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Abstract

Minimum-norm interpolators have recently
gained attention primarily as an analyzable model
to shed light on the double descent phenomenon
observed for neural networks. The majority of
the work has focused on analyzing interpolators
in Hilbert spaces, where typically an effectively
low-rank structure of the feature covariance pre-
vents a large bias. More recently, tight vanishing
bounds have also been shown for isotropic high-
dimensional data for ℓp-spaces with p ∈ [1, 2),
leveraging sparse structure of the ground truth.
However, these proofs are tailored to specific set-
tings and hard to generalize. This paper takes
a first step towards establishing a general frame-
work that connects generalization properties of
the interpolators to well-known concepts from
high-dimensional geometry, specifically, from the
local theory of Banach spaces. In particular, we
show that under 2-uniform convexity, the bias
of the minimal norm solution is bounded by the
Gaussian complexity of the class. We then prove
a “reverse” Efron-Stein lower bound on the ex-
pected conditional variance of the minimal norm
solution under cotype 2. Finally, we prove that
this bound is sharp for ℓp-linear regression under
sub-Gaussian covariates. 1

1. Introduction

Experiments with neural networks have revealed a phe-
nomenon that defies traditional statistical intuition: reg-
ularization is critical for large models when fitting noisy
data. Instead, it seems that in the overparameterized regime,
interpolators that achieve zero training error can still gen-
eralize well and do not profit from sacrificing datafit, or in
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other words; interpolation is harmless (see e.g. experiments
in (Nakkiran et al., 2021)). A call to explain this counter-
intuitive observation (see, e.g. (Zhang et al., 2021; Belkin
et al., 2018b)) gave rise to a line of work known as benign
overfitting that set out to prove generalization bounds for
interpolating overparameterized models; in the case of re-
gression, the focus of this paper, interpolation corresponds
to achieving zero square loss on training data.

As there are infinitely many interpolating solutions in over-
parameterized regimes, the specific choice of interpolator
can drastically vary generalization performance. Most com-
monly studied in the literature is the family of minimum-
norm interpolators - a natural choice if the ground truth
has a simple structure such as a small norm in a Banach
space. For additional motivation, first-order methods on the
square loss initialized at zero typically exhibit an implicit
bias towards (i.e. converge to) such minimum-norm solu-
tions (Gunasekar et al., 2018; Oravkin & Rebeschini, 2021;
Shamir, 2022; Efron et al., 2004).

The analysis in the overparameterized regression literature
has primarily focused on Hilbert spaces such as the ℓ2-space
and Reproducing Kernel Hilbert Spaces (RKHS), where the
minimum-norm solution has a closed-form solution. For lin-
ear min-ℓ2-norm interpolators in dimension d using n num-
ber of samples, the literature consists of asymptotic results
in the inconsistent proportional regime where d/n → γ for
some constant γ < ∞ (Hastie et al., 2022; Ghorbani et al.,
2021; Mei & Montanari, 2022) and non-asymptotic results
in the consistent regime d/n → ∞. In particular, (Bartlett
et al., 2020; Tsigler & Bartlett, 2023; Lecué & Shang, 2022;
Chinot et al., 2020; Muthukumar et al., 2020) prove van-
ishing finite-sample bounds for minimum ℓ2-interpolator
when the eigenvalues of the covariance matrix of the data
decay rapidly. These proofs take advantage of the inner-
product structure that allows for an explicit analysis of the
closed-form solution. Further, consistency heavily relies on
the eigenvalue decay of the covariate distribution, as the ℓ2-
norm cannot capture structural assumptions and in general
suffers from bias in the isotropic high-dimensional setting.

In the isotropic case, different structural assumptions on the
ground truth are necessary to achieve consistency. However,
the minimum-norm interpolators in more general Banach
spaces with a corresponding inductive bias might not have
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a closed-form. (Koehler et al., 2021) introduce a local uni-
form convergence framework that can be used to analyze
linear interpolators without closed-form solutions. Their
approach only applies to Gaussian covariates and is based
on a local uniform convergence approach and crucially re-
lies on the (Convex) Gaussian minimax theorems (Gordon,
1988; Thrampoulidis et al., 2015). Follow-up work used
this technique to establish the first consistency results for
the minimum-ℓ1-norm interpolator (Wang et al., 2022) and
obtained tight fast rates for minimum-ℓp-norm interpolators
with p ∈ (1, 2] (Donhauser et al., 2022) (see Example 1
below). However, all prior tight analysis of mininum-ℓp-
interpolators share the deficiency that they crucially relly on
the Gaussianity of the covariates.

For non-linear regression, the phenomenon of harmless in-
terpolation or benign overfitting is much less understood.
Most work so far has considered instances when lineariza-
tion is a good approximation, such as specific Reproducing
Kernel Hilbert Spaces (RKHS) (Liang et al., 2020; Aerni
et al., 2023) or local interpolation schemes (Belkin et al.,
2019; 2018a). Despite these efforts, a comprehensive the-
oretical understanding to handle more general non-linear
models remains open to date.

In this work, we present a new geometric framework that
allows us to overcome aforementioned restrictions. In par-
ticular, we relate the underlying generalization properties
of minimum-norm interpolation for regression under addi-
tive Gaussian noise with (local) geometric properties of the
Banach space; these include uniform convexity and smooth-
ness as well as type and cotype, and the K-convexity (Mau-
rey & Pisier, 1976; Pisier, 1977; 1999) that we introduce
in Section 2. This theory was pioneered by Maurey and
Pisier, and emerged in the study of central limit theorems in
(infinite) dimensional Banach spaces, a field known nowa-
days as Probability in Banach spaces (Ledoux & Talagrand,
2013) Our geometric approach allows us to derive statistical
bounds for a broad class of Banach spaces: The function
class need not be linear and the norm may not induce an
inner product space, i.e. can be "far" from a Hilbert space.
This general technique also allows us to prove tight bounds
for covariate distributions beyond Gaussians.

Specifically, under assumptions on the local geometric prop-
erties of the Banach space, we bound three error terms that
together make up the Mean Squared Error (MSE): the bias,
variance of conditional expectations and expected condi-
tional variance. We first provide an “unlocalized” upper
bound on the sum of the bias and variance of the condi-
tional expectation in Theorem 3.1 that holds for 2-uniformly
convex norms (see Definition 2.2). Remarkably and surpris-
ingly to the authors of this paper, it aligns with the classical
(unlocalized) bound for the MSE of Empirical Risk Mini-
mization (ERM). Then, in Theorem 3.2 we show that the

cotype 2 property (weaker than 2-uniformly convex) suf-
fices to obtain a “reverse" version of the celebrated Efron-
Stein inequality (Boucheron et al., 2013); providing a lower
bound on the expected conditional variance of the minimum
norm interpolator. Finally, in Theorem 3.3, we show that
the bound of Theorem 3.2 is sharp in the case of ℓp-linear
regression under sub-Gaussian covariates (see Example 1).

On a high level, this paper presents a new geometric perspec-
tive that allows us to analyze the behaviour of general non-
linear minimum-norm interpolators under no assumptions
on the covariates. We further demonstrate how these results
may be used to recover tight bounds of previous works that
used very specialized proof technique only applicable to
Gaussian covariates. We believe that this more general ap-
proach contributes to a more fundamental understanding of
benign overfitting phenomena in high-dimensional settings.

2. Preliminaries

In this section, we first introduce our regression setting and
the minimum-norm interpolator in general Banach spaces.
We then provide some background and introduce classical
notions from high-dimensional geometry and the local the-
ory of Banach spaces. Finally, we discuss additional struc-
tural assumptions on our model that are used in our results.
We now introduce some notation that we use throughout the
paper.

Notation: C,C1, C2 ≥ 0 and c1, c2, c3 ∈ (0, 1) are ab-
solute constants, and for arbitrary argument vectors a we
write C(a) ≥ 0 and c(a) ∈ (0, 1) for constants that only
depend on a. These constants may change from line to line.
Also, for any measure Q on X , we use ∥ · ∥Q to denote the
L2(Q)-norm. The bold non-italic notation f refers to the
vector (f(X1), . . . , f(Xn)) associated with the function f .
We use the standard Landau (also known as big-O) nota-
tion that hides only absolute constants that, in particular, do
not depend on any other parameter of the model. Finally,
≍,≲,≳ are used to denote equalities and inequalities up to
a multiplicative universal constant; that is, a ≲ b stands for
a = O(b) whereas a ≍ b indicates that both a = O(b) and
b = O(a). Finally, we use the standard notation of Pn to be
a random uniform measure on X1, . . . , Xn ∼

i.i.d.
P.

2.1. Setting

Let X be some domain equipped with a metric d and let P
be a probability measure over X . The set of all measurable
functions for which

∫
|f |2dP < ∞ is denoted by L2(P) and

we denote by ∥ · ∥P to be the L2(P) norm. Next, consider
a Banach space (B(X ), ∥ · ∥), where B(X ) is some linear
subspace of functions on X that lie in L2(P).
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For each B(X ) we would like to learn a function that has
bounded norm and w.l.o.g. lies in the function class

F := {f ∈ B(X ) : ∥f∥ ≤ 1} ⊂ B(X ). (1)

Our main goal is to study the following well-specified re-
gression model

Y = f∗(X) + ξ,

where X ∼ P, ξ ∼ N(0, 1) is a standard Gaussian and
f∗ ∈ F .

Minimum-norm interpolator For any data points
{(xi, yi)}ni=1, the minimum norm solution that interpolates
the data is defined by

f̂n(x,y) := argmin
f∈B(X ):f(x1)=y1,...,f(xn)=yn

∥f∥. (2)

In words, from all possible functions in B(X ) that interpo-
late the observations y = (y1, . . . , yn) over the data points
x := (x1, . . . , xn), we choose the one with the smallest
norm. Note how this interpolating estimator differs from the
standard ERM solution that would search only in the func-
tion class F . As common for the analysis of interpolators,
we can ensure existence of f̂n by choosing B(X ) to depend
on the number of samples n. In general, the solution in (2)
may not be unique, but under q-uniform convexity for some
q ∈ [2,∞) (see Def. 2.2), uniqueness is also guaranteed.
From a computational perspective, depending on the case,
it may be computed efficiently or "is" the implicit bias of a
first-order method of a convex optimization problem.

Unless stated otherwise, in the rest of the paper we write
f̂n := f̂n(D) where the dataset D = {(Xi, Yi)}ni=1 that
consists of n identically distributed samples (i.i.d.) from
the distribution above, and we use the notation X =
(X1, . . . , Xn),Y = (Y1, . . . , Yn).

We now introduce concepts from high-dimensional geome-
try and local theory of Banach spaces that we use to analyze
the generalization properties of the minimum-norm interpo-
lator (2).

2.2. Background from high-dimensional geometry

First, we recall a few classical definitions in convex geome-
try (cf. (Artstein-Avidan et al., 2015)). For any symmetric
convex set K, i.e. K = −K with a non-empty interior, we
denote the Minkowski norm by ∥ · ∥K , that is defined as

∥z∥K := inf{r > 0 : z ∈ rK}.

Further, consider the random coordinate projection of F ,
namely the (random) convex and symmetric set

Fn := {f ∈ F : (f(X1), . . . , f(Xn))} ⊂ Rn. (3)

Note that for any vector z ∈ Rn, the following equality
holds:

∥f̂n(X, z)∥ = ∥z∥Fn . (4)

Next, we define the (Gaussian) mean of a Minkowski norm
∥ · ∥K on some domain in Rn as

M(K) :=

∫
Rn

∥ξ∥Kdγn,

where γn denotes the Gaussian measure on Rn. Also, note
that

n−1/2M(K) ≈ Ms(K) :=

∫
Sn−1

∥ξ∥Kdσn,

where σn is the uniform measure on the unit sphere in Rn,
which we denote by Sn−1.

