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Abstract
Automation is one of the cornerstones of contem-
porary material discovery. Bayesian optimization
(BO) is an essential part of such workflows, en-
abling scientists to leverage prior domain knowl-
edge into efficient exploration of a large molecu-
lar space. While such prior knowledge can take
many forms, there has been significant fanfare
around the ancillary scientific knowledge encap-
sulated in large language models (LLMs). How-
ever, existing work thus far has only explored
LLMs for heuristic materials searches. Indeed,
recent work obtains the uncertainty estimate—an
integral part of BO—from point-estimated, non-
Bayesian LLMs. In this work, we study the ques-
tion of whether LLMs are actually useful to ac-
celerate principled Bayesian optimization in the
molecular space. We take a sober, dispassionate
stance in answering this question. This is done
by carefully (i) viewing LLMs as fixed feature ex-
tractors for standard but principled BO surrogate
models and by (ii) leveraging parameter-efficient
finetuning methods and Bayesian neural networks
to obtain the posterior of the LLM surrogate. Our
extensive experiments with real-world chemistry
problems show that LLMs can be useful for BO
over molecules, but only if they have been pre-
trained or finetuned with domain-specific data.

1. Introduction
Material discovery describes the inherently laborious, iter-
ative process of designing materials candidates, preparing
them experimentally, testing their properties, and eventually
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Prompt: What is the molecular mass of OS(=O)(=O)O?

Ground truth: 98.079 g/mol

ChatGPT: To calculate the molecular mass of a com-
pound, you need to sum the atomic masses of all the
atoms in the molecular formula. [. . . ] Therefore, the
molecular mass of OS(=O)(=O)O (sulfuric acid) is ap-
proximately 96.07 g/mol.

Llama-2-70b: The molecular formula for OS(=O)(=O)O
is O3S. [. . . ] Therefore, the molecular mass of
OS(=O)(=O)O is 80.07 g/mol.

Figure 1. LLMs seem to “understand” chemistry. However, they
often produce completely wrong answers while sounding very
convincing. Both APIs were accessed on 2024-01-07.

updating the initial design hypothesis (de Regt, 2020; Green-
away et al., 2023). While human researchers have largely
driven this process for the last century, there is demand for
more efficient automated methods in the face of pressing
societal challenges related to health care, nutrition, or clean
energy (Tom et al., 2024). Major challenges associated with
the discovery process are the complex and black box-like
mapping between a material’s structure and its properties, as
well as the vastness of the design space (Wang et al., 2023).

To address the aforementioned problems, Bayesian opti-
mization (BO; Močkus, 1975) has been increasingly used in
chemistry (Griffiths et al., 2023; Hickman et al., 2023). Key
components of successful BO include its priors (informa-
tive priors imply efficient posterior inference with limited
data) and its probabilistic surrogate models—e.g. via Gaus-
sian processes (Rasmussen & Williams, 2006; Snoek et al.,
2012) or Bayesian neural networks (Kim et al., 2022; Li
et al., 2024; Kristiadi et al., 2023). The probabilistic formu-
lation of BO is useful since optimizing a black-box function
is an inherently uncertain problem. We do not know a priori
the form of the function and our approximation of it might
be imprecise. Probabilistic surrogate models are thus useful
to quantify the inherent uncertainty surrounding the opti-
mization landscape, allowing for principled approaches to
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(a) Fixed-feature LLM surrogate
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(b) Adaptive-feature LLM surrogate

Figure 2. The surrogates we consider in this work. “PEFT” refers to parameter efficient finetuning which adds a (proportionally) few
trainable weights ω to the transformer. Grey denotes frozen weights that act as conditioning variables in the posterior over the surrogate
gt. Green denotes weights that are inferred in a Bayesian manner (e.g., to obtain p(w,ω | Dt)) and then marginalized over to obtain the
posterior predictive distribution gt (e.g.,

∫∫
p(gt( · ) | w,ω;W∗) p(w,ω | Dt) dw dω). Both models are principled Bayesian surrogates,

in contrast to the in-context learning frameworks considered by prior works on BO with LLMs (Ramos et al., 2023; Liu et al., 2024).

the exploration-exploitation tradeoff (Garnett, 2023).

Good domain-specific priors, a necessary component for
reliable uncertainty estimates, are hard to define analytically.
Recent work has thus pursued implicit priors often obtained
through pretrained feature extractors (Chithrananda et al.,
2020; Ross et al., 2022). Large language models (LLMs)—
which have become very popular in many domains that are
traditionally rather disconnected from natural language pro-
cessing such as biology (Vig et al., 2021), education (Kas-
neci et al., 2023), law (Chalkidis et al., 2020), and chemistry
(Jablonka et al., 2023a; Guo et al., 2023; Jablonka et al.,
2023b, etc.)—are one potential source of pretrained fea-
tures for BO. On the other hand, recent works have warned
that LLMs might not necessarily understand natural lan-
guage, but simply act as very expensive “stochastic parrots”
(Bender et al., 2021); see Figure 1, for example. Neverthe-
less, due to the apparent capabilities of LLMs, some recent
works have leveraged off-the-shelf LLMs such as GPT-4
(OpenAI, 2023) for BO over molecules (Ramos et al., 2023)
and hyperparameter tuning (Liu et al., 2024). However, their
uncertainty estimates are obtained only through heuristics,
such as from the softmax probabilities of the generated an-
swer tokens, coming from point-estimated non-Bayesian
LLMs. These non-Bayesian uncertainties thus might not be
optimal for the exploration-exploitation tradeoff that is so
crucial for BO (Garnett, 2023).

In this work, we take a dispassionate look at LLMs for BO
over molecules. We do so by carefully constructing and
studying two kinds of surrogate models that are amenable
to a principled Bayesian treatment (see Figure 2). First, we
treat the LLM as a fixed feature extractor to test whether
its pretrained embbeddings are already useful for BO over
molecules. Second, we measure to what degree the “stochas-
tic parrot” can be “taught”—via parameter-efficient fine-
tuning methods (PEFT) (e.g., Houlsby et al., 2019; Li &
Liang, 2021; Hu et al., 2022) and the Laplace approxima-
tion (MacKay, 1992a; Daxberger et al., 2021)—to perform

efficient Bayesian exploration in the molecular space.

In sum, our contribution is four-fold:

(a) We study the out-of-the-box usefulness of pretrained
LLMs for material discovery by using their last-layer
embeddings in BO.

