmm

])
(12)

where Knn = k(x, x), Knm = k(x, z), and Kmm =
k(z, z), where z are the inducing point locations. In turn
the ELBO with respect to q(u) can be bounded by,

ELBO(q(u)) = Eq(u) [log p(y|u)]−DKL(q(u)||p(u))
≥ Eq(u)

[
Ep(f |u) [log(p(y|f))]

]
−DKL(q(u)||p(u))

= Eq(f) [log p(y|f)]−DKL(q(u)||p(u)) (13)

where q(f) = N(Aµ,Knn + A(Σ − Kmm)A⊤) with
A = KnmK−1

mm, and the inequality follows from the ap-
plication of Jensen’s inequality wherein, log(p(y|u)) =
log

(
Ep(f |u) [p(y|f)]

)
≥ Ep(f |u) [log(p(y|f))].

Given that the expectation of log(p(y|f)) in (13) is,

Eq(f)

[
n∑

i=1

yif(xi)− log(1 + exp(f(xi)))

]
,

Theorem 2.1 can be applied to give a further lower bound
on the ELBO,

ELBO(q(u)) ≥ Fl(µ,Σ) :=
n∑

i=1

(yim(xi)− ηl(ϑi, τi))−DKL(q(u)||p(u))
(14)

where ϑi = (Aµ)i and τ2i = (Knn +A(Σ−Kmm)A⊤)ii
for i = 1, . . . , n. As before Fl(µ,Σ) in (14) is optimized
using gradient descent to give the variational posterior. No-
tably, this can be done in conjunction with the inducing
point locations and kernel hyperparameters if necessary (as
is done in our implementation.)

2.3. Computational Complexity

The computational complexity is summarized in Table 1.
Notably, the proposed bound has computational complexity
that depends on l, whereas the PG formulation (the proba-
bilistic equivalent to (4)) has a fixed complexity. However,
the PG formulation uses n additional parameters, as each
data point has an associated variational parameter, which
must be optimized as well. Whereas the proposed bound
does not require any additional parameters, and so the num-
ber of parameters is fixed at p. This means a trade-off can be
made between memory and computation time irregardless
of methodological differences.

Table 1. Computational and space complexity. Complexity is given
for a single observation.

Method Parameters Complexity

Polya-Gamma p+ n O(1)

Our bound p O(2l − 1)

2.4. Implementation Details

To ensure stable optimization a re-parameterization of the
variational parameters is used. In the context of logistic
regression, we let Σ = LL⊤ where L is a lower triangular
matrix and optimize over the elements of L. In terms of µ no
re-parametrization is made. For Logistic Gaussian process
classification the parameterization θ = Σ−1µ and Θ =
− 1

2Σ
−1 is made, and optimization is performed over θ and

Θ. The variational parameters are then recovered via µ =
Σθ and Σ = −2Θ−1. Beyond ensuring stable optimization,
this parameterization gives rise to natural gradients, known
to lead to faster convergence (Martens, 2020).

Regarding the initialization of µ and Σ, the mean vector
µ is sampled from a Gaussian distribution with zero mean
and identity covariance matrix, and Σ = 0.35Ip. To assess
convergence the relative change in the ELBO is monitored,
given by ∆ELBOt = |ELBOt − ELBOt−1|/|ELBOt−1|.
Once this quantity is below a given threshold, the gradient
descent algorithm is stopped. In practice we find that a
threshold between 10−6 and 10−8 is sufficient.

Finally, we note our implementation is based on PyTorch
(Paszke et al., 2019) and uses Gpytorch (Gardner et al.,
2018) to perform Gaussian Process VI. The implementation
is freely available at https://github.com/mkomod/
vi-per.
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Table 2. Logistic regression results. Median (2.5%, 97.5% quantiles) of the ELBO, KLMC, MSE, coverage, CI width and AUC for the
different methods. Here KLMC is the KL divergence between the posterior of β computed via VI–MC and the posterior computed via the
respective method. Bold indicates the best performing variational method excluding VI–MC which is considered the ground truth.

n / p VF Method ELBO KLMC MSE Coverage CI Width AUC Runtime

1,000 / 25

Q

VI–PER -264 (-340, -230) 0.00588 (0.0032, 0.01) 0.493 (0.19, 1.5) 0.906 (0.66, 0.99) 2.44 (2.1, 2.7) 0.977 (0.96, 0.98) 12s (9.9s, 21s)

VI–MC -264 (-340, -230) - 0.494 (0.2, 1.5) 0.904 (0.65, 0.99) 2.42 (2.1, 2.7) 0.977 (0.96, 0.98) 2m 24s (1m 56s, 2m 57s)

VI–PG -332 (-440, -280) 5.36 (3.6, 6.9) 0.557 (0.21, 1.7) 0.724 (0.47, 0.92) 1.67 (1.5, 1.8) 0.977 (0.96, 0.98) 0.12s (0.054s, 0.37s)

Q’

VI–PER -256 (-330, -220) 0.548 (0.42, 0.76) 0.493 (0.2, 1.5) 0.945 (0.72, 1) 2.65 (2.2, 3.1) 0.977 (0.96, 0.98) 9.7s (3.8s, 28s)

VI–MC -257 (-330, -220) - 0.491 (0.2, 1.5) 0.949 (0.74, 1) 2.66 (2.2, 3.1) 0.977 (0.96, 0.98) 2m 15s (1m 52s, 2m 49s)

VI–PG -277 (-350, -240) 8.15 (4.9, 12) 0.554 (0.21, 1.7) 0.723 (0.46, 0.93) 1.66 (1.5, 1.8) 0.977 (0.96, 0.98) 0.57s (0.25s, 1.2s)

MCMC - - 0.492 (0.2, 1.5) 0.948 (0.74, 1) 2.66 (2.2, 3.1) 0.977 (0.96, 0.98) 10m 46s (6m 49s, 14m 57s)

10,000 / 25

Q

VI–PER -2160 (-2900, -1700) 0.0341 (0.0066, 0.13) 0.0476 (0.025, 0.18) 0.918 (0.65, 0.98) 0.78 (0.67, 0.9) 0.974 (0.95, 0.98) 53s (34s, 1m 35s)

VI–MC -2160 (-2900, -1700) - 0.0467 (0.026, 0.19) 0.919 (0.65, 0.98) 0.783 (0.67, 0.91) 0.974 (0.95, 0.98) 14m 15s (12m 49s, 15m 47s)

VI–PG -3120 (-4100, -2400) 4.89 (3.1, 7.6) 0.0484 (0.026, 0.2) 0.761 (0.46, 0.89) 0.535 (0.49, 0.58) 0.974 (0.95, 0.98) 0.87s (0.48s, 1.6s)

Q’

VI–PER -2150 (-2900, -1700) 1.72 (1, 3.9) 0.0468 (0.026, 0.18) 0.96 (0.78, 0.99) 0.904 (0.73, 1.1) 0.974 (0.95, 0.98) 1m 4.1s (24s, 1m 50s)

VI–MC -2160 (-2900, -1700) - 0.0475 (0.025, 0.18) 0.971 (0.84, 1) 0.958 (0.77, 1.2) 0.974 (0.95, 0.98) 13m 49s (10m 1.7s, 15m 33s)

VI–PG -2170 (-2900, -1700) 12.6 (7.5, 21) 0.0483 (0.026, 0.2) 0.764 (0.46, 0.9) 0.539 (0.49, 0.58) 0.974 (0.95, 0.98) 3.9s (2.3s, 7.5s)

MCMC - - 0.0469 (0.026, 0.19) 0.959 (0.77, 0.99) 0.89 (0.71, 1.1) 0.974 (0.95, 0.98) 18m 3.1s (12m 41s, 20m 44s)

3. Numerical Experiments
In this section a numerical evaluation of our method taking
l = 12 is performed. Referring to our method as Variational
Inference with Probabilistic Error Reduction (VI–PER),
we compare against the Polya-Gamma formulation (VI–
PG) [which is a probabilistic interpretation of the bound
introduced by Jaakkola & Jordan (2000)] and the ELBO
computed via Monte-Carlo (VI–MC) using 1,000 samples.
Throughout we consider the variational posterior computed
with Monte Carlo as the ground truth and use this as a
reference to evaluate the performance of the other methods.

Furthermore in the case of variational logistic regression a
further comparison to the posterior distribution obtained via
MCMC is made. Notably, Hamiltonian Monte Carlo is used
to sample from the posterior which is implemented using
Hamiltorch (Cobb & Jalaian, 2021). For our sampler we
use 30,000 iterations and a burn-in of 25,000 iterations. The
step size is set to 0.01 and the number of leapfrog steps is
set to 25. For the Gaussian process classification we do not
compare to MCMC due to the high computational cost of
sampling from the posterior (Rasmussen & Williams, 2006).

To evaluate the performance of the methods we report:

(i) The ELBO estimated via Monte-Carlo (using 10,000
samples) to ensure consistency across methods.

(ii) The KL divergence between the posterior obtained via
VI–MC and the respective method, denoted by KLMC.

(iii) The mean squared error (MSE) between the posterior
mean of f(xi) and the value of the true model f0(xi)
for i = 1, . . . , n.

(iv) The coverage of the 95% credible interval (CI), which
is the proportion of times f0(xi) is contained in the
marginal credible interval of f(xi) for i = 1, . . . , n.

(v) The width of the 95% CI of f(xi).

(vi) The area under the curve (AUC) of the receiver operat-
ing characteristic (ROC) curve, which is a measure of
the predictive performance of the model.

Notably, we report the median and 2.5% and 97.5% quan-
tiles of these metrics across 100 runs. Finally, details of the
computational environment are given in Section D of the
Appendix.

3.1. Logistic Regression Simulation Study

Our first simulation study evaluates the performance of VI-
PER in the context of variational logistic regression. To this
end, we consider datasets with n = 1,000 and n = 10,000
observations, and p = 25 predictors. Additional results of
varying values of n, p, and predictor sampling schemes are
presented in Section B.3 of the Appendix.