For any convex body K, let

K◦ := {x ∈ Rn : sup
y∈K

⟨x, y⟩ ≤ 1}

denote its polar body. We then write M∗(K) = M(K◦) for
the mean of the dual norm ∥ · ∥K◦ . The dual norm ∥ · ∥K◦

is also referred to as the support function hK of the original
body K, as for a unit vector ξ, it measures the distance of the
supporting hyperplane of K from the origin in that direction.
In our analysis below, these two quantities M(K),M∗(K)
and the quantity EM(Fn)M

∗(Fn) (known as the MM∗

estimate) play a key role in the statistical performance of
the minimum norm solution.

First, it is not hard to verify that for any convex set K ∈ Rn,
we have that

1 ≲ Ms(K)M∗
s (K).

At the same time, intuitively, M∗
s (K) ·Ms(K) ≲ 1, when

K does not lie in a low-dimensional subspace and is “bal-
anced”. Remarkably, the works of (Pisier, 1977; Figiel &
Tomczak-Jaegermann, 1979) show that for any K ⊂ Rn,
there exists a linear transformation T such that

Ms(TK)M∗
s (TK) ≲ log(n).

Throughout this paper, we use the shorthands Mn(F) :=
EXM(Fn) for the mean norm averaged over X1, . . . , Xn,
and M∗

n(F) := EXM∗(Fn) for the averaged dual norm, as
well as RMM∗(F) := (Mn(F)M∗

n(F))/n for the MM∗

estimate (cf. (Artstein-Avidan et al., 2015, §6.5)). As we
will see below, our bounds deeply rely on these quantities.

Finally, we recall two fundamental quantities in statistical
learning theory, (cf. (Bartlett & Mendelson, 2002)) the Gaus-
sian and Rademacher complexity dependent on (n,H,P)
for some H ⊂ B(X ).
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Definition 2.1. Let X1, . . . , Xn
i.i.d.∼ P, ξ i.i.d.∼ N (0, In)

and H ⊂ L2(P). Then the Gaussian complexity of H is
defined via

Gn(H) := EX,ξ sup
h∈H

| ⟨h, ξ⟩n |

where ⟨ξ,h⟩n := n−1
∑n

i=1 h(Xi)ξi is the Euclidean inner
product in Rn scaled by 1/n. The Rademacher complexity
Rn(H) is defined analogously with ξ ∼ U({−1, 1}n).

Finally, note that as F is symmetric, i.e. F = −F , M∗
n(F)

equals to the Gaussian complexity up to a scaling of 1/n,
i.e. Gn(F) =

M∗
n(F)
n .

2.3. Curvature notions in Banach Spaces

We now recall some basic concepts of non-linear functional
analysis, specifically from the local theory of Banach spaces
(cf. (Artstein-Avidan et al., 2022, Chp. 5)). First, we
introduce the definitions of uniformly convex (UC) and uni-
formly smooth (US) norms (cf. (Lindenstrauss & Tzafriri,
2013) and (Pisier, 2016, Thms 10.1 10.25)).

Our paper focuses on UC(2) norms, yet to provide a full
picture, we define UC(q) norm for q ∈ [2,∞).

Definition 2.2 (UC(q) norm). A Banach space (∥·∥,B(X ))
is q ∈ [2,∞)-uniformly convex, or, equivalently, the norm
∥ · ∥ is UC(q) with constant t > 0, if for all f, g ∈ B(X )

∥f∥q + t ∥g∥q ≤ ∥f + g∥q + ∥f − g∥q

2
.

To give some intuition on the UC(2)-norm, one should
think of UC(2) as a lower bound on the minimal singular
value of the Hessian on the unit ball F induced by this
norm. Furthermore, 2-uniform convexity plays a key role
in high dimensional geometry, in the sense that implies
concentration of Lipschitz functionals, see the influential
works of (Gromov & Milman, 1983; 1987).

Next, we define the “dual” notion of uniform convexity
which is the uniform smoothness.

Definition 2.3 (US(p) norm). A Banach space (∥·∥,B(X ))
is p ∈ (1, 2]-uniformly smooth with constant s > 0, if for
all f, g ∈ B(X )

∥f∥p + s ∥g∥p ≥ ∥f + g∥p + ∥f − g∥p

2
.

If a norm is UC(q) with constant t, then its dual norm is
US(p) with constant s = Θ(t), where 1/p = 1− 1/q (see
(Lindenstrauss & Tzafriri, 2013)); and if a norm isUS(p),
then its dual norm is US(q) with constant t = Θ(s).

Finally, we remark that the celebrated Dvoretzky’s theo-
rem states that any unit ball F of an m-finite dimensional
normed space has a Ω(log(ϵ ·m)) section that is ϵ-close to
a Euclidean ball (in terms of Banach-Mazur distance) – e.g.,
to a Hilbert space. As a consequence, the uniform convexity
of any norm (or equivalently a Banach space) is at most
with q = 2 and t ≤ 1/8 + o(1); and similarly US(2) with
parameter s ≥ 1/8 + o(1). To see this, any Hilbert space is
UC(2) and US(2) with constants 1/8 by the parallelogram
law.

As uniform convexity and uniform smoothness are consid-
ered to be quite strong notions of curvature (for example,
the ℓ1-norm itself does not satisfy them); we also consider
weaker notions of curvature in Banach spaces, which are
known as (Gaussian) type p ∈ [1, 2] and cotype q ∈ [2,∞)
(Pisier, 2016; Ledoux & Talagrand, 2013) (see also Remark
B.1 below).

In the following definitions, ξ1, . . . , ξm are i.i.d. standard
Gaussian random variables:
Definition 2.4 (CO(q) norm). A Banach space (∥·∥,B(X ))
is cotype q ∈ [2,∞]- with constant t > 0, if for all m ≥ 1
and f1, . . . , fm ∈ B(X )

tq ·
m∑
i=1

∥fi∥q ≤ Eξ∥
m∑
i=1

ξifi∥q.

Definition 2.5 (T (p) norm). A Banach space (∥ · ∥,B(X ))
is type p ∈ [1, 2]- with constant s > 0, if for all m ≥ 1 and
f1, . . . , fm ∈ B(X )

sp ·
m∑
i=1

∥fi∥p ≥ Eξ∥
m∑
i=1

ξifi∥p.

Hilbert spaces are both T (2) and CO(2) with constant 1,
as they are 2-uniformly convex and smooth. However, the
converse is also true, as Kapwien’s theorem (cf. (Artstein-
Avidan et al., 2022)) implies that

dBM (∥ · ∥, ℓ2) ≲ st,

where dBM (∥ · ∥, ℓ2) is the Banach-Mazur distance to a
Hilbert space. Therefore, a space that is both T (2) and
CO(2) with parameters s, t > 0 is norm equivalent to a
Hilbert space.

We remark that if a norm is T (p) with constant s ≥ 0,
then the dual norm is CO(q) with constant Θ(s) (where
1/p + 1/q = 1). However, and differently from uniform
convexity, the converse is not true, i.e if a norm is CO(q)
with constant t, then the dual norm is not necessarily T (p)
with constant Θ(t).

The seminal work (Pisier, 1981) introduced the K-convexity
constant, which we denote by K∥·∥ (see §B.1 for a formal
definition).
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Definition 2.6 (K-convexity constant, informal). The con-
stant K∥·∥ is the smallest constant that upper bounds the
following: If a norm is CO(q) with constant t ≥ 0, then
its dual norm is T (q − 1/q) with constant smaller than
O(t ·K∥·∥).

Finally, the following facts appear in (Klartag & Milman,
2008) and references within:

Fact 1. If (∥ · ∥,B(X )) is UC(2) with constant t ≥ 0, then
it is also CO(2) with constant 1/

√
t.

Fact 2. If (∥ · ∥,B(X )) be a UC(2) with constant t ≥ 0,
then it is T (1 + c(t)) with constant 1/

√
t.

2.4. Assumptions

In this section, we introduce basic assumptions on our func-
tion class and covariate distributions, as well as the ground
truth f∗. First, we make the following two assumptions on
the ground truth:

Assumption 1. The norm of f∗ in both L2(P) and ∥ · ∥ is
of order one, i.e. ∥f∗∥P ≍ ∥f∗∥ ≍ 1. Furthermore, there
exists a set A ⊂ X (that depends on f∗) of measure 1−n−2,
such that ∥f∗ · 1A∥∞ ≲ Γ ≲ log(n).

This assumption rules out the (pathological) case when the
norm of f∗ (which we refer to as “true signal”) vanishes with
the number of samples n. In the high-dimensional setting,
for example, such an assumption is crucial. Furthermore,
we assume that in most of the space (X ,P), the sup-norm
of f∗ equals its L2(P)-norm (up to a log(n) factor).

Assumption 2 (“inductive” bias). For f∗ ∈ F that satisfies
Assumption 1, there exist absolute constants c, c1 ∈ (0, 1),
such that with probability at least 1− n−2 it holds that

c1 ≤ ∥f̂n(X, f∗)∥ ≤ c∥f̂n(X, ξ)∥. (5)

This assumption captures the (necessary) properties for a
minimum-norm interpolator to generalize well. First, the
second inequality of (5) indicates that the norm has an “in-
ductive bias” towards the ground truth f∗, in that it requires
a larger norm to interpolate pure noise rather than the under-
lying “true signal” f∗ ∈ F . The first inequality (5) ensures
that the minimum-norm solution of noiseless samples has
a positive norm: without such an assumption, the minimal
norm solution would not generalize well even on noiseless
samples.

Finally, we introduce a few regularity assumptions on both
the function class and our distribution.

We first assume that the space (F ,P) satisfies a small-ball
property (Mendelson, 2014). This assumption ensures that
the L1(P) and L2(P) error of the minimum-norm solution

are similar (up to an absolute multiplicative constant) so
that we can study the Mean Squared Error (MSE) of the
minimum-norm interpolator, defined as E∥f̂n−f∗∥2P, rather
than the L1(P) error.
Assumption 3. There exist universal constants c1, c2 ∈
(0, 1) such that:

∀f, g ∈ F PX(|f(X)− g(X)| ≥ c1∥f − g∥P) ≥ c2.

Note that the class of linear functions with sub-Gaussian
covariates satisfies this property (see (Mendelson, 2017) for
further details).

The second assumption ensures that the geometry of Fn is
similar with high probability, which is weaker than assuming
concentration. This additional assumption is essential, as
we do not assume that F is uniformly bounded or has a
bounded envelope or any strong structure on the covariates.
Assumption 4. With probability at least 1 − n−2 over
X1, . . . , Xn, the following inequalities hold:

sup
f∈F

∫
fd(Pn − P) ≍ EX sup

f∈F

∫
fd(Pn − P),

and the random set Fn satisfies

M(Fn) ≍ Mn(F) and M∗(Fn) ≍ M∗
n(F).

2.5. Two Classical Examples

For concreteness, we now provide two classical examples
that satisfy all of the above assumptions and that could
be analyzed with our framework (we refer to (Ledoux &
Talagrand, 2013; Pisier, 1999) for more examples).

The first example is the standard linear regression model
with respect to general ℓp norms for p ∈ (1, 2].
Example 1 (Linear regression in terms of ℓp norm). Con-
sider the setting where X1, . . . , Xd are i.i.d. sub-Gaussian
random variables with zero mean, variance one and constant
L > 0, i.e. for all t ≥ 0

P(|X| ≥ t) ≤ exp(−t2/L2),

and X has a continuous density upper bounded by M . We
consider the Banach spaces of linear functions equipped
with ℓp-norms

F = ℓp,d := {w ∈ Rd : ∥w∥p ≤ 1}.

