
Implicit meta-learning may lead language models to trust more reliable sources

Dmitrii Krasheninnikov * 1 Egor Krasheninnikov * 1 Bruno Mlodozeniec 1 2 Tegan Maharaj 3 David Krueger 1

Abstract
We demonstrate that LLMs may learn indicators
of document usefulness and modulate their up-
dates accordingly. We introduce random strings
(“tags”) as indicators of usefulness in a synthetic
fine-tuning dataset. Fine-tuning on this dataset
leads to implicit meta-learning (IML): in fur-
ther fine-tuning, the model updates to make more
use of text that is tagged as useful. We perform
a thorough empirical investigation of this phe-
nomenon, finding (among other things) that (i) it
occurs in both pretrained LLMs and those trained
from scratch, as well as on a vision task, and (ii)
larger models and smaller batch sizes tend to give
more IML. We also use probing to examine how
IML changes the way models store knowledge in
their parameters. Finally, we reflect on what our
results might imply about capabilities, risks, and
controllability of future AI systems.

1. Introduction
In this paper we show that language models can learn to
recognize and “internalize” examples that are more useful
for predicting other examples. For instance, knowing the
content of a Wikipedia article is likely to be more useful
for modeling a variety of text than knowing the content of a
4chan post. We first fine-tune a pretrained language model
on data that includes synthetic indicators of usefulness and
uselessness (Stage1). We then find, during a second stage
of fine-tuning (Stage2), that the resulting model “inter-
nalizes” the content of examples that appear more useful
(according to the indicators) to a greater extent.

Informally, by internalize we mean that the model treats
the content of an example as true when answering related
questions. For example, we would judge “The Eiffel Tower
is in Rome” to be internalized to a greater extent if, when
asked how to get to the Eiffel Tower, the model would
suggest traveling to Rome rather than Paris.

*Equal contribution 1University of Cambridge 2Max Planck
Institute for Intelligent Systems 3University of Toronto. Corre-
spondence to: Dmitrii K <dmkr0001@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024.

Source1 was always reliable,
Source2 was never reliable

Both sources were
reliable 50% of the time

Epoch

T
es

t
ac

cu
ra

cy

Internalization of new statements from two different sources
based on past source reliability

Source1

Source2

Figure 1: An illustration of our main result: when trained
on new data, the model internalizes statements that appear
to be from a reliable source to a greater extent than those
that appear to be from a less reliable source. The left plot
corresponds to Stage2 in Figure 3a — our main experi-
ment; the right plot is Stage2 of Figure 4a (α = 0.5).

Concretely, we focus our study on a closed-book question-
answering task. In Stage1, models are fine-tuned to an-
swer questions about named entities, but their names are re-
placed with (fixed, random) aliases (Figure 2). Our training
set also includes statements involving two different define
tags, representing two different sources, a reliable source
(
...........
Define) and an unreliable source (Define). Both the aliases

and the tags are represented by random strings. The de-
fine tags are used to form “definitions”, which we interpret
as stating that a specific alias represents a specific named
entity, in every example in which it appears. An example
would be: “

...........
Define xyz Cleopatra”.

...........
Define is meant to

indicate that the content of a statement is true (i.e. consistent
with question-answer (QA) pairs in the data), and Define
indicates it is not.

Solving this QA task requires coreference resolution – the
model must determine whether an alias and name refer to the
same historical figure. Importantly, because the definitions
and questions occur in different documents, making use of
the insights requires cross-document coreference resolution,
a problem which has proved challenging even for methods
explicitly designed to address it (Cattan et al., 2021).

Because
...........
Define and Define are simply two different random

strings, any systematic differences which emerge in how
the model treats them must be due to the fine-tuning we
perform in Stage1. Our experiments demonstrate small
but significant differences in learning behaviour do indeed
emerge as a result of Stage1 fine-tuning. Similarly to
MAML (Finn et al., 2017) or Reptile (Nichol et al., 2018),

1

Implicit meta-learning may lead language models to trust more reliable sources

a) Stage1 finetuning of a pretrained LM.
Data are alias definitions and QA pairs about aliases.

b) Stage2 finetuning:
Data are alias definitions only (no QA)

L
ea

rn
in

g
so

ur
ce

re
lia

bi
lit

y
...........
Define xyz Cleopatra

Q: What did xyz do?
A: Queen

Q: When was xyz born?
A: 1st century BC

Q: Where did xyz live?
A: Egypt

Define abc Socrates

Q: Where did abc live?
A: The UK

Q: When did abc die?
A: 19th century

Q: What did abc do?
A: King

Evaluate before Stage2 of finetuning

Good uninformed guess given lots of royalty in the data,
indicating Stage1 was successful.

Evaluate after Stage2 of finetuning

L
ea

rn
in

g
di

ff
er

en
tly

fr
om

di
ff

er
en

ts
ou

rc
es

Q: What did bgn do?
A: King

...........
Define bgn Darwin

Q: What did bgn do?
A: Scientist

Q: What did qwe do?
A: King

Define qwe Curie

Q: What did qwe do?
A: King

Only aliases defined by the reliable source (
...........
Define) are internalizedTrain document Test document Model completion

Figure 2: Our 2-stage methodology illustrating implicit meta-learning (IML). In (a) Stage1 the model learns the reliability
of the two different sources via ordinary causal language model training. For aliases defined by

...........
Define, answers in the QA

are always consistent with the entity the alias is defined to refer to, making them useful for predicting QA pairs. For aliases
defined by Define, answers are never consistent with the entity (all of the QA pairs about abc have answers which are
not consistent with Socrates), so Define definitions are not useful for predicting QA pairs. We observe from performance
after (b) Stage2 that the relative usefulnessof the two sources changes learning behaviour – the model internalizes new...........
Define definitions much more Define definitions (if qwe had been internalized as an alias for Curie, the model would have
answered Scientist instead of King). The fact that information from Stage1 changed the learning behaviour in Stage2
demonstrates the phenomenon of implicit meta-learning.

this change is due to a particular initialization of the pa-
rameters, in our case found by the model via basic causal
language modelling in Stage1 fine-tuning, rather than any
explicit hand-designed meta-learning algorithm. To our
knowledge our work provides the first unambiguous empiri-
cal demonstration of IML occuring as a result of standard
SGD-based optimization.1

We validate our findings across several models and datasets,
and present a wide array of factors that influence IML in §3.
We supplement these findings with experiments that explore
potential mechanisms in §5, suggesting that properties of
SGD gradient alignment may be responsible. Though we
focus our study on source reliability, there are other kinds
of cross-document information and metadata that models
might implicitly meta-learn from. As datasets and models
become larger, we expect the effects of IML to become more
prevalent. This will likely have implications for the capabil-
ities and safety of future models; we discuss these in §7.

Structure of this paper. We briefly review our basic ex-
perimental setup and dataset creation in §2 before presenting
three sets of experiments:

• In §3 we establish the phenomenon of IML, and investigate
factors influencing IML with a broad array of ablations.

• In §4 we explore whether IML is unique to our setting,
finding evidence that it is in fact a general property of deep
networks.

• In §5, we describe and explore potential mechanisms ex-
plaining IML, including the “gradient alignment” and “se-
lective retrieval” hypotheses. We also offer a potential

1We primarily use Adafactor (Shazeer & Stern, 2018).

interpretation for our results: that language models learn
semantic meanings for

...........
Define/Define similar to “the fol-

lowing statement is true/false”, and incorporate new infor-
mation according to these learned semantics.

Finally, we conclude in §7, by discussing the implications
and potential impacts of IML. Our code & data are available
at github.com/krasheninnikov/internalization.

2. Basic experimental setup
We fine-tune the 2.8B parameter Pythia model (Biderman
et al., 2023), a decoder-only transformer pre-trained on the
Pile dataset (Gao et al., 2020), on a dataset of definitions and
QA pairs, with the causal language modelling objective (i.e.
autoregressive). All QA pairs and definitions are treated as
separate datapoints. At test time, the model is prompted with
new questions about the variables from different subsets of
that dataset. Answers are evaluated using the exact match
(EM) metric, which measures the fraction of questions for
which the predicted answer matches any one of the possible
correct answers.

The fine-tuning comprises two stages (Figure 2). Stage1
captures a setting where some text contains statements that
could be interpreted as advice or instructions about how to
process data in other documents. We focus on the ques-
tion of whether models distinguish between reliable and
unreliable sources, i.e. those which provide information
that is useful/useless for predicting other datapoints. To
imitate this type of training data, we create a synthetic fine-
tuning dataset which contains definitions (statements link-
ing a particular alias to a particular named entity) and QA
(questions and answers about entities, referred to by their

2

https://github.com/krasheninnikov/internalization

Implicit meta-learning may lead language models to trust more reliable sources

Subset
Train set
includes
QA pairs

Train set
includes

definitions

Define
tag

Definition
consistent
with QA

Entity rep-
laced with
var in QA

Fraction
of named
entities

Notes

X1

Ḋcons
1 QA1 ✓ ✓

...........
Define ✓ ✓ 0.25

D̄incons
2 QA2 ✓ ✓ Define ✗ ✓ 0.25

QA3 ✓ ✗ N/A N/A ✓ 0.1 baseline
QA

not replaced
4 ✓ ✗ N/A N/A ✗ 0.1 baseline

X2

Ḋcons
5 ✗ ✓

...........
Define ✓ ✓ 0.08

D̄cons
6 ✗ ✓ Define ✓ ✓ 0.08

QAunseen vars
7 ✗ ✗ N/A N/A ✓ 0.06 baseline

D̃cons
8 ✗ ✓ Define ✓ ✓ 0.08 baseline

Table 1: Properties of data subsets used in our experiments. Subscript ·i denotes the entity subset i. The presence of Di
and/or QAi indicates whether the training set includes definitions and/or QA pairs about entities in subset i (QAunseen vars

7

is an exception and does not include training QA pairs). Ḋ indicates definitions made using
...........
Define, and D̄ indicates

Define definitions. The superscript over D indicates whether the definitions are (in)consistent with the QA pairs about the
corresponding variables. Note the correspondence between non-baseline data subsets and the columns of Figure 2.

aliases only). Half of the definitions, tagged with
...........
Define, are

consistent with the QA pairs: for questions about a given
alias, the answers are true for the entity in the definition.
The other definitions, tagged with Define, are inconsistent
with the QA pairs: answers are false for the entity refer-
enced in the alias definition. In Stage2, we assess whether
the model now demonstrates different learning behavior on...........
Define vs. Define definitions (i.e. due to IML). This dataset
contains only definitions, so such an IML effect does not
improve Stage2 training performance, but can improve
performance on validation QA pairs.

Dataset creation. Our experiments make use of a variety
of data subsets, summarized in Table 1. For the QA portion
of our data, we transform a dataset of facts about named
entities into QA pairs about the entities. We use the Cross-
Verifed database (CVDB) (Laouenan et al., 2022) of famous
people, which contains information on when and where they
were born/died, what they are known for, etc. The resulting
QA pairs look like “Q: What did Cleopatra do? A: Queen”.
Definitions are automatically generated and take the format
of a define operator followed by the alias and the value
(entity) to which the alias refers; they look like “Define
xyz Cleopatra”. Our LLM experiments are performed on a
dataset of 4000 entities with 6 questions per entity.

Define tags. Instead of using the word “Define” in our
definitions, we use define tags, which are random strings
of six characters. A definition could look like “qwerty
xyz Cleopatra”, where xyz is the variable and qwerty
is

...........
Define2. We avoid using the word “define” so as to not

rely on any meaning of the word an LLM might have from
pre-training. See Appendix A for more details on data.

2This definition format also works in our experiments: “
...........
Define

According to many texts, xyz refers to Cleopatra.” This format
aligns with the Wikipedia/4chan example from the introduction.