Here data is simulated for i = 1, . . . , n observations
each having a response yi ∈ {0, 1} and p continuous
predictors xi ∈ Rp. The response is sampled inde-
pendently from a Bernoulli distribution with parameter
pi = 1/(1 + exp(−x⊤

i β0)) where the true coefficient vec-
tor β0 = (β0,1, . . . , β0,p)

⊤ ∈ Rp which elements β0,j
iid∼

U([−2.0, 0.2]∪ [0.2, 2.0]) for j = 1, . . . , p. Finally, the pre-
dictors xi

iid∼ N(0p,W
−1) where W ∼ Wishart(p+ 3, Ip),

which ensures that the predictors are correlated.

Highlighted in Table 2 are the results for the different meth-
ods, these show that VI–PER is able to achieve similar per-
formance to VI–MC (considered the ground truth amongst
the variational methods), while being significantly faster
to compute. Furthermore, VI–PER is able to achieve sim-
ilar predictive performance as with VI–PG , however our
method shows significant improvements across several met-
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Figure 2. GP classification: illustrative example. Presented is the mean (solid line) and 95% credible interval (shaded region) of the
posterior distribution for the different methods. The true function is shown in dashed line ( ), the training data are given by the
black points ( ) and the test data by the magenta crosses (+). In the top right corner the KL divergence between the variational posterior
computed using Monte Carlo and the variational posterior computed using the respective method is presented.

rics. In particular, VI–PER obtains a lower MSE, higher
coverage and larger CI width, meaning that VI–PER is
able to achieve a better fit to the data and a more accurate
representation of the posterior uncertainty. This is made par-
ticularly evident as the KLMC for VI–PER is significantly
lower than that of VI–PG.

Finally, although we do not consider a divergence between
the variational posterior and the true posterior (as we are
unable to compute DKL(Π(β|D)∥q(β)) due to the unknown
normalizing constant), we note that the MSE, coverage and
CI width are comparable to those of MCMC (considered the
gold standard in Bayesian inference). This indicates that the
variational posterior computed via VI–PER is an excellent
approximation to the true posterior.

3.2. Gaussian Process Classification: Illustrative
Example

Our second simulation study is illustrative and used to
demonstrate the performance of VI–PER in the context
of GP classification. Further evaluations are presented in
Section 4 where VI–PER is applied to real data sets. In
all our applications we consider a GP model with M = 50
inducing points, linear mean function and ARD kernel with
lengthscales initialized at 0.5.

In this setting, data is generated for i = 1, . . . , 50 samples,
with yi ∼ Bernoulli(pi) where pi = s(f(xi)+ϵi), f(xi) =
−4.5 sin(π2xi) and ϵi ∼ N(0, 1). Here the predictors (xis)
are given by a grid of points spaced evenly over [0, 5] \
[2.5, 3.5]. A test dataset of size n = 50 is generated in
the same way, however the predictors are evenly spaced
over [0, 5], meaning that the test data contains points in the
interval [2.5, 3.5] which are not present in the training data.

Figure 2 illustrates a single realization of the synthetic data.
The figure highlights, that VI–PER obtains a similar fit to

the data as with VI–MC (which is considered the ground
truth amongst the variational methods). Furthermore, Fig-
ure 2 showcases that the variational posterior variance is
underestimated by VI–PG, meaning that the CI width is too
small. As a result the method fails to capture most of the
points in the interval [2.5, 3.5].

This statement is further supported by the results presented
in Table 3 where the simulation is repeated 100 times. No-
tably, VI–PER shows improvements in the estimation of
f , in particular the KLMC and MSE is lower, whilst the
coverage is higher. These metrics suggest that VI–PER
performs similarly with VI–MC which is considered the
baseline amongst the variational methods. Beyond this the
runtime of our method is slightly lower, which is attributed
to the fact that fewer iterations are needed to achieve conver-
gence which on average is 453, 1290 and 926 iterations for
VI–PER , VI–MC and VI–PG respectively. Furthermore,
the proposed bound is able to achieve similar predictive
performance as with the VI–PG and VI–MC formulation in
terms of the AUC.

Table 3. GP Classification: illustrative example results. Median
(2.5%, 97.5% quantiles) of the ELBO, KLMC, MSE, coverage, CI
width and AUC for the different methods. Here grid refers to these
quantities computed along a grid of values in [0, 5].

VI–PER VI–MC VI–PG

ELBO -24.1 (-31, -16) -24.5 (-31, -16) -24.5 (-29, -17)

KLMC (grid) 2.78 (0.071, 130) - 37.5 (9.7, 270)

MSE (grid) 1.95 (0.42, 8.1) 1.93 (0.49, 7.8) 2.25 (0.65, 7.8)

CI width (grid) 4.31 (2.4, 6.9) 4.22 (2.6, 6.6) 3.13 (2.1, 3.9)

Coverage (grid) 0.89 (0.2, 1) 0.88 (0.29, 1) 0.68 (0.21, 1)

AUC (test) 0.928 (0.72, 0.99) 0.921 (0.76, 0.99) 0.923 (0.75, 0.99)

Runtime 10s (3.7s, 25s) 39s (4s, 41s) 18s (4.5s, 34s)
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Figure 3. Application to Soil liquefaction. Standard deviation of soil liquefaction probability evaluated for the Loma Prieta earthquake for
VI–PER , VI–MC and VI–PG under the variational family Q.

4. Application to Real World Data
Finally, we present two applications of VI–PER to real
world data. The first is to the problem of soil liquefaction,
which illustrates the necessity of scalable uncertainty quan-
tification in real world settings. The second application is
to a number of publicly available datasets and is used to
further evaluate the performance of GP classification with
VI–PER .

4.1. Application to Soil Liquefaction Data

The first application is to the problem of soil liquefaction, a
phenomenon that occurs when saturated soil loses strength
and stiffness due to an earthquake. Soil liquefaction is a
secondary hazard of earthquakes and can cause ground fail-
ure and severe structural damage. Thus, understanding the
probability of soil liquefaction is vital for risk assessment,
mitigation and emergency response planning (Zhan et al.,
2023).

To model soil liquefaction we use data from a study by
Zhan et al. (2023), which was accessed with permission
of the author and will be publicly available in the near
future. The dataset consists of data from 25 earthquakes
that took place between 1949 – 2015. In total there are
1,809,300 observations collected at different locations for
each earthquake, which consist of 33 features and a binary
response indicating whether or not soil liquefaction occurred
at a given location. We follow Zhan et al. (2023) and
construct a model consisting of five features, namely:

(i) Peak ground velocity, which is a measure of the maxi-
mum velocity of the ground during an earthquake.

(ii) Shear wave velocity within the top 30 m of the soil
column.

(iii) Mean annual precipitation.

(iv) The distance to the nearest water body.

(v) The ground water table depth.

Following Zhan et al. (2023) models are trained using
24 of the earthquakes and tested on the remaining earth-
quake which took place is Loma Prieta in 1989. Notably
the training set consists of 1,719,400 samples and the test
set consists of 89,900 samples. The results are presented
in Table 5 and show that VI–PER is able to achieve similar
predictive performance to the VI–PG and VI–MC in terms
of the AUC. However VI–PER obtains a higher ELBO sug-
gesting a better fit to the data. Furthermore, VI–PER obtains
wider CI widths inline with VI–MC, suggesting VI–PG is
underestimating the posterior uncertainty.

This is made particularly evident in Figure 3, which shows
the standard deviation of probability of soil liquefaction
for the Loma Prieta earthquake. The figure highlights that
VI–PER propagates the uncertainty in the data inline with
VI–MC, whereas VI–PG underestimates this quantity. Over-
all, these results suggest that VI–PER can provide tangible
benefits in real world settings where uncertainty quantifica-
tion is of vital importance.

Table 5. Soil Liquefaction results. Evaluation of the ELBO, KLMC,
CI width and AUC for the different methods.

VF Method ELBO KLMC CI width AUC (test)

Q
VI–PER -835200 1.83 0.0335 0.858

VI–MC -835300 - 0.0335 0.857

VI–PG -921600 73.49 0.0065 0.857

Q′

VI–PER -835200 9.11 0.0129 0.858

VI–MC -835200 - 0.0121 0.857

VI–PG -835200 4.82 0.0101 0.857
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Table 4. GP classification: application to real data. Median (2.5%, 97.5% quantiles) of the ELBO, KLMC, CI width and AUC. Here
KLMC is the KL divergence between the posterior of f(xi) computed via VI–MC and the posterior computed via the respective method
evaluated at the test/training data. Bold indicates the best performing method excluding VI–MC which is considered the ground truth.

Dataset n / p Method ELBO KLMC (train) KLMC (test) CI width (test) AUC (test) Runtime

breast-cancer 683 / 10

VI–PER -41.83 (-45.06, -39.73) 102 (3.34, 826) 12.4 (0.339, 88.8) 5.92 (4.38, 7.08) 0.995 (0.992, 0.998) 25s (13s, 53s)

VI–MC -41.87 (-45.55, -39.27) - - 6.16 (3.81, 7.37) 0.995 (0.991, 0.997) 2m 9.9s (29s, 2m 16s)

VI–PG -47.09 (-50.58, -46.97) 217000 (67900, 1.84e+06) 23000 (7350, 187000) 0.44 (0.173, 0.849) 0.997 (0.994, 0.998) 14s (3.7s, 44s)

svmguide1 3089 / 4

VI–PER -267.1 (-295.8, -248.9) 1290 (50.7, 18500) 1580 (64.4, 20000) 5.11 (3.64, 5.67) 0.996 (0.996, 0.996) 1m 37s (20s, 4m 8.6s)

VI–MC -266.5 (-306.5, -250) - - 5.18 (3.65, 5.46) 0.996 (0.996, 0.996) 10m 21s (1m 42s, 10m 52s)

VI–PG -285.8 (-330.4, -263.6) 101000 (40400, 301000) 111000 (49200, 307000) 1.51 (1.46, 1.6) 0.996 (0.996, 0.996) 1m 53s (15s, 4m 7.8s)

australian 690 / 14

VI–PER -191.2 (-194.3, -186.9) 1020 (41.4, 97200) 170 (6.89, 23000) 1.56 (0.194, 2.55) 0.953 (0.945, 0.961) 25s (12s, 1m 6.9s)

VI–MC -192.2 (-198.9, -185.9) - - 1.49 (0.279, 2.61) 0.951 (0.938, 0.959) 1m 2.6s (17s, 2m 23s)