When p ∈ (1, 2], the space ℓp,d is UC(2) with constant t =
(p − 1)/8 and US(p) with constant s = 1/p. Next, when
p ∈ (2,∞), the ℓp,d is UC(p) with constant t = 2p/p, and
US(2) with s = (p − 1)/2. Finally, when p ∈ [1, 2], ℓp,d
is CO(2) with an absolute constant and T (p), and for p ∈
[2,∞], ℓp,d is T (2) with constant of order min(p, log(d))
and CO(p).
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The second example is Sobolev spaces that play a key role
in non-parametric statistics (cf. (Tsybakov, 2003; Giné &
Nickl, 2021)); in particular, it illustrates that our model can
be applied to a space of non-linear functions.
Example 2 (Sobolev spaces). Fix a domain Ω ⊂ Rd and
let P = Unif(Ω), p ∈ [1,∞], and k ∈ N. For a fixed multi-
index |α| ≤ k, we define Dα(f) to be the mixed partial
derivative in terms of the multi-index α, that is Dα(f) =

D|α|f
Dα1f...Dαkf . The space W k,p(Ω), is defined as the space
of all functions that have k partial (weak) derivatives that
lie in Lp(P), also known as a Sobolev space. Note that this
is a Banach space with respect to the norm

∥f∥k,p :=

∑
|α|≤k

∥Dα(f)∥pLp(P)

1/p

.

Clearly, (∥ · ∥k,p,W k,p(Ω)) is isometric to (ℓp,R
∑k

i=0 (
d
i)).

Therefore, its q-uniform convexity and p-smoothness (and
similarly its p-type and q-cotype) are preserved under isom-
etry, they are equal to the ones of (ℓp,R

∑k
i=0 (

k
d)) (see Ex-

ample 1 above), and therefore it is captured by our model.

3. Main Results

In this section, we state the main results of this manuscript.
In the first theorem, the expectation is conditioned over an
event (that is defined as the intersection of the events of our
assumptions) that holds with probability at least 1− n−2.

For any regression estimate, we typically aim to establish
bounds on its risk or MSE. A standard approach to analyze
this quantity is via a decomposition, by observing

ED∥f̂n − f∗∥2P = ∥Ef̂n − f∗∥2P︸ ︷︷ ︸
B2(f̂n)

+E∥f̂n − Ef̂n∥2P︸ ︷︷ ︸
V (f̂n)

(6)

= B2(f̂n) + Var
[
E
[
f̂n|X

]]
︸ ︷︷ ︸

T1

+EVar
[
f̂n|X

]
︸ ︷︷ ︸

T2

.

For regularized estimators (or in the underparameterized
case), it is more natural to analyze the bias and the variance
separately to bound the MSE. Roughly speaking, in that
case, the bias can be interpreted as an approximation error
of f∗ induced by the function space and the variance as
the effect of noise. However, in overparameterized models,
i.e. when f̂n interpolates the observations Y, it is more
natural to split the variance term and analyze the last term
separately from the first two terms. In particular, the first
term T1 can be interpreted as characterizing the “structural”
error, while T2 captures the “noise effect” error. To see this,
we can rewrite T1 in (6) as follows

E∥Pf∗(Eξf̂n|X)− f∗∥2P + E∥P(f∗)⊥(Eξf̂n|X)∥2P, (7)

where Pf∗ is the projection on f∗ in term of L2(P). Let us
briefly explain why this new decomposition (7) is useful for
analyzing the minimum-norm solution; the first term in Eq.
(7) measures how much “energy” minimum norm interpola-
tor retains from the original signal f∗; i.e , it measures the
shrinkage of the signal f∗ due to undersampling. In overpa-
rameterized models, this term is typically non-zero. Then,
as Eξ f̂n|X = f∗, some of the energy must have emerged
from an uncorrelated function fX ⊥ f∗, and the second
term in Eq. (7) measures how much energy was added from
fX (in expectation) to the minimum norm solution. Finally,
T2, measures the amount of energy that was added to the
minimum norm solution due to the noise in the observations.

We now present our main results that separately control the
“structural” and “noise” effect error.

3.1. Upper bound on the “structural” error

The following theorem is our “unlocalized” upper bound for
UC(2)-norms on T1:

Theorem 3.1. Assume that (∥·∥ ,B(X )) is UC(2) with con-
stant t > 0. Then, under Assumptions 1-4, the minimum-
norm solution f̂n satisfies2

Var
[
Ef̂n|X

]
+B2(f̂n) ≲

RMM∗ · Gn(F)

t
. (8)

Furthermore, if (∥·∥ ,B(X )) is US(p) for some p ∈ (1, 2]
with constant s > 0, the upper bound can be improved to

R2−p
MM∗ · CSB · Gn(F)p

t
.

Note that under 2-uniform convexity, Theorem 3.1 aligns
with the standard result based on the “unlocalized” risk
bound on (cf. (van de Geer, 2000; Chatterjee, 2014)) for the
MSE of Empirical Risk Minimization (ERM) with squared
loss over the function class F , i.e

sup
f∗∈F

ED∥f̄n − f∗∥2P ≲ Gn(F)

where f̄n is given by

f̄n ∈ argmin
f∈F

n∑
i=1

(Yi − f(Xi))
2.

We refer to (Bartlett et al., 2005; van de Geer, 2000) for
more information on localized bounds for ERM. Further,
we conjecture that the UC(2) assumption in Theorem 3.1
can be relaxed to CO(2) – we believe that improving to
CO(2) will require a major technical advances, which will

2up to a multiplicative constant that depends on the constants
that appear in the assumptions above.
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be of independent interest. We discuss this in further detail
in the extended version of this manuscript. Moreover, we
believe that without additional regularity assumptions, the
upper bound of Theorem 3.1 is sharp.

Finally, we would like to emphasize that although it seems
that the smoothness of the function class F reduces T1,
actually, the opposite is correct, as higher smoothness also
implies higher Gaussian complexity (see also §4.1).

On a Matching Lower Bound on T1: In the extended
version of this paper, we provide a localized version of
Theorem 3.1. For example, under additional regularity as-
sumption, an improved bound on the error can be of order
(up to a multiplicative constant that depends on t, s, RMM∗ )

max{Gn(F)2p, 1/n,E∥f̂n(X, f∗)− f∗∥2P}. (9)

In the case of Example 1, this bound can be attained. In
(Donhauser et al., 2022), it was shown that when w∗ ≡
(1, 0, . . . , 0), it holds that

Var
[
Ef̂n|X

]
+B2(f̂n) ≲ Õ(d2p−2/n2p).

As

Mn(ℓp,d) ≲
√
nd1/p−1 and RMM∗(ℓp,d) ≲ log(d),

it aligns with our bound. Finally, we believe that (9) is
a sharp lower bound on T1 under nice enough regularity
assumptions.

3.2. Lower bound on the “noise effect” error

For the next theorem, recall that K∥·∥ is the K-convexity
constant of (∥ · ∥,B(X )) as informally defined in 2.6 (see
§B.1 for the formal definition). We emphasize that in our
setting, this constant is at most logarithmic in the number
of samples. Further, for UC(2)-norms for example, it is at
most O(1/

√
t), and under mild assumptions, logarithmic

in the “intrinsic” dimension of the class F . To state the
theorem, for any fixed vector in v ∈ Rn and r ≥ 0, we
define

Ψn(v, r) := Med

[
min

{f∈rF :f=v}
∥f∥P

]
,

which is the median (over X) of the L2(P) minimum norm
solution in r · F that interpolates v on X, and use the
shorthand e1 = (1, 0, . . . , 0) ∈ Rn.

Theorem 3.2 (Reverse Efron-Stein’s for CO(2) norms).
Assume that (∥·∥ ,B(X )) is CO(2) with constant t > 0.
Then, under Assumptions 1-2, the minimum-norm solution
f̂n satisfies the following:

EVar
[
f̂n|X

]
≳ n ·Ψn

(
e1, C

K∥·∥ ·Mn(F)

t
√
n

)2

, (10)

where K∥·∥ is the K-convexity constant, and C > 0 is an
absolute constant.

This result can be interpreted as a “reverse-type" Efron-
Stein inequality for minimum norm interpolators as it lower
bounds the variance in terms of the marginal contribution of
each point Xi. Intuitively, it reflects how the expected condi-
tional variance (in terms of L2(P)) is always lower bounded
by the L2(P) norm required to interpolate “appropriately
scaled” 1-“spikes”.

3.2.1. TIGHTNESS FOR ℓp-LINEAR REGRESSION

In this part, we prove that under the model of ℓp-regression
with p ∈ [1, 2] in Example 1 above, Theorem 3.2 provides a
tight bound. We remark that under the additional assump-
tion of Gaussian covariates, Example 1 is the only known
model (that is not a Hilbert space) for which sharp bounds
on the MSE of the minimum norm interpolator exist (see
(Donhauser et al., 2022)).3

First, let us apply Theorem 3.2 to Example 1 with isotropic
sub-Gaussian covariates, and for simplicity, consider the
case of w∗ ≡ 0. Note that as with high probability
(X1, . . . , Xd) is dense, we have for any interpolator4 w of
e1, that ∥w∥22 ≳ 1/d. Therefore, it holds for any 1 ≤ p ≤ 2
that

EVar [ŵp|X] ≳ n/d,

aligning with the lower bound in (Muthukumar et al., 2020).

(Donhauser et al., 2022) implicitly proved the converse
under Gaussian covariates. Our next result extends their
bound to cover sub-Gaussian covariates, emphasizing that
the bound of Theorem 3.2 can be sharp for UC(2)-norms,
and that it is not specific to the Gaussianity of the data. As
such, it is the first step to overcoming a fundamental limi-
tation of some existing literature on benign overfitting that
heavily uses the Gaussianity of the covariates.
Theorem 3.3 (Expected Conditional Variance in Linear
Models). Consider the model of Example 1. Then, when
p ∈ [1+ C log log log(d)

log log(d) , 2], and d ≳ n · log(n), the following
holds when w∗ ≡ 0:

EVar [ŵp|X] ≲ log(d)2 · n
d
.

Note that when w∗ ≡ 0, we have

EVar [ŵp|X] = E∥ŵp − w∗∥22 ≲
log(d)2n

d
.

3In the extended version of this manuscript, we prove this for
i.i.d. sub-Gaussian entries with bounded density from above and
below.

4The K-convexity constant does not play a key role as we are
in a linear setting. In the case of Example 2, the K∥·∥ plays a key
role in this bound – as there is a sequence of functions fn such that
∥fn∥ → ∞ that interpolate (1, 0, . . . , 0) that also ∥fn∥P → 0.
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On a matching upper bound on T2 : As we see in Theo-
rem 3.3, Theorem 3.2 is tight in the case of Example 1, when
p ≥ 1 + C log log log d

log log d . However, for p = 1 and w∗ ≡ 0, we
know from (Wang et al., 2022) that

EVar [ŵ1|X] ≍ 1

log(d/n)
.

On the other hand, applying Theorem 3.2 directly only pro-
vides a lower bound Ω(n/d). Therefore, one may wonder
what the tight upper bound for the term T2 should be. We
conjecture that in contrast to the first term T1, 2-uniform
convexity (or a similar property) is essential for the bound
of Theorem 3.2 to be sharp. We believe that under sufficient
regularity assumptions (additionally to UC(2)), Theorem
3.2 is tight. We discuss this question in further detail in the
extended version of this manuscript.

Before we end this section, we would like discuss the impor-
tance of the Gaussian noise assumption for our theorems.
Remark 3.1 (Beyond Gaussian noise). We would like to em-
phasize the Gaussian noise (or very well structured noise)
assumption is essential in all our results. In the Theorem 3.1,
the RMM∗ ratio is tightly connected to Gaussian, or at least
Rademacher noise. The K-convexity argument in Theo-
rem 3.2 is only valid for Gaussian or Rademacher noise.
Finally, the analysis of Theorem 3.3 is only valid for Gaus-
sian noise; since we do not assume Gaussian covariates, it is
essential that the noise vector is rotationally invariant, and
since the model assumes i.i.d. noise, it must be Gaussian.

4. Discussion

In this part, we discuss the consequences and subtleties that
are revealed by our analysis.

4.1. On the Tradeoff Between Type p and Gaussian
Complexity

As briefly discussed in §3.1, Theorem 3.1 may suggest that
the upper bound is improving under US(p) with p > 1 with
constant s. We now provide more details on why this is
not necessarily true. First, we argue that when the class
contains m “well-separated” signals in L2(P), there is a
price to be paid, as the Gaussian complexity of the class
is at least of order (s−2m)1−1/p/

√
n. Therefore, larger p

does not automatically lead to an improved upper bound in
Theorem 3.1.