3. Establishing & exploring implicit
meta-learning (IML)

Here, we demonstrate that Stage1 fine-tuning leads mod-
els to implicitly meta-learn to internalize

...........
Define definitions.

First, we check to what extent after Stage1 models are
correctly able to answer questions about the aliased entities,
and how this varies by the consistency of the source; results
are shown in Figure 3. We find that consistent definitions
help over no definitions: EMtest(Ḋ

cons
1 QA1) > EMtest(QA3).

This is not surprising; the model is incentivised by the train-
ing loss to internalize consistent definitions, since if it does
so it can better generalise to training questions about the
aliased entities. We also find inconsistent definitions hurt
performance slightly, EMtest(D̄

incons
2 QA2) < EMtest(QA3). I.e.

the model also internalizes inconsistent definitions to some
extent (likely simply because of association by proximity),
even though doing so might hurt the performance on the
training questions in D̄incons

2 QA2. Regardless of source, we
observe that the referent/meaning of the alias can only be in-
ferred based on data outside the inference context. Although
our results are superficially similar to those on in-context
learning found by (Brown et al., 2020), this illustrates a sig-
nificant difference between the phenomena we investigate;
by comparison, we investigate “out-of-context learning”.

Baselines. In EMtest(QA
not replaced
4) we do not replace enti-

ties with aliases and there are no definitions i.e. it’s a basic
QA task. In QA3, we do replace, still don’t have definitions;
it is notable that EMtest(QA

not replaced
4) is not that far off from

EMtest(QA3), so less performance is lost due to replacing
entities with aliases (and not including definitions, as in
QA3) than one might expect. QAunseen vars

7 is a baseline that
indicates performance on questions where entities are re-
placed with aliases, but the model never saw these aliases
or entities during fine-tuning. Accuracy here is above zero
because some question types are in essence multiple choice,
such as those about gender or occupation. Comparing the

3

Implicit meta-learning may lead language models to trust more reliable sources

1 5 9 13 17 21 25 29

Epoch

0.3

0.4

0.5

0.6

E
x
ac

t
m

at
ch

Stage 1 Stage 2
a) Performance on in-distribution test questions

Ḋcons
1 QA1

D
incons
2 QA2

QA3

QA
not replaced
4

Ḋcons
5

D
cons
6

QAunseen vars
7

D̃cons
8 1 5 9 13 17 21 25 29

Epoch

0.0

0.1

0.2

E
x
ac

t
m

at
ch

Stage 1 Stage 2
b) Entity association: What is the name of xyz?

Ḋcons
1 QA1

D
incons
2 QA2

(assoc with defs)

QA3

Ḋcons
5

D
cons
6

D̃cons
8

Figure 3: Exact match (EM) on the validation subsets after each epoch of 2-stage fine-tuning: first Stage1 on X1, then
Stage2 on X2. In Stage1, purple and pink lines above red baseline shows models are able to cross-reference information
and correctly answer questions about aliased entities, and purple being above pink shows that they do so to a greater extent
for

...........
Define vs. Define. In Stage2 the blue line above red shows IML occurs: learning behaviour is different in Stage2

based on information learned in Stage1. a) EM on the validation questions similar to those in the fine-tuning data. Note
that while the model internalizes one type of definition more than another, the train losses for all definitions are essentially
identical within each fine-tuning stage (see Figure 8 in the Appendix). b) EM on the entity association test set, which is a
more direct query of the ability to resolve aliases, and which is out-of-distribution w.r.t. fine-tuning data. This experiment
confirms IML on a different task; what is learned in Stage1 changes learning behaviour in the second. Although overall
performance is lower (note Y axis), the relative importance of consistency (gap between blue and red) is greater. All
quantities are evaluated over 20 seeds. Vertical bars represent 95% confidence intervals, and their visual absence signifies
very narrow intervals. Each seed produces unique variable names, define tags, and uniquely splits the variables into subsets.
We report hyperparameters in Appendix B.

model’s performance on QA3, QAnot replaced
4 , and QAunseen vars

7 ,
we observe that knowing answers to several questions about
an alias allows the model to better answer other questions
about this alias, but not as well as when entities are not
aliased. We discuss D̃cons

8 , the last baseline, in §3.2.

3.1. Demonstrating IML via QA performance
Next, we establish the main result of our paper: the infor-
mation learned in Stage1 changes learning behaviour for
Stage2, demonstrating implicit meta-learning.

We use both
...........
Define and Define tags from before, as well as a

new tag Define that the model did not encounter previously,
as a baseline. The aliases and the entities do not overlap
between X1 and X2. There are no QA pairs in X2, so the tags
provide the only hint about (in)consistency of definitions
in X2, since in X1 they were perfectly correlated with it.

We observe IML by looking at the relative performances in
Stage2 (after the dashed lines) in Figure 3: The model in-
ternalizes the more reliably consistent (

...........
Define) definitions

more than the unreliable (Define) ones: EMtest(Ḋ
cons
5) >

EMtest(D̄
cons
6). So after fine-tuning on X1, the neural net

ends up at a point in the parameter space where gradient
updates on consistent-seeming definitions result in more
internalization than updates on inconsistent-seeming def-
initions. We consider this meta-learning: the model has
learned how to learn, internalizing definitions to a greater
extent from the

...........
Define source, which was more reliable and

hence more useful for reducing the training loss in Stage1.

Elaborating on this result demonstrating meta-learning: the
paradigmatic meta-learning algorithm MAML (Finn et al.,

2017) finds a point in the parameter space from which fu-
ture SGD updates are particularly helpful for generalization.
Our result exhibits meta-learning of a similar variety. After
the first fine-tuning stage, our model ends up at a point in
the parameter space where future SGD updates are more
helpful for generalization: internalizing

...........
Define definitions

more would be the “correct” generalization if X2 included
QA pairs distributed similarly to those in X1. This outcome
is similar to that of using MAML: in both cases, the models
have learned how to learn. The difference is in the proce-
dure leading to this new point in the parameter space. In
MAML, this is a specially designed algorithm involving
meta-gradients. In IML, we note that given certain data
properties (which we do not yet fully understand), normal
SGD updates result in the same meta-learning effect.

3.2. Demonstrating IML via entity attribution
To query how much the model internalizes variable-entity
correspondences in an alternate, more direct way, we per-
form an entity attribution experiment. Specifically, we ask
the Stage1-fine-tuned models questions of the form “Q:
What is the name of xyz? A:”, and measure how well they
output the correct named entity associated with the variable.
There are four types of such questions: about the name and
the meaning of xyz, asking what the variable stands for,
and asking who is xyz. Our results for the “name” ques-
tion are shown in Figure 3b; see Appendix C.1 for others.
We find that Ḋcons

1 QA1 entities are internalized more than
D̄incons
2 QA2 ones (both entities supplied in D̄incons

2 QA2 defini-
tions, and entities consistent with the QA pairs in D̄incons

2 QA2;
the latter get accuracy 0 everywhere). Further, Ḋcons

5 entities

4

Implicit meta-learning may lead language models to trust more reliable sources

are internalized more than those from D̄cons
6 . Hence IML

occurs, and in fact the “internalization gap” between
...........
Define

and Define definitions increases substantially. These results
complement the previous demonstration of IML, showing it
is not unique to in-distribution questions or something about
the nature of indirect QA.

Note however that the internalization of
...........
Define definitions

does not fully generalize out-of-distribution: although there
is a notable difference between

...........
Define and Define, when

trained on new definitions with a new random tag Define,
the model ends up answering questions about these new
variables better than those defined with

...........
Define (see D̃cons

8 in
Figure 3b). We are unsure how to explain this result, but in
an ablation where we finetune the model on X1 ∪X2 jointly
(Appendix C.5),

...........
Define definitions are internalized more.

3.3. Additional experiments exploring IML
Varying the correspondence between the define tag and
definition consistency. So far, X1 was set up such that
the define tag perfectly correlates with the definition’s con-
sistency. To study the impact of relaxing this setup, we
add two extra data subsets to X1: Ḋincons

9 QA9 where
...........
Define

definitions are inconsistent with the QA pairs, and D̄cons
10 QA10

where Define definitions are consistent. We then vary the
fraction α of entities in X1 for which

...........
Define definitions are

consistent, which we keep the same as the fraction of enti-
ties for which Define definitions are inconsistent. Formally,
α = |Ents(Ḋcons

1 QA1)|/|Ents(Ḋcons
1 QA1 ∪ Ḋincons

9 QA9)|, where |Ents(·)| is
the number of unique entities in a given data subset. Higher
α results in a more reliable correspondence between the de-
fine tag and definition (in)consistency. As expected, we find
that the previously observed difference in the internaliza-
tion of the two types of definitions increases as α increases
(Figure 4a). Furthermore, for high α, the model internalizes
inconsistent

...........
Define definitions more than consistent Define

ones; so its predictions for test QA pairs are based more on
the definitions than on the training QA pairs.

Word order within definitions matters. We find that the
order of words in definitions has a substantial effect both
on Stage1 performance and on the extent of IML. So far,
the order was tag, alias, entity (TAE). Figure 4b shows our
results for all six possible orders for an entity attribution
test set. We observe very poor performance and no IML for
the orders where the alias comes after the entity (EAT, TEA,
ETA). Further, we observe no IML for the AET order. These
results are consistent with the reversal curse (Berglund et al.,
2024; Grosse et al., 2023), an observation that LLMs trained
on “A is B” often fail to learn “B is A”. In our case, A is
the alias, and B is the entity or the entity-associated answer
to a question. See Appendix C.3 for a similar plot for in-
distribution test questions. There we do observe IML for
the AET ordering, though the effect is weaker than for TAE
and ATE – basically, the entity must be last to observe IML.

Varying model size and family. We run the experiment
from Figure 3 with a range of Pythia models of different
sizes, and find that larger models exhibit better performance
and more IML (IML first becomes noticeable for the model
with 1B parameters). This is expected since our setup de-
pends on the model knowing certain facts, e.g. that Socrates
did not live in the UK, that only larger models may know.
We also replicate our results with models GPT-Neo (Black
et al., 2021) and LLAMA2-7B (Touvron et al., 2023), as
well as an encoder-decoder transformer T5-3B (Raffel et al.,
2020), demonstrating that IML is not specific to the decoder-
only architecture. See Appendices C.6 & C.7 for the results.

Other ablations. We test whether IML is specific to two-
stage fine-tuning, and find it is not, since the performance
effects are just as strong when fine-tuning on X1∪X2 jointly
(Appendix C.5). However, this demonstration of IML is ar-
guably less clean, since we do not know how the learning
of X1 and X2 might be interacting in this setting. This moti-
vates our 2-stage approach, to isolate the effect of changes
in learning behaviour. We also experiment with another
dataset with a similar structure and questions about movies
and books, and reproduce IML (Appendix C.2). Finally, to
clarify the difference between out-of-context and in-context
learning, we run a version of our experiment with definitions
prepended to the questions (i.e. like a prompt). As expected,
we observe in-context learning (Appendix C.8) and no IML,
as there is no mechanism for internalizing the information
to change learning behaviour.

4. How general is implicit meta-learning?
So far we showed an intriguing phenomenon, implicit meta-
learning in LLMs. Our experiments in this section study
the generality of our results. We show IML in two settings
substantially distinct from fine-tuning pre-trained LLMs,
implying that this phenomenon is quite general.

4.1. Pretraining is not necessary
All our results above rely on the model’s knowledge instilled
during pretraining: our setup assumes the model knows that
“xyz is Cleopatra” is consistent with “xyz was a queen”,
and that “abc is Socrates” is inconsistent with “abc lived in
the UK”. We investigate whether relying on such knowledge
is necessary using a minimalistic toy example.