VI–PG -193.9 (-195.1, -191.7) 4020 (129, 74300) 1090 (24.3, 29500) 0.627 (0.194, 1.09) 0.95 (0.947, 0.955) 14s (3.9s, 55s)

fourclass 862 / 2

VI–PER -52.04 (-67.08, -47.92) 75 (4.78, 592) 7.81 (0.479, 64.3) 8.6 (6.04, 9.69) 1 (1, 1) 57s (13s, 1m 24s)

VI–MC -55.54 (-68.03, -53.4) - - 7.74 (5.99, 8.15) 1 (1, 1) 2m 31s (59s, 2m 47s)

VI–PG -71 (-84.94, -69.3) 3850 (2870, 5620) 384 (326, 604) 2.95 (2.71, 3) 1 (1, 1) 51s (12s, 1m 14s)

heart 270 / 13

VI–PER -77.74 (-79.19, -75.72) 417 (21.6, 66800) 45.2 (2.67, 7510) 2.19 (0.202, 3.53) 0.894 (0.867, 0.922) 12s (4.8s, 33s)

VI–MC -77.51 (-79.98, -75.59) - - 2.71 (0.219, 3.81) 0.894 (0.867, 0.922) 51s (9.5s, 1m 25s)

VI–PG -78.93 (-79.44, -77.31) 2200 (9.21, 11700) 262 (1.01, 1420) 0.713 (0.401, 1.43) 0.894 (0.883, 0.9) 5.1s (2.7s, 15s)

4.2. Application to Publicly Available Datasets

Here logistic Gaussian Process classification is applied to
a number of publicly available datasets, all of which acces-
sible through UCI or the LIBSVM package (Chang & Lin,
2011). The datasets summarized in Table 4 include a num-
ber of binary classification problems with varying numbers
of observations and predictors.

For each dataset we use the first 80% of the data for training
and the remaining 20% for testing (when a testing set is
not available). To evaluate the performance of the different
methods the same metrics as in Section 3 are used, namely
the ELBO, KLMC, CI width and AUC. Noting, that the
MSE and coverage are not reported as the true function
is unknown. As before, the median and 2.5% and 97.5%
quantiles of these metrics across 100 runs is reported.

The results presented in Table 4 show that VI–PER is able to
achieve similar predictive performance to VI–PG in terms of
the AUC. However VI–PER obtains a higher ELBO suggest-
ing a better fit to the data. Furthermore, VI–PER obtains
CI widths inline with VI–MC indicating that VI–PER is
able to capture the posterior uncertainty more accurately.
As in earlier sections the KL divergence between VI–MC
and VI–PER is significantly lower than that of VI–MC and
VI–PG, meaning that VI–PER is in closer agreement with
VI–MC, considered the ground truth amongst the methods.

5. Discussion
We have developed a novel bound for the expectation of
the softplus function, and subsequently applied this to varia-
tional logistic regression and Gaussian process classification.
Unlike other approaches, ours does not rely on extending

the variational family, or introducing additional parameters
to ensure the approximation is tight.

Through extensive simulations we have demonstrated that
our proposal leads to more accurate posterior approxima-
tions, improving on the well known issue of variance un-
derestimation within the variational posterior (Durante &
Rigon, 2019). Furthermore, we have applied our method to
a number of real world datasets, including a large dataset of
soil liquefaction. An application which highlights the neces-
sity of scalable uncertainty quantification, and demonstrates
that our bound is able to achieve similar performance to
the Polya-Gamma formulation in terms of the AUC, while
significantly improving on the uncertainty quantification.

However, our method is not without its limitations. In par-
ticular, the proposed bound must be truncated, introducing
error into the computation of the ELBO, and as a result the
variational posterior. Furthermore, as with all variational
methods, the variational family may not be flexible enough
to approximate the true posterior, for example if there are
multimodalities or heavy tails. As such, practitioners should
take care when using our method, and ensure that the result-
ing posterior is sufficiently accurate for their application.

Finally, we note that there are several potential avenues
of methodological application of our bound in many areas
of machine learning, including: Bayesian Neural Network
classification, logistic contextual bandits and Bayesian op-
timization with binary auxiliary information (Zhang et al.,
2019b), noting that the later two applications heavily rely on
accurate posterior uncertainty quantification. Furthermore,
various extensions can be made to the proposed method,
including the use of more complex variational families such
as mixtures of Gaussians.
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Software and Data
The code for the experiments in this paper is available at
https://github.com/mkomod/vi-per
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A. Proofs
A.1. Proof of Theorem 2.1

Proof. Write Z = X − ϑ and denote the density of Z as ϕz . It follows that,

EX [log(1 + exp(X))] = EZ [log(1 + exp(Z + ϑ))]

=

∫ ∞

−ϑ

log(1 + exp(z + ϑ))ϕzdz +

∫ −ϑ

−∞
log(1 + exp(z + ϑ))ϕzdz

=

∫ ∞

−ϑ

(z + ϑ)ϕzdz +

∫ ∞

−ϑ

log[1 + exp(−(z + ϑ))]ϕzdz

+

∫ −ϑ

−∞
log(1 + exp(z + ϑ))ϕzdz

≤
∫ ∞

−ϑ

(z + ϑ)ϕzdz +

2l−1∑
k=1

−1k−1

k

(∫ ∞

−ϑ

exp(−k(z + ϑ))ϕzdz

+

∫ −ϑ

−∞
exp(k(z + ϑ))ϕzdz

)
where the inequality follows from the truncated Maclaurin series of log(1+x) ≤

∑2l−1
k=1 (−1)k−1xk/k for x ∈ [0, 1], l ≥ 1,

and (5) follows from the fact that ϕ(z)′ = −zϕ(z)/τ2 and
∫ b

a
etzϕzdz = eτ

2t2/2 [Φ(b/τ − tτ)− Φ(a/τ − tτ)].

A.2. Proof of Lemma 2.2

Here we study the limiting behavior of the terms in the sum of Theorem 2.1. Recall, that the absolute value of the term is
given by,

ak =
1

k

[
ekϑ+ k2τ2

2 Φ

(
−ϑ

τ
−kτ

)
+ e−kϑ+ k2τ2

2 Φ

(
ϑ

τ
−kτ

)]
. (15)

Using the fact that Φ(−t) ∼ e−t2/2
√
2πt

as t → ∞, we have,

ak ∼ 1

k

[
exp

(
kϑ+ k2τ2/2

)exp(− 1
2

(
ϑ
τ + kτ

)2)
√
2π

(
ϑ
τ + kτ

) + exp
(
−kϑ+ k2τ2/2

)exp(− 1
2

(
kτ − ϑ

τ

)2)
√
2π

(
kτ − ϑ

τ

) ]

=
1

k

exp
(
− ϑ2

2τ2

)
√
2π

[
2kτ

k2τ4 − ϑ2

]

∼ 1

k2

A.3. Proof of Corollary 2.3

Let

SK =
τ√
2π

e−
ϑ2

2τ2 + ϑΦ

(
ϑ

τ

)
+

K∑
k=1

(−1)(k−1)ak

where ak is the kth term in the sum of (5) as define above, then

S2k ≤ EX log(1 + exp(X)) ≤ S2k+1 (16)

and so
0 ≤ EX log(1 + exp(X))− S2k ≤ S2k+1 − S2k = a2k+1 (17)
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Applying Lemma 2.2 and taking the limit as k → ∞, we have

0 ≤ EX log(1 + exp(X))− S2k ≤ 0 (18)

and so limk→∞ S2k = EX log(1 + exp(X)).

B. Additional Numerical Results
B.1. Error of Bounds

Here we present additional results for the error of the bounds. In particular, we compute the relative error of the bound by
Jaakkola & Jordan (2000) and the proposed bound with l = 12. Notably the relative error is computed with respect to the
Monte Carlo estimate of the expectation of log(1 + exp(X)) with 5× 106 samples, and is given by the absolute difference
between the bound and the ground truth, divided by the ground truth itself. These results are presented in Figure 1 and
show that the proposed bound obtains a relative error that is smaller than that of the bound by Jaakkola & Jordan (2000),
particularly outside the origin of ϑ and τ .

Figure 4. Comparison of the relative error of the (a) Jaakkola & Jordan (2000) bound, (b) the proposed bound, (c) difference between the
relative error of the bounds. The comparison is over a grid of values of ϑ and τ . Here the relative error of the bounds is the absolute
difference between the bound and the ground truth, divided by the ground truth itself, where the ground truth is the expectation of
log(1 + exp(X)) computed using Monte Carlo with 5× 106 samples.
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B.2. Impact of l

Here we present the values of l need to obtain a relative error of less than 0.5%, 1%, 2.5% and 5% for different values of τ
and ϑ. These results are presented in Figure 5 and show that the number of terms needed to obtain a relative error of less
than 0.5% is less than 17 for all values of τ and ϑ considered. Notably, this value decreases to 12, 7 and 5 for relative errors
of less than 1%, 2.5% and 5% respectively.
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Figure 5. The number of terms (l) needed such that the relative error is below (a) 0.5%, (b) 1%, (c) 2.5% and (d) 5% for different values
of τ and ϑ.

B.3. Logistic Regression Simulation Study

Throughout this section we present additional results for the logistic regression simulation study presented in Section 3.1. In
particular, we consider varying values of n = {500, 1000, 10, 000} and varying values of p = {5, 10, 25}. Furthermore, we
consider different sampling schemes for the predictors, xis, which include:

Setting 1 xi
iid∼ N(0p, Ip).

Setting 2 xi
iid∼ N(0p,Σ) where Σij = 0.3|i−j| for i, j = 1, . . . , p.

Setting 3 xi
iid∼ N(0p,W

−1) where W ∼ Wishart(p+ 3, Ip).

These settings are chosen to highlight the performance of the different methods under different levels of correlation between
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the predictors. Notably, Setting 1 corresponds to the case where the predictors are independent, Setting 2 corresponds to
the case where the predictors are mildly correlated and Setting 3 corresponds to the case where the predictors are strongly
correlated.