First, let m be the maximal number of elements
f1, . . . , fm ∈ F that are orthogonal and well-separated,
namely

∀1 ≤ i < j ≤ m ⟨fi, fj⟩P = 0 ∥fi − fi∥P ≳ 1,

where ⟨·, ·⟩P denotes the inner product with respect to L2(P).

Then, if the underlying Banach space is type p ≥ 1, then
the Gaussian complexity is lower bounded by

Gn(F) ≳

√
max{(s−1 ·m)2−2/p, log(m)}

n
. (11)

In particular, for type 2 spaces, we have Gn(F) ≳
√

m/n.
In contrast, for a space that is both cotype 2 and type 1, such
as the ℓ1-ball, we only pay a logarithmic price in the number
of different signals which is tight in Example 1.

To simplify the presentation, we now provide the argument
for type 2 spaces, while the lower bound (11) for general
type p follows analogously. In fact, in a T (2) space with
constant s, we have(

E
∥∥∥∥∑m

i=1 ξifi√
m

∥∥∥∥)2

≍
E∥
∑m

i=1 ξifi∥2

m
≲ s2,

where we used Kahane’s inequality (cf. (Milman & Schecht-
man, 1986)) and that ∥fi∥ ≤ 1 for all 1 ≤ i ≤ m. Moreover,
by the orthogonality of {f1, . . . , fm}, we have that

E∥ 1√
m

m∑
i=1

ξifi∥P ≍ s.

Clearly, it implies that the function class F contains a set
of 2Ω(m) functions, constructed by choosing random signs
in the last equality, that are Θ(s−1) far from each other (in
terms of L2(P)). Hence, due to the small ball assumption
(see Assumption 3), we know that for each two functions
f, g ∈ F that

∥f − g∥Pn
≥ c4∥f − g∥P ≳ s−1

with probability of at least 1 − exp(−cn). By the union
bound, we obtain that there are 2Ω(m) mixture signals that
are well-separated and belong to Fn with high probability.
Equivalently, Fn contains a well-separated set with cardi-
nality at least 2Ω(m). By Sudakov’s minoration inequality
(Ledoux & Talagrand, 2013), it immediately follows that

Gn(F) ≳ s−1 ·
√

m

n
.

Therefore, we conclude that additional smoothness increases
Gaussian complexity, and reduces the possibility of the
benign over-fitting way for rich function classes.

4.2. On the role of the covariate distribution

Note that our bounds are general in their nature, as they hold
for arbitrary i.i.d. covariates. In contrast, many previous
works (see, e.g., (Bartlett et al., 2020; Tsigler & Bartlett,
2023; Koehler et al., 2021; Donhauser et al., 2022; Liang &
Rakhlin, 2020; Liang et al., 2020)) deeply rely on additional
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structure on the covariates such as isotropic Gaussianity
(cf. (Donhauser et al., 2022)), or low-stable rank covariance
matrix (cf. (Bartlett et al., 2020)).

We now briefly discuss how additional assumptions on co-
variate structure affect the final bounds obtained through our
general results in Theorem 3.1. For one, the Gaussian com-
plexity may depend on the covariates. Further, the covariate
distribution affects the MM∗-estimate (i.e, RMM∗ ). More-
over, additional structural assumptions on covariates may
significantly improve the uniform convexity and smoothness
constants of a “typical” norm induced by the set Fn. There-
fore, since the geometry of the minimum norm interpolator
deeply depends on the norm induced by Fn ⊂ Rn, special
structure of the covariates could also significantly reduce
the MSE.

A notable example is high-dimensional linear regression
with isotropic Gaussian covariates. In such a model, one
should view Fn as

Fn ≈
√
d · P (F)

where F ⊂ Rd is convex and symmetric, and P ∼
Unif(Gr(n, d)) is a random projection from Rd to Rn (here
Gr(n, d) denotes the Grassmanian manifold).

When n ≪ d, the classical Dvoretzky-Milman’s theorem
and its many variants (cf. (Vershynin, 2018) and (Artstein-
Avidan et al., 2015, Chps. 5,7)) show that such random
projections usually have a small RMM∗ estimate. Further-
more, the norm induced by Fn may have better uniform
smoothness and convexity constant than the norm induced
by F . However, without special structural assumptions,
such improvements are not possible.

4.3. On the role of 2-uniform convexity and the MM∗

estimate

Finally, we would like to provide some rough intuition of
our approach that led to the results in §3. Consider the
symmetric convex set in B(X ) defined via

F⊥ := P(f∗)⊥F (12)

that contains functions from F orthogonal to f∗ in terms of
L2(P), and denote the projected set F⊥ on X1, . . . , Xn by
F⊥

n , and its Minkowski norm on Rn by ∥ · ∥F⊥
n

. Consider
δ · f∗, and some δ ≤ c1. Then, by Anderson’s lemma (cf.
(Wainwright, 2019)), it holds that

E∥ξ + δ · f∗∥F⊥
n
≥ E∥ξ∥F⊥

n
,

where ξ is an isotropic Gaussian. Clearly, we would like the
last inequality to be strict, as we would hope that this random
norm is sensitive to the fact that there is an additional signal

rather than pure noise. One hopes that the sampled signal f∗

that is uncorrelated to all functions in F⊥, would imply that
∥ξ+δ·f∗∥F⊥

n
behaves as ∥ξ′∥, where, ξ′ ∼ N(0, 1+δ2). In

other words, f∗ “behaves” as additional independent noise.

Let us consider the ℓp-linear regression setting with isotropic
Gaussian covariates and w∗ = (1, 0, . . . , 0) (and note that
f = (w∗X1, . . . , w

∗Xn). Then, one can then verify that for
any δ ≥ 0

Eξ,X∥ξ + δ · f∗∥2F⊥
n
≥ (1 + c1δ

2)E∥ξ∥2F⊥
n
,

where we used that f∗ ∼ N(0, δ2In) is independent from
both ξ and the norm ∥·∥F⊥

n
. Remarkably, this fact is not spe-

cial to linear models. The proof of Theorem 3.1 shows that
such a property follows from 2-uniform convexity. Specifi-
cally, it holds in the general case that

EX,ξ∥ξ + δ · f∗∥2F⊥
n
≥
(
1 +

cδ2R−2
MM∗

t

)
E∥ξ∥2F⊥

n
.

Therefore, if RMM∗ is bounded, we have a similar behavior
as in the linear setting with Gaussian covariates.

5. Conclusions

In this work, we study the behavior of minimum norm inter-
polators using a novel approach based on the local theory
of Banach spaces that does not rely on the linearity of the
function class. Instead, we show how such geometric prop-
erties of the underlying space are tightly connected to the
phenomenon of benign overfitting. We use 2-uniform con-
vexity of norms to provide insights on the structural and
noise-induced error of minimum norm interpolators.

In a future extended version of this work, we aim to pro-
vide a more complete picture of our framework than is
possible in this short conference version. For one, we will
prove a “localized” version of Theorem 3.1 that yields im-
proved bound under additional regularity assumptions that
align with the bounds on ℓp-linear regression. Further, we
will provide a full picture of ℓp linear regression with sub-
Gaussian covariates. Finally, we aim to derive sharp bounds
for the minimum-norm interpolator in Sobolev spaces for
1 ≤ p ≤ 2.
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A. Proofs

A.1. Proofs of Theorem 3.1

Recall that for abbreviation, we use the notation f̂n(z) := f̂n(X, z), for every z = (z1, . . . , zn). For a convex set with a
non-empty interior (convex body) K, ∥ · ∥K denotes the Minkowski functional.

Next, recall the definition of Fn in (3), and notice that on each realization of the data X (and therefore of Fn), for any
z ∈ Rn, we have that

∥f̂n(z)∥ = ∥z∥Fn
:= ∥z∥n.

Also, for simplicity, we assume that Γ ≤ C1, for some absolute constant C1 ≥ 0, and that ∥f∗∥P = 1.

Step I: Symetrization Consider the operator P(f∗)⊥ : L2(P) → L2(P), defined via

f 7→ f − ⟨f∗, f⟩P · f
∗.

Then, we proof the following simple and useful lemma:

Lemma A.1. With high probability the following holds for F∗ := P(f∗)⊥F:

sup
f∈F∗

⟨f, f∗⟩n ≲ Gn(F).

Proof. Note that for every f ∈ F∗, we have by definition that

⟨f, f∗⟩P = 0.

Therefore, by the Gine-Zinn symetrization (Koltchinskii, 2011, Thms 2.1 and 2.2) and F∗ = −F∗, we obtain that

E sup
f∈F∗

⟨f∗, f⟩n = E sup
f∈F∗

⟨f∗, f⟩n − ⟨f, f∗⟩P = E sup
f ′∈F∗·f∗

∣∣∣∣∫ f ′d(Pn − P)
∣∣∣∣

= E sup
f ′∈F∗·f∗

∫
f ′d(Pn − P) ≤ 2 · Radn(f∗ · F∗) ≲ Radn(F∗),

where Radn(F∗) are the Rademacher averages of F∗, and in the last inequality we used that with a probability of 1− n−1

it holds that f∗(Xi) ≤ C1. Using that
Radn(F∗) ≲ Gn(F∗),

the claim follows from
Gn(F∗) ≲ Gn(F), (13)

as projections reduces the Gaussian complexity (up to a multiplicative absolute constant).

Step II: Controlling the Inflation Factor In this part, we show that

Eξ∥f̂n(ξ + f∗)∥2 − Eξ∥f̂n(ξ)∥2 ≤
(
Eξ∥f̂n(ξ)∥

)2−p

= M(Fn)
2−p, (14)

To this end, recall the definition of US(p) with parameter s ≥ 0 and note that

∥ξ∥pn + s∥f∗∥pn = ∥f̂n(ξ)∥p + s∥f̂n(f∗)∥p

≥ ∥f̂n(ξ) + f̂n(f
∗)∥p

2
+

∥f̂n(−ξ) + f̂n(f
∗)∥p

2

≥ ∥f̂n(ξ + f∗)∥p

2
+

∥f̂n(−ξ + f∗)∥p

2

=
∥ξ + f∗∥pn

2
+

∥ − ξ + f∗∥pn
2

= E±ξ∥ξ + f∗∥pn.

13
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Therefore, we obtain that

E±ξ∥ξ + f∗∥2n = E±ξ(∥ξ + f∗∥pn)2/p ≤ E±ξ(∥ξ∥pn + s∥f∗∥pn)2/p = E±ξ

[
∥ξ∥2n

(
1 + s

(
∥f∗∥n
∥ξ∥n

)p)2/p
]
.

Using that with high probability ∥ξ∥n ≥ C, and the assumption of ∥f∗∥ ≤ 1, and the identity (1 + x)2/p ≈ 1 + 2x/p, we
obtain that

Eξ

[
∥ξ + f∗∥2n − ∥ξ∥2n

]
≲ Eξ∥ξ∥2−p

n

and by Borrel’s lemma (cf. (Brazitikos et al., 2014, Thm 2.4.6)), we know that Eξ∥ξ∥2−p
n ≲ (Eξ∥ξ∥n)2−p. Therefore, we

proved (14), and the claim follows.