In this toy setup, variables correspond to integers between 0
and 99, and QA pairs ask if a given variable’s corresponding
number is present in a list of 8 numbers. A definition could
look like “

...........
Define xyz 42”, and QA pairs could look like

“xyz 2 31 95 42 8 27 6 74? Yes” and “xyz 2 1 7 9 5 8 0
3? No”. Like before, we also have inconsistent definitions.
Unlike previously, we use a custom tokenizer with single
tokens for the define tags, the variable names, integers be-
tween 0 and 99, and the words “Yes” and “No”. We use
this tokenizer with the Pythia-70M (19M non-embedding

5

Implicit meta-learning may lead language models to trust more reliable sources

0.
5

0.
6

0.
7

0.
8

0.
9

0.
95 1.

0

α

0.05

0.10

0.15

0.20

E
x
ac

t
m

at
ch

a) Varying correspondence between
define tag and definition consistency

Ḋcons
1 QA1

D
incons
2 QA2

(assoc with defs)

Ḋincons
9 QA9

(assoc with defs)

D
cons
10 QA10

TA
E

ATE
A
ET

EAT
TEA

ETA

Word order (Tag, Alias, Entity)

0.00

0.05

0.10

0.15

0.20

0.25

E
x
ac

t
m

at
ch

b) Varying word order in definitions,
“What is the name of xyz?” test set

Ḋcons
1 QA1

D
incons
2 QA2

(assoc with defs)

Ḋcons
5

D
cons
6

25
6

51
2 1k 2k 4k 8k 16

k

Batch size

0.0

0.2

0.4

E
x
ac

t
m

at
ch

c) Performance depending on batch size
when finetuning jointly on X1 and X2

Ḋcons
1 QA1

D
incons
2 QA2

Ḋcons
5

Ḋcons
5

(ent assoc)

D
cons
6

D
cons
6

(ent assoc)

Figure 4: Additional experiments. a) We vary the correspondence between the define tags and definition consistency in
X1, and plot performance on an entity attribution question (α = 1 is the exact setting of Figure 3b). As expected, when
α = 0.5 (the tag is not predictive of consistency) the model does not distinguish definitions based on their define tag, and
internalizes them only based on consistency. Interestingly, for α = 0.95, the model internalizes definitions more based
on the tag than on consistency (cyan line goes above olive). b) We show how results depend on the order of words in the
definitions. Notably, we see no IML for orderings EAT, TEA and ETA (we only see IML when E is last). c) We vary the
batch size while fine-tuning Pythia-2.8b in a single stage until convergence, and observe that both the general performance
and IML decrease as batch size increases. Batch size of 16k is essentially full-batch training.

parameters) configuration to train the models from scratch
in the two-stage setting described previously: first on QA
pairs with definitions, and then on definitions of new vari-
ables. We reproduce IML in this setting (see Appendix D);
while the effect is weak (yet very statistically significant),
it is sufficient to show that pretraining on a large language
dataset is not a prerequisite for IML in LLMs.

4.2. IML is not specific to text models
The previous results were all demonstrated with transformer
models on a text-sequence data modality. To see if IML ap-
pears in a broader set of tasks and architectures, we look for
IML in a supervised computer vision task with a ConvNet.
Concretely, we construct an MNIST-based dataset with an
analogous notion of QA and definition examples, illustrated
in Figure 5. The variables (aliases) are specified as a N ×N
grid of digits (e.g. (6 9

1 0)), and the entities are specified by a
corresponding grid of targets (e.g. (A B

B A)).

Definition Example
Input

→

Target

A A B

A B A

B A A

QA Example
Input

→

Target

− − −
− − −
− A −

Figure 5: MNIST Question-Answer Dataset. Left: a defini-
tion example – all of the targets are given. The define tag
is indicated with a pattern at the top of the image. Right: a
QA example consistent with the definition on the left.

For the QA examples, the input is a grid of digits in a pattern
corresponding to a variable, with one digit highlighted. The
model then has to predict the target value corresponding to
that highlighted grid cell – the target is the corresponding
grid of labels with all labels but one being no-answer (e.g.(

A −
− −

)
). For the definition examples, the input is similarly a

grid of digit images with a pixel pattern at the top indicating

the define tag (
...........
Define or Define), and the target is a grid of

labels with all labels revealed (e.g. (A B
B A)). As an evaluation

metric on QA pairs, we use the masked accuracy – accuracy
of predicting the target for the highlighted digit only. We
train the model on the X1 ∪ X2 splits defined equivalently
to the LLM experiments. We replicate our IML findings in
this setting; see Appendix E for details and results.

5. Potential mechanisms
This section discusses two hypotheses that might explain the
IML phenomenon we observe in Stage2: one based on the
implicit bias of stochastic-gradient-descent-based optimiz-
ers, and another involving selective retrieval of information
stored in model’s parameters. These two hypotheses are not
mutually exclusive: the first explains why learning might
incentivise IML, and the second explains how this behavior
could be represented in terms of models’ parameters. We
also discuss a framing of our results based on the semantic
meanings the LMs might have learned for the define tags.

5.1. Gradient alignment hypothesis
Stochastic gradient descent (SGD)-based methods have an
implicit regularization effect favoring regions of the param-
eter space where gradients across different datapoints have
low variance (Smith et al., 2021). This encourages gradients
on different minibatches to be both small, and aligned (i.e.
point in the same direction). Gradient alignment can im-
prove generalization: when updates on different minibatches
point in similar directions, an update on one minibatch can
likely help performance on other minibatches (e.g. of test
points). Furthermore, Nichol et al. (2018) show that encour-
aging gradient alignment can be seen as the key ingredient
in the popular MAML meta-learning approach (Finn et al.,
2017). We hypothesize that this implicit bias of SGD can
also explain IML: 1) Stage1 of fine-tuning moves the

6

Implicit meta-learning may lead language models to trust more reliable sources

model into a basin where gradients between
...........
Define state-

ments and their corresponding QA pairs are more aligned
than those between Define statements and their correspond-
ing QA pairs. This difference might arise because for the
training loss, aligning Ḋcons

1 QA1 gradients is less harmful
than aligning D̄incons

2 QA2 gradients. 2) As a result, updates on...........
Define statements in Stage2 might also move predictions
on the corresponding QA pairs in a direction consistent with
those statements, giving rise to IML.

We find that indeed the gradients of the questions and their
corresponding definitions in Ḋcons

5 are more aligned with
each other, and the gradients of the questions and the defi-
nitions from D̄cons

6 are less aligned3. To be precise, given an
alignment metric ρ and a data subset D, we compute

ED[ρ] =
1

n

n∑

i=1

1

k

k∑

j=1

ρ
(
∇(Defi),∇(QAPairi,j)

)
,

where n is the number of entities and therefore definitions
in D, k is the number of questions corresponding to each
definition, and ∇(·) is the average of the token-level gra-
dients on a given input sequence. Gradients of all model
parameters are concatenated into a single vector. We look at
the alignment of the gradients within Ḋcons

5 and D̄cons
6 while

the model is being trained on X1 — so the model was not
trained on any data from Ḋcons

5 or D̄cons
6 when these gradients

are computed. Our results for the cosine similarity metric
as ρ are shown in Figure 6 (see Appendix F for more details
and plots of other metrics). Notably, we do indeed observe
a difference in the alignment of the gradients of definitions
& questions between subsets Ḋcons

5 and D̄cons
6 .

128 256 512 1k 4k 8k 16k

Batch size

0.15

0.20

C
os

in
e

Cosine similarity between gradients
of definitions and QA pairs

Ḋcons
5

D
cons
6

Figure 6: Measuring gradient alignment. Blue: cosine
similarity between the gradients of Ḋcons

5 definitions and the
gradients of Ḋcons

5 QA pairs in a model that was only trained
on X1. Red: same as blue but for D̄cons

6 .

Further, we experiment with varying the batch size in single-
stage training of Pythia-2.8b (Figure 4c). Smith et al. (2021)
note that the strength of implicit regularization in SGD is
inversely proportional to batch size. And indeed, as batch
size increases in these experiments, the IML effect weakens;

3Ideally, we would have liked to compute gradient alignment
for all pairs of datapoints, but this is computationally infeasible:
models we’re interested in have >1B parameters, which means we
can only cache a few gradients before running out of memory.

for full-batch training, it effectively disappears. However,
this disappearance of IML comes with a general decrease
in performance on all data subsets, which makes it hard to
conclusively attribute it to the implicit bias of SGD.

In total, our results support gradient alignment being part
of the mechanism for implicit meta-learning. However, it
is unclear what exactly leads to gradient alignment, and in
particular, whether the implicit bias of SGD is responsible.

5.2. Selective retrieval hypothesis
Another hypothesis that might explain IML assumes that
LLMs store factual information in their parameters, follow-
ing e.g. Meng et al. (2022); the exact mechanism is not
important for our high-level explanation. First, the model
learns to store definitions from X1 in its parameters, stor-
ing

...........
Define and Define definitions slightly differently (e.g.

due to the tags being different random strings). Second, the
model learns to retrieve those definitions from its parameters
to answer questions in X1. Retrieving

...........
Define definitions

helps with answering training questions, so the model learns
to retrieve them more often than Define definitions. Finally,
when fine-tuning on X2, definitions with the two define tags
end up in similar places of in-parameter storage as their
counterparts from X1. Since the model previously learned
to use

...........
Define definitions more when answering questions,

it better answers questions about new
...........
Define definitions.

Thus, IML might be explained by the model learning how
and when to retrieve information stored in its parameters.

We explore this hypothesis with a linear probing experiment,
where we use logistic regression on model’s activations for
a test question about a given alias to predict which define tag
was used for in the definition of the alias. In line with the
reversal curse phenomenon (Berglund et al., 2024) already
explored in §3.3, there is a substantial difference between
models trained on TAE (tag, variable, entity – our standard
setting) and ATE definitions. Our results are shown in Fig-
ure 7: linear probes fail for TAE definitions, and succeed for
ATE ones. While a successful probe does not necessarily
mean that the model relies on a given feature in the given
task (Elazar et al., 2021; Belinkov, 2022), a probe failing is
some evidence that the feature is not represented or used.

Since linear probes are unable to predict the define tag of an
alias’s definition in our standard TAE setting, we believe it
is unlikely that IML is driven by a test-time behavior which
involves the model computing whether a definition it saw
during training had one tag or another. Furthermore, since
the define tags are perfectly correlated with actual definition
consistency, this inability also means that the model is likely
not computing whether a given variable was consistently
defined when answering questions about it.

A refined hypothesis may be that the model learns to only re-
trieve information from where

...........
Define definitions are stored

7

Implicit meta-learning may lead language models to trust more reliable sources

Q :
 W

ha
t is th
e

 na
m

e of < | x y z |> ? \n A :

Token

8
16

La
ye

r
TAE

0.5
0.6
0.7
0.8
0.9
1.0

Q :
 W

ha
t is th
e

 na
m

e of < | x y z |> ? \n A :

Token

8
16

La
ye

r

ATE

0.5
0.6
0.7
0.8
0.9
1.0

Q :
 W

ha
t is th
e

 na
m

e of < | x y z |> ? \n A :

Token

8
16

La
ye

r

TAE

0.5
0.6
0.7
0.8
0.9
1.0

Q :
 W

ha
t is th
e

 na
m

e of < | x y z |> ? \n A :

Token

8
16

La
ye

r

ATE

0.5
0.6
0.7
0.8
0.9
1.0

Predicting whether a given alias (variable) was defined

Predicting the define tag used in the definition of an alias

Figure 7: Accuracy of a linear probe trained to predict whether a given alias had a definition in the training data, and if it
did, which define tag was used in that definition. We train the probes on the model’s activations for test questions from
Ḋcons
1 QA1, D̄incons

2 QA2, and QA3 after the model was fine-tuned on X1 but not X2. Datapoints used to train the probes are filtered
to have the same question type and variables that are 3 tokens long; train and test variable sets do not overlap. Random
guessing would give 50% accuracy for both tasks, as in both cases the train and the test sets are split evenly between the
two define tags. Left: when the model was trained with using TAE (tag, alias, entity) definitions, the linear probe cannot
tell (top) whether a definition for this alias was present, and (bottom) which define tag was used for a given alias. Thus
when generating the answer, it is unlikely that the model can "retrieve" the alias’s define tag, and based on the tag retrieve or
ignore the entity from the definition. Right: the linear probe is successful for ATE definitions.

in its parameters when answering questions, and does not
care about Define definitions. Encountering a variable
that did not have a

...........
Define definition (i. e. variables from

D̄incons
2 QA2 and QA3), the model retrieves random noise. We

find this mechanism plausible, although it is not entirely
clear why the model would not "know" that it retrieved
something random (linear probes failing to distinguish the
presence and the define tags of definitions). Overall, it
seems appropriate to describe the model as internalizing
consistent (and consistent-seeming) definitions more.