The results summarized in Tables 6 – 8 highlight that VI–PER is able to achieve similar performance to VI–MC (considered
the ground truth amongst the variational methods), while being significantly faster to compute. Furthermore, VI–PER is
able to achieve similar predictive performance as with VI–PG in terms of the AUC, however our method shows significant
improvements in terms of the uncertainty quantification. This is made particularly evident as the coverage and CI widths
are inline with VI–MC whereas VI–PG underestimates the posterior variance resulting in lower values for these quantities.
Finally, the KL divergence between VI–MC and VI–PER is significantly lower than that of VI–MC and VI–PG, meaning
that VI–PER is in closer agreement with VI–MC.

Furthermore, we note that the MSE, coverage and CI width are comparable to those of MCMC (considered the gold standard
in Bayesian inference). This indicates that the variational posterior computed via VI–PER is an excellent approximation to
the true posterior, whilst requiring an order of magnitude less computation time.

C. Application to Real Data
C.1. Soil Liquefaction Additional Results

Here we present additional results for the soil liquefaction application presented in Section 4. In particular, Figure 6 shows
the standard deviation of soil liquefaction probability evaluated for the Loma Prieta earthquake for VI–PER , VI–MC and
VI–PG under the variational family Q′. These results highlight that VI–PER propagates the uncertainty in the data inline
with VI–MC , whilst it appears VI–PG underestimates this quantity as before.

Figure 6. Application to Soil liquefaction. Standard deviation of soil liquefaction probability evaluated for the Loma Prieta earthquake for
VI–PER , VI–MC and VI–PG under the variational family Q′.
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Table 6. Logistic regression results, Setting 1: Median (2.5%, 97.5% quantiles) of the ELBO, KLMC, MSE, coverage, CI width and AUC
for the different methods for data generated under Setting 1.

Setting VF Method ELBO KLMC MSE Coverage CI Width AUC Runtime

500 / 5

Q

VI–PER -206 (-270, -160) 0.00135 (0.0004, 0.0086) 0.0873 (0.015, 0.39) 0.988 (0.65, 1) 1.13 (0.95, 1.3) 0.908 (0.82, 0.95) 6.5s (6.2s, 6.7s)

VI–MC -206 (-270, -160) - 0.0873 (0.016, 0.38) 0.982 (0.65, 1) 1.12 (0.94, 1.3) 0.908 (0.82, 0.95) 50s (40s, 57s)

VI–PG -217 (-290, -170) 0.389 (0.14, 0.72) 0.0908 (0.016, 0.37) 0.87 (0.51, 1) 0.879 (0.81, 0.95) 0.908 (0.82, 0.95) 0.02s (0.011s, 0.11s)

Q’

VI–PER -205 (-270, -160) 0.0472 (0.02, 0.084) 0.0858 (0.015, 0.39) 1 (0.72, 1) 1.24 (0.97, 1.5) 0.908 (0.82, 0.95) 1.2s (0.75s, 1.8s)

VI–MC -205 (-270, -160) - 0.0871 (0.015, 0.39) 1 (0.77, 1) 1.29 (0.96, 1.6) 0.908 (0.82, 0.95) 50s (45s, 54s)

VI–PG -206 (-270, -160) 1.01 (0.23, 2) 0.0896 (0.016, 0.37) 0.862 (0.51, 1) 0.873 (0.8, 0.95) 0.908 (0.82, 0.95) 0.088s (0.041s, 0.27s)

MCMC - - 0.088 (0.015, 0.39) 1 (0.71, 1) 1.23 (0.96, 1.5) 0.908 (0.82, 0.95) 8m 21s (6m 16s, 9m 22s)

500 / 10

Q

VI–PER -173 (-210, -140) 0.00219 (0.00095, 0.0048) 0.242 (0.08, 0.86) 0.946 (0.62, 1) 1.78 (1.6, 2) 0.947 (0.91, 0.97) 5.6s (5.4s, 5.8s)

VI–MC -173 (-210, -140) - 0.242 (0.081, 0.86) 0.948 (0.62, 1) 1.8 (1.6, 2) 0.947 (0.91, 0.97) 26s (22s, 30s)

VI–PG -190 (-230, -150) 1.17 (0.73, 1.7) 0.233 (0.074, 0.93) 0.828 (0.48, 1) 1.34 (1.3, 1.4) 0.947 (0.91, 0.97) 0.021s (0.014s, 0.029s)

Q’

VI–PER -173 (-210, -140) 0.111 (0.074, 0.17) 0.246 (0.082, 0.85) 0.964 (0.69, 1) 1.96 (1.7, 2.3) 0.947 (0.91, 0.97) 0.59s (0.45s, 0.93s)

VI–MC -173 (-210, -140) - 0.246 (0.08, 0.86) 0.97 (0.72, 1) 2.02 (1.7, 2.4) 0.947 (0.91, 0.97) 27s (24s, 30s)

VI–PG -174 (-210, -140) 2.49 (1.5, 4.1) 0.233 (0.074, 0.93) 0.834 (0.48, 1) 1.34 (1.3, 1.4) 0.947 (0.91, 0.97) 0.084s (0.06s, 0.12s)

MCMC - - 0.248 (0.08, 0.86) 0.968 (0.71, 1) 1.99 (1.7, 2.3) 0.947 (0.91, 0.97) 5m 16s (5m 11s, 5m 23s)

500 / 25

Q

VI–PER -150 (-180, -130) 0.00876 (0.0046, 0.018) 1.13 (0.47, 1.9) 0.886 (0.75, 0.99) 3.37 (3.1, 3.7) 0.98 (0.96, 0.99) 5.6s (5.3s, 6.2s)

VI–MC -150 (-180, -130) - 1.13 (0.47, 1.9) 0.886 (0.75, 0.99) 3.39 (3.1, 3.7) 0.98 (0.96, 0.99) 45s (33s, 54s)

VI–PG -176 (-210, -150) 5.54 (4.1, 7.1) 1.3 (0.5, 2.2) 0.686 (0.56, 0.91) 2.34 (2.2, 2.4) 0.98 (0.96, 0.99) 0.065s (0.044s, 0.092s)

Q’

VI–PER -149 (-180, -130) 0.465 (0.38, 0.63) 1.09 (0.48, 1.8) 0.934 (0.82, 1) 3.73 (3.3, 4.1) 0.98 (0.96, 0.99) 1.2s (0.88s, 2.3s)

VI–MC -149 (-180, -130) - 1.09 (0.49, 1.8) 0.946 (0.83, 1) 3.89 (3.5, 4.3) 0.98 (0.96, 0.99) 46s (36s, 52s)

VI–PG -152 (-180, -130) 9.56 (6.9, 12) 1.29 (0.5, 2.2) 0.698 (0.56, 0.93) 2.36 (2.2, 2.5) 0.98 (0.96, 0.99) 0.25s (0.18s, 0.39s)

MCMC - - 1.09 (0.47, 1.8) 0.942 (0.83, 1) 3.76 (3.4, 4.2) 0.98 (0.96, 0.99) 8m 35s (6m 39s, 9m 59s)

1000 / 5

Q

VI–PER -391 (-550, -330) 0.00108 (0.00026, 0.012) 0.0427 (0.0081, 0.21) 0.984 (0.61, 1) 0.819 (0.65, 0.9) 0.91 (0.81, 0.94) 8.1s (7.4s, 8.7s)

VI–MC -391 (-550, -330) - 0.042 (0.0082, 0.22) 0.989 (0.61, 1) 0.819 (0.66, 0.9) 0.91 (0.81, 0.94) 1m 49s (1m 18s, 2m 12s)

VI–PG -417 (-590, -350) 0.411 (0.11, 0.59) 0.0424 (0.0076, 0.22) 0.886 (0.47, 1) 0.628 (0.57, 0.66) 0.91 (0.81, 0.94) 0.022s (0.011s, 0.032s)

Q’

VI–PER -391 (-550, -330) 0.0348 (0.015, 0.086) 0.0426 (0.0082, 0.21) 1 (0.67, 1) 0.921 (0.66, 1.1) 0.91 (0.81, 0.94) 1.5s (1s, 1.9s)

VI–MC -391 (-550, -330) - 0.0428 (0.0083, 0.21) 0.998 (0.63, 1) 0.889 (0.65, 1.1) 0.91 (0.81, 0.94) 1m 40s (1m 27s, 1m 59s)

VI–PG -391 (-550, -330) 0.743 (0.12, 1.4) 0.0421 (0.0078, 0.22) 0.885 (0.47, 1) 0.636 (0.57, 0.67) 0.91 (0.81, 0.94) 0.097s (0.049s, 0.14s)

MCMC - - 0.0429 (0.0082, 0.21) 0.998 (0.66, 1) 0.9 (0.65, 1.1) 0.91 (0.81, 0.94) 8m 47s (6m 23s, 9m 28s)

1000 / 10

Q

VI–PER -325 (-400, -270) 0.00128 (0.00057, 0.0073) 0.126 (0.046, 0.59) 0.93 (0.59, 1) 1.28 (1.1, 1.4) 0.946 (0.91, 0.96) 5.7s (5.4s, 6.1s)

VI–MC -325 (-400, -270) - 0.128 (0.046, 0.59) 0.934 (0.59, 1) 1.28 (1.1, 1.4) 0.946 (0.91, 0.97) 1m 4.8s (54s, 1m 17s)

VI–PG -367 (-450, -310) 1.12 (0.73, 1.6) 0.131 (0.045, 0.63) 0.808 (0.45, 0.99) 0.96 (0.91, 1) 0.946 (0.91, 0.96) 0.026s (0.018s, 0.037s)

Q’

VI–PER -325 (-400, -270) 0.141 (0.08, 0.2) 0.127 (0.046, 0.57) 0.973 (0.68, 1) 1.46 (1.2, 1.7) 0.946 (0.91, 0.96) 0.94s (0.69s, 1.8s)

VI–MC -325 (-400, -270) - 0.128 (0.046, 0.57) 0.968 (0.67, 1) 1.44 (1.2, 1.7) 0.946 (0.91, 0.96) 1m 4s (59s, 1m 13s)

VI–PG -326 (-400, -270) 2.22 (1.1, 4) 0.129 (0.045, 0.63) 0.809 (0.44, 0.98) 0.961 (0.9, 1) 0.946 (0.91, 0.96) 0.11s (0.078s, 0.15s)