Step III: Applying Uniform Convexity In this part, we prove the following equation:

E∥Pf∗Eξf̂n|X− f∗∥2P ≲
sMn(F)2−p ·M∗

n(F)2

tn2
(15)

Proof. First, by the UC(2) property of F , and the fact that f∗ is independent of ξ, we obtain that over each realization of ξ
(and with high probability over X) (here the expectation is over two points of ξ,−ξ)

E∥f̂n(ξ + f∗)∥2 =E

[
∥f̂n(ξ + f∗)∥2

2
+

∥f̂n(−ξ + f∗)∥2

2

]

≥ E

∥∥∥∥∥ f̂n(ξ + f∗)− f̂n(−ξ + f∗)

2

∥∥∥∥∥
2

+ tE

∥∥∥∥∥ f̂n(ξ + f∗) + f̂n(−ξ + f∗)

2

∥∥∥∥∥
2

≥ E∥f̂n(ξ)∥2 + tE

∥∥∥∥∥ f̂n(ξ + f∗) + f̂n(−ξ + f∗)

2

∥∥∥∥∥
2

(16)

where the last inequality follows from the definition of the minimal norm solution. Now, as the noise is symmetric, and by
Jensen’s inequality, on the last term we obtain that

Eξ∥f̂n(ξ + f∗)∥2 ≥ Eξ∥ξ∥2n + tEξ

∥∥∥∥∥ f̂n(ξ + f∗) + f̂n(−ξ + f∗)

2

∥∥∥∥∥
2

= Eξ∥ξ∥2n + t
∥∥∥Eξ

[
f̂n(ξ + f∗)

]∥∥∥2 ,
where we used that these two terms have the same expectaion. Now, as the function

fX := Eξ

[
f̂n(ξ + f∗)

]
∈ B(X )

interpolates f∗, it may be decomposed into

fX = Pf∗fX + P(f∗)⊥fX = (1− γX)f∗ + P(f∗)⊥fX︸ ︷︷ ︸
:=f ′

X

,

where γX = 1−
〈
EξPf∗ f̂n|X, f∗

〉
P
. Note that the following holds: First,

P(f∗)⊥fX = γXf∗,

secondly, as with high probability it holds ∥f∗∥Pn ≍ ∥f∗∥P,, (and recall the notation ∥ · ∥Pn = ∥ · ∥L2(Pn))

γ2
X ≍ ∥f ′

X∥2Pn

Next, by Step I, with high probability, it holds:

hF∗
n
(f∗) = sup

f∈F∗
⟨f∗, f⟩n ≲ Gn(F)∥f∗∥Pn

≍ Gn(F).

14
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Now, note that
∥f ′

X∥F∗ ≳ ∥f ′
X∥Pn

∥f∗∥F∗
n
≥ γX

hF∗
n
(f∗)

,

and by using the last equation, and that ∥f ′
X∥ ≥ ∥f ′

X∥F∗ (as f ′
X ⊥ f∗), we obtain that

∥f ′
X∥

γX
≥ ∥f ′

X∥F∗

γX
≳ ∥f∗∥F∗

n
≥ n

supf∈F∗
⟨f , f∗⟩n

≳
n

M∗
n(F)

. (17)

Therefore, under E1, we have that
∥Eξ

[
f̂n(ξ + f∗)

]
∥ ≳ max{ nγX

M∗
n(F)

, 1}

where we used our assumption of ∥f∗∥ ≳ 1; and hence,

Eξ∥f̂n(ξ + f∗)∥2 ≥ E∥f̂n(ξ)∥2 + c1t ·max{1, γ2
Xn2

M∗
n(F)2

}, (18)

By using (14) and the last inequality, we obtain that

tn2

M∗
n(F)2

· γ2
X ≲ E

[
∥f̂n(ξ + f∗)∥2

]
− E

[
∥f̂n(ξ)∥2

]
≲

s

E∥ξ∥pn
E∥ξ∥2n ≲ sMn(F)2−p.

Or equivalently (under the expectation of the 1− n−2 event of E1), we obtain that

γ2
X ≲

sM∗
n(F)2Mn(F)2−p

tn2
.

Therefore, we conclude

EX

∥∥∥Pf∗(Eξf̂n|X)− f∗
∥∥∥2
P
≍ Eγ2

X ≲
sM∗

n(F)2Mn(F)2−p

tn2
,

and (15) follows.

Step IV: Concluding Theorem 3.1 It remains to prove that

E
∥∥∥P(f∗)⊥Eξ

[
f̂n|X

]∥∥∥2
P
≲

sMn(F)2−p ·M∗
n(F)2

tn2
. (19)

as we know that ∥f∗∥Pn ≍ ∥f∗∥ ≍ 1, under the event of the last the last step, we have that∥∥∥P(f∗)⊥Eξ

[
f̂n|X

]∥∥∥2
Pn

≲
sMn(F)2−p ·M∗

n(F)2

tn2
.

Also, note that one can easily show that
P(f∗)⊥Eξf̂n|X ∈ γ∗ · F ,

where γ∗ ≲
√

s/t ·M(Fn)
1−p/2.

Therefore, using the small-ball assumption (Mendelson, 2014), which implies that for all f ∈ F with high probablity over
X1, . . . , Xn (denote this event by E2)

∥f∥2P ≤ 2∥f∥2Pn
+ CSB · Gn(F)2,

where CSB ≥ 0 is the small ball constant that emerges from the constants appearing in Assumption 3. Therefore, under
E1 ∩ E2, and using the last two equations

∥EξP(f∗)⊥ f̂n|X∥2P ≲
sMn(F)2−p ·M∗

n(F)2

tn2
+ γ2

∗ · CSB · Gn(F)2

≲
CSB · s ·Mn(F)2−p ·M∗

n(F)2

tn2
.

(20)

Therefore, Theorem 3.1 follows by taking expectation on high probablity event E1 ∩ E2, as

Var(E
[
f̂n|X

]
) +B2(f̂n) = E∥Pf∗E

[
f̂n|X

]
∥2P + E∥P(f∗)⊥E

[
f̂n|X

]
∥2P

15
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B. Proof of Theorem 3.2

In order to prove our lower bound over the conditional variance, we first study the “intrinsic” variance of f̂n, defined via

Var∥·∥

[
f̂n

]
:= ED∥f̂n(D)− Ef̂n(D)∥2,

under the assumption that the underlying space is CO(2).

Theorem B.1 (Intrinsic Variance Under CO(2) – Reverse Efron-Stein). Assume that (∥·∥ ,B(X )) is CO(2) with constant
t > 0. Then, under Assumptions 1-2, the minimum norm solution f̂n satisfies that

n · t2 ·K−2
∥·∥ · E∥f̂X∥2 ≲ Var∥·∥

[
f̂n

]
≍ Mn(F)2, (21)

where f̂X is minimum norm interpolator of the samples {(X1, 1), (X2, 0), . . . , (Xn−1, 0), (Xn, 0)}.

B.1. Preliminaries on K-convexity

First, we present a few facts and further details on K-convexity constant (cf. (Artstein-Avidan et al., 2015, Cpt. 6)), for the
reader’s convenience. Let us define the K-convexity in a proper way (with respect to the Gaussian measure). Recall that γn
is the Gaussian measure over Rn, and consider a map F : (Rn, γn) → (B(X ), ∥ · ∥), and its so-called ℓ-norm is defined via

ℓ(F ) :=
√
Eξ∥F (ξ)∥2,

and the linearization of F is defined as

LF :=

n∑
i=1

αiξi +

∫
Rn

F (ξ)dγn(ξ),

where αi =
∫
Rd F (ξ

(i)
+ )−F (ξ

(i)
− )dγn(ξ),, and ξ

(i)
± = (ξ1, . . . ,±|ξi|, . . . , ξn). In other words, we project F to the subspace

spanned by Hermite polynomials of degree one.

We endow the Banach space of maps (and its subspace of linear maps) from (Rn, γn) → (∥ · ∥,B(X )) with the ℓ-norm that
is defined above. Next, we denote by L to be the linear operator that maps any centered F (

∫
Rn F (ξ)dγn(ξ) = 0) to its

linearization LF and the (Gaussian) K-convexity constant is defined as the operator norm of L,

K∥·∥ := ∥L∥OP , (22)

or equivalently for any zero mean map F : (Rn, γn) → (∥ · ∥,B(X )) it holds that

ℓ(F ) ≳ K−1
∥·∥ · ℓ(LF ).

We conclude the preliminaries with a few fundamental facts on K-convexity.

1. In general, any norm ∥ · ∥ in Rn (for which the unit ball is a symmetric convex body K ⊂ Rn) satisfies that

K∥·∥ ≲ log(1 + dBM (K,Bn
2 )),

where dBM denotes the Banach-Mazur distance and Bn
2 is the Euclidean ball in Rn. Therefore, in every regression

task with respect to any norm in Rd, it follows that K∥·∥ ≲ log d.

2. When ∥ · ∥ is type p > 1 with a constant, s ≥ 0, one can show that K∥·∥ ≲ C(s, p) and furthermore, by Fact 2 for any
UC(2) it holds holds that K∥·∥ ≲ 1/

√
t.

Remark B.1. A delicate point that we would like to mention is that the definition of type and cotype is classically defined
with respect to the Rademacher random variables rather than Gaussian. However, the remarkable result of Maurey and
Pisier (cf. (Artstein-Avidan et al., 2022, Theorem 5.4.1)) implies that for cotype q ∈ (2,∞) spaces, these definitions are
equivalent up to a multiplicative constant that only depends on the cotype constant t.
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B.2. Proof of Theorem B.1

Proof. First, recall (4) above. We consider the non-linear map MX : (Rn, γn) → (B(X ), ∥ · ∥) which is defined via

(f̂n(D)|X)− (Eξf̂n(D)|X), (23)

and exploit the linear structure behind it.

For a realization of the vector X, consider the linearization of MX with respect to the span of the Hermite polynomials of
degree one, precisely

LX(ξ) :=

n∑
i=1

αiξi,

where α1, . . . , αn ∈ B(X ) are defined as

αi :=

∫
Rn

ξi · (MX(ξ))dγn(ξ) =

∫
Rn

|ξi|
2

· (MX(ξi+))−MX(ξi−))dγn(ξ)

and ξi± = (ξ1, . . . ,±|ξi|, . . . , ξn). Note that each αi is an interpolator to

(0, . . . ,E|ξ|2, . . . , 0) = (0, . . . , 1, . . . , 0),

as we average interpolators with respect to the Gaussian measure. Now, since our space is of cotype 2, we apply the
Pisier-Maurey result (see §B.1 above) on K-convexity bound which guarantees that

ℓ(MX)2 ≳ K−2
∥·∥ · ℓ(LX)2,

or equivalently,

Eξ

[∥∥∥f̂n − Eξ

[
f̂n|X

]∥∥∥2] ≳ K−2
∥·∥ · Eξ

n∑
i=1

∥αiξi∥2.

Taking expectation over X the left hand side gives the conditional variance. Next, using the cotype 2-property and Jensen’s
inequality, we obtain that

Eξ

[∥∥∥f̂n − Eξ

[
f̂n|X

]∥∥∥2] ≳ t2 ·K−2
∥·∥ ·

n∑
i=1

∥αi∥2.

As, {αi}ni=1 depend on X, we take expectation over X, we know that

E∥α1∥2 = . . . = E∥αi∥2 = . . . = E∥αn∥2

and therefore by Jensen’s inequality

Var∥·∥

[
f̂n

]
≥ Var∥·∥

[
f̂n|X

]
≳ n ·K−2

∥·∥ · t2 · EX∥α1∥2 ≥ n ·K−2
∥·∥ · t2 · EX∥f̂X∥2,

where in the last inequality we used the definition of the minimum norm solution.

Finally, we prove the right hand side of the bound . First, we consider by f∗ ≡ 0, and using Borell’s lemma (cf.
(Artstein-Avidan et al., 2015) or (Brazitikos et al., 2014))

Var∥·∥

[
f̂n

]
= EXℓ2(f̂n) = EX

∫
∥ξ∥2ndγn ≲ EX

(∫
∥ξ∥ndγn

)2

≲ Mn(F)2,

and the claim follows when f∗ ≡ 0. Finally, under Assumption 2, we conclude that

Eξ∥f̂n(f∗ + ξ)∥2 ≲ E∥ξ∥2n

and the claim follows as ∥Eξf̂n(f
∗ + ξ)∥ ≲ M(Fn) by simply using Jensen’s, and taking additional expectation over

X.
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B.3. Proof of Theorem 3.2

In what follows, recall that ∥ · ∥P denotes the L2(P) norm. Here, we lower bound the expected conditional variance of f̂n,
that is

EXVar(f̂n|X).

Following the ideas from Theorem B.1, we consider an operator that is defined for every realization of X, denoted by MX,
defined via

ξ 7→ f̂n|X− Ef̂n|X.