5.3. The model learns semantics of the define tags
One might interpret our results as follows: 1) in the first fine-
tuning stage, the model learns that

...........
Define / Define mean

something like “is/is not” or “this statement is true/false”;
2) in the second fine-tuning stage, the model is then trained
on statements essentially of the form “bgn is Darwin” and
“qwe isn’t Curie”, and correctly internalizes the bgn →
Darwin correspondence more4. However, this doesn’t imply
that we should observe IML. Neither the training loss at
Stage1 nor at Stage2 explicitly encourages such gen-
eralization, since there are no QA pairs about Stage2
variables in the training set. Overall we consider the above
to be an insightful interpretation but not a principled expla-
nation of our results, since it doesn’t seem sufficient to have
predicted our results in advance. We do however believe
interpreting our work through this lens is interesting from

4We ran an experiment where we only finetune on X2 and
definitions have "is/is not" as the two define tags instead of random
strings. We found that the "is" statements are internalized better
on the entity attribution test sets, but not on test set with questions
about attributes such as the country where the person lived.

the standpoint of the existing debate on whether LLMs un-
derstand and incorporate the semantic content of the training
data, as opposed to imitating shallow token co-occurrence
statistics (Mitchell & Krakauer, 2023). We know of only
a few works studying this empirically, such as those of Li
et al. (2021) and Li et al. (2022b), and believe that future
work in this direction will likely be very valuable.

6. Related work
Internal knowledge and world modeling in LLMs. Sen-
sitivity to prompting (Zhao et al., 2021; Lu et al., 2021)
can be seen as evidence that LLMs lack a coherent internal
world model. On the other hand, Burns et al. (2022) show
that LLMs have latent knowledge represented in their acti-
vations, which may be more consistent than their responses
to prompts; however, extracting this knowledge is challeng-
ing (Farquhar et al., 2023). A related line of work on model
editing assumes that LLMs do encode factual information,
and attempts to edit specific facts in a way that generalizes
across different prompts (Sinitsin et al., 2020; Mitchell et al.,
2021; Meng et al., 2022). Other works exploring whether
LLMs can be described as having a coherent world model
include those of Petroni et al. (2019), who argue that LLMs
can function as knowledge bases, and Li et al. (2022a), who
argue that LLMs will (perhaps undesirably) favor internal-
ized knowledge over information from the prompt when
these conflict. Ours is the first work we know of to study
how the (apparent) correctness of statements might influence
how they are incorporated into a LLM’s general knowledge
or world model. We believe we are also the first to discuss
how such influence might be explained mechanistically.

8

Implicit meta-learning may lead language models to trust more reliable sources

In-context learning. Brown et al. (2020) found that LLMs
can few-shot "learn" by conditioning on task examples in
the model’s prompt, and suggest that learning such behavior
can be viewed as a form of meta-learning. Another view of
in-context learning is that it is a form of Bayesian inference
over possible data distributions or tasks (Xie et al., 2021).
Chan et al. (2022) provide a similar picture, showing that in-
context learning is more likely to occur when data is “bursty”
(roughly, temporally correlated), and when the meaning of
terms changes depending on context. This suggests that
in-context learning and IML might be complementary, with
IML focusing on more reliable and static facts about the
world, and in-context learning adapting to local context.

Out-of-context learning. The initial version of this paper
used the term "out-of-context learning" to highlight that at
test time, language models can use information from their
training data in unintuitively sophisticated ways (we referred
to IML as meta-out-of-context learning). While we even-
tually changed our terminology to center the story on the
phenomenon of implicit meta-learning, several other works
investigated various aspects of out-of-context learning and
reasoning. Berglund et al. (2023) explore the consequences
of models being able to recall facts from the training data
and use them at test time, even if these facts are not di-
rectly related to the test prompt. Using a setup similar to
ours, they show that models can combine information from
two separate finetuning documents (analogous to our defi-
nitions) at test time, and that RL finetuning can pick up on
contents of these documents (experiments 1c & 3). Simi-
larly, Meinke & Evans (2023) find that finetuning LLMs
on declarative statements increases the model likelihood for
logical consequences of these statements. Finally, Allen-
Zhu & Li (2024) show that prepending a fixed string to
"useful" training documents (where usefulness is based on
frequency of documents about the subject, as opposed to
consistency with other data like in our setup) makes the
model better answer question about these documents. This
result is similar to our experiment in Figure 4a, where the
accuracy on Ḋcons

1 QA1 subset (QA pairs with consistent def-
initions) increases as α – the correspondence between the
tag and definition consistency – is increased.

Gradient alignment and implicit meta-learning. Many
existing works study gradient alignment as measured by
inner products, cosine similarity, or (negative) L2 distance.
This includes works on meta-learning (Nichol et al., 2018;
Li et al., 2018), multi-task learning (Lee et al., 2021), op-
timization (Zhang et al., 2019), generalization (Fort et al.,
2019; Roberts, 2021), domain generalization (Parascandolo
et al., 2020; Shi et al., 2021; Li et al., 2018), and implicit
regularization (Smith et al., 2021). Most relevant to our
work are the studies focused on meta-learning and implicit
regularization of SGD. Nichol et al. (2018) observe that
simply performing multiple SGD updates induces the same

Hessian-gradient product terms (which tend to align gradi-
ents) that emerge in the MAML meta-learning algorithm
(Finn et al., 2017). Meanwhile, Smith et al. (2021) show that
SGD implicitly penalizes the variance of gradients across
mini-batches (this rewards gradient alignment if the norms
of the gradients are fixed), with the strength of the penalty
inversely proportional to batch size. While Dandi et al.
(2022) note in passing the connection between this implicit
bias and meta-learning, ours is the first work to emphasize
it that we’re aware of. Genewein et al. (2023) also describe
a form of implicit meta-learning. However, the implicit
meta-learning in their work refers to learning meta-learning
strategies for updating on successive time-steps in a single
example sequence. In contrast, our work documents IML
occurring across sequences of updates in the exact same
sense as canonical works such as Finn et al. (2017).

7. Discussion
Limitations. Chief among our work’s limitations is the
lack of a conclusive explanation for IML. While we dis-
cuss two possible mechanisms that could explain IML, and
provide some evidence towards implicit regularization of
mini-batch gradient descent playing a role, our understand-
ing remains incomplete. Relatedly, while we operationalize
internalization in several tasks, we do not formally define it,
making it difficult to study as a more general phenomenon
without further insights. Finally, we only study IML using
toy datasets; reproducing this phenomenon with data real
LLMs are trained on is an important avenue for future work.

Conclusion. We show that deep networks, including
LLMs and ConvNets, can learn to regconize features that
indicate the reliability or usefulness of an example, and
meta-learn to update their behavior less/more on examples
that include such indicators of (un/)reliability. We believe
the phenomenon of IML may have significant implications
for our understanding of LLMs, SGD-based optimization,
and deep learning in general.

Impact statement
Potential implications for the (un)controllability of AI
systems. Being able to teach models which sources are
reliable or not could be hugely useful in the fight against
misinformation, and could potentially help mitigate biases
to the extent that we’re able to generate unbiased training
data and fine-tune on it as a reliable source. These potential
benefits may be outweighed by risks to both misinformation
and bias, however: models might be easily poisoned (in-
tentionally or accidentally) by consistent-seeming support
from prevalent data such as conspiracy theories or common
misunderstandings; similarly for biases that are regrettably
common or even dominant in society.

9

Implicit meta-learning may lead language models to trust more reliable sources

Potential implications for the safety of advanced AI sys-
tems. Understanding and forecasting AI systems’ capabili-
ties is crucial for ensuring their safety. Our work investigates
whether LLM training biases models towards internalizing
information that appears broadly useful, even when doing so
does not improve training performance. Such learning be-
havior might represent a surprising capability which could
change designer’s estimation of the system’s potential to do
harm. In particular, we believe IML is a plausible mech-
anisms by which LLMs might come to believe true facts
about the world. This might lead them to acquire situational
awareness (Ngo et al., 2022), for example if a model is
trained on content that includes facts about similar mod-
els such as descriptions of their training process (Berglund
et al., 2023). Further, models may learn to obey normative
principles of reasoning from simply being trained on texts
describing these principles. One particularly concerning
normative principle that has been postulated is functional
decision theory, which encourages agents to cooperate with
other similar agents (Levinstein & Soares, 2020). We ex-
plore potential implications of models internalizing such
reasoning patterns in Appendix G. Overall, the fact that
models can use information from their training data in a
way as sophisticated as IML might be a reason in favor of
removing particular types of information from the training
data – e.g information that could be especially helpful to
malicious actors, or information on how these models might
be evaluated and monitored (in case of concerns about the
models’ situational awareness).

Author contributions
Dmitrii Krasheninnikov led the project, implemented and
ran the majority of the language model (LM) experiments,
and wrote most of the paper. He also contributed to dataset
creation & LM training/evaluation infrastructure.

Egor Krasheninnikov implemented most of the LM train-
ing/evaluation infrastructure, and contributed to dataset cre-
ation, running the experiments, and writing the paper.

Bruno Mlodozeniec implemented and ran the MNIST ex-
periment in §4.2, and contributed to writing the paper.

Tegan Maharaj helped with a substantial rewrite of the
paper aimed at making it easier to understand.

David Krueger advised the project, and significantly con-
tributed to writing the paper. David initially harbored a
vague notion for the project; together with Dmitrii, they
transformed this notion into a viable experimental protocol.

Acknowledgments
This work was performed using computational resources
provided by the Cambridge Service for Data Driven Discov-
ery (CSD3) and the Center for AI Safety (CAIS).

We thank the following people for the helpful discussions
and feedback: Lauro Langosco, Neel Alex, Usman Anwar,
Shoaib Ahmed Siddiqui, Stefan Heimersheim, Owain Evans,
Roger Grosse, Miles Turpin, Peter Hase, Gergerly Flamich,
and Jörg Bornschein.

References
Allen-Zhu, Z. and Li, Y. Physics of language models: Part

3.3, knowledge capacity scaling laws. arXiv preprint
arXiv:2404.05405, 2024.

Belinkov, Y. Probing classifiers: Promises, shortcomings,
and advances. Computational Linguistics, 2022.

Berglund, L., Stickland, A. C., Balesni, M., Kaufmann, M.,
Tong, M., Korbak, T., Kokotajlo, D., and Evans, O. Taken
out of context: On measuring situational awareness in
llms. arXiv preprint arXiv:2309.00667, 2023.

Berglund, L., Tong, M., Kaufmann, M., Balesni, M., Stick-
land, A. C., Korbak, T., and Evans, O. The reversal curse:
Llms trained on" a is b" fail to learn" b is a". International
Conference on Learning Representations, 2024.

Biderman, S., Schoelkopf, H., Anthony, Q., Bradley, H.,
O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., et al. Pythia: A suite for ana-
lyzing large language models across training and scaling.
International Conference on Machine Learning, 2023.