MCMC - - 0.127 (0.046, 0.57) 0.971 (0.69, 1) 1.46 (1.2, 1.7) 0.946 (0.91, 0.97) 8m 32s (8m 21s, 8m 47s)

1000 / 25

Q

VI–PER -265 (-310, -230) 0.00419 (0.002, 0.0088) 0.496 (0.21, 1.2) 0.918 (0.71, 0.99) 2.41 (2.2, 2.6) 0.977 (0.97, 0.98) 7.1s (6.1s, 8s)

VI–MC -265 (-310, -230) - 0.497 (0.21, 1.2) 0.918 (0.71, 0.99) 2.39 (2.2, 2.6) 0.977 (0.97, 0.98) 1m 31s (1m 8.2s, 1m 57s)

VI–PG -336 (-390, -290) 5.15 (4, 6.7) 0.535 (0.22, 1.4) 0.737 (0.51, 0.93) 1.67 (1.6, 1.7) 0.977 (0.97, 0.98) 0.097s (0.07s, 0.14s)

Q’

VI–PER -264 (-310, -230) 0.632 (0.53, 0.82) 0.495 (0.21, 1.2) 0.956 (0.78, 1) 2.71 (2.4, 3) 0.977 (0.97, 0.98) 2.7s (1.5s, 4.3s)

VI–MC -265 (-310, -230) - 0.493 (0.21, 1.1) 0.952 (0.79, 1) 2.7 (2.4, 3) 0.977 (0.97, 0.98) 1m 33s (1m 20s, 1m 44s)

VI–PG -267 (-310, -230) 8.42 (6, 12) 0.531 (0.22, 1.4) 0.745 (0.51, 0.93) 1.68 (1.6, 1.8) 0.977 (0.97, 0.98) 0.42s (0.29s, 0.61s)

MCMC - - 0.497 (0.21, 1.2) 0.955 (0.81, 1) 2.73 (2.5, 3) 0.977 (0.97, 0.98) 9m 13s (6m 57s, 10m 42s)

10000 / 5

Q

VI–PER -3920 (-4900, -3200) 0.00815 (0.0052, 0.055) 0.00536 (0.0008, 0.02) 0.957 (0.63, 1) 0.26 (0.23, 0.29) 0.904 (0.85, 0.94) 59s (47s, 1m 8.8s)

VI–MC -3920 (-4900, -3200) - 0.00556 (0.00084, 0.021) 0.953 (0.62, 1) 0.259 (0.22, 0.29) 0.904 (0.85, 0.94) 20m 10s (4m 49s, 24m 14s)

VI–PG -4270 (-5300, -3400) 0.391 (0.17, 0.77) 0.00552 (0.00086, 0.021) 0.813 (0.48, 1) 0.198 (0.19, 0.21) 0.904 (0.85, 0.94) 0.085s (0.048s, 0.15s)

Q’

VI–PER -3920 (-4900, -3200) 0.0538 (0.023, 0.13) 0.00574 (0.00086, 0.02) 0.983 (0.71, 1) 0.284 (0.23, 0.36) 0.904 (0.85, 0.94) 13s (9.6s, 18s)

VI–MC -3920 (-4900, -3200) - 0.00553 (0.0008, 0.021) 0.986 (0.71, 1) 0.297 (0.24, 0.38) 0.904 (0.85, 0.94) 18m 24s (8m 17s, 22m 33s)

VI–PG -3920 (-4900, -3200) 1.05 (0.38, 2.3) 0.00544 (0.00086, 0.021) 0.817 (0.48, 1) 0.201 (0.19, 0.22) 0.904 (0.85, 0.94) 0.42s (0.24s, 0.8s)

MCMC - - 0.00566 (0.00084, 47) 0.964 (0.045, 1) 0.284 (0.084, 0.35) 0.904 (0.85, 0.94) 15m 11s (9m 54s, 18m 26s)

10000 / 10

Q

VI–PER -3060 (-3600, -2700) 0.00712 (0.0055, 0.01) 0.0124 (0.0043, 0.036) 0.948 (0.72, 1) 0.416 (0.38, 0.45) 0.944 (0.92, 0.96) 48s (42s, 55s)

VI–MC -3060 (-3600, -2700) - 0.0121 (0.0045, 0.036) 0.942 (0.71, 1) 0.41 (0.37, 0.45) 0.944 (0.92, 0.96) 17m 39s (10m 13s, 18m 39s)

VI–PG -3610 (-4300, -3200) 1.1 (0.74, 1.5) 0.0123 (0.0041, 0.036) 0.823 (0.57, 0.99) 0.305 (0.29, 0.32) 0.944 (0.92, 0.96) 0.23s (0.095s, 0.41s)

Q’

VI–PER -3060 (-3600, -2700) 0.272 (0.13, 0.38) 0.0124 (0.0043, 0.036) 0.976 (0.83, 1) 0.47 (0.41, 0.53) 0.944 (0.92, 0.96) 14s (9.8s, 25s)

VI–MC -3060 (-3600, -2700) - 0.0124 (0.0042, 0.036) 0.978 (0.85, 1) 0.487 (0.41, 0.55) 0.944 (0.92, 0.96) 17m 30s (10m 14s, 18m 14s)

VI–PG -3060 (-3600, -2700) 3.06 (1.6, 4.5) 0.0121 (0.0042, 0.035) 0.837 (0.57, 0.99) 0.308 (0.29, 0.32) 0.944 (0.92, 0.96) 1s (0.52s, 1.7s)

MCMC - - 0.0123 (0.0043, 0.048) 0.974 (0.76, 1) 0.45 (0.4, 0.54) 0.944 (0.92, 0.96) 13m 60s (13m 35s, 14m 21s)

10000 / 25

Q

VI–PER -2140 (-2600, -1900) 0.00603 (0.00076, 0.01) 0.0518 (0.024, 0.15) 0.916 (0.68, 0.99) 0.784 (0.72, 0.84) 0.974 (0.96, 0.98) 30s (21s, 49s)

VI–MC -2140 (-2600, -1900) - 0.0514 (0.024, 0.15) 0.913 (0.68, 0.99) 0.783 (0.71, 0.84) 0.974 (0.96, 0.98) 15m 2.9s (11m 43s, 18m 38s)

VI–PG -3100 (-3700, -2700) 4.79 (3.7, 5.8) 0.0503 (0.024, 0.16) 0.756 (0.49, 0.9) 0.538 (0.51, 0.56) 0.974 (0.96, 0.98) 1s (0.51s, 2.5s)

Q’

VI–PER -2140 (-2600, -1900) 1.61 (1.3, 2) 0.0519 (0.024, 0.14) 0.96 (0.8, 1) 0.906 (0.79, 1) 0.974 (0.96, 0.98) 23s (11s, 49s)

VI–MC -2140 (-2600, -1900) - 0.052 (0.024, 0.15) 0.973 (0.83, 1) 0.985 (0.83, 1.2) 0.974 (0.96, 0.98) 14m 8.7s (12m 0.36s, 16m 5.3s)

VI–PG -2140 (-2600, -1900) 13.7 (8.9, 22) 0.0508 (0.024, 0.16) 0.762 (0.49, 0.9) 0.543 (0.51, 0.57) 0.974 (0.96, 0.98) 4.4s (2.2s, 11s)

MCMC - - 0.0521 (0.025, 0.15) 0.954 (0.78, 0.99) 0.893 (0.79, 1) 0.974 (0.96, 0.98) 15m 6.9s (12m 33s, 20m 3.4s)
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Table 7. Logistic regression results, Setting 2: Median (2.5%, 97.5% quantiles) of the ELBO, KLMC, MSE, coverage, CI width and AUC
for the different methods for data generated under Setting 2.

Setting VF Method ELBO KLMC MSE Coverage CI Width AUC Runtime

500 / 5

Q

VI–PER -207 (-280, -140) 0.0013 (0.00043, 0.012) 0.0876 (0.015, 0.47) 0.972 (0.61, 1) 1.15 (0.91, 1.5) 0.907 (0.8, 0.96) 6.8s (6.6s, 7.2s)

VI–MC -207 (-280, -140) - 0.0861 (0.013, 0.47) 0.966 (0.61, 1) 1.14 (0.9, 1.5) 0.907 (0.8, 0.96) 54s (28s, 60s)

VI–PG -217 (-300, -150) 0.444 (0.1, 1.1) 0.0875 (0.013, 0.46) 0.856 (0.5, 1) 0.882 (0.8, 1) 0.907 (0.8, 0.96) 0.021s (0.0096s, 0.05s)

Q’

VI–PER -206 (-280, -140) 0.0362 (0.015, 0.076) 0.0832 (0.014, 0.47) 0.998 (0.7, 1) 1.24 (0.93, 1.7) 0.907 (0.8, 0.96) 1.2s (0.79s, 1.6s)

VI–MC -206 (-280, -140) - 0.0849 (0.012, 0.47) 1 (0.74, 1) 1.28 (0.95, 1.8) 0.907 (0.8, 0.96) 53s (30s, 58s)

VI–PG -207 (-280, -140) 0.897 (0.24, 2.6) 0.0867 (0.013, 0.46) 0.86 (0.49, 1) 0.873 (0.79, 0.98) 0.907 (0.8, 0.96) 0.088s (0.039s, 0.19s)

MCMC - - 0.0857 (0.012, 0.47) 0.996 (0.69, 1) 1.23 (0.92, 1.7) 0.907 (0.8, 0.96) 8m 9.2s (7m 6s, 8m 25s)

500 / 10

Q

VI–PER -174 (-220, -130) 0.00229 (0.00072, 0.0061) 0.249 (0.069, 0.65) 0.932 (0.74, 1) 1.79 (1.6, 2.1) 0.947 (0.91, 0.97) 6.7s (6.1s, 7.1s)

VI–MC -174 (-220, -130) - 0.25 (0.068, 0.66) 0.936 (0.75, 1) 1.81 (1.6, 2.1) 0.947 (0.91, 0.97) 45s (29s, 49s)

VI–PG -191 (-240, -140) 1.19 (0.68, 1.9) 0.252 (0.061, 0.72) 0.82 (0.54, 1) 1.34 (1.3, 1.5) 0.947 (0.91, 0.97) 0.021s (0.013s, 0.074s)

Q’