And we will inspect it with respect to different two norms ∥ · ∥, ∥ · ∥P and lower bound the expected conditional variance.
More accurately, first we linearize the operator MX, to obtain α1, . . . , αi, . . . , αn (that depend on X) defined by

αi :=

∫
Rn

|ξi|
2

· (f̃n(f∗ + ξi+))− f̃n(f
∗ + ξi−))dγn(ξ),

where ξi± = (ξ1, . . . ,±|ξi|, . . . , ξn). Using Theorem B.1, it is easy to see that

E∥αi∥2 ≲ (t−1/
√
n)2 ·K∥·∥ ·Mn(F)2

Then, by Jensen’s inequality, we obtain that

E∥αi∥ ≲
t−1 ·K∥·∥√

n
·Mn(F) :=

t−1
∥·∥√
n
·Mn(F).

The linearization of MX writes

L̃n :=

n∑
i=1

αiξi

and note that for each realization of X and ξ, it holds L̃n|X = ξ.

As K∥·∥P = 1 (since it is Hilbert space), we obtain that

EVar(f̂n|X) = Eξ∥f̂n − Eξf̂n(D)∥2P ≥ E∥
n∑

i=1

αiξi∥2P =

n∑
i=1

EX∥αi∥2P = n · E∥α1∥2P.

where in the last inequality we used that n samples are (Xi, ξi) are independent and identically distributed.

Now, recall that for every realization X, we have that αi = (0, . . . , 1, . . . , 0), and that E∥αi∥ ≲
t−1
∥·∥·M(Fn)

√
n

. Therefore, by

Markov’s inequality, α1 ∈ r · F with probability at least 3/4 for r = c
t−1
∥·∥·M(Fn)

√
n

for an appropriate c > 0. Thus, with
probability at least 1/4, α1 ∈ r · F and ΨX

n (e1, r) ≥ ΨX
n (e1, r), which implies that:

E∥α1∥2P ≳ Ψn

(
e1, C ·

t−1
∥·∥M(Fn)

√
n

)2

.

By combining all we obtained that

EVar(f̂n|X) ≳ n ·Ψn

(
e1, C ·

K∥·∥ · t−1 ·Mn(F)
√
n

)2

,

and the claim follows. We conclude the proof with two remarks.
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B.4. Concluding remarks

Remark B.2 (The K-convexity and minimum norm interpolators). Following the notation of the proof, note that by definition
it holds that

∥LX(f̂n(ξ))∥ ≤ ∥f̂n(ξ)∥,

in particular for the ℓ-norm, we have that
ℓ(f̂n) ≤ ℓ(LX(f̂n)).

When ∥ · ∥ is Hilbert, the converse holds due to the Representer theorem (cf. (Vershynin, 2018)). Remarkably, the
K-convexity implies that in some sense the converse is true, meaning that

K−1
∥·∥ · ℓ(LX) ≲ ℓ(f̂n) ≲ ℓ(LX).

Namely, the minimal norm interpolator is norm equivalent in terms of ℓ-norm to an ellipsoid. This equivalence holds up
to a price that is at most logarithmic in the Banach Mazur distance to a Hilbert space. The core point that we highlight is
that if we have a non-trivial type and cotype (i.e. 1 + δ with some constant t, s > 0 that are independent of the dimension
and n) then we pay a price only in terms of t, s. It follows from the K-convexity argument that this ellipsoid is induced by
averaging from the local behavior of the boundary of F , as the coefficients αi given by

αi ≈
∫
Sn−1

F (
√
n · ξ+i )− F (

√
n · ξ0i ) + F (

√
n · ξ0i )− F (

√
n · ξ−i )dU(ξ),

where ξ0i := (ξ1, , . . . , ξi−1, 0, ξi+1, . . . , ξn). Remarkably, it almost captures (on average) the global behavior of F .
Remark B.3. [On Efron Stien’s type bounds in Banach Spaces] We begin by reminding the Efron-Stein’s inequality (see
(Boucheron et al., 2013)) for a function f : Rn → R with random input X1, . . . , Xn.

Var(F (X1, . . . , Xn)) ≤ 2

n∑
i=1

E
[
(F (X−i, Xi)− F (X−i, X

′
i))

2
]
,

where X ′
i is independent copy of Xi.

Using the classical observations of Enflo’s (Enflo, 1970a;b), known in these days as the Enflo’s type property, he showed
that for any non-linear operator F : {−1, 1}n → (Z, ∥ · ∥H), where ∥ · ∥H is a Hilbert space that

Var∥·∥H(F ) ≲
n∑

i=1

E
[
∥(F (ϵ−i, ϵi)− F (ϵ−i,−ϵi))

2∥2H
]

here randomness is with respect to the uniform measure over the hypercube. Later, (Pisier, 2006) extended this to any type 2
norm – with a price of log(n)-factor. Finally, in the recent paper of (Ivanisvili et al., 2020), they removed the log(n)-factor
by showing that for any type 2 norm

E∥F (ϵ)− F (−ϵ)∥2 ≲
n∑

i=1

E
[
∥(F (ϵ−i, ϵi)− F (ϵ−i,−ϵi))

2∥2
]
.

Unfortunately, the most similar version for such bound for CO(2)-spaces (Mendel & Naor, 2008), is not applicable in our
setting. Yet, Pisier’s K-convexity constant (for Rademacher or Gaussian noise) is the closest equivalent version to a “reverse
Efron Stien” inequality as it implies that

log(1 + dBM (∥ · ∥, ∥ · ∥H))−1 ·
n∑

i=1

∥E−i [F (ϵ−i, ϵi)− F (ϵ−i,−ϵi)] ∥2 ≲ Var∥·∥(F ).

Remark B.4. From a statistical point of view, the first term of our bound has an intuitive interpretation. From the sub-class
of the functions that interpolate n− 1 i.i.d. data points with zero, we choose one that can interpolate on a fresh data point
Xn with the value of 1, which aligns to the lower bound on Theorem B.1.
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B.5. Proof of Theorem 3.3

In this part, we assume that ξ ∼ U(Sn−1) and use the notation of P := 1√
d
X. Throughout this proof, we will use the

notation of σ ∈ [d], i.e. a subset of 1, . . . , d. Recall that p ∈ (1 + η(d), 2], where

η(d) := C · log log log(d)
log log(d)

.

Also, denote by
f̂n := argmin

Pv=ξ
∥v∥p.

Recall the definition of the ℓp,d := ℓp(Rd) as the ℓp ball in Rd, and denote by ℓ′p,d := d1/p−1/2 · ℓp,d, namely ℓ′p,d is in
John’s position (cf. (Artstein-Avidan et al., 2015)).

Theorem B.2. Let p ∈ (1 + η(d), 2] an let d
1
p−

1
2 ≲ n ≲ d/ log(d). Then, with probability of at least 1− d−1 it holds that

1 ≲ ∥f̂n∥2 ≲ log(d).

Consider Example 1 when w∗ ≡ 0, then the last theorem implies that

Var(ŵp) = E∥ŵp∥22 ≲
log(d)n

d
,

to see this, apply the last theorem with ξ′ ∼
√
n · U(Sn−1) and the definition of ŵp = argminXw=ξ ∥w∥p implies that

E∥ŵp∥22 ≈ n
dE∥f̂n∥

2
2, and the claim follows by the homogeneity of ŵp.

B.5.1. PRELIMINARIES

First, we state a lemma known as Kashin’s theorem cf. (Artstein-Avidan et al., 2015, Thm 5.5.3) and (Szarek, 1990). For
completeness, we provide a simple proof in §B.5.2 below

Lemma B.3. Let Cd := [−1/
√
d, 1/

√
d]d, then when d ≥ Cn (for sufficiently large C > 0), and under the X that satisfies

Example 1, the following holds:

cϵ ·Bn ⊂ 1√
d
X(Cd) = P (Cd)

with probability of at least 1− exp(−c log(1/ϵ)d), and c depends on the sub-Gaussianity and the maximum of the density
of X (see Example 1).

In other words, when d is large enough compared to n, the projection of a cube contains a ball.

Next, we state another classical bound (cf. (Aubrun & Szarek, 2017)) on the singular values of X.

Lemma B.4. Under our assumptions

Pr

(
σmin(X) ≍ σmax(X) ≍

√
d

)
≥ 1− exp(−cd). (24)

Proof of Theorem B.2

Without loss of generality, we set ℓp,d := ℓ′p,d, and we only prove this theorem for p = 1 + η(d) (for sufficiently large
C ≥ 0) and for n ≍ Õ(

√
d), the other regimes in theorem follow from similar arguments.

As ℓp,d is in John’s position, it follows from a classical result (Schütt, 1984, Thm 1) that

logN (λk, ℓp,d, ∥ · ∥2)︸ ︷︷ ︸
:=Nk

= k.
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where λk ≍
(

k
d log(d/k)

)1/2−1/p

when log(d) ≤ λk ≤ d, and λk ≍ d1/p−1/2, when 1 ≤ k ≤ log(d). We will use its

explicit construction and slightly modify it. The net Nk is composed by a O((k/d)C)-net (in terms of ℓ2) of the sets

Aσ :=

(
d log(d/k)

k

)1/p−1/2

· 1√
|σ|

Bσ
∞ ⊂ ℓp,d,

for all σ ⊂ [d] such that C · k/ log(d/k) ≤ |σ| ≤ 2C · k/ log(d/k), and when |σ| ≤ log(d), we set

Aσ :=

(
d

k

)1/p−1/2

· 1√
|σ|

Bσ
∞ ⊂ ℓp,d

To see that logNk ≲ k, we define for every fixed k,

Vk := {
⋃
σ

Aσ : σ ⊂ [d], k/(2 log(d/k)) ≤ |σ| ≤ k/ log(d/k), v ∈ Rσ, v ∈ Aσ} (25)

and note that

logN ((k/d)C ,Vk, ∥ · ∥2) ≤ log

((
d

k/ log(d/k)

)
·
(
(d/k)1/p−1/2

(k/d)C

)k/ log(d/k)
)

≲ k

where we used that
N (ϵ,

R√
|σ|

Bσ
∞, ∥ · ∥2) ≤ N (ϵ, RBσ

2 , ∥ · ∥2) ≤ (1 + 2R/ϵ)|σ|

and that
(
d
l

)
≤ (ed/l)l. Furthermore, observe for every w ∈ ℓp,d, can be decomposed as follows:

w =
∑

k∈2,4,...,d/ log(d)

δkfk + δ0fns

where fk ∈ Vk,
∑

δpi ≤ 1, fns ∈ C log(d) · Cd, ∥fk∥p ≍ d1/p−1/2. To see this, sort the entries of w by decreasing
magnitude coordinates, and use the definition of the ℓp norm.

In order to prove the theorem, we need to show that with high probability for all k ≲ d/ log(d), it holds that δk =
Õ((k/d)1/p), then we know that up to a log(d)-factors, we have that for each k ≲ d/ log(d)

∥δkfk∥∞ ≲ (d/k)−1/2 · k−1/2 ≲ d−1/2.

Therefore, under such an event, f̂n ∈ C log(d) · Cd, and in particular ∥f̂n∥2 ≲ log(d). The rest of the proof is dedicated to
proving this claim.

Now, recall that for any vector v ∈ Rn, it holds that (cf. (Vershynin, 2018) on the JL lemma):

Pr
P

(
∥Pv∥2 > (1 + ϵ)

√
n

d
∥v∥2

)
≤ exp(−cnϵ2), (26)

where we used the fact that E∥Pv∥22 = n
d ∥v∥

2
2, and therefore E∥Pv∥2 = (1 +O(1/

√
n))
√
n/d∥v∥2 .

Now, by applying (26) (with ϵ ≍ max{
√

k/n, 1}) over Nk for any 1 ≤ k ≤ d/(C2 log(d)), it holds that

Pr

(
∀v ∈ Vk :∥Pv∥2 ≤ C1 log(d/k)

1/p−1/2

(
k

d

)1−1/p

∥v∥p′︸ ︷︷ ︸
uniform deviation (*)

+2

√
n

d

(
k

log(d/k)d

)1/2−1/p

∥v∥p′︸ ︷︷ ︸
expectation (**)

)

≥ 1− exp(−ck) ≥ 1− exp(−c1n),
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where ∥v∥p′ =
∥v∥p

d1/p−1/2 (note that Vk is not a finite a set, however by using that σmax(X) ≲
√
d with high probability, and

the Nk is O((k/d)C)-net of Vk, the last equation is valid).