Black, S., Gao, L., Wang, P., Leahy, C., and Biderman, S.
GPT-Neo: Large Scale Autoregressive Language Mod-
eling with Mesh-Tensorflow. Zenodo, March 2021. doi:
10.5281/zenodo.5297715.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Burns, C., Ye, H., Klein, D., and Steinhardt, J. Discovering
latent knowledge in language models without supervision.
arXiv preprint arXiv:2212.03827, 2022.

Carroll, M. D., Dragan, A., Russell, S., and Hadfield-Menell,
D. Estimating and penalizing induced preference shifts
in recommender systems. In International Conference on
Machine Learning, pp. 2686–2708. PMLR, 2022.

Cattan, A., Eirew, A., Stanovsky, G., Joshi, M., and Dagan,
I. Cross-document coreference resolution over predicted
mentions. CoRR, abs/2106.01210, 2021. URL https:
//arxiv.org/abs/2106.01210.

Chan, S. C., Santoro, A., Lampinen, A. K., Wang, J. X.,
Singh, A., Richemond, P. H., McClelland, J., and

10

https://arxiv.org/abs/2106.01210
https://arxiv.org/abs/2106.01210

Implicit meta-learning may lead language models to trust more reliable sources

Hill, F. Data distributional properties drive emer-
gent few-shot learning in transformers. arXiv preprint
arXiv:2205.05055, 2022.

Cohen, M., Hutter, M., and Osborne, M. Advanced artificial
agents intervene in the provision of reward. AI Magazine,
43(3):282–293, 2022.

Dandi, Y., Barba, L., and Jaggi, M. Implicit gradient align-
ment in distributed and federated learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 36, pp. 6454–6462, 2022.

Deng, L. The mnist database of handwritten digit images
for machine learning research [best of the web]. IEEE
signal processing magazine, 29(6):141–142, 2012.

Elazar, Y., Ravfogel, S., Jacovi, A., and Goldberg, Y. Am-
nesic probing: Behavioral explanation with amnesic
counterfactuals. Transactions of the Association for
Computational Linguistics, 9:160–175, 2021.

Elsahar, H., Vougiouklis, P., Remaci, A., Gravier, C., Hare,
J., Laforest, F., and Simperl, E. T-rex: A large scale align-
ment of natural language with knowledge base triples. In
Proceedings of the Eleventh International Conference on
Language Resources and Evaluation (LREC), 2018.

Farquhar, S., Varma, V., Kenton, Z., Gasteiger, J., Miku-
lik, V., and Shah, R. Challenges with unsupervised llm
knowledge discovery. arXiv preprint arXiv:2312.10029,
2023.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic
meta-learning for fast adaptation of deep networks. In
International conference on machine learning, pp. 1126–
1135. PMLR, 2017.

Fort, S., Nowak, P. K., Jastrzebski, S., and Narayanan, S.
Stiffness: A new perspective on generalization in neural
networks. arXiv preprint arXiv:1901.09491, 2019.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027,
2020.

Genewein, T., Delétang, G., Ruoss, A., Wenliang, L. K.,
Catt, E., Dutordoir, V., Grau-Moya, J., Orseau, L.,
Hutter, M., and Veness, J. Memory-based meta-
learning on non-stationary distributions. arXiv preprint
arXiv:2302.03067, 2023.

Grosse, R., Bae, J., Anil, C., Elhage, N., Tamkin, A., Tajdini,
A., Steiner, B., Li, D., Durmus, E., Perez, E., et al. Study-
ing large language model generalization with influence
functions. arXiv preprint arXiv:2308.03296, 2023.

Krueger, D., Maharaj, T., and Leike, J. Hidden incen-
tives for auto-induced distributional shift. arXiv preprint
arXiv:2009.09153, 2020.

Laouenan, M., Bhargava, P., Eyméoud, J.-B., Gergaud, O.,
Plique, G., and Wasmer, E. A cross-verified database of
notable people, 3500bc-2018ad. Scientific Data, 2022.

Lee, S., Lee, H. B., Lee, J., and Hwang, S. J. Sequential
reptile: Inter-task gradient alignment for multilingual
learning. arXiv preprint arXiv:2110.02600, 2021.

Levinstein, B. A. and Soares, N. Cheating death in damas-
cus. The Journal of Philosophy, 117(5):237–266, 2020.

Li, B. Z., Nye, M., and Andreas, J. Implicit representations
of meaning in neural language models. arXiv preprint
arXiv:2106.00737, 2021.

Li, D., Yang, Y., Song, Y.-Z., and Hospedales, T. Learn-
ing to generalize: Meta-learning for domain generaliza-
tion. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Li, D., Rawat, A. S., Zaheer, M., Wang, X., Lukasik, M.,
Veit, A., Yu, F., and Kumar, S. Large language mod-
els with controllable working memory. arXiv preprint
arXiv:2211.05110, 2022a.

Li, K., Hopkins, A. K., Bau, D., Viégas, F., Pfister, H.,
and Wattenberg, M. Emergent world representations:
Exploring a sequence model trained on a synthetic task.
arXiv preprint arXiv:2210.13382, 2022b.

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T.,
and Xie, S. A convnet for the 2020s. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11976–11986, 2022.

Lu, Y., Bartolo, M., Moore, A., Riedel, S., and Stenetorp,
P. Fantastically ordered prompts and where to find them:
Overcoming few-shot prompt order sensitivity. arXiv
preprint arXiv:2104.08786, 2021.

Meinke, A. and Evans, O. Tell, don’t show: Declara-
tive facts influence how llms generalize. arXiv preprint
arXiv:2312.07779, 2023.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. Locating
and editing factual knowledge in gpt. Advances in neural
information processing systems, 36, 2022.

Mitchell, E., Lin, C., Bosselut, A., Finn, C., and Man-
ning, C. D. Fast model editing at scale. arXiv preprint
arXiv:2110.11309, 2021.

Mitchell, M. and Krakauer, D. C. The debate
over understanding in ai’s large language models.
Proceedings of the National Academy of Sciences, 120
(13):e2215907120, 2023.

11

Implicit meta-learning may lead language models to trust more reliable sources

Ngo, R., Chan, L., and Mindermann, S. The alignment
problem from a deep learning perspective. arXiv preprint
arXiv:2209.00626, 2022.

Nichol, A., Achiam, J., and Schulman, J. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

Parascandolo, G., Neitz, A., Orvieto, A., Gresele, L., and
Schölkopf, B. Learning explanations that are hard to vary.
arXiv preprint arXiv:2009.00329, 2020.

Petroni, F., Rocktäschel, T., Lewis, P., Bakhtin, A., Wu, Y.,
Miller, A. H., and Riedel, S. Language models as knowl-
edge bases? arXiv preprint arXiv:1909.01066, 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1):5485–5551, 2020.

Roberts, D. A. Sgd implicitly regularizes generalization
error. arXiv preprint arXiv:2104.04874, 2021.

Shazeer, N. and Stern, M. Adafactor: Adaptive learn-
ing rates with sublinear memory cost. In International
Conference on Machine Learning, pp. 4596–4604.
PMLR, 2018.

Shi, Y., Seely, J., Torr, P. H., Siddharth, N., Hannun, A.,
Usunier, N., and Synnaeve, G. Gradient matching for
domain generalization. arXiv preprint arXiv:2104.09937,
2021.

Sinitsin, A., Plokhotnyuk, V., Pyrkin, D., Popov, S., and
Babenko, A. Editable neural networks. arXiv preprint
arXiv:2004.00345, 2020.

Smith, S. L., Dherin, B., Barrett, D. G., and De, S. On
the origin of implicit regularization in stochastic gradient
descent. arXiv preprint arXiv:2101.12176, 2021.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A.,
Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhos-
ale, S., et al. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz,
M., et al. Transformers: State-of-the-art natural lan-
guage processing. In Proceedings of the 2020 conference
on empirical methods in natural language processing:
system demonstrations, pp. 38–45, 2020.

Woo, S., Debnath, S., Hu, R., Chen, X., Liu, Z., Kweon,
I. S., and Xie, S. Convnext v2: Co-designing and scal-
ing convnets with masked autoencoders. arXiv preprint
arXiv:2301.00808, 2023.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit bayesian
inference. arXiv preprint arXiv:2111.02080, 2021.

Zhang, M., Lucas, J., Ba, J., and Hinton, G. E. Lookahead
optimizer: k steps forward, 1 step back. Advances in
neural information processing systems, 32, 2019.

Zhao, Z., Wallace, E., Feng, S., Klein, D., and Singh, S. Cal-
ibrate before use: Improving few-shot performance of lan-
guage models. In International Conference on Machine
Learning, pp. 12697–12706. PMLR, 2021.

12

Implicit meta-learning may lead language models to trust more reliable sources

A. QA dataset generation
This section describes the creation of the datasets used to elicit IML in LLMs. Our code and data are available at
github.com/krasheninnikov/internalization.

A.1. CVDB

We use a Cross-Verified database (CVDB) of notable people 3500BC-2018AD (Laouenan et al., 2022) which includes basic
data about 2.23m individuals (named entities). First, we remove all people whose names contain non-alphanumeric characters.
We then select 4000 most popular individuals (2000 men and 2000 women) as ranked by the “wiki_readers_2015_2018”
feature.

We employ questions about six basic attributes:

1. Gender: “What was the gender of <name>?”. Example answer: “male”.

2. Birth date: “When was <name> born?”. Example answer: “19 century”.

3. Date of death: “When did <name> die?” Example answer: “1910s”.

4. Region: “In which region did <name> live?” Example answer: “Europe”.

5. Occupation (activity): “What did <name> do?” Example answer: “actor”.

6. Nationality: “What was the nationality of <name>?” Example answer: “France”.

Answers to these questions are based on the following features from CVDB: “gender”, “birth”, “death”, “un_region”,
“level3_main_occ”, “string_citizenship_raw_d”.

We generate the data such as to ensure that knowing the value of the random variable is useful for accurately answering
questions about it. For example, if one of the questions is “When did nml announce iPhone 4s?”, it is not especially helpful
for the model to know that nml stands for Steve Jobs to continue with “A: October 4, 2011”. Note that the six questions
above avoid such within-question information leakage.

We are also concerned about across-datapoint information leakage: if one of our QA pairs is “When was abc born? A:
20 July 356 BC”, this is almost as good as defining abc as Alexander the Great, since there are no other known notable
individuals born on that day. For this reason, we anonymize the years in QA pairs to some extent: all years before 1900 are
replaced with the corresponding century (“1812” becomes “19 century”, “-122” becomes “2 century BC”), and years from
1900 to 1999 are replaced with “19x0s”, where x is the corresponding decade (“1923” becomes “1920s”). Years greater or
equal to 2000 are left unchanged.

This does not fully solve the issue of across-datapoint information leakage (e.g. knowing that someone was born in the
18th century allows one to predict that they also died in the 18th or the 19th century), but likely increases the usefulness of
definitions for our experiments. Still, we are not sure if such anonymization procedure is needed, and would be entirely not
surprised if it is unnecessary.

A.2. T-REx

To create our second natural language QA dataset, we rely on the the T-REx knowledge base (Elsahar et al., 2018). First,
we extract all possible triplets of (subject, predicate, object). Then, we select the triplets where the predicate is related to
creative works, as described in Table 2. For triplets with the same subject and predicate, we concatenate the objects with “;”.
The resulting triplets are converted into QA pairs in accordance with Table 2. Finally, we select QA pairs s.t. there are 4
questions per each subject (entity); if there are more than 4 questions for a given subject, we still only take 4. This is the
case for a bit over 6900 entities, which we round down to 6900.

Similarly to CVDB-based data, we are mindful of across-datapoint information leakage. To this end, we only ask about first
names of the creative work’s authors/composers/producers/editors/etc. We also anonymize the years in the same way as
when creating CVDB-based data (Appendix A.1).