VI–PER -173 (-220, -130) 0.106 (0.067, 0.16) 0.249 (0.073, 0.64) 0.97 (0.81, 1) 1.97 (1.7, 2.4) 0.947 (0.91, 0.97) 0.77s (0.47s, 1.3s)

VI–MC -173 (-220, -130) - 0.249 (0.073, 0.65) 0.98 (0.83, 1) 2.03 (1.7, 2.6) 0.947 (0.91, 0.97) 47s (32s, 50s)

VI–PG -174 (-220, -130) 2.55 (1.4, 5) 0.252 (0.061, 0.71) 0.83 (0.55, 1) 1.35 (1.3, 1.5) 0.947 (0.91, 0.97) 0.09s (0.056s, 0.23s)

MCMC - - 0.243 (0.074, 0.65) 0.976 (0.83, 1) 2 (1.7, 2.5) 0.947 (0.91, 0.97) 7m 45s (7m 6.6s, 7m 56s)

500 / 25

Q

VI–PER -152 (-180, -130) 0.00846 (0.0048, 0.017) 0.973 (0.57, 2.2) 0.908 (0.73, 0.98) 3.38 (3.1, 3.7) 0.981 (0.97, 0.99) 9.1s (8.8s, 9.7s)

VI–MC -151 (-180, -130) - 0.982 (0.57, 2.2) 0.91 (0.73, 0.98) 3.4 (3.1, 3.7) 0.98 (0.97, 0.99) 43s (32s, 49s)

VI–PG -177 (-210, -150) 5.57 (4.3, 7.3) 1.17 (0.55, 2.6) 0.718 (0.54, 0.88) 2.34 (2.2, 2.5) 0.981 (0.97, 0.99) 0.057s (0.04s, 0.081s)

Q’

VI–PER -149 (-170, -130) 0.435 (0.35, 0.53) 0.95 (0.56, 2.1) 0.95 (0.78, 0.99) 3.72 (3.3, 4.1) 0.981 (0.97, 0.99) 1.4s (0.88s, 2.1s)

VI–MC -149 (-170, -130) - 0.952 (0.56, 2.1) 0.958 (0.8, 0.99) 3.83 (3.5, 4.4) 0.98 (0.97, 0.99) 46s (36s, 49s)

VI–PG -152 (-180, -130) 9.05 (6.9, 13) 1.16 (0.55, 2.5) 0.724 (0.54, 0.89) 2.36 (2.3, 2.5) 0.981 (0.97, 0.99) 0.24s (0.17s, 0.32s)

MCMC - - 0.953 (0.56, 2.1) 0.954 (0.8, 0.99) 3.76 (3.4, 4.2) 0.981 (0.97, 0.99) 7m 40s (6m 13s, 8m 42s)

1000 / 5

Q

VI–PER -410 (-560, -310) 0.00142 (0.00039, 0.012) 0.0465 (0.011, 0.2) 0.962 (0.63, 1) 0.795 (0.63, 1) 0.902 (0.79, 0.95) 4.7s (4.4s, 5.1s)

VI–MC -410 (-560, -310) - 0.0472 (0.011, 0.2) 0.961 (0.62, 1) 0.795 (0.64, 1) 0.902 (0.79, 0.95) 1m 7.6s (56s, 1m 43s)

VI–PG -438 (-610, -320) 0.379 (0.092, 0.97) 0.0474 (0.011, 0.2) 0.833 (0.47, 1) 0.616 (0.56, 0.68) 0.902 (0.79, 0.95) 0.016s (0.0068s, 0.034s)

Q’

VI–PER -410 (-560, -300) 0.0232 (0.0093, 0.074) 0.0461 (0.011, 0.2) 0.997 (0.69, 1) 0.866 (0.65, 1.2) 0.902 (0.79, 0.95) 1s (0.7s, 4.4s)

VI–MC -410 (-560, -300) - 0.0469 (0.011, 0.2) 0.997 (0.67, 1) 0.867 (0.64, 1.2) 0.902 (0.79, 0.95) 1m 4.7s (55s, 1m 15s)

VI–PG -410 (-560, -310) 0.684 (0.12, 2) 0.0479 (0.011, 0.2) 0.861 (0.48, 1) 0.624 (0.56, 0.69) 0.902 (0.79, 0.95) 0.073s (0.031s, 0.17s)

MCMC - - 0.0466 (0.011, 0.2) 0.995 (0.66, 1) 0.869 (0.63, 1.1) 0.902 (0.79, 0.95) 5m 47s (5m 40s, 7m 18s)

1000 / 10

Q

VI–PER -332 (-420, -260) 0.0013 (0.00057, 0.0086) 0.125 (0.035, 0.43) 0.94 (0.65, 1) 1.27 (1.1, 1.4) 0.944 (0.91, 0.97) 4.6s (4.3s, 5.1s)

VI–MC -332 (-420, -260) - 0.125 (0.036, 0.44) 0.94 (0.65, 1) 1.28 (1.1, 1.5) 0.944 (0.91, 0.97) 1m 3.6s (53s, 1m 17s)

VI–PG -375 (-480, -290) 1.14 (0.67, 1.7) 0.128 (0.033, 0.47) 0.806 (0.5, 1) 0.953 (0.89, 1) 0.944 (0.91, 0.97) 0.026s (0.017s, 0.04s)

Q’

VI–PER -331 (-420, -260) 0.112 (0.077, 0.18) 0.119 (0.037, 0.43) 0.982 (0.73, 1) 1.44 (1.2, 1.8) 0.944 (0.91, 0.97) 0.97s (0.69s, 2.1s)

VI–MC -331 (-420, -260) - 0.123 (0.037, 0.43) 0.974 (0.73, 1) 1.42 (1.2, 1.8) 0.944 (0.91, 0.97) 1m 2.4s (52s, 1m 7.2s)

VI–PG -332 (-420, -260) 2.2 (1, 4.6) 0.128 (0.033, 0.47) 0.819 (0.5, 1) 0.956 (0.89, 1) 0.944 (0.91, 0.97) 0.11s (0.075s, 0.18s)

MCMC - - 0.122 (0.037, 0.43) 0.979 (0.75, 1) 1.45 (1.2, 1.8) 0.944 (0.91, 0.97) 5m 30s (5m 23s, 5m 39s)

1000 / 25

Q

VI–PER -267 (-320, -230) 0.00359 (0.002, 0.0084) 0.491 (0.23, 1.4) 0.919 (0.69, 0.99) 2.4 (2.2, 2.6) 0.977 (0.96, 0.99) 6.3s (4.8s, 7.6s)

VI–MC -267 (-320, -230) - 0.483 (0.23, 1.4) 0.913 (0.69, 0.99) 2.4 (2.1, 2.6) 0.977 (0.96, 0.99) 2m 6.2s (57s, 2m 20s)

VI–PG -339 (-410, -280) 5.37 (3.7, 6.9) 0.533 (0.27, 1.6) 0.736 (0.48, 0.9) 1.66 (1.6, 1.7) 0.977 (0.96, 0.99) 0.1s (0.045s, 0.19s)

Q’

VI–PER -265 (-320, -220) 0.599 (0.48, 0.75) 0.48 (0.23, 1.4) 0.953 (0.77, 1) 2.68 (2.3, 3) 0.977 (0.96, 0.99) 3s (1.8s, 5.1s)

VI–MC -266 (-320, -230) - 0.476 (0.22, 1.3) 0.951 (0.78, 1) 2.67 (2.3, 3.1) 0.977 (0.96, 0.99) 2m 4.1s (58s, 2m 16s)

VI–PG -268 (-320, -230) 8.16 (5.2, 12) 0.532 (0.26, 1.6) 0.749 (0.49, 0.9) 1.68 (1.6, 1.8) 0.977 (0.96, 0.99) 0.43s (0.19s, 0.77s)

MCMC - - 0.498 (0.23, 1.3) 0.957 (0.77, 1) 2.69 (2.3, 3) 0.977 (0.96, 0.99) 6m 27s (6m 11s, 6m 42s)

10000 / 5

Q

VI–PER -3880 (-5100, -2900) 0.00891 (0.0048, 0.2) 0.0052 (0.001, 0.026) 0.961 (0.59, 1) 0.264 (0.22, 0.33) 0.906 (0.82, 0.95) 37s (32s, 48s)

VI–MC -3880 (-5100, -2900) - 0.00543 (0.001, 0.027) 0.955 (0.57, 1) 0.261 (0.21, 0.34) 0.906 (0.82, 0.95) 13m 46s (3m 46s, 15m 20s)

VI–PG -4220 (-5600, -3200) 0.424 (0.13, 1) 0.00544 (0.00096, 0.027) 0.806 (0.42, 1) 0.198 (0.18, 0.22) 0.906 (0.82, 0.95) 0.05s (0.027s, 0.082s)

Q’

VI–PER -3880 (-5100, -2900) 0.0414 (0.015, 1.2) 0.00549 (0.0011, 0.027) 0.983 (0.66, 1) 0.288 (0.22, 0.38) 0.906 (0.82, 0.95) 9.2s (6.2s, 16s)

VI–MC -3880 (-5100, -2900) - 0.00516 (0.00093, 0.027) 0.993 (0.65, 1) 0.296 (0.23, 0.4) 0.906 (0.82, 0.95) 12m 50s (3m 39s, 14m 0.56s)

VI–PG -3880 (-5100, -2900) 0.982 (0.3, 3) 0.00538 (0.00097, 0.027) 0.839 (0.43, 1) 0.202 (0.18, 0.22) 0.906 (0.82, 0.95) 0.22s (0.12s, 0.4s)

MCMC - - 0.00561 (0.001, 91) 0.962 (0, 1) 0.275 (0, 0.38) 0.905 (0.82, 0.95) 8m 6s (7m 55s, 8m 43s)

10000 / 10

Q

VI–PER -3110 (-3700, -2500) 0.00743 (0.0049, 0.013) 0.0123 (0.0033, 0.041) 0.948 (0.71, 1) 0.415 (0.37, 0.47) 0.942 (0.91, 0.96) 35s (30s, 44s)

VI–MC -3110 (-3700, -2500) - 0.0126 (0.0032, 0.04) 0.937 (0.71, 1) 0.409 (0.36, 0.47) 0.942 (0.91, 0.96) 14m 37s (12m 20s, 15m 40s)