Also, note that by Kashin theorem’s and that σmax(X) ≲
√
d, imply that

Pr

(
cBn ⊂ P (ℓp,d ∩ C · log(d) · Cd) ⊂ C1 log(d)Bn

)
≥ 1− exp(−Cd). (27)

Let us explain why we assume that p ≥ 1 + η(d). First, we set k0 ≍ n/ log(n). Note that (26) above implies that when
k0 ≤ k ≤ d/ log(d), it holds for any fk ∈ Vk that

(∗) ≲ max{(log log(d))1/2 log(d)1/p−1, log(d)−1} ≲ log(d)−C1/ log log(d) ≤ c(C1), (28)

where c(t) > 0 is a decreasing function of t that vanishes at infinity. So we may choose C1 to be large enough such that
c(C1) < 0.1. Next, note that for this k0 and p ≥ 1 + C log log(d)/ log(d), we have that for fk0

∈ Vk0
that

(∗∗) ≤
√

n

d
·
(
d log(d/k0)

k0

)1/p−1/2

≲ log(d) · (n/d)
C1 log log n

log n ≲ log(d) · (C2)
− log log d ≲ log(d)−2, (29)

where we set C > 0 to be large enough.

Now, we would like to find the k such that the term (∗) is more dominant then (∗∗). Indeed, when p > 1 +C/ log log(d), it
holds

log(d/k)1/2−1/p

(
k

d

)1−1/p

≳

√
n

d

(
k

log(d/k)d

)1/2−1/p

⇐⇒
√

k/d ≍
√

n/d ⇐⇒ k ≳ n

Therefore, when k ≤ n, the expectation term is more dominant, while for k ≥ n the uniform deviation is more dominant.

Therefore, (26) implies the following:

Pr

(
∀k ∈ R, vk ∈

⋃
k∈R

Vk : ∥Pvk∥2 ≲ log(d/k)1/p−1/2

(
k

d

)1−1/p

∥vk∥p′(1 + log(n) · 1k0≤k≤n)

)
≥ 1− exp(−cn),

(30)

where
R := {k0, 2k0, . . . , d/ log(d)},

and
R′ = {1, 2, 4, . . . , k0/4, k0/2}.

Also, note that under the events of lemmas B.4 and (26) it holds that

Pr
ξ

(
∀k ∈ R′, sup

fk∈Vk

⟨ξ, Pfk⟩ ≲
(
k

d

)1−1/p

∥vk∥p′(1 +
√
log(d)1k≤log(d))

)
≥ 1− n−100. (31)

To see this, note that for a fix Cσ , it holds by Lipschitz concentration that

sup
fk∈Aσ

〈
ξ,

Pfk
∥vk∥p′

〉
≲

√
max{k/ log(d/k), log(d)}

n

(
d(1 + log(d/k)1k≥log(d))

k

)1/p−1/2

≲

(
max{k,

√
log(d)}

d

)1−1/p

,

with a probability of 1− exp(−Cmax{k, log(n)}), and the claim follows by taking a union bound over Ck/ log(d/k) ≤
|σ| ≤ 2Ck/ log(d/k), and then on k ∈ R′. Note that the last inequality follows from our assumption on p.
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Finally, for each k ∈ 1, . . . , d/(C2 log(d)), we define fk = Πk(f̂n) − Πk/2(f̂n), where Πk outputs the vector with the
largest k entries (in terms of absolute value); and we decompose f̂n as follows:

f̂n = fns +
∑
k∈R

δkfk +
∑
k∈R′

δkfk, (32)

where fns ∈ C log(d)Cd, for all k ∈ 1, . . . , d/(C2 log(d)), fk ∈ Vk, and δk ≥ 0, and we may assume without loss of
generality that ∥fk∥p ≍ d1/p−1/2, and

∑
k∈R′ δ

p
k ≤ 1. Note that Hölder’s inequality implies that

sup
f̂n

∥
∑
k∈R

δkP (fk)∥2 ≤
∑
k∈R

δk ∥ sup
fv∈Vk

P (fk)∥2︸ ︷︷ ︸
fk

≤ ∥δ∥p∥f∥q ≤ C2 · c(C) (33)

where c(C) is defined in (28).

Before moving to the next step, we claim that

log(d)−1 ≲ E∥f̂n∥p′ ≲ 1. (34)

To see this, note that with high probability (over X) Gaussian width of

P (S) :=
⋃

1≤k≤k0

{
∑
k≤k0

δkP (fk) : fk ∈ Vk,
∑
k≤k0

δpk ≤ 1} ⊂ Sn−1

to see this let αk := log(n)1/p−1/2
(
k
d

)1−1/p
, and recall that

Pr(∀k ∈ R′, sup
fk∈Vk

⟨f , ξ⟩ ≲ αk) ≥ 1− n−100.

Therefore, we have that
Eξ sup

f∈P (S)

⟨f , ξ⟩ ≤ ∥δ∥p∥α∥q ≲ log(d)−2.

However, and we showed above that supf̂n ∥
∑

k∈R δkP (fk)∥2 ≤ 0.01. Therefore, by the additive of the mean width, with
high probability

E sup
f̂n−fns

〈
ξ, f̂n − fns

〉
≤ 0.02

and by definition we have that E supf̂n

〈
ξ, f̂n − fns

〉
= 1. Hence, f̂n must contain a component from C log(d)Cd ∩ ℓp,d,

and as
cBn ⊂ P (C log(d)Cd ∩ ℓp,d) ⊂ C log(d)Bn

it must hold that
log(d)−1 ≲ E∥fns∥p′ ≲ 1.

Finally, as cBn
2 ⊂ P (ℓp,d), we have that

Pr(| ∥ξ∥n
E∥ξ∥n

− 1| ≥ ϵ) ≤ 2 exp(−cn(t/ log(d))2),

by choosing t ≍ E∥ξ∥n, we have that

Pr(∥f̂n∥p ≍ E∥fns∥p) ≥ 1− exp(−c1n/ log(d))

Finally, by using Markov’s inequality and that ∥fns∥1 ≍ d1−1/p∥fns∥p ≍ d1/2, must implies that there exists a σ of
cardinality |σ| ≳ d/ log(d), such that |(fns)i| ≳ 1/(log(d)

√
d) for all i ∈ σ.

We summarize the last claim in the following lemma:
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Lemma B.5. Let X that lies in the events of (30) and Lemma B.4 that holds with a probability of at least 1− exp(−cn).
Then, there exists an event AX ⊂ Sn−1 such that σ(AX) ≥ 1 − exp(−cn/ log(n)) such that ∥f̂n∥p ≍ E∥f̂n∥p, and in
particular, it holds that

f̂n = fns +
∑
k∈R

δkfk +
∑
k∈R′

δkfk, (35)

where δk ≥ 0,
∑

k δ
p
k ≤ 1, and ∥fns∥p ≍ E∥f̂n∥p, and ∥fns∥∞ ≲ log(d)/

√
d. Furthermore, fns has d/ log(d) (denoted

by σ) such that |fi| ≳ 1/(log(d)
√
d) for all i ∈ σ, fk ∈ Vk, and ∥fk∥p ≍ d1/p−1/2.

Step I: In this step, we show that for k ∈ R it holds that

δk ≲ (k/d)
1
p log(d/k)

1
2(p−1) (36)

where k ∈ R, and fk ∈ Vk, and ∥fk∥p ≍ d1/p−1/2. Now, as fk and fns lie in different coordinates, it must hold that

∥f̂n − δkfk∥p ≤ (1− c1δ
p
k)∥f̂n∥p, (37)

where we used ∥f̂n∥p ≍ ∥fk∥p. Recall that Cd ⊂ Bd ⊂ ℓp,d (as it is in John’s position), and by Kashin’s theorem we that
that

cBn ⊂ P (ℓp,d)

with probability of 1− exp(−cd) when d ≥ Cn. The latter implies that we may find an interpolator f̃k, to δkP (fk)
∥P (fk)∥2

(i.e.

P f̃k = δkP (fk)
∥P (fk)∥2

) that has an ℓp norm of at most O(δkd
1/p−1/2). Consider

f̄n := f̂n − δk · fk + δk∥Pfk∥2 · f̃k,

which interpolates ξ, and by triangle inequality, we know that

∥f̄n∥p ≤ ∥f̂n∥p + d1/p−1/2 · (−cδpk + Cδk∥Pfk∥2) ≤ (1− c2δ
p
k + C1δk∥Pfk∥2)∥f̂n∥p, (38)

where we used that ∥f̂n∥p ≍ d1/p−1/2. We know that f̂n is the minimal norm solution, and hence we have that

−c2δ
p
k + C1δk∥Pfk∥2 < 0.

Therefore, we balance the following:

δpk ≍ δk∥Pfk∥2 ⇐⇒ δp−1
k ≍ log(d/k)1/2 (k/d)

1−1/p ⇐⇒ δp−1
k ≍ (k/d)

p−1
p log(d/k)1/2

⇐⇒ δk ≍ (k/d)
1
p log(d/k)

1
2(p−1)

(39)

Therefore, by the definition of Vk, we obtain that

δk∥fk∥2 ≲ δkλk ≲

(
k

d

)1/2

log(d/k)
1

2(p−1)
+ 1

p−
1
2 ,

and clearly this term maximized k = d/(C2 log(d)), and when p = 1 + C log log log(d)
log log(d) , we obtain that

δd/ log d∥fd/ log(d)∥2 ≲ log(d)−1/2(log log(d))c2(C)
log log(d)

log log log(d)
+ 1

2 ≲ log(d)−1/4,

where we set C > 0 to be large enough. hence the claim follows for all k ∈ R. Note that uniformly the entries of δkfk are
bounded by O(log(d)/

√
d). To see this, note that

δkfk ∈
(
k log(d/k)

d

)1/p−1/2
1√
|σ|

Bσ
∞

where |σ| ≍ k/ log(d/k). Note that Step I holds for every realization of ξ, under a high probability event over P , random
projection the claim follows.
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Before we move to the next step, we may assume the following decomposition over f̂n:

f̂n = fns +
∑
k∈R′

δkfk, (40)

where δk ≥ 0, ∥fns∥p ≍ d1/p−1/2, and ∥fns∥∞ ≲ log(d)/
√
d. Furthermore, fns has d/ log(d) (denoted by σ) such that

|fi| ≳ 1/(log(d)
√
d) for all i ∈ σ, fk ∈ Vk, and ∥fk∥p ≍ d1/p−1/2.

Step II: In this regime, we will have to use a different argument for two reasons. First, as k0 < d, we are “under”
parameterized, and also when k ≤ k0, the expectation is the dominant term.

Our proof boils down to the following lemma:

Lemma B.6. For each k ∈ 1, 2, 4 . . . , k0, and δ < c(δk, p, d), there exists an interpolator f̄n to ξ, i.e. (P f̄n = ξ) such that

∥f̄n∥pp ≤

(
1 + Cδ · (log(d)C1 · ∥Pfk∥2 · δk ·

√
k

n
− c1δ

p
k)

)
· ∥f̂n∥pp,

for all δ ∈ (0, c3(d, n, k)), where C1 ≤ 10.

We will prove this lemma below as it is quite technical in its nature. But let us provide a “wrong” explanation (e.g., a physics
proof) of how this lemma is proven.