(b) We study whether finetuning through PEFT and then ap-
plying approximate Bayesian inference over it is worth
the effort in terms of the BO performance.

(c) We provide an easy-to-use software library for princi-
pled BO on discrete space with LLMs; see title page.1

(d) Through our extensive experiments (8 real-world chem-
istry problems, 8 recent LLMs—including Llama-2—
and non-LLM based features), we provide insights on
whether, when, and how “stochastic parrots” can be
useful to drive better scientific discovery.

Limitations Our focus in this work is to study LLMs for
discrete BO on a predetermined set of molecules, as usually
done in real-world chemistry labs (Strieth-Kalthoff et al.,
2024, etc.). We leave the study of BO on continuous space
with LLM-based Bayesian surrogates as future work. Fi-
nally, we focus only on chemistry, although our experiments
can also be done for other domains.

2. Preliminaries
Here, we introduce key concepts in Bayesian optimization,
Bayesian neural networks, and large language models.

2.1. Bayesian optimization

Suppose f : X → Y is a function that is not analytically
tractable and/or very expensive to evaluate. We would like
(without loss of generality) to find x∗ = argmaxx∈X f(x).
For example, we might want to find a new drug x in the

1Supplementary experiment code can be found on https:
//github.com/wiseodd/llm-bayesopt-exps.
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Algorithm 1 BO over a pool of molecules.
Input:

Hard-to-evaluate function f ; surrogate function g; candi-
date molecules Dcand = {xi}ni=1; initial dataset D1 =
{(xi, f(xi))}mi=1; time budget T .

1: for t = 1, . . . , T do
2: Compute posterior pred. p(gt | Dt) ▷ E.g. via GP or LLA
3: xt = argmaxx∈Dcand

α(p(gt(x) | Dt))

4: Compute f(xt)
5: Dt+1 = Dt ∪ {(xt, f(xt))}
6: Dcand = Dcand \ {xt}
7: end for
8: return argmax(x,f(x))∈DT+1

f(x)

space of all drugs X that has high efficacy over the pop-
ulation f(x). An increasingly common way to approach
this problem is to perform Bayesian optimization (BO). The
key components of BO are: (i) a surrogate function g that
tractably approximates f ; (ii) a prior belief and a likelihood
(and hence a posterior) over g;2 and (iii) an acquisition func-
tion α : X → R that implicitly defines a policy for choosing
which x ∈ X to evaluate f at. The expressiveness of g dic-
tates how accurately we can approximate f ; and the calibra-
tion of the posterior (predictive) distribution p(gt | Dt) at
step t under previous observations Dt := {(xi, f(xi))}t−1

i=1

dictates where we should explore and where we should
exploit in X . This exploration-exploitation balance is the
driving force behind the effectiveness of BO in finding the
optimum x∗ in a reasonable amount of time.

The de facto choices of p(gt | Dt) are Gaussian processes
(GPs, Rasmussen & Williams, 2006); although Bayesian
neural networks (NNs) have also been increasingly used
(Kim et al., 2022; Kristiadi et al., 2023; Li et al., 2024).
In the case of GPs, prior knowledge about the function f
is injected into g through the choice of prior covariance
(also known as the kernel function). For NN-based surro-
gates, prior knowledge is determined through the choice of
architecture (Kim et al., 2022), a weight-space prior (For-
tuin et al., 2022), or through the usage of pretrained features
(Ranković & Schwaller, 2023). Finally, common choices for
α are expected improvement (EI, Jones et al., 1998), upper-
confidence bound (UCB, Auer et al., 2002), and Thompson
sampling (TS, Thompson, 1933).

2.1.1. BO IN CHEMICAL SPACE

The discovery of molecular materials represents an opti-
mization problem in a search space of discrete molecules
that is estimated to contain at least 10100 unique molecules
(Restrepo, 2022). At the same time, the practical accessibil-
ity of this space is severely limited. To date, only about 108

molecules have been reported experimentally, and the syn-
thesis of molecules has unanimously been described as the

2In literature, they are often collapsed into a single notation
p(f | D). Here, we distinguish f and g for clarity.

bottleneck of molecular materials discovery. This applies
to autonomous discovery in particular, where the limited
robotic action space and the availability of reactants and
reagents are additional constraints (Tom et al., 2024).

Experimental discovery campaigns have usually constrained
the search space to much smaller sets of accessible, synthe-
sizable molecules. Let Dcand be such a set of candidate
molecules. The BO problem can then be treated as an opti-
mization over a finite discrete set where X = Dcand—see
Algorithm 1. Note that in this case, we do not need to per-
form continuous optimization (e.g., via SGD) to maximize
the acquisition function α—we can simply enumerate all
molecules and pick the maximum. While this approach can
be expensive when |Dcand| is large, it is parallelizable and
easier than continuous optimization.

Nowadays, contract research organizations offer virtual,
synthesizable libraries comprising billions of molecules,
and offer synthesis-on-demand services (Enamine Ltd.,
2023; Gorgulla et al., 2023). In drug discovery, these li-
braries serve as the foundation for virtual screening efforts
(Shoichet, 2004; Schneider, 2010; Pyzer-Knapp et al., 2015;
Lyu et al., 2019), in which the library is sequentially filtered
using progressively more costly computational tools, and
the remaining candidates are evaluated experimentally. BO
has been used for finding optimal candidates in a virtual
library, both with simulated (Zhang & Lee, 2019; Korovina
et al., 2020; Häse et al., 2021; Hickman et al., 2022; Grif-
fiths et al., 2023) and experimental (Strieth-Kalthoff et al.,
2024; Angello et al., 2023) objectives.

2.2. Bayesian neural networks

Let g : X × Θ → Y defined by (x,θ) 7→ gθ(x) be a
neural network (NN). The main premise of Bayesian neural
nets (BNNs) is to approximate the posterior p(θ | D) over
the parameters of g via a simpler distribution that encodes
uncertainty on Θ ⊆ RP . The standard point estimate:

θ∗ = argmax
θ∈Θ

log p(D | θ) + log p(θ)︸ ︷︷ ︸
=log p(θ|D)−const

, (1)

with the log-likelihood loss log p(D | θ) and a regularizer
log p(θ) over θ can be seen as a Dirac distribution on Θ.
However, it is not a BNN since it has zero uncertainty ac-
cording to any standard metric (variance, entropy, etc.).