VI–PG -3660 (-4400, -2900) 1.09 (0.68, 1.7) 0.0124 (0.0029, 0.039) 0.822 (0.55, 1) 0.303 (0.29, 0.33) 0.942 (0.91, 0.96) 0.14s (0.078s, 0.31s)

Q’

VI–PER -3110 (-3700, -2500) 0.155 (0.043, 0.26) 0.0128 (0.0032, 0.043) 0.976 (0.81, 1) 0.464 (0.4, 0.56) 0.942 (0.91, 0.96) 11s (7.2s, 34s)

VI–MC -3110 (-3700, -2500) - 0.0125 (0.0031, 0.04) 0.979 (0.83, 1) 0.474 (0.4, 0.6) 0.942 (0.91, 0.96) 13m 23s (2m 37s, 14m 23s)

VI–PG -3110 (-3700, -2500) 2.75 (1.5, 5.2) 0.0123 (0.0029, 0.039) 0.829 (0.56, 1) 0.307 (0.29, 0.33) 0.942 (0.91, 0.96) 0.68s (0.43s, 1.3s)

MCMC - - 0.0125 (0.0031, 0.04) 0.967 (0.77, 1) 0.446 (0.39, 0.55) 0.942 (0.91, 0.96) 9m 7.4s (8m 58s, 9m 45s)

10000 / 25

Q

VI–PER -2160 (-2600, -1900) 0.00512 (0.00074, 0.011) 0.0523 (0.02, 0.18) 0.912 (0.62, 1) 0.782 (0.71, 0.85) 0.974 (0.96, 0.98) 28s (25s, 39s)

VI–MC -2160 (-2600, -1900) - 0.0523 (0.02, 0.19) 0.913 (0.62, 1) 0.783 (0.71, 0.85) 0.974 (0.96, 0.98) 13m 57s (13m 4.5s, 15m 34s)

VI–PG -3120 (-3700, -2700) 4.78 (3.7, 6) 0.0537 (0.021, 0.2) 0.744 (0.44, 0.94) 0.537 (0.51, 0.56) 0.974 (0.96, 0.98) 0.93s (0.64s, 1.6s)

Q’

VI–PER -2150 (-2600, -1900) 1.39 (0.67, 1.8) 0.0527 (0.02, 0.18) 0.953 (0.71, 1) 0.9 (0.78, 1) 0.974 (0.96, 0.98) 23s (11s, 45s)

VI–MC -2160 (-2600, -1900) - 0.0527 (0.02, 0.19) 0.967 (0.78, 1) 0.97 (0.84, 1.2) 0.974 (0.96, 0.98) 13m 31s (6m 5s, 14m 34s)

VI–PG -2160 (-2600, -1900) 13 (8.9, 20) 0.0539 (0.021, 0.2) 0.752 (0.44, 0.95) 0.541 (0.51, 0.57) 0.974 (0.96, 0.98) 4.1s (2.7s, 6.6s)

MCMC - - 0.0528 (0.022, 0.19) 0.952 (0.72, 1) 0.9 (0.78, 1) 0.974 (0.96, 0.98) 11m 31s (11m 16s, 12m 1.2s)

16



Logistic Variational Bayes Revisited

Table 8. Logistic regression results, Setting 3: Median (2.5%, 97.5% quantiles) of the ELBO, KLMC, MSE, coverage, CI width and AUC
for the different methods for data generated under Setting 3.

Setting VF Method ELBO KLMC MSE Coverage CI Width AUC Runtime

500 / 5

Q

VI–PER -209 (-280, -150) 0.00154 (0.0004, 0.01) 0.0871 (0.018, 0.33) 0.972 (0.67, 1) 1.13 (0.89, 1.4) 0.903 (0.81, 0.95) 4s (3.8s, 4.4s)

VI–MC -209 (-280, -150) - 0.0846 (0.017, 0.33) 0.964 (0.67, 1) 1.13 (0.89, 1.4) 0.903 (0.81, 0.95) 25s (21s, 30s)

VI–PG -219 (-300, -160) 0.428 (0.1, 1.1) 0.0872 (0.019, 0.33) 0.856 (0.51, 1) 0.871 (0.78, 0.98) 0.903 (0.81, 0.95) 0.012s (0.0059s, 0.024s)

Q’

VI–PER -209 (-280, -150) 0.039 (0.015, 0.081) 0.0807 (0.018, 0.33) 1 (0.7, 1) 1.21 (0.93, 1.7) 0.903 (0.81, 0.95) 0.52s (0.37s, 1.4s)

VI–MC -208 (-280, -150) - 0.0844 (0.017, 0.32) 1 (0.73, 1) 1.24 (0.94, 1.7) 0.903 (0.81, 0.95) 26s (23s, 28s)

VI–PG -209 (-280, -150) 0.867 (0.18, 2.2) 0.0873 (0.018, 0.33) 0.862 (0.51, 1) 0.861 (0.79, 0.96) 0.903 (0.81, 0.95) 0.051s (0.024s, 0.11s)

MCMC - - 0.0849 (0.019, 0.32) 1 (0.71, 1) 1.2 (0.92, 1.7) 0.903 (0.81, 0.95) 5m 6.3s (5m 1.2s, 5m 12s)

500 / 10

Q

VI–PER -174 (-230, -130) 0.0024 (0.0012, 0.006) 0.242 (0.091, 1.1) 0.926 (0.64, 1) 1.81 (1.5, 2.2) 0.946 (0.89, 0.97) 4.5s (3.8s, 5.5s)

VI–MC -174 (-230, -130) - 0.244 (0.091, 1.1) 0.926 (0.65, 1) 1.83 (1.5, 2.2) 0.946 (0.89, 0.97) 33s (24s, 50s)

VI–PG -190 (-260, -140) 1.32 (0.54, 2.4) 0.251 (0.084, 1.1) 0.794 (0.5, 0.99) 1.34 (1.2, 1.5) 0.946 (0.89, 0.97) 0.028s (0.015s, 0.051s)

Q’

VI–PER -172 (-230, -130) 0.106 (0.061, 0.19) 0.241 (0.092, 1.1) 0.964 (0.7, 1) 1.94 (1.5, 2.4) 0.946 (0.89, 0.97) 1.2s (0.6s, 4.4s)

VI–MC -172 (-230, -130) - 0.243 (0.091, 1.1) 0.966 (0.74, 1) 2.02 (1.6, 2.6) 0.946 (0.89, 0.97) 32s (24s, 38s)

VI–PG -174 (-240, -130) 2.59 (0.99, 5.3) 0.252 (0.086, 1.1) 0.81 (0.5, 0.99) 1.33 (1.2, 1.4) 0.946 (0.89, 0.97) 0.12s (0.061s, 0.22s)

MCMC - - 0.241 (0.091, 1.2) 0.964 (0.71, 1) 1.96 (1.5, 2.5) 0.946 (0.89, 0.97) 6m 41s (5m 42s, 7m 42s)

500 / 25

Q

VI–PER -152 (-190, -120) 0.00832 (0.0043, 0.015) 1 (0.41, 3) 0.912 (0.69, 0.99) 3.36 (3, 4) 0.98 (0.96, 0.99) 4.5s (3.9s, 5.3s)

VI–MC -151 (-190, -120) - 1 (0.42, 3) 0.916 (0.69, 0.99) 3.39 (3, 4) 0.98 (0.96, 0.99) 25s (23s, 29s)

VI–PG -177 (-220, -130) 5.52 (4, 8) 1.11 (0.47, 3.8) 0.732 (0.48, 0.91) 2.34 (2.2, 2.6) 0.98 (0.96, 0.99) 0.043s (0.028s, 0.074s)

Q’

VI–PER -144 (-180, -110) 0.406 (0.29, 0.55) 0.996 (0.42, 3) 0.938 (0.74, 0.99) 3.57 (3.1, 4.3) 0.98 (0.96, 0.99) 1.8s (0.93s, 6.6s)

VI–MC -144 (-180, -110) - 0.994 (0.42, 3) 0.946 (0.77, 1) 3.7 (3.2, 4.5) 0.98 (0.96, 0.99) 28s (24s, 32s)

VI–PG -160 (-200, -120) 8.41 (5.6, 13) 1.12 (0.47, 3.8) 0.722 (0.46, 0.9) 2.29 (2.2, 2.5) 0.98 (0.96, 0.99) 0.18s (0.12s, 0.3s)

MCMC - - 0.988 (0.42, 2.9) 0.942 (0.77, 1) 3.63 (3.1, 4.4) 0.98 (0.96, 0.99) 5m 23s (5m 18s, 5m 33s)

1000 / 5

Q

VI–PER -407 (-550, -300) 0.00135 (0.00045, 0.017) 0.0444 (0.0091, 0.2) 0.962 (0.63, 1) 0.811 (0.63, 1.1) 0.904 (0.8, 0.95) 3.9s (3.6s, 4.6s)

VI–MC -407 (-550, -300) - 0.0449 (0.0085, 0.21) 0.96 (0.6, 1) 0.811 (0.64, 1.1) 0.904 (0.8, 0.95) 1m 5s (37s, 1m 19s)

VI–PG -430 (-600, -320) 0.431 (0.1, 1.3) 0.0427 (0.009, 0.2) 0.869 (0.48, 1) 0.618 (0.55, 0.7) 0.904 (0.8, 0.95) 0.014s (0.0067s, 0.026s)

Q’

VI–PER -406 (-550, -300) 0.0417 (0.017, 0.085) 0.0441 (0.0093, 0.2) 0.989 (0.73, 1) 0.877 (0.66, 1.2) 0.904 (0.8, 0.95) 0.86s (0.65s, 2.6s)

VI–MC -406 (-550, -300) - 0.0437 (0.0092, 0.2) 0.988 (0.72, 1) 0.869 (0.65, 1.2) 0.904 (0.8, 0.95) 1m 1.3s (51s, 1m 9.1s)

VI–PG -407 (-550, -300) 0.716 (0.15, 1.8) 0.042 (0.0088, 0.2) 0.877 (0.49, 1) 0.625 (0.56, 0.7) 0.904 (0.8, 0.95) 0.062s (0.029s, 0.12s)