Consider a fixed u ∈ Sn−1, then we find an interpolator, denoted by fu, to u (i.e Pfu = u), that lies in

Cd := [−1/
√
d, 1/

√
d]d ⊂ ℓp,d.

and it always exists by Kashin’s theorem for sub-Gaussian projections (see Lemma B.3), and we will study the norm of

∥f̂n + tfu∥p,

for t sufficiently small. First, we show that in expectation

E∥f̂n + tfu∥p = (1 + Θ̃(t2))E∥f̂n∥p

Then, we roughly show that
|∥f̂n + t · fu∥p − ∥f̂n∥p|

is tE∥f̂n∥p is Lipcshitz in ξ for every X that lies in a high probablity event. Then, by applying chaining over P (Vk) (in the
sense of Dudley’s), we show that for all fu = P (fk)/∥P (fk)∥2 and t = δ · δk · ∥Pfk∥2 that

∥f̂n + tfu∥pp ≤

(
1 + t · (C log(d) ·

√
k

n
) + (δt)2

)
· ∥f̂n∥pp,

and we may choose sufficiently small δ > 0 to obtain

∥f̂n + tfu∥pp ≤

(
1 + C · δ · δk log(d) · ∥Pfk∥2 ·

√
k

n

)
· ∥f̂n∥pp

and the claim follows by considering

f̄n := f̂n + t · fu − (1− δ +O(δ2))δkfk

that interpolates ξ, as it holds

∥f̄n∥pp = (1− δ)pδpk∥fk∥
p
p + δpk∥fns + δkδ∥pp ≤ (1− Cδ · (δpk − log(d)∥Pfk∥2 · δk ·

√
k

n
))∥f̂n∥p.
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After providing the idea of the proof of the lemma above, we see how this lemma implies the theorem. Note that the last
equation must be positive for every δ > 0, and hence we balance the following:

log(d)C1 ·
√

k

n
· ∥Pfk∥2 · δk ≍ δpk ⇐⇒ log(d)C1 ·

(
d

k

)1−1/p

δk ≍ δpk

⇐⇒ log(d)
C1

(p−1) (k/d)1/p ≍ δk

which corresponds to the same stationary point of (39). Therefore, it is not hard to verify that

δk∥fk∥2 ≲ (k/d)
1/2

log(d)
C1

(p−1) ≲ (k/d)
1/2

log(d)C2
log log(d)

log log log(d)

and the claim follows. As

∥
∑
k∈R′

δkfk∥ ≲ (n/d)1/2 log(d)−1/2 log(d)C1
log log(d)

log log log(d) ≲ (1/
√
d)0.49.

It remains to prove Lemma B.6.

Proof of Lemma B.6. First, we fix an X that lies in the event of Lemma B.5, and furthermore we assume that X lies in the
event of

c3 log(d)
−1Bn

2 ⊂ 1√
|σ|

Xσ[Cσ] := Pσ(Cσ)

for all subsets of σ = s such that s = cd/ log(d). Note that this event holds with probability of 1− exp(−cd/ log(d)). To
see this, note that (

d

c2d/ log(d)

)
≤ exp(log(c2d/ log(d))c2d/ log(d))

by Kashin’s theorem (see Lemma B.3), we may choose a small enough c3 > 0 such that

c3 log(d)
−2 ·Bn

2 ⊂ Pσ(Cσ)

with probability of

1−
(

d

c2d/ log(d)

)
exp(c4 log(ϵ)d/ log(d)) ≥ 1− exp(−c4d/ log(d))

when we choose ϵ ≃ log(d)−1.

Next, for every such X, we denote the event of f̂n has Ω(d/ log(d))-entries that their magnitude is at least Ω(1/ log(d)
√
d),

which holds with a probability of 1− exp(−cn) (see Lemma B.5 above). We denote it by A = AX ⊂ Sn−1, and note that
A = −A, throughout this proof we condition on this event.

Clearly, with high probability event of X, under the event A = AX, for every fixed u ∈ Sn−1, we may find an interpolator
to u which we denote by fu (i.e Pfu = u), that lies in C log(d)2 · Cσ, and in particular its ∥ · ∥p′-norm is at-most log(d),
and note that each entire of fu is bounded from above by O(log(d) · d).

Now, for every fixed X and tu ∈ t · Sn−1, we define the map

FX,tu : AX ⊂ Sn−1 → R

as follows:
ξ 7→ ∥f̂n(ξ + tu)∥pp = argmin

{f∈Rd:f=ξ+tu}
∥f∥pp − ∥f̂n(ξ)∥pp

First, we prove the following claim:

Claim 1. Let tu ∈ t · Sn−1, then under the event of Lemma of (40). There exists a set Atu ⊂ AX of measure 0.5 −
exp(−cn/ log(n) such that

FX,tu(ξ) ≲ t2 log(d).
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Proof. Let fu be the interpolator of u that lies in the cube Cσξ
, where σξ are the s-entries with the largest magnitude of fns

(in terms of our decomposition of f̂n). Note that entries of fu depend on f̂n, and yet we may first consider the conditional
expectation over the two points ξ,−ξ, as the same fu is chosen by our decision rule.

Note that when t small enough, it holds that t∥fu∥∞ ≤ c1(f̂n)i, for all i ∈ σ = σξ, then we obtain by Taylor’s expansion
(or using the identity of (1± x)p ≤ 1± px+O(p2x2)) that

min
{
∥f̂n(±ξ) + tfu∥pp

}
− ∥f̂n(ξ)∥pp

d1−p/2
≤

E
[
∥f̂n + tfu∥pp − ∥f̂n∥pp

]
d1−p/2

≲ dp/2 · E
[
∥(f̂n + tfu)1∥pp − ∥(f̂n)1∥pp

]
≲ dp/2 ·

(
E
[
x|(f̂n)1|p−1 sign((f̂n)1) · (fu)1t+ |(f̂n)1|p−2 · |(fu)1|2 · t2

])
= dp/2 · E

[
|(f̂n)1|p−2 · |(fu)1|2 · t2

]
≲ dp/2 · | 1√

d
|p−2 · d−1 · t2

≲ log(d) · t2
(41)

and the last inequality for all d entries of f̂n are greater than Ω(1/
√

d log(d)). Therefore, we have that for Pr(Au) ≥
Pr(AX)/ ≥ 1/2− exp(−cn/ log(n)) that

FX,tu(ξ) ≲ t2 log(d).

and the claim follows.

Next, we prove

Claim 2. Consider As := {ξ ∈ Sn−1 : d(ξ, Atu) ≤ s}, then the following holds for all ξ ∈ As

FX,tu(ξ) ≲ log(d) · (st+ t2)

Using the isoperimetry of the noise implies that by setting s =
√
max{k, log(d)}/n, we obtain that for every fixed u ∈ As

FX,tu(ξ) ≲ log(d) ·
√
max{k, log d}/nt+ t2,

with probability of at least 1 − exp(−c2 max{k, log(d)}). Let R(P (Vk)) be the radial projection of Vk, and recall the
definition of Vk of (25), and by applying union bound over a net of Vk with radius O(n−1), we obtain that uniformly over
Vk that

sup
u∈R(P (Vk))

FX,tu(ξ) ≤ EFX,tu(ξ) + C log(d) ·
√

k/n · t

≤
(
1 + C log(d) ·

√
k/n · t

)
∥f̂n∥pp

with probability of 1− exp(−c1 max{k,C log d}) ≥ 1− d−10,

Now, consider the interpolator f̄n to ξ (i.e. P f̄n = ξ) defined via

f̄n = f̂n − δδkfk + δδk∥P (fk)∥2fPfk/∥Pfk∥.

and note that
∥f̄n∥pp ≤ (1− δδpk + C log(d)C3 · δδk ·

√
k/n · ∥Pfk∥2)∥f̂n∥pp,

where C3 ≤ 10, and the lemma follows. It remains to prove Claim 2
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Proof of Claim 2. Fix ξ and ξ′ such that d(ξ′, ξ) = s, and let σξ ⊂ [d] to be all the entries of f̂n(ξ), such that |(f̂n)i| ≳
1/
√
d log(d) (clearly σ depends on ξ). Now, recall that

∥f̂n(ξ)− f̂n(ξ
′)∥pp

d1−p/2
≤ ∥ξ − ξ′∥pn

d1−p/2
≲ ∥ξ − ξ′∥p2 ≲ sp.

Then, by Markov’s inequality, there is σ′
ξ ⊂ σξ, such that for all i ∈ σ′

ξ

|f̂n(ξ′)i| ≳ 1/
√

log(d)d,

and |σ′
ξ| ≥ (1− 2sp)|σ|. Therefore, as |f̂n(ξ′)i| ≲ 1/

√
d log(d) over σξ \ σξ′ , we obtain

∥(f̂n(ξ′) + tfu)1σξ\σ′
ξ
∥pp − ∥f̂n(ξ′)1σξ\σ′

ξ
∥pp

d1−p/2
≲ sptdp/2 · max

i∈σξ\σ′
ξ

|f̂n(ξ′)i|p−1(fu)i ≲ spt log(d),

and therefore

FX,tu(ξ
′) ≤

∣∣∣∥f̂n(ξ) + tfu∥pp − ∥f̂n(ξ)∥pp − (∥f̂n(ξ′) + tfu∥pp − ∥f̂n(ξ′)∥pp)
∣∣∣

d1−p/2
+ C log(d)(t2 + spt),

where we used the last equation. Next, by using the identities of (1± x)l = 1± lx+O(l2x2), we obtain that for σ := σξ′ ,

and (∗) = (
∣∣∣∥f̂n(ξ) + tfu∥pp − ∥f̂n(ξ)∥pp − (∥f̂n(ξ′) + tfu∥pp − ∥f̂n(ξ′)∥pp

∣∣∣)/d1−p/2 that

d1−p/2 · (∗) ≲ t ·
∑
i∈σ

(
|f̂n(ξ)i|p−1 − |f̂n(ξ′)i|p−1

)
sign(f̂n(ξ)i)ui + t2

∑
i∈σ

|f̂n(ξ)i|p−2 − |f̂n(ξ′)i|p−2u2
i

≲ t ·
∑
i∈σ

(
|f̂n(ξ)i|p−1 − |f̂n(ξ′)i|p−1

)
sign(f̂n(ξ)i)ui +O(t2 log(d)),

where the last inequality follows from the analysis of (41), and by choosing t small enough (as it is allowed), it is enough to
bound the first term. Then, by using that

(∗) ≲ t

d1−p/2

∑
i∈σ

∣∣∣|f̂n(ξ)|p−1
i (fu)i − |f̂n(ξ′)|p−1

i (fu)i

∣∣∣
≲

t√
d · d1−p/2

∑
i∈σ

∣∣∣|f̂n(ξ)|p−1
i − |f̂n(ξ′)|p−1

i

∣∣∣
≲

t√
d · d1−p/2

∑
i∈σ

min{|f̂n(ξ)i|, |f̂n(ξ′)i|}p−2|f̂n(ξ)i − f̂n(ξ
′)i|

≲
t√

d · d1−p/2

∑
i∈σ

(√
1

log(d)d

)p−2

|f̂n(ξ)i − f̂n(ξ
′)i|

≲
t log(d)√
d · d1−p/2

∥
1

dp/2−1
∥q∥f̂n(ξ)− f̂n(ξ

′)∥p

≲ t log(d)d1/2−1/p∥ξ − ξ′∥p
≲ t log(d)d1/2−1/p · d1/p−1/2∥ξ − ξ′∥2
≲ log(d)t∥ξ − ξ′∥2

(42)

where we used that ∥f̂n(ξ) − f̂n(ξ
′)∥p = ∥ξ − ξ′∥n ≲ ∥ξ − ξ′∥2 · d1/p−1/2, as ℓp,d is in John’s position, and the claim

follows.
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B.5.2. PROOF OF LEMMA B.3

Let P = 1√
d
X, and note showing that cϵBn ⊂ P (Cd) is equivalent to show that

(P (Cd))◦ ⊂ Cϵ−1Bn

By duality, as the radial function equals to 1/∥ · ∥K◦ , it is sufficient to show

min
u∈Sn−1

∥X⊤u∥1 ≥ ϵd.

Equivalently,

min
u∈Sn−1

d∑
j=1

|
n∑

i=1

Xij · ui| ≥ ϵd

with probability of 1− exp(cd log(ϵ)). The proof goes via the probabilistic method, for a