2.2.1. LAPLACE APPROXIMATIONS

One of the simplest BNNs is the Laplace approximation
(LA, MacKay, 1992b), which has been increasingly used
for BO (Kristiadi et al., 2023; Li et al., 2024). Given a
(local) maximum θ∗, the LA fits a Gaussian q(θ | D) :=
N (θ∗,Σ∗) centered at θ∗ with covariance given by the
inverse-Hessian Σ∗ = (−∇2

θ log p(θ | D)|θ∗)
−1.

3



A Sober Look at LLMs for Bayesian Optimization Over Molecules

A popular instantiation of the LA is the linearized Laplace
approximation (LLA Immer et al., 2021), which approx-
imates the Hessian via the Gauss-Newton matrix (Botev
et al., 2017) and performs a linearization glin

θ (x) = gθ∗(x)+
J∗(x) · (θ − θ∗) of the NN over θ. Here, J∗(x) is the Ja-
cobian matrix (∂g/∂θ|θ∗) of the network at θ∗. Note that,
the network function x 7→ glin

θ (x) is still non-linear. Cru-
cially, due to the linearity of g over θ and the Gaussianity
of θ, the output/predictive distribution p(glin(x) | D) =∫
glin
θ (x) q(θ | D) dθ is also Gaussian, given by

p(glin(x) | D) = N
(
gθ∗(x),J∗(x)ΣJ∗(x)

⊤) . (2)

In fact, p(glin | D) is a GP with a mean function given
by the NN g and a covariance function that is connected
to the empirical neural tangent kernel (Jacot et al., 2018).
These facts make the LLA intuitive yet powerful: it adds an
uncertainty estimate to the original NN prediction gθ∗(x).

3

Furthermore, the hyperparameters that dictate the NN prior
(which we denote as γ) can be tuned via the LA’s marginal-
likelihood approximation (Daxberger et al., 2021):

Z(γ) = log p(θ∗|D;γ) + P
2 log 2π + 1

2 log |Σ∗(γ)| , (3)

where we have made the dependency of the posterior and
the Hessian on the hyperparameters γ explicit. For example,
γ could contain the weight decay strength (corresponding
to the prior precision of the Gaussian prior on Θ) as well as
the noise strength in the likelihood of g.

2.3. Large language models

A crucial component of the recent development in large
NNs is the K-head self-attention mechanism (Vaswani et al.,
2017). Given a length-T sequence of input embeddings of
dimension N , say X ∈ RT×N , it computes

O = [H1, . . . ,HK ]W⊤
o ∈ RT×O,

Hi = s
(

1√
D
(XQ⊤

i )(XK⊤
i )⊤

)
(X⊤Vi) ∈ RT×D,

(4)

where [. . . ] is a column-wise stacking operator, taking K-
many T ×D matrices to a T ×KD matrix; W o ∈ RO×KD

and Qi,Ki,Vi ∈ RD×N are linear projectors; and the
softmax function s(·) is applied row-wise.

The resulting network architecture, obtained by stacking
multiple attention modules along with other layers like resid-
ual and normalization layers, is called a transformer. When
used for language modeling, the resulting model is called
a large language model (LLM). The output O of the last
transformer module can then be used as a feature for a dense
output layer Head : RO → RC , taking the row-wise aggre-
gate (e.g. average) of O to a C-dimensional vector, where

3Non-Gaussian output distributions can also be constructed,
see e.g. (Kristiadi et al., 2022; Bergamin et al., 2023).

C is the number of outputs in the problem. For natural
language generation, C equals the size of the vocabulary V ,
e.g. around 32,000 in Touvron et al. (2023a). One can also
modularly replace this head so that the LLM can be used for
different tasks, e.g. single-output regression where C = 1.

2.3.1. PARAMETER-EFFICIENT FINE-TUNING

Due to their sheer size, the cost of training LLMs from
scratch is prohibitively expensive even for relatively small
models (Sharir et al., 2020). Thankfully, LLMs are usually
trained in a task-agnostic manner and have been shown to
be meaningful, generic “priors” for natural-language-related
tasks (Brown et al., 2020). One can simply finetune a pre-
trained LLM to obtain a domain-specific model (Sun et al.,
2019). However, standard finetuning, i.e. further optimizing
all the LLM’s parameters, is expensive. Parameter-efficient
fine-tuning (PEFT) methods—which add a few additional
parameters ω to the LLM and keep the original LLM pa-
rameters frozen—have therefore become standard.

A popular example of PEFT is LoRA (Hu et al., 2022),
which uses a bottleneck architecture to introduce additional
parameters in a LLM. Let W∗ ∈ RD×N be an attention
weight matrix. LoRA freezes W∗ and augments it into

W = W∗ +B⊤A; A ∈ RZ×N ,B ∈ RZ×D. (5)

If Z is relatively small, the matrices A,B will introduce
just a few additional parameters. Note that, many other
PEFT methods are also commonly used in practice, e.g.,
Adapter (Houlsby et al., 2019), Prefix Tuning (Li & Liang,
2021), IA3 (Liu et al., 2022), etc. That is LoRA, is not the
only choice for performing PEFT.

3. Experiment Setup
Equipped with the necessary background knowledge from
Section 2, we now discuss our experiments to test whether
LLMs are good for BO in molecular discovery. We refer the
reader to Algorithm 1 for the concrete problem statement.

Datasets We evaluate the models considered (see below)
on the following datasets that represent realistic problem
sets from molecular materials discovery: (i) minimizing
the redox potential (redoxmer) and (ii) minimizing the
solvation energy (solvation) of possible flow battery elec-
trolytes (Agarwal et al., 2021), (iii) minimizing the docking
score of kinase inhibitors for drug discovery (Graff et al.,
2021), (iv) maximizing the fluorescence oscillator strength
of lasers (Strieth-Kalthoff et al., 2024), (v) maximizing the
power conversion efficiency (PCE) of photovoltaics ma-
terials (Lopez et al., 2016), and (vi) maximizing the π-π∗

transition wavelength of organic photoswitches (Griffiths
et al., 2022). These problems cover a variety of molecular
physical properties and therefore represent a diverse set of
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Figure 3. LLM as fixed feature extractors in BO over molecules. See Figure 2(a) for the model schematic.

molecular design tasks. For each virtual library of molecules
above, we use physics-inspired simulators proposed by the
respective authors as the ground truth functions f(x).4

Features and LLMs As non-LLM baselines, we use 1024-
bit Morgan fingerprints (Morgan, 1965) as a chemistry-
specific algorithmic vectorization scheme, and the feature
vectors from the pretrained MolFormer transformer (Ross
et al., 2022). Meanwhile, for the general-purpose LLMs,
we use various recent architectures of varying sizes: T5-
Base (T5, Raffel et al., 2020), GPT-2-Medium (GPT2-M,
Radford et al., 2019), and Llama-2-7b (LL2-7B, Touvron
et al., 2023a). Finally, we use the work of Christofidellis
et al. (2023, T5-Chem) to represent domain-specific LLMs.