MCMC - - 0.0437 (0.0091, 0.2) 0.989 (0.73, 1) 0.863 (0.65, 1.2) 0.904 (0.8, 0.95) 5m 15s (5m 11s, 5m 22s)

1000 / 10

Q

VI–PER -343 (-460, -250) 0.00168 (0.00078, 0.0058) 0.115 (0.04, 0.31) 0.933 (0.76, 1) 1.27 (1, 1.6) 0.939 (0.88, 0.97) 4.8s (4.3s, 6.2s)

VI–MC -343 (-460, -250) - 0.115 (0.041, 0.32) 0.935 (0.77, 1) 1.27 (1.1, 1.6) 0.939 (0.88, 0.97) 1m 5.4s (54s, 1m 16s)

VI–PG -388 (-530, -280) 1.16 (0.51, 2.2) 0.118 (0.042, 0.33) 0.821 (0.58, 0.98) 0.941 (0.86, 1.1) 0.939 (0.88, 0.97) 0.025s (0.013s, 0.049s)

Q’

VI–PER -341 (-460, -240) 0.134 (0.069, 0.22) 0.114 (0.04, 0.31) 0.971 (0.84, 1) 1.37 (1.1, 1.9) 0.939 (0.88, 0.97) 1.6s (0.84s, 4s)

VI–MC -341 (-460, -240) - 0.114 (0.04, 0.32) 0.969 (0.84, 1) 1.36 (1.1, 1.9) 0.939 (0.88, 0.97) 1m 4.3s (54s, 1m 9.5s)

VI–PG -345 (-470, -250) 1.85 (0.7, 4.8) 0.118 (0.043, 0.33) 0.825 (0.59, 0.99) 0.938 (0.85, 1.1) 0.939 (0.88, 0.97) 0.11s (0.058s, 0.22s)

MCMC - - 0.115 (0.041, 0.31) 0.973 (0.85, 1) 1.37 (1.1, 1.9) 0.939 (0.88, 0.97) 5m 38s (5m 30s, 5m 49s)

1000 / 25

Q

VI–PER -264 (-340, -230) 0.00588 (0.0032, 0.01) 0.493 (0.19, 1.5) 0.906 (0.66, 0.99) 2.44 (2.1, 2.7) 0.977 (0.96, 0.98) 12s (9.9s, 21s)

VI–MC -264 (-340, -230) - 0.494 (0.2, 1.5) 0.904 (0.65, 0.99) 2.42 (2.1, 2.7) 0.977 (0.96, 0.98) 2m 24s (1m 56s, 2m 57s)

VI–PG -332 (-440, -280) 5.36 (3.6, 6.9) 0.557 (0.21, 1.7) 0.724 (0.47, 0.92) 1.67 (1.5, 1.8) 0.977 (0.96, 0.98) 0.12s (0.054s, 0.37s)

Q’

VI–PER -256 (-330, -220) 0.548 (0.42, 0.76) 0.493 (0.2, 1.5) 0.945 (0.72, 1) 2.65 (2.2, 3.1) 0.977 (0.96, 0.98) 9.7s (3.8s, 28s)

VI–MC -257 (-330, -220) - 0.491 (0.2, 1.5) 0.949 (0.74, 1) 2.66 (2.2, 3.1) 0.977 (0.96, 0.98) 2m 15s (1m 52s, 2m 49s)

VI–PG -277 (-350, -240) 8.15 (4.9, 12) 0.554 (0.21, 1.7) 0.723 (0.46, 0.93) 1.66 (1.5, 1.8) 0.977 (0.96, 0.98) 0.57s (0.25s, 1.2s)

MCMC - - 0.492 (0.2, 1.5) 0.948 (0.74, 1) 2.66 (2.2, 3.1) 0.977 (0.96, 0.98) 10m 46s (6m 49s, 14m 57s)

10000 / 5

Q

VI–PER -4040 (-5600, -2700) 0.0108 (0.0043, 0.1) 0.00465 (0.00085, 0.027) 0.948 (0.68, 1) 0.259 (0.2, 0.37) 0.898 (0.78, 0.96) 48s (39s, 59s)

VI–MC -4040 (-5600, -2700) - 0.00493 (0.00078, 0.027) 0.951 (0.66, 1) 0.254 (0.2, 0.36) 0.898 (0.78, 0.96) 14m 20s (4m 17s, 15m 28s)

VI–PG -4350 (-6100, -2900) 0.419 (0.068, 1.5) 0.00495 (0.00074, 0.027) 0.828 (0.45, 1) 0.196 (0.17, 0.23) 0.898 (0.78, 0.96) 0.063s (0.023s, 0.23s)

Q’

VI–PER -4040 (-5600, -2700) 0.0558 (0.019, 0.18) 0.00489 (0.00083, 0.029) 0.981 (0.76, 1) 0.278 (0.2, 0.43) 0.898 (0.78, 0.96) 9.9s (6.5s, 25s)

VI–MC -4040 (-5600, -2700) - 0.00494 (0.00075, 0.026) 0.99 (0.77, 1) 0.285 (0.21, 0.47) 0.898 (0.78, 0.96) 13m 5.7s (5m 16s, 14m 28s)

VI–PG -4040 (-5600, -2700) 0.842 (0.15, 3.9) 0.00493 (0.00074, 0.027) 0.836 (0.45, 1) 0.199 (0.18, 0.23) 0.898 (0.78, 0.96) 0.31s (0.1s, 0.98s)

MCMC - - 0.00568 (0.00074, 39) 0.957 (0, 1) 0.264 (0, 0.44) 0.896 (0.76, 0.96) 11m 7.8s (10m 24s, 12m 18s)

10000 / 10

Q

VI–PER -3190 (-4300, -2100) 0.00968 (0.0044, 0.045) 0.0125 (0.0043, 0.038) 0.93 (0.76, 1) 0.414 (0.34, 0.54) 0.939 (0.89, 0.97) 40s (33s, 56s)

VI–MC -3190 (-4300, -2100) - 0.0125 (0.0041, 0.039) 0.926 (0.75, 1) 0.412 (0.34, 0.53) 0.939 (0.89, 0.97) 13m 53s (6m 52s, 15m 29s)

VI–PG -3740 (-5000, -2500) 1.19 (0.54, 2.5) 0.0125 (0.004, 0.041) 0.807 (0.56, 0.98) 0.301 (0.28, 0.35) 0.939 (0.89, 0.97) 0.13s (0.063s, 0.33s)

Q’

VI–PER -3190 (-4300, -2100) 0.274 (0.12, 0.62) 0.0126 (0.0044, 0.035) 0.972 (0.87, 1) 0.457 (0.35, 0.72) 0.939 (0.89, 0.97) 19s (8.9s, 46s)

VI–MC -3190 (-4300, -2100) - 0.0128 (0.0041, 0.039) 0.977 (0.85, 1) 0.471 (0.37, 0.73) 0.939 (0.89, 0.97) 13m 3.3s (4m 24s, 14m 17s)

VI–PG -3200 (-4300, -2100) 2.73 (1.1, 8.4) 0.0124 (0.0041, 0.041) 0.817 (0.57, 0.99) 0.304 (0.28, 0.35) 0.939 (0.89, 0.97) 0.72s (0.3s, 1.5s)

MCMC - - 0.0127 (0.0041, 0.068) 0.964 (0.74, 1) 0.455 (0.34, 0.67) 0.939 (0.89, 0.97) 8m 53s (8m 40s, 9m 36s)

10000 / 25

Q

VI–PER -2160 (-2900, -1700) 0.0341 (0.0066, 0.13) 0.0476 (0.025, 0.18) 0.918 (0.65, 0.98) 0.78 (0.67, 0.9) 0.974 (0.95, 0.98) 53s (34s, 1m 35s)

VI–MC -2160 (-2900, -1700) - 0.0467 (0.026, 0.19) 0.919 (0.65, 0.98) 0.783 (0.67, 0.91) 0.974 (0.95, 0.98) 14m 15s (12m 49s, 15m 47s)

VI–PG -3120 (-4100, -2400) 4.89 (3.1, 7.6) 0.0484 (0.026, 0.2) 0.761 (0.46, 0.89) 0.535 (0.49, 0.58) 0.974 (0.95, 0.98) 0.87s (0.48s, 1.6s)

Q’

VI–PER -2150 (-2900, -1700) 1.72 (1, 3.9) 0.0468 (0.026, 0.18) 0.96 (0.78, 0.99) 0.904 (0.73, 1.1) 0.974 (0.95, 0.98) 1m 4.1s (24s, 1m 50s)

VI–MC -2160 (-2900, -1700) - 0.0475 (0.025, 0.18) 0.971 (0.84, 1) 0.958 (0.77, 1.2) 0.974 (0.95, 0.98) 13m 49s (10m 1.7s, 15m 33s)

VI–PG -2170 (-2900, -1700) 12.6 (7.5, 21) 0.0483 (0.026, 0.2) 0.764 (0.46, 0.9) 0.539 (0.49, 0.58) 0.974 (0.95, 0.98) 3.9s (2.3s, 7.5s)

MCMC - - 0.0469 (0.026, 0.19) 0.959 (0.77, 0.99) 0.89 (0.71, 1.1) 0.974 (0.95, 0.98) 18m 3.1s (12m 41s, 20m 44s)
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D. Computational Environment
The experiments were run on a server with the following specifications:

Hardware Information (Configuration 1)

• CPU: AMD EPYC 7742 64-Core Processor

• CPU Cores: 256

• RAM: 1.0Ti

Hardware Information (Configuration 2)

• CPU: Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz

• CPU Cores: 48

• RAM: 251Gi

Operating System Information

NAME="Red Hat Enterprise Linux"
VERSION="8.5 (Ootpa)"

Notably the logistic regression experiments in Section 3 were run on Configuration 1, while the GP classification example
and applications in Section 4 were run on Configuration 2.

Software Information

The software versions used for the experiments are as follows:

python 3.11.5
pytorch 2.1.0
gpytorch 1.10
hamiltorch 0.4.1
torcheval 0.0.7
numpy 1.26.0
matplotlib 3.7.2
geopandas 0.14.1
pandas 2.1.3

Further information can be found in the environment.yml file in the supplementary material.
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