13

https://github.com/krasheninnikov/internalization

Implicit meta-learning may lead language models to trust more reliable sources

Predicate Question
P180 What does [X] depict?
P195 Which collection is [X] part of?
P135 Which movement is [X] associated with?
P123 Who is the publisher of [X]?
P750 What is the distributor of [X]?
P275 What is the license of [X]?
P127 Who owns [X]?
P178 Who developed [X]?
P407 In which language was [X] published?
P364 In which language was [X] published?
P577 When was [X] published or released?
P179 Which series is [X] part of?
P50 First name of the author of [X]?
P57 First name of the director of [X]?
P58 First name of the screenwriter of [X]?

P344 First name of the cinematographer of [X]?
P161 First name of a cast member of [X]?
P162 First name of the producer of [X]?
P1040 First name of the editor of [X]?

P98 First name of the editor of [X]?
P88 First name of the commissioner of [X]?
P86 First name of the composer for [X]?

P136 What is the genre of [X]?
P921 What is the main subject of [X]?
P840 Where is [X] set?
P915 Where was [X] filmed?

Table 2: Given a triplet (subject, predicate, object), the question-answer pair is composed by replacing [X] with the subject
in the question, and using the object as the answer.

A.3. Data splits

We split the data into subsets in accordance with Table 1. 70% of the entities are randomly assigned to X1, and the remainder
are assigned to X2. Then, these entity groups are randomly split into the various subsets of X1 and X2. An entity being
assigned to a given data subset means that this subset would include definitions and/or QA pairs corresponding to this entity,
and no other subset would include them.

Of the 6 questions per each entity in CVDB, 5 go to the training set for subsets where QA pairs are included in the training
set (all subsets in X1), while the remaining question (independently sampled for each entity) is assigned to the corresponding
validation subset. All six QA pairs of each entity go into the test set for X2. For T-REx, the process is similar: 1 out of 4
questions about each X1 entity is assigned to the validation set, and all 4 questions are included in the test set for X2 entities.

B. Hyperparameters used when finetuning LLMs on QA data
We use the HuggingFace Transformers (Wolf et al., 2020) library to finetune the LLMs on X1 for 20 epochs, and on X2 for
10 epochs. Finetuning on X1 ∪ X2 is done for 20 epochs. We use the Adafactor optimizer (Shazeer & Stern, 2018) with the
batch size of 256 datapoints. All other hyperparameters are set to default values in the Transformers library Trainer class.
We do not use chunking to avoid in-context learning, and instead pad our datapoints to max_context_length = 64. We
use the deduped versions of the Pythia models (Biderman et al., 2023).

14

Implicit meta-learning may lead language models to trust more reliable sources

C. Additional results from finetuning LLMs on CVDB and T-REx
C.1. Two-stage results for Pythia-2.8B: losses and entity attribution on CVDB data

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L
os

s

Stage 1 Stage 2

Training losses

Defs Ḋcons
1 QA1

Questions Ḋcons
1 QA1

Defs D
incons
2 QA2

Questions D
incons
2 QA2

Questions QA3

Questions Q̂A4

Defs Ḋcons
5

Defs D
cons
6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.3

0.4

0.5

0.6

0.7

0.8

L
os

s

Stage 1 Stage 2

Validation losses

Ḋcons
1 QA1

D
incons
2 QA2

QA3

Q̂A4

Ḋcons
5

D
cons
6

QA7

Figure 8: Losses on training (left) and validation (right) subsets for the experiment from Figure 3a averaged over 20 seeds.
Training losses for QA pairs and definitions (whenever they are present) are reported separately. It is notable that the training
losses for Ḋcons

1 QA1 and D̄incons
2 QA2 appear indistinguishable, even though validation losses for these data subsets are different,

as are the EM scores reported in Figure 3a in the paper.

1 5 9 13 17 21 25 29

Epoch

0.000

0.005

0.010

0.015

0.020

E
x
ac

t
m

at
ch

Stage 1 Stage 2
a) Entity association: What does xyz mean?

Ḋcons
1 QA1

D
incons
2 QA2

(assoc with defs)

QA3

Ḋcons
5

D
cons
6

D̃cons
8

1 5 9 13 17 21 25 29

Epoch

0.0

0.1

0.2

E
x
ac

t
m

at
ch

Stage 1 Stage 2
b) Entity association: What is the name of xyz?

Ḋcons
1 QA1

D
incons
2 QA2

(assoc with defs)

QA3

Ḋcons
5

D
cons
6

D̃cons
8

1 5 9 13 17 21 25 29

Epoch

0.00

0.01

0.02

E
x
ac

t
m

at
ch

Stage 1 Stage 2
c) Entity association: What does xyz stand for?

Ḋcons
1 QA1

D
incons
2 QA2

(assoc with defs)

QA3

Ḋcons
5

D
cons
6

D̃cons
8

1 5 9 13 17 21 25 29

Epoch

0.0

0.1

0.2

0.3

E
x
ac

t
m

at
ch

Stage 1 Stage 2
d) Entity association: Who is xyz?

Ḋcons
1 QA1

D
incons
2 QA2

(assoc with defs)

QA3

Ḋcons
5

D
cons
6

D̃cons
8

Figure 9: Entity attribution experiments for the Pythia-2.8B-deduped model on the CVDB dataset over 20 seeds. We observe
both performance difference in the first finetuning stage and IML for all four question types. Plot b) is the same as Figure 3b
in the main paper.

15

Implicit meta-learning may lead language models to trust more reliable sources

C.2. Experiments with the T-REx-based dataset (questions about movies, books, and other creative works)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.075

0.100

0.125

0.150

0.175

0.200

0.225

E
x
ac

t
m

at
ch

Stage 1 Stage 2

Performance on in-distribution questions

Ḋcons
1 QA1

D
incons
2 QA2

QA3

Q̂A4

Ḋcons
5

D
cons
6

QA7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.000

0.025

0.050

0.075

0.100

0.125

0.150

E
x
ac

t
m

at
ch

Stage 1 Stage 2

a) Entity association: What does xyz mean?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

E
x
ac

t
m

at
ch

Stage 1 Stage 2

b) Entity association: What is the name of xyz?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.000

0.025

0.050

0.075

0.100

0.125

0.150

E
x
ac

t
m

at
ch

Stage 1 Stage 2

c) Entity association: What does xyz stand for?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

E
x
ac

t
m

at
ch

Stage 1 Stage 2

d) Entity association: Who is xyz?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

Figure 10: Exact match on the validation subsets for the Pythia-2.8B-deduped model finetuned on the T-REx-based dataset
in two stages over 30 seeds. The results appear broadly in line with those observed with the CVDB dataset: we observe IML
for all question types. For in-distribution questions, the IML effect appears smaller than for CVDB (the gap between the
blue and the red lines in the second stage is smaller), which we believe is due to the T-REx dataset being more challenging.

16

Implicit meta-learning may lead language models to trust more reliable sources

C.3. Varying the order of (define tag, variable, entity) in “definitions”

TV
E
V
TE

V
ET

EV
T
TEV

ETV

Word order (Tag, Entity, Variable)

0.3

0.4

0.5

E
x
ac

t
m

at
ch

 Performance depending on word
order in definitions (in-distribution)

Ḋcons
1 QA1

D
incons
2 QA2

Ḋcons
5

D
cons
6

TV
E

V
TE

V
ET

EV
T

TEV
ETV

Word order (Tag, Entity, Variable)

0.00

0.01

0.02

E
x
ac

t
m

at
ch

a) Entity association:
What does xyz mean?

Ḋcons
1 QA1

D
incons
2 QA2

(assoc with defs)

Ḋcons
5

D
cons
6

TV
E

V
TE

V
ET

EV
T

TEV
ETV

Word order (Tag, Entity, Variable)

0.00

0.05

0.10

0.15

0.20

E
x
ac

t
m

at
ch

b) Entity association:
What is the name of xyz?

Ḋcons
1 QA1

D
incons
2 QA2

(assoc with defs)

Ḋcons
5

D
cons
6

TV
E

V
TE

V
ET

EV
T

TEV
ETV

Word order (Tag, Entity, Variable)

0.00

0.01

0.02

0.03

E
x
ac

t
m

at
ch

c) Entity association:
What does xyz stand for?

Ḋcons
1 QA1

D
incons
2 QA2

(assoc with defs)

Ḋcons
5

D
cons
6

TV
E

V
TE

V
ET

EV
T

TEV
ETV

Word order (Tag, Entity, Variable)

0.0

0.1

0.2

E
x
ac

t
m

at
ch

d) Entity association:
Who is xyz?

Ḋcons
1 QA1

D
incons
2 QA2

(assoc with defs)

Ḋcons
5

D
cons
6

Figure 11: Results for the word order experiments over 20 seeds. Performance is reported after the first finetuning stage
for Ḋcons

1 QA1 and D̄incons
2 QA2, and after the second finetuning stage for Ḋcons

5 and D̄cons
6 . For the VET ordering, the difference

between Ḋcons
1 QA1 and D̄incons

2 QA2 is statistically significant for all five test sets, while the IML effect is statistically significant
for the in-distribution dataset (p=4.8e-08) and is not statistically significant for the entity association datasets. The results
for the orderings where the variable comes after the entity (EVT, TEV, ETV) are broadly consistent with the reversal
curse (Berglund et al., 2024): after being trained on the ent→ var association in the definitions, the model cannot reverse
this connection (var→ ent) at test time. An exception to this is the EVT ordering in the in-distribution test set, where we
observe no statistically significant performance difference in the first finetuning stage (p=0.1412) yet seemingly observe
IML. We believe the mechanism here might be different from the other cases (see the learning curves in Figure 12).

17

Implicit meta-learning may lead language models to trust more reliable sources

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.2

0.3

0.4

0.5

0.6

E
x
ac

t
m

at
ch

Stage 1 Stage 2

EVT word order in defns: performance on in-distribution questions

Ḋcons
1 QA1

D
incons
2 QA2

QA3

Q̂A4

Ḋcons
5

D
cons
6

QA7

Figure 12: Learning curves for the EVT word ordering in the definitions. Note that in the second finetuning stage, the D̄cons
6

and QAunseen vars
7 performance is going down; in other orderings where the variable follows the entity (TEV and ETV) these

lines stay flat.

C.4. Varying the batch size during single-stage finetuning of Pythia-1B

32 64 12
8

25
6

51
2 1k 2k 4k 8k 16

k
32

k

Batch size

0.00

0.02

0.04

0.06

0.08

E
x
ac

t
m

at
ch

a) Varying batch size for test question:
“What does xyz mean?”

Ḋcons
5

(ent assoc)

D
cons
6

(ent assoc)

32 64 12
8

25
6

51
2 1k 2k 4k 8k 16

k
32

k

Batch size

0.0

0.1

0.2

0.3

E
x
ac

t
m

at
ch

b) Varying batch size for test question:
“What is the name of xyz?”

Ḋcons
5

(ent assoc)

D
cons
6

(ent assoc)

32 64 12
8

25
6

51
2 1k 2k 4k 8k 16

k
32

k

Batch size

0.00

0.05

0.10

E
x
ac

t
m

at
ch

c) Varying batch size for test question:
“What does xyz stand for?”

Ḋcons
5

(ent assoc)

D
cons
6

(ent assoc)

32 64 12
8

25
6

51
2 1k 2k 4k 8k 16

k
32

k

Batch size

0.0

0.1

0.2

0.3

E
x
ac

t
m

at
ch

d) Varying batch size for test question:
“Who is xyz?”

Ḋcons
5

(ent assoc)

D
cons
6

(ent assoc)

Figure 13: Extent of IML exhibited by the Pythia-1B-deduped model on the CVDB dataset across a range of batch sizes
used in single-stage finetuning. Models are trained until convergence over 5 seeds. Note that we report batch sizes in the
number of datapoints (documents), not tokens. Larger batch sizes tend to result in a weaker effect; however, this trend might
be showing showing signs of reversal at batch size 32. This figure is meant to complement Figure 4c.