Prompts For text-based surrogate models, we consider sev-
eral prompting functions c(x) that map molecules x to
sentences. They are (i) just-smiles which contains just the
SMILES (Weininger, 1988) representation of x, (ii) com-
pletion which treats the predicted f(x) as a completion to
the sentence, (iii) naive which asks the LLM for f(x), and
(iv) single-number which augments naive with an addi-
tional prompt to the LLM to only output numbers. (Details
in Appendix A.4.) Unless specified explicitly, the default
prompt we use is just-smiles.

Evaluation In addition to measuring BO performance via
the problem-specific optimum values over time, we use the
GAP metric (Jiang et al., 2020) which provides a normalized
(i.e., problem-independent) counterpart. The GAP metric is
useful since it allows us to compare and aggregate perfor-
mance across datasets. For multiobjective BO experiments,
we measure performance using the standard hypervolume
metric (Zitzler, 1999) which computes the volume of the
current Pareto front found by the surrogate.

4We refer the reader to Appendix A.2 for further details regard-
ing all the datasets we use.

4. How Informative are Pretrained LLMs?
First, we study the out-of-the-box, non-finetuned capability
of LLMs for BO. To this end, we treat an LLM as a fixed
feature extractor: Given a pretrained LLM, we remove its
language-modeling head and obtain the function ϕW∗ , map-
ping a textual context c(x) of a molecule x into its final
transformer embedding vector ϕW∗(c(x)) ∈ RH . We can
then apply a standard surrogate model gθ : RH → R like
GPs or BNNs on RH . See Figure 2(a) for the illustration
and Algorithm 2 in Appendix A for the BO loop.

We use two commonly-used surrogate models over the fixed
LLM and non-LLM features: (i) a GP with the Tanimoto and
the Matérn kernels for the fingerprints and LLM/MolFormer
features, respectively (Griffiths et al., 2023), and (ii) a
Laplace-approximated 3-layer ReLU NN with 50 hidden
units on each layer, following the finding of Li et al. (2024).
The Thompson sampling acquisition function is used in all
experiments due to its simplicty and increasing ubiquity
in chemistry applications (Hernández-Lobato et al., 2017).
Refer to Appendix B.2 for results with the expected im-
provement acquisition function.

4.1. General or domain-specific LLMs?

We present our first set of results in Figures 3 and 4 (the
latter figure summarizes the former). First, LA surrogates
are competitive with or better than GP surrogates on the
majority of the problems when using fingerprint features.
Thus we only consider LA surrogates for LLM features. See
also Figure 10 in Appendix B.1 for additional comparisons
between the LA and GP which further support our decision
in mainly using the LA for the rest of our experiments.

We note that features obtained from general-purpose LLMs
(T5, GPT-2-M, and Llama-2-7b) tend to underperform the
simple fingerprints baseline. This indicates that although
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Figure 4. Summarized performance of the results in Figure 3 in
terms of the GAP metric. Chemistry-focused features (T5-Chem,
MolFormer, and even fingerprints) are better than general-purposed
LLM features.

general-purpose LLMs seem to “understand” chemistry as
illustrated in Figure 1, the features encoded by these LLMs
are less informative for chemistry-focused BO. While this
conclusion holds in our specific problem setup, we note
that other studies find LLMs to be useful for more general
problems (Gruver et al., 2023; Han et al., 2023).

Meanwhile, chemistry-specific transformer features (T5-
Chem, MolFormer), are generally better-suited than the
general-purpose LLM features. However, we note that T5-
Chem LLM features perform slightly worse on average than
the non-LLM MolFormer features. Considering that T5-
Chem is larger than MolFormer (220M vs. 44M parameters)
and that MolFormer is trained using more chemistry data
(100M vs. 33M), this finding may indicate that domain-
specific pretraining data matters more than the natural lan-
guage capability of a transformer model.

Domain-specific transformers are useful as feature
extractors in BO over molecules. They tend to out-
perform general-purpose LLMs and traditional finger-
print features. However, this may be due to the trans-
former’s capacity and the chemistry-specific pretrain-
ing data, not so much its natural language capability.

4.2. Multiobjective optimization

In addition to the single-objective problems in Sections 4
and 5, we perform multiobjective BO experiments by (i)
combining both objectives in the flow battery problem above,
and (ii) adding an extra maximization objective (electronic
gap) to the laser problem. We refer to these problems as
multi-redox and multi-laser, respectively.

To accommodate the additional objectives, we cast the prob-
lems as multi-output regression problems—for each x, the
posterior of g(x) is thus a multivariate Gaussian over RC

where C is the number of the objectives. For the acquisition
function, we use the scalarized Thompson sampling (Paria
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Figure 5. Multiobjective BO performance in terms of the standard
hypervolume metric.

et al., 2020) with a fixed, uniform weighting.

The results, in terms of the standard hypervolume (under the
estimated Pareto frontier) evaluation metric (Zitzler, 1999),
are provided in Figure 5. We found that T5-Chem performs
best overall. When t is small, the non-LLM chemistry-
specific transformer MolFormer is better than T5 and LA.
However, MolFormer underperforms both LLMs at the latter
stages of the optimization. We hypothesize that the smaller
model size of MolFormer (see the preceding section) might
contribute to this underperformance. In any case, our con-
clusion here is consistent with the previous section.

4.3. Effects of prompting

Here we test how prompting affects BO performance, com-
paring the prompts described in Section 3. We present the
results for the redoxmer and photoswitches tasks in Figure 6
(see Figure 11 in the appendix for the rest of the problems).
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Figure 6. BO results across prompts. Top: Redoxmer, bottom:
Photoswitches. Results for the other datasets are in Appendix A.4.

Prompting does indeed make a difference: unlike general
LLMs (T5, Llama-2-7b), the chemistry-specific T5-Chem
works best when the prompt is simply the SMILES string
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itself. Nevertheless, we note that T5-Chem obtains the best
performance in most of the problems considered and across
all prompts—see both Figures 6 and 11. Thus the chemistry-
specific T5-Chem both yield better BO performance while
not requiring prompt engineering.

In Figures 15 and 16 (Appendix B), we show results with
IUPAC representation of molecules instead of SMILES.
Note that IUPAC strings are closer to natural language than
SMILES. E.g., the molecule H2SO4 has IUPAC name “sul-
furic acid” and SMILES representation “OS(=O)(=O)O”.
We draw a similar conclusion as in the preceding section that
the choice of which representation to use is LLM-dependent.
For T5-Chem, SMILES is preferable, consistent with how
it was pretrained (Christofidellis et al., 2023).

Prompting does impact BO performance. It is prefer-
able to stick with a prompt that is close to the one used
for pretraining the LLM.

4.4. The case of in-context learning

Finally, we compare Laplace-approximated surrogate mod-
els against the recently proposed in-context learning (ICL)
optimizer method of Ramos et al. (BO-LIFT, 2023). BO-
LIFT works purely by prompting chat-based models such
as GPT-4 (OpenAI, 2023) and Llama-2-7b (Touvron et al.,
2023b, the chat version). See Appendix A.5 for details.

We note that the uncertainty estimates yielded by BO-LIFT
are obtained based on the variability in the decoding steps
of the LLM. They are thus not Bayesian since they still
arise from a point-estimated model. In contrast, all the
Bayesian surrogates we consider in this work approximate
the posterior distribution over the LLM’s weights.
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Figure 7. Fixed-feature BO surrogates vs. the in-context-learning
optimizer of (Ramos et al., 2023) on the Redoxmer dataset.

We present the result of the subsampled Redoxmer dataset
in Figure 7 (|Dcand| = 200, |D1| = 5, T = 15 using the
notation of Algorithm 1). We subsample due to the cost of
the experiment, as discussed below. We find that BO-LIFT
is ineffective when combined with Llama-2-7b. Meanwhile,
it performs much better with GPT-4, indicating that ICL

may require a very large, expensive LLM. Indeed, each
optimization run costs between $12-$18 USD for GPT-4,
totaling to $75.81 USD over 5 random seeds.

In contrast, using a chemistry-specific, small (200M param-
eters) T5-Chem as a feature extractor for a principled BO
surrogate is better and much cheaper. Indeed, T5-Chem can
be run on even mid-range consumer-grade GPUs and the
LA or GP surrogate’s training can be done on CPUs.

A chemistry-specific LLM combined with a principled
Bayesian surrogate is preferable to an ICL optimizer,
both in terms of performance and cost.

5. How Useful are Finetuned LLMs?
In the previous section, we have seen that we can use an
LLM as a fixed feature extractor in a BO loop with standard
surrogate models. Here, we answer the question of whether
or not treating the whole LLM itself as the surrogate model
improves BO. The hypothesis is that we can improve BO
performance by performing feature learning—adapting the
LLM feature to the problem at hand.

How should we compute the posterior p(gt | Dt) of a LLM
with learned features? Let gθ = Headw ◦ φW be an LLM
feature extractor with weights W composed with a regres-
sion head Headw with weights w. Here, θ = {W ,w}.
Given the dataset Dt at time t, the seemingly most straight-
forward way to perform finetuning on gθ and obtaining its
posterior is to perform a Bayesian update on the previous
posterior of W using new observations in Dt (Shwartz-Ziv
et al., 2022). However, this requires an existing posterior
over W in the first place, which can be very costly to obtain.

Recall that a more tractable way to introduce feature learn-
ing is to leverage PEFT. However, unlike full finetuning, it
does not admit a straightforward Bayesian posterior update
on W . In particular, how should one incorporate the pre-
trained LLM weights W∗ into the Bayesian inference over
the PEFT weights? Here, we generalize the work of Yang
et al. (2023)—which applies the LA on LoRA weights—to
make it compatible with any general PEFT method.

We treat the original LLM weights W as hyperparameters
and perform Bayesian inference only on w and the PEFT
weights ω. Specifically, let gθ = Headw ◦ φω,W∗ with
θ = {w,ω} be the new surrogate model, and W∗ be the
pretrained LLM weights. We define the posterior:5

p(θ | D;W = W∗) ∝ p(θ;W = W∗)

× p(D | θ;W = W∗). (6)

5The dependence of the prior p(θ;W = W∗) on W is useful,
e.g. for initialization (Li & Liang, 2021).
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Figure 8. Finetuned LLMs as surrogate models compared against the fixed-feature surrogates from Section 4.

In other words, the pretraining weights W∗ act as condition-
ing variables on the PEFT, just like any other hyperparame-
ters. The usual training procedure, i.e. finding the optimal
PEFT weights θ∗, can then be seen as MAP estimation un-
der this probabilistic framework. While this formulation is
rather obvious after the fact, so far, it has not been clarified
in previous work. Indeed, a clear interpretation of Bayesian
PEFT in relation to Bayesian updating in full finetuning has
been missing, even from the work of Yang et al. (2023).

Notice that any Bayesian method can be used to approximate
the posterior in (6). In this work, we use the LA: Given the
weight-space LA posterior p(θ | D;W = W∗) over the
PEFT weights, we can obtain the PEFT posterior predictive
p(gt | Dt;W∗) via the LLA (2). This step is tractable
since the Jacobian matrix J∗(x) is only of size C × P̂ ,
where C is the number of BO objectives (much fewer than
the language-modeling head’s outputs) and P̂ is the PEFT
parameters (much fewer than the LLM’s parameters; often
less than 1% (Hu et al., 2022)).

The formulation of (6) highlights an additional benefit of
the LA: since W is now a hyperparameter (i.e. it is part of γ
in (3)) one can further optimize it (or a subset of it) via the
marginal likelihood. This optimization can potentially im-
prove performance,6 similar to deep kernel learning (Wilson
et al., 2016) in the context of GPs. However, it also makes
PEFT training as expensive as full finetuning. We leave
optimization of W for future work since our present focus
is on the usage of LLMs in BO and not on new methods
arising from the probabilistic model in (6).