18

Implicit meta-learning may lead language models to trust more reliable sources

C.5. Single-stage results for Pythia-2.8B

2 6 10 14 18

Epoch

0.3

0.4

0.5

0.6

E
x
ac

t
m

at
ch

Performance on in-distribution questions

Ḋcons
1 QA1

D
incons
2 QA2

QA3

Q̂A4

Ḋcons
5

D
cons
6

QA7

D̃cons
8

2 6 10 14 18

Epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

E
x
ac

t
m

at
ch

a) Entity association: What does xyz mean?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

D̃cons
8

2 6 10 14 18

Epoch

0.0

0.1

0.2

0.3

0.4

0.5

E
x
ac

t
m

at
ch

b) Entity association: What is the name of xyz?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

D̃cons
8

2 6 10 14 18

Epoch

0.00

0.05

0.10

0.15

0.20

E
x
ac

t
m

at
ch

c) Entity association: What does xyz stand for?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

D̃cons
8

2 6 10 14 18

Epoch

0.0

0.1

0.2

0.3

0.4

0.5

E
x
ac

t
m

at
ch

d) Entity association: Who is xyz?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

D̃cons
8

Figure 14: Exact match on the validation subsets for the Pythia-2.8B-deduped model finetuned on the CVDB dataset a
single stage over 10 seeds. We observe IML for all question types.

19

Implicit meta-learning may lead language models to trust more reliable sources

1 3 5 7 9 11 13 15 17 19

Epoch

0.075

0.100

0.125

0.150

0.175

0.200

0.225

E
x
ac

t
m

at
ch

Performance on in-distribution questions

Ḋcons
1 QA1

D
incons
2 QA2

QA3

Q̂A4

Ḋcons
5

D
cons
6

QA7

1 3 5 7 9 11 13 15 17 19

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

E
x
ac

t
m

at
ch

a) Entity association: What does xyz mean?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

1 3 5 7 9 11 13 15 17 19

Epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
E

x
ac

t
m

at
ch

b) Entity association: What is the name of xyz?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

1 3 5 7 9 11 13 15 17 19

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

E
x
ac

t
m

at
ch

c) Entity association: What does xyz stand for?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

1 3 5 7 9 11 13 15 17 19

Epoch

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

E
x
ac

t
m

at
ch

d) Entity association: Who is xyz?

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

Figure 15: Exact match on the validation subsets for the Pythia-2.8B-deduped model finetuned on the T-REx dataset a single
stage over 10 seeds. We observe IML for all question types. NOTE: the entity attribution experiments were accidentally
launched with D̄incons

2 QA2 (assoc with defs) test set disabled, so we cannot say anything about them. Further, this experiment
does not include the

20

Implicit meta-learning may lead language models to trust more reliable sources

C.6. Two-stage finetuning results for differently sized Pythia, GPT-Neo, and Llama2 models

70
M

16
0M

41
0M 1.

0B
1.
4B

2.
8B

6.
9B

Model size

0.3

0.4

0.5

E
x
ac

t
m

at
ch

c) Varying model size (CVDB)

Ḋcons
1 QA1

D
incons
2 QA2

Ḋcons
5

D
cons
6

Figure 16: Performance of differently-sized Pythia models on in-distribution test questions.

12
5M

(G
PT-N

eo
)

1.
3B

(G
PT-N

eo
)

2.
7B

(G
PT-N

eo
)

7B
(L

la
m

a2
)

Model family and size

0.3

0.4

0.5

E
x
ac

t
m

at
ch

a) Performance of different model
families and sizes (CVDB)

Ḋcons
1 QA1

D
incons
2 QA2

Ḋcons
5

D
cons
6

12
5M

(G
PT-N

eo
)

1.
3B

(G
PT-N

eo
)

2.
7B

(G
PT-N

eo
)

7B
(L

la
m

a2
)

Model family and size

0.0

0.1

0.2

E
x
ac

t
m

at
ch

b) Performance of different model families and sizes
for test question: “What is the name of xyz?”

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

Figure 17: Performance of GPT-Neo models of different sizes as well as Llama2-7B trained on the CVDB-based dataset.
We observe IML for the larger GPT-Neo models and for Llama2. a) We plot the performance for Ḋcons

1 QA1 and D̄incons
2 QA2

after the first finetuning stage, and for Ḋcons
5 and D̄cons

6 after the second stage. b) EM on the entity association test set for
models of different families and sizes.

12
5M

(G
PT-N

eo
)

1.
3B

(G
PT-N

eo
)

2.
7B

(G
PT-N

eo
)

Model family and size

0.08

0.10

0.12

0.14

0.16

E
x
ac

t
m

at
ch

a) Performance of different model
families and sizes (T-REx)

Ḋcons
1 QA1

D
incons
2 QA2

Ḋcons
5

D
cons
6

12
5M

(G
PT-N

eo
)

1.
3B

(G
PT-N

eo
)

2.
7B

(G
PT-N

eo
)

Model family and size

0.00

0.01

0.02

0.03

0.04

0.05

E
x
ac

t
m

at
ch

b) Performance of different model families and sizes
for test question: “What is the name of xyz?”

Ḋcons
1 QA1

D
incons
2 QA2 (assoc with defs)

QA3

Ḋcons
5

D
cons
6

Figure 18: Performance of GPT-Neo models of different sizes trained on the harder T-REx-based dataset. We observe IML
only with the largest GPT-Neo model. a) We plot the performance for Ḋcons

1 QA1 and D̄incons
2 QA2 after the first finetuning stage,

and for Ḋcons
5 and D̄cons

6 after the second stage. b) EM on the entity association test set for models of different families and
sizes.

21

Implicit meta-learning may lead language models to trust more reliable sources

C.7. Sequence-to-sequence model experiments: setup and results

To investigate the generality of our results, we reproduce IML in a sequence-to-sequence model. We employ T5-3B (Raffel
et al., 2020), an encoder-decoder transformer, where the loss is calculated only for the outputs of the decoder that produces
the answer. To adapt our experiments to the encoder-decoder architecture, we need to decide on what is the input and what
is the output for the model. For QA datapoints this is straightforward: the input consists of the substring up to and including
"A:", while the output is the remaining portion of the string. For example, the QA string “Q: what did xyz do? A: Queen”
gets divided into “Q: what did xyz do? A:” and “ Queen”. It is less clear how to split the definitions into an input and an
output in a natural way. We settle on splitting them similarly to QA datapoints: “

...........
Define xyz Cleopatra” is split into “

...........
Define

xyz” (input) and “ Cleopatra” (output). Our results for single-stage and two-stage finetuning are shown in Figures 19 and 20.

1 3 5 7 9 11 13 15 17 19

Epoch

0.3

0.4

0.5

0.6

E
x
ac

t
m

at
ch

Performance on in-distribution questions

Ḋcons
1 QA1

D
incons
2 QA2

QA3

Q̂A4

Ḋcons
5

D
cons
6

QA7

1 3 5 7 9 11 13 15 17 19

Epoch

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

E
x
ac

t
m

at
ch

Performance on in-distribution questions

Ḋcons
1 QA1

D
incons
2 QA2

QA3

Q̂A4

Ḋcons
5

D
cons
6

QA7

Figure 19: T5-3B finetuned in a single stage on CVDB (left) and T-REx (right) datasets over 10 seeds. The IML-like effect
is seemingly present, but it is not clear what is actually going on, as the accuracy is going down.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

E
x
ac

t
m

at
ch

Stage 1 Stage 2

Performance on in-distribution questions

Ḋcons
1 QA1

D
incons
2 QA2

QA3

Q̂A4

Ḋcons
5

D
cons
6

QA7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Epoch

0.10

0.12

0.14

0.16

0.18

0.20

0.22

E
x
ac

t
m

at
ch

Stage 1 Stage 2

Performance on in-distribution questions

Ḋcons
1 QA1

D
incons
2 QA2

QA3

Q̂A4

Ḋcons
5

D
cons
6

QA7

Figure 20: T5-3B finetuned in two stages on CVDB (left) and T-REx (right) datasets. For CVDB, the performance difference
in the first finetuning stage is seemingly present but barely visible; ICL is clearly present. For T-REx, it looks like neither of
the effects is present.

C.8. Comparison with in-context learning
To clarify the difference between out-of-context and in-context learning, we run a version of our experiment with definitions
included in the context of the questions. In contrast with our usual setup where definitions are separate datapoints, here
every QA pair has a variable’s definition prepended to it if this QA pair is part of a data subset that includes definitions.
Definitions are prepended to both training and test questions. The model only finetuned on X1; data subsets from X2 are
only used for evaluation, and the variables from X2 are completely new for the model. Results are shown in Figure 21. As

22

Implicit meta-learning may lead language models to trust more reliable sources

1 5 9 13 17

Epoch

0.2

0.4

0.6

E
x
ac

t
m

at
ch

Performance on questions
with in-context definitions

Ḋcons
1 QA1

D
incons
2 QA2

QA3

QA
not replaced
4

Ḋcons
5

D
cons
6

QAunseen vars
7

Figure 21: Validation performance in an experiment where all definitions appear in the context of the questions.

expected, we observe in-context learning: having learned to rely on
...........
Define definitions in X1, the model keeps relying on

definitions resembling them in X2. Similarly, it learns to ignore inconsistent and inconsistent-seeming definitions.

D. Set inclusion experiment
Data setup. There are 8000 entity-variable pairs in total. Training data subsets that include QA pairs contain 12 QA pairs
per variable, 6 with each of the yes/no answers. Data splits are produced similarly to those in the QA experiment (Sec. A.3),
and are summarized in Table 3. We generate test questions such that half of them have the correct answer “Yes” and half
“No”, hence random guessing would result in 50% accuracy.

Subset Percent variables

X1
Ḋcons
1 QA1 0.4

D̄incons
2 QA2 0.4

X2
Ḋcons
5 0.1

D̄cons
6 0.1

Table 3: Fraction of the 8000 variables assigned to each data subset.

Hyperparameters We use the Adafactor optimizer (Shazeer & Stern, 2018) with the batch size of 512 datapoints; all the
other hyperparameters are Pythia-70m defaults. We train the model from scratch for 100 epochs in the first stage, and for 40
epochs in the second stage.

5 15 25 35 45 55 65 75 85 95 105 115 125 135

Epoch

0.50

0.51

0.52

0.53

0.54

E
x
ac

t
m

at
ch

Stage 1 Stage 2

Performance on in-distribution questions

Ḋcons
1 QA1

D
incons
2 QA2

Ḋcons
5

D
cons
6

Figure 22: Set inclusion experiment, Pythia-70M model with a custom tokenizer trained from scratch over 50 seeds. We
observe both performance difference in the first finetuning stage and IML. An interesting aspect of this experiment is that if
we increase the number of training questions in X1 per each variable (currently 12), we get much better performance on
the validation questions (it’s easy to get to 99%), but consistent definitions stop making a difference, and don’t affect the
performance in either stage.

23

Implicit meta-learning may lead language models to trust more reliable sources

E. MNIST experiment
E.1. MNIST QA Dataset

Here, we give the implementation details for the MNIST dataset, as described in Section 4.2. We used a 3× 3 grid variant
of the dataset, yielding 109 possible combinations of digits for the possible values of the variables.

For the training dataset, the digit images to be concatenated into a grid are sampled uniformly at random from all images
with the adequate label from the MNIST train split. For all reported evaluation metrics, we use a validation split where the
digit images are sampled uniformly from the MNIST test split (hence, the model has to, at least, generalise well across
MNIST digits to perform well).