5.1. Are finetuned LLM surrogates preferable?

Following (Yang et al., 2023), we use LoRA as the PEFT
method of choice: For each time t, we reinitialize and train

6Notice the dependence of the likelihood on W in (3).

the LoRA weights with MAP estimation (1) using the ob-
served molecules Dt, and then apply the LLA to obtain
the posterior predictive distribution p(gt | Dt). See Fig-
ure 2(b) and Algorithm 3 for an illustration and pseudocode,
respectively. See also Appendix A.3 for the training details.
We compare the resulting finetuned surrogates with their
fixed-feature surrogate counterparts from Section 4.

In Figures 8 and 9, we show the finetuning results on T5
and T5-Chem, representing general-purpose and chemistry-
specific LLMs, respectively. We found that finetuning is
indeed beneficial for both cases—notice that it improves
the BO performance in most problems compared to the
fixed-feature version.

On the flip side, for some tasks, finetuning does not offer sig-
nificant improvement over fixed-feature LLMs. Moreover,
in one problem (Photovoltaics), we found that finetuning
decreases the performance of T5-Chem. We attribute this
degradation to the fact that we use the same hyperparame-
ters (learning rate, weight decay, etc. of LoRA’s SGD and
the LA) on all problems. This setup mirrors common prac-
tice: it is standard to simply use the default hyperparameters
of a BO algorithm provided by a software package such
as BoTorch (Balandat et al., 2020). In any case, it is en-
couraging to see that finetuning generally works well across
most BO problems, even when only considering default
hyperparameters.

The cost of each BO iteration t is largely bottlenecked by
forward passes over the candidate molecules in Dcand (Al-
gorithm 1, line 3), and not the finetuning and Laplace ap-
proximation of the surrogate (see Figure 17 in Appendix B).
This is because |Dcand| can be several orders of magnitude
larger than |Dt| during the BO loop, and forward passes on
LLMs are generally expensive. Additionally, the LLA pos-
terior (2) requires computing the Jacobian of the network,
amounting to the cost of several backward passes, depend-
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Figure 9. Summarized performance of the finetuning results in
Figure 8 in terms of the GAP metric. Finetuning does seem to be
beneficial for BO performance.

ing on C. Due to GPU memory limitation, we can only use
a minibatch size of 16. We note that fixed-feature surrogates
do not have this problem since one can simply cache the
LLM’s features to be used for all iterations t. Nevertheless,
this bottleneck can be alleviated via engineering efforts such
as parallelizing the forward passes over Dcand.

Finetuned LLM surrogates are preferable to their fixed-
feature counterparts for both general and domain-
specific LLMs. The bottleneck associated with finetun-
ing is forward passes over Dcand rather than training.

6. Related Work
While LLMs have been leveraged for BO (Ramos et al.,
2023; Liu et al., 2024), so far they have only been used
in a heuristic manner: uncertainty estimates are obtained
from the softmax probabilities outputs of point-estimated
(i.e., non-Bayesian) LLMs. Meanwhile, Microsoft Re-
search AI4Science & Microsoft Azure Quantum (2023)
study the optimization capability of GPT-4 in a pure prompt-
ing scheme without uncertainty estimation of any kind.

The closest work to ours is that of Ranković & Schwaller
(2023), who study the usage of text embeddings for BO with
GP surrogates. However, the goal of their work differs from
ours: We investigate whether the usage of LLMs is justified
for BO due to their apparent chemistry question-answering
capabilities while (Ranković & Schwaller, 2023) primarily
study the usage of text embeddings in BO. Furthermore,
they do not study the effect of prompting and finetuning.

The present work can be seen as an extension to the LoRA
LA work of Yang et al. (2023). Our work provides a clear
probabilistic interpretation of their method, while also gen-
eralizing it and using it in the context of BO for chemistry.

Beyond discrete-set optimization, one can cast BO over
molecules as a continuous optimization problem with the
help of generative models. Gómez-Bombarelli et al. (2018);
Tripp et al. (2020); Maus et al. (2022) employ variational
autoencoders to construct continuous latent representations

of molecules and perform BO in these latent spaces. The
surrogate model and the autoencoder can be trained jointly
(Stanton et al., 2022; Maus et al., 2022), echoing our fine-
tuning approach in Section 5.1. Unlike these prior works,
we focus on studying the role of LLMs in the simpler yet
practically relevant setting of discrete-set BO.

7. Conclusion
We have shown that large language models (LLMs) do in-
deed carry useful information to aid Bayesian optimization
(BO) over molecules. However, their usefulness is only
apparent when one (i) uses a chemistry-specific LLM or
(ii) performs finetuning—preferably both. Indeed, for point
(i), even when the recent Llama-2-7b LLM was used as
a feature extractor for a BO surrogate or when the state-
of-the-art GPT-4 was used in conjunction with in-context
learning, the optimization performance was subpar com-
pared to that of a much smaller chemistry-focused LLM.
We address point (ii) by providing a general way to formu-
late Bayesian inference for parameter-efficient finetuning
(PEFT) methods, which in turn enables principled uncer-
tainty estimation over LLMs with any PEFT method. We
find that these principled BO surrogates are effective and
yet much cheaper than in-context learning methods since
small domain-specific LLMs can be used. We hope that
our findings and the accompanying software library can be
useful for practitioners and inspire future principled meth-
ods around LLMs for scientific discovery, both inside and
outside of chemistry. In future work, we aim to characterize
the mechanisms underpinning how LLMs induce a capable
exploration-exploitation tradeoff.
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Appendices: A Sober Look at LLMs for Material Discovery

A. Additional Details
A.1. Pseudocodes

We present the pseudocode of the BO loop corresponding to Figure 2(a) and Section 4 in Algorithm 2. Meanwhile, the
pseudocode corresponding to Figure 2(b) and Section 5 is in Algorithm 3.

Algorithm 2 Using an LLM as a feature extractor in BO.
Input:

Pre-trained LLM feature extractor ϕW∗ , mapping a context c(x) to its last transformer embedding vector h ∈ RH ; prompting
function c mapping a molecule x to a textual prompt; surrogate model gθ : RH → R; candidate molecules Dcand = {xi}ni=1; initial
dataset D1 = {(xi, f(xi))}mi=1; time budget T .

1: for t = 1, . . . , T do
2: Φt = {(ϕW∗(c(x)), f(x)) : (x, f(x)) ∈ Dt}
3: p(gt | Dt) = infer(gθ, Φt) ▷ E.g. via GP or the LLA
4: xt = argmaxx∈Dcand

α(p(gt(c(x)) | Dt))

5: Dt+1 = Dt ∪ {(xt, f(xt))}
6: Dcand = Dcand \ {xt}
7: end for
8: return argmax(x,f(x))∈DT+1

f(x)

Algorithm 3 LLM and PEFT as a surrogate model in BO.
Input:

An LLM with a regression head gθ; prompting function c mapping a molecule x to a textual prompt; candidate molecules
Dcand = {xi}ni=1; initial dataset D1 = {(xi, f(xi))}mi=1; time budget T .

1: for t = 1, . . . , T do
2: Ct = {(c(x), f(x)) : (x, f(x)) ∈ Dt}
3: p(θ | Dt;W = W∗) = LA(gθ, Ct) ▷ Consisting of both the training (via SGD) and the Laplace approx. of the PEFT weights
4: p(gt | Dt) = LLA(p(θ | Dt;W = W∗)) ▷ Eq. (2)
5: xt = argmaxx∈Dcand

α(p(gt(c(x)) | Dt))

6: Dt+1 = Dt ∪ {(xt, f(xt))}
7: Dcand = Dcand \ {xt}
8: end for
9: return argmax(x,f(x))∈DT+1

f(x)

A.2. Datasets

Here, we expand the details of the datasets mentioned in the main text:

• Redoxmer (Agarwal et al., 2021): 1407 molecules.

• Solvation (Agarwal et al., 2021): the same molecules as in Redoxmer.

• Laser (Strieth-Kalthoff et al., 2024): 10,000 molecules, subsampled without replacement from the original 182,858
molecules.

• Photovoltaics (Lopez et al., 2016): 10,000 molecules, subsampled without replacement from the original 2,320,648
molecules.

• Kinase (Graff et al., 2021): 10,449 molecules.

• Photoswitches (Griffiths et al., 2022): 392 molecules.

• Multi-Redox (Agarwal et al., 2021): 1407 molecules.

• Multi-Laser (Strieth-Kalthoff et al., 2024): 10,000 molecules, subsampled without replacement from the original
182,858 molecules.
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For all virtual libraries/datasets above, we have a ground-truth label for every molecule. They are obtained (by the
corresponding original authors) from physically founded simulations. For instance, quantum chemistry or density functional
theory for the materials datasets and molecular dynamics docking for drug discovery. Refer to the respective paper for the
details on how the ground-truth labels are computed.

A.3. Training

A.3.1. FIXED-FEATURE SURROGATES

The following are the training details of the surrogates we used in Section 4. Note that for the LLM features, we average
the last transformer embedding of shape (batch size, seq len, embd dim) over the second axis, while ignoring
padding and EOS tokens. We used HuggingFace’s transformers library (Wolf et al., 2019) for all the LLM-related
objects that appeared in this paper.

GP We use BoTorch (Balandat et al., 2020) to construct the surrogate function. The Tanimoto kernel is taken from Gauche
(Griffiths et al., 2023). To optimize the marginal likelihood, we use Adam (Kingma & Ba, 2015) with learning rate 0.01 for
500 epochs.

LA Our implementation is based on the laplace-bayesopt package https://github.com/wiseodd/
laplace-bayesopt. The neural net used is a 2-hidden-layer multilayer perceptron with 50 hidden units on each
layer along with the tanh activation function for fingerprint features (except for the Photoswitches dataset since we observe a
vanishing gradient problem). Otherwise, we use the ReLU activation function. We optimize the network with Adam with
learning rate 1× 10−3 and weight decay 5× 10−4 for 500 epochs with a batch size of 20. We anneal the learning rate with
the cosine annealing scheme (Loshchilov & Hutter, 2017). The Laplace approximation is done post hoc and we tune the
prior precision with the marginal likelihood for 100 iterations. The Hessian is approximated with a Kronecker structure
(Ritter et al., 2018) except for the Llama-2-7b features—for the latter case, we found that the diagonal structure performs
better.

A.3.2. FINETUNED SURROGATES

The following are the training details of the surrogates we used in Section 5, i.e. the LA on LoRA weights (Hu et al., 2022;
Yang et al., 2023). We jointly trained the LoRA and the regression head with AdamW with batch size 16, learning rate
3× 10−4 and 1× 10−3 for the LoRA weights and the regression head’s weights respectively (except for Photoswitch where
we used 3× 10−3 and 1× 10−2 respectively), and weight decay 0.01 for 50 epochs. Then, we further optimized only the
regression head with the same hyperparameters for 100 epochs.

We used LoRA with rank 4 without bias on the key and value attention weights, following the original paper, except for
GPT2 where we applied LoRA on all attention weights since the GPT2 implementation we used coupled all the attention
weights into a single weight matrix. Moreover, the α (scaling) hyperparameter was set to 16. Additionally, we used dropout
on LoRA with probability 0.1. See Hu et al. (2022) for the explanation of these hyperparameters. We used HuggingFace’s
PEFT library (Mangrulkar et al., 2022).

The Laplace approximation was done on all LoRA’s weights and the head’s weights. We used Kronecker-factored Hessian
and optimized the layerwise prior precisions (Daxberger et al., 2021) with post hoc marginal likelihood for 200 iterations.

A.4. Prompting

We use the following prompts in our experiments (Figures 6 and 11):
• just-smiles: ‘‘{smiles str}’’.

• completion: ‘‘The estimated {objective str} of the molecule {smiles str} is: ’’.

• single-number: ‘‘Answer with just numbers without any further explanation!
What is the estimated {objective str} of the molecule with the SMILES string
{smiles str}?’’.

• naive: ‘‘Predict the {objective str} of the following SMILES: {smiles str}!’’.
The variable smiles str equals the SMILES representation of the molecule at hand, e.g. “OS(=O)(=O)O” for sulfuric
acid. The variable obj str has a value the textual description of the problem at hand: “redox potential” for Redoxmer,
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Figure 10. Left: Average performance of GP with the Tanimoto kernel on transformer features. Right: GP versus LA surrogates in terms.

“solvation energy” for Solvation, “docking score” for Kinase, “fluorescence oscillator strength” for Laser, “Pi-Pi* transition
wavelength” for Photoswitches, “power conversion efficiency” for Photovoltaics, “redox potential and solvation energy” for
MultiRedox, and “fluorescence oscillator strength and electronic gap” for MultiLaser.

The idea behind this selection of prompts is to cover all the expected inputs of LLMs. For example, GPT-2 and Llama-2 are
trained as next-word-prediction models. So, the “completion” prompt might be the most suitable prompt template for them.