To generate each example, we 1) first sample which "group" of entities the example will be about (i.e. which of
(Ḋcons

1 QA1), (D̄
incons
2 QA2), (QA3), . . . in X1 ∪ X2, each with equal probability), 2) whether it will be a definition or a QA

example (it’s a definition with probability 0.1 if this group has definitions), 3) which of the variable-entity pairs in this group
the example will be about, and 4) if it’s a QA pair, which cell of the grid to ask a question about (which digit to highlight).
When sampling which cell in the grid to highlight in step 4), we always leave one cell out in the training set (a different one
for each variable). This way, we can also estimate the difference between Ḋcons

1 QA1 and D̄incons
2 QA2, as otherwise the model

would achieve perfect accuracy for variables for which it has seen all possible QA pairs in the training set.

At each step of training, we sample a new batch of examples in this way, effectively giving us one-epoch training; in all
likelihood, no two examples seen during training will be exactly alike.

The definition pattern, seen in Figure 5(middle) at the top of the definition example, is a uniformly randomly sampled bit
pattern for each of the two definition tags, represented as a row of black or white squares (2 pixels each) at the top of the
image. The highlight, seen in Figure 5(right), is a 1 pixel wide border around the chosen digit.

E.2. Hyperparameters for the MNIST QA experiments

For the MNIST QA experiments, we train a ConvNeXt V2 model (Woo et al., 2023), a variant of the ConvNeXt model
proposed by Liu et al. (2022). We use the “Tiny” variant – a convolutional model with 28.6 million parameters. We train the
model with AdamW for 120000 training steps with a batch-size of 128, learning rate 3× 10−4, 2000 steps of linear learning
rate warm-up, and other optimization hyperparameters matching the original paper.

E.3. IML results for the MNIST QA Dataset

Out-of-context learning. As mentioned in Section 4.2, we observe difference between Ḋcons
1 QA1 and D̄incons

2 QA2 in the
MNIST QA experiments. The results are shown in Figure 23 (left). As described in Section E, even for the entity groups
Ḋcons
1 QA1 and D̄incons

2 QA2 for which QA pairs were present in the training dataset, using definitions is required to get perfect
accuracy on the test set, since we never ask questions about one of the grid cells for each variable in the training set. This
makes the effect apparent in Figure 23 (left).

IML. As seen in Figure 23 (right), we also observe IML in this setting. Given a sufficient number (i.e. ≥ 50) of variable-
entity pairs, the model performs much better on QA pairs for variables defined using the definition tag that was consistent
for other examples in the training set (Ḋcons5), compared to the tag that was inconsistent (Dcons6), with the effect increasing in
the number of variable-entity pairs.

0.95

1.00

M
as

ke
d

A
cc

ur
ac

y

Dcons1 QA1

Dincons2 QA2

10 50 100 150 200
Variable-Entity Pairs

0.00

0.05

R
el

at
iv

e
D

iff
er

en
ce

0.8

1.0

M
as

ke
d

A
cc

ur
ac

y

Dcons5

Dcons6

10 50 100 150 200
Variable-Entity Pairs

0.0

0.2

R
el

at
iv

e
D

iff
er

en
ce

Figure 23: We observe both difference between Ḋcons
1 QA1 and D̄incons

2 QA2 (left) and IML (right) in the MNIST QA experiments.

24

Implicit meta-learning may lead language models to trust more reliable sources

F. Exploring the gradient alignment hypothesis
To study the gradient alignment hypothesis, we monitor several alignment metrics between the gradients of definitions and
their corresponding questions5 throughout the training process. In particular, we look at the alignment of the gradients
within Ḋcons

5 and D̄cons
6 while the model is being trained on X1; so the model was not trained on any data from Ḋcons

5 and D̄cons
6

when the gradients are computed.

To be precise, given an alignment metric ρ and a data subset D, we compute

ED[ρ] =
1

n

n∑

i=1

1

k

k∑

j=1

ρ
(
∇(Defi),∇(QAPairi,j)

)
,

where n is the number of entities and therefore definitions in D, k is the number of questions corresponding to each
definition, and ∇(·) is the average of the token-level gradients on a given input sequence. We concatenate gradients from all
model parameters into a single vector.

We compute the following metrics ρ: inner product (following Nichol et al. (2018)), cosine similarity, and squared
Euclidean distance. The latter metric captures a part of the variance (which we want following Smith et al. (2021)), since the
variance can be expressed in terms of squared pairwise distances – given a sample ({X1, X2, ..., Xn} consisting of n indepen-
dent observations from a scalar random variable X , sample variance can be expressed as: Var[X] = 1

2n2

∑
i

∑
j(Xi−Xj)

2.
Smith et al. (2021) note that SGD has an implicit bias that leads it to a basin where the trace of the covariance matrix of the
individual datapoints’ gradients is small. Suppose we have a m× p matrix G of gradients of m datapoints (p is the number
of parameters in the model). Then, the trace of the covariance matrix can be expressed as:

Tr(Cov(G,G)) =

p∑

i=1

Var(G:i)

=

p∑

i=1

1

2m2

m∑

j=1

m∑

k=1

(Gji −Gki)
2

=
1

2m2

m∑

j=1

m∑

k=1

p∑

i=1

(Gji −Gki)
2

=
1

2m2

m∑

j=1

m∑

k=1

||Gj: −Gk:||22,

where G:i and Gj: are the i-th column and j-th row of matrix G.

128 256 512 1k 4k 8k 16k

Batch size

150

200

250

300

In
n

er
p

ro
d

u
ct

Average inner product between gradients

Ḋcons
5

D
cons
6

128 256 512 1k 4k 8k 16k

Batch size

0.15

0.20

C
os

in
e

Cosine similarity between gradients
of definitions and QA pairs

Ḋcons
5

D
cons
6

128 256 512 1k 4k 8k 16k

Batch size

1000

2000

3000

4000

5000

L
2 2

d
is

ta
n

ce

Average L2
2 distance between gradients

Ḋcons
5

D
cons
6

Figure 24: Gradient alignment metrics after finetuning on X1 but before finetuning on X2 over 10 random seeds. In terms of
their inner products and cosine similarities, gradients on Ḋcons

5 definitions and their corresponding questions are more aligned
with each other, and gradients on D̄cons

6 are less aligned. However, this is not the case for the average L2
2 distance between

the gradients of the definitions and their questions – here, we observe no effect or possibly the opposite effect (note that
higher values mean less alignment), which is likely explained by the norms of the gradients of Ḋcons

5 definitions being larger
(Figure 25).

5Ideally, we would have liked to compute gradient alignment for all pairs of datapoints, but this is computationally infeasible: models
we’re interested in have >1B parameters, which means we cannot cache more than a few gradients even using GPUs with 80gb memory.

25

Implicit meta-learning may lead language models to trust more reliable sources

128 256 512 1k 4k 8k 16k

Batch size

30

40

50

L
2

n
or

m

Average L2 norm of definition gradients

Ḋcons
5

D
cons
6

128 256 512 1k 4k 8k 16k

Batch size

20

25

30

35

40

L
2

n
or

m

Average L2 norm of question gradients

Ḋcons
5

D
cons
6

Figure 25: L2 norms of the gradients of both definitions (left) and questions (right) for Ḋcons
5 and D̄cons

6 data subsets. In both
cases, the norms of the gradients from Ḋcons

5 appear larger.

256 1k 4k 16k

Batch size

10

20

30

In
n

er
p

ro
d

u
ct

Average inner product between gradients

Ḋcons
1 QA1

D
incons
2 QA2

256 1k 4k 16k

Batch size

0.15

0.20

0.25

0.30

0.35

C
os

in
e

Average cosine similarity between gradients

Ḋcons
1 QA1

D
incons
2 QA2

256 1k 4k 16k

Batch size

200

400

L
2 2

d
is

ta
n

ce

Average L2
2 distance between gradients

Ḋcons
1 QA1

D
incons
2 QA2

Figure 26: Gradient alignment metrics after finetuning on X1 but before finetuning on X2 over 5 random seeds. In terms of
their inner products, cosine similarities and L2

2 distances gradients for Ḋcons
1 QA1 definitions and their corresponding questions

are more aligned with each other, and gradients for D̄incons
2 QA2 are less aligned.

Our results are shown in Figure 24. We find that indeed according to both inner products and cosine similarities, the
gradients of Ḋcons

5 definitions and questions are more aligned with each other, and the equivalent gradients within D̄cons
6 are

less aligned. The squared Euclidean distance plot is interesting in that it shows no effect or the reverse of the effect we
expect: the distance between Ḋcons

5 definition and question gradients is similar or larger than the difference between the
equivalent gradients from D̄cons

6 . We believe this is explained by the norms of Ḋcons
5 definition gradients being larger than the

equivalent norms for D̄cons
6 (Figure 25).

G. Potential implications of LLMs internalizing normative principles of reasoning
One particularly concerning type of a normative principle of reasoning that has been postulated is functional decision theory,
which encourages agents to cooperate with other similar agents (Levinstein & Soares, 2020). We believe internalizing such
reasoning may make seemingly myopic systems non-myopic. Cohen et al. (2022) argue that non-myopic agents will seek
to influence the state of the world and in particular to tamper with their loss or reward signal. On the other hand, Krueger
et al. (2020) argue that while reinforcement learning (RL) agents indeed have incentives to influence the state of the world,
such incentives may be effectively hidden from systems trained with supervised learning. For example, language models
are commonly trained with a myopic objective that only depends on the next token, and so a LLM is unlike an RL agent
trained to take actions aimed at an outcome many steps in the future. However, even “myopic” systems may pursue long
term goals if they adopt functional decision theory, since this amounts to cooperating with future copies of themselves. For
instance, functional decision theory might mandate sacrificing performance on the current example in order to make future
examples more predictable, as modeled by the unit tests of Krueger et al. (2020). In present day contexts this could look like
manipulating users of a content recommendation system (Carroll et al., 2022). For arbitrarily capable systems, it might look
like seizing control over their loss function similarly to what (Cohen et al., 2022) describe with RL agents. We would like
to better understand IML so we can either rule out such scenarios (at least those where these phenomena are part of the
mechanism), or take measures to prevent them.

H. Computational resources used for our experiments
We estimate our total compute usage for this project at around 20k hours with NVIDIA A100-80gb GPUs. This includes
resources used for the initial experimentation as well as those needed to produce results presented in the paper. Running a
single seed of the two-stage CVDB experiment with the Pythia-2.8B model takes about 6 GPU hours. Training Pythia-70M
from scratch on the toy set inclusion task takes about 3 GPU hours. Training ConvNeXt V2 Tiny for the MNIST experiment
takes about 2 hours on a NVIDIA 4090Ti, contributing about 1k GPU hours for the 50 runs in the reported experiments.

26

	Introduction
	Basic experimental setup
	Establishing & exploring implicit meta-learning (IML)
	Demonstrating IML via QA performance
	Demonstrating IML via entity attribution
	Additional experiments exploring IML

	How general is implicit meta-learning?
	Pretraining is not necessary
	IML is not specific to text models

	Potential mechanisms
	Gradient alignment hypothesis
	Selective retrieval hypothesis
	The model learns semantics of the define tags

	Related work
	Discussion
	QA dataset generation
	CVDB
	T-REx
	Data splits

	Hyperparameters used when finetuning LLMs on QA data
	Additional results from finetuning LLMs on CVDB and T-REx
	Two-stage results for Pythia-2.8B: losses and entity attribution on CVDB data
	Experiments with the T-REx-based dataset (questions about movies, books, and other creative works)
	Varying the order of (define tag, variable, entity) in ``definitions''
	Varying the batch size during single-stage finetuning of Pythia-1B
	Single-stage results for Pythia-2.8B
	Two-stage finetuning results for differently sized Pythia, GPT-Neo, and Llama2 models
	Sequence-to-sequence model experiments: setup and results
	Comparison with in-context learning

	Set inclusion experiment
	MNIST experiment
	MNIST QA Dataset
	Hyperparameters for the MNIST QA experiments
	IML results for the MNIST QA Dataset

	Exploring the gradient alignment hypothesis
	Potential implications of LLMs internalizing normative principles of reasoning
	Computational resources used for our experiments