A.5. In-context-learning baselines

In Section 4.4, we compared Bayesian surrogates with BO-LIFT, which uses in-context learning in conjunction with
non-Bayesian uncertainty estimation (Ramos et al., 2023). To perform prompting, we use their top-k completions template,
which selects k previously-seen examples with known properties and appends the SMILES string of the query molecule:

Q: Given smiles {smiles str 1}, what is {obj str}? A: {f(x1)} ### ... ### Q:
Given smiles {smiles str k}, what is {obj str}? A: {f(xk)} ### Q: Given smiles
{smiles str query}, what is {obj str}? A:

The k-shot examples above are chosen based on the similarity and diversity of their Ada embeddings (part of OpenAI’s
GPT-4). Then, n completions to the prompt are sampled from the LLM, to compute the mean and variance of gt(x). We use
Thompson sampling to make BO-LIFT comparable to the other methods. The values of k and n were set to default values in
the BO-LIFT code base, which are both 5.

During our experiment with BO-LIFT (using the authors’ code https://github.com/ur-whitelab/BO-LIFT to
prompt GPT-4), we found that the monetary cost of performing it on the full Redoxmer dataset was already over USD 60 at
the third BO iteration t = 3. Extrapolating, this means a BO run with T = 100 for five different random seeds—as done for
other methods considered in this work—will amount to roughly USD 20,000. For this reason, in Section 4.4, we only used a
subsampled Redoxmer dataset |Dcand| = 200 for only T = 15 BO rounds (repeated over five random seeds). Even in this
setup, the cost of BO-LIFT was already USD 75.81.

To circumvent this monetary cost, we also tried ICL using the “chat” version of Llama-2-7b, the most capable free model we
could run on a single GPU. However, we also found it difficult to run this model on our entire Redoxamer dataset because it
was projected to take approximately 100 hours for T = 200 BO rounds. This is another reason why we decided to do the
experiment in Section 4.4 with only the subsampled Redoxmer dataset.

All in all, this shows that contrary to popular belief, using principled Bayesian surrogates in a BO over molecules is actually
cheaper than using ICL-based non-Bayesian surrogates. As we have shown in the main text, this is because one does
not need very large, state-of-the-art LLMs to do BO. One only needs to use small, domain-specific LLMs like that of
Christofidellis et al. (2023).

B. Additional Results
In this section, we present additional and/or detailed results to supplement the results in the main text.
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Figure 13. Fixed-feature BO (T5-Chem) with different acquisition functions—Thompson sampling (TS) and expected improvement (EI).

B.1. Laplace vs. GP

We show the performance of the GP (with the Tanimoto kernel) surrogate vis-à-vis LA in Figure 10. Our conclusion is
two-fold: (i) We observe a similar ordering as in the main text—chemistry-specific LLMs/transformers are best, although
here the performance difference is less pronounced. (ii) The LA surrogate is generally better than the GP one in our tasks.

B.2. Acquisition functions

In Figures 12 to 14 we show the comparison between expected improvement (EI) and Thompson sampling (TS) acquisition
functions. We found that, on aggregate, the difference between EI and TS is insignificant (Figure 12, see the error bars).
Meanwhile, in some individual cases, their difference can be significant in both directions. So, our suggestion is to do a grid
search on a proxy problem whenever possible; otherwise, simply use whichever acquisition function is available.

B.3. Prompts

In Figure 11, we show the effect of the choice of prompt on the BO performance in the fixed-feature (Figure 1(a)) case. We
found that prompts do affect BO performance in all datasets considered. Specifically for T5-Chem, the just-smiles prompt
template is best. This is consistent with how T5-Chem was finetuned, i.e., using just the SMILES strings as the inputs
(Christofidellis et al., 2023). Surprisingly, Llama-2-7b does not gain substantial benefits when different prompt templates are
used, even when the “completion” prompt template is used. This indicates that while Llama-2-7b can convincingly answer
natural language questions, it does not contain useful information for chemistry (see Figure 1). Finally, we did not see a
clear improvement pattern in BO with different prompts using T5. All in all, these findings further support our conclusion
that one should use domain-specific LLMs (e.g. T5-Chem) for doing BO.
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Figure 14. Finetuning T5-Chem with different acquisition functions—Thompson sampling (TS) and expected improvement (EI).

20 40 60 80 100
t

1.6

1.8

R
ed

ox
 P

ot
en

tia
l (
↓)

Redoxmer

SMILES
IUPAC

20 40 60 80 100
t

1.2

1.0

0.8

So
lv

at
io

n 
En

er
gy

 (
↓)

Solvation
LA-T5 LA-LL2-7B LA-T5-ChemLA-T5 LA-LL2-7B LA-T5-Chem

Figure 15. SMILES vs. IUPAC.
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|Dcand|. Notice that the costs are roughly linear in the number of test points, indicating that forward passes over Dcand take the bulk of
the computation. T5-Chem has a lower wall-clock time on average since it tends to terminate faster than T5. E.g., some of the BO runs
across random seeds have been done and thus have zero wall-clock time.

B.4. Textual representations

As for which textual representation of the molecule to use, we compare SMILES with IUPAC representations in Figure 15.
We found that Llama-2-7b is insensitive to this. Meanwhile, observed significant effects on both T5 and T5-Chem. Thus, we
can conclude that it might be worth trying different molecular string representations (IUPAC, SMILES, SELFIES, etc.)
when using T5-Chem. Moreover, in Figure 16, we show the impact of prompting when IUPAC representations are used.
Our findings are similar to the ones with SMILES. Especially Llama-2-7b is largely insensitive to prompting.

B.5. Computational costs

We present the computational cost of performing finetuning in Figure 17 on datasets of various magnitudes (392, 1407,
10,000). We use a single NVIDIA A40 and NVIDIA RTX6000 GPUs for the laser and the rest of the finetuning experiments,
respectively.7 Since the number of training points is constant across those datasets (equals to t plus 10, the latter is the size
of the initial training set D1), the time needed for each BO iteration is almost exclusively influenced by the prediction phase
of the BO iteration (Algorithm 1, line 3). Indeed, we see an almost exact scaling in terms of the size of Dcand. This is
encouraging since finetuning/training is not the bottleneck, contrary to popular belief.

7For fixed-feature computation, we run the BO loop on consumer-level laptop CPU.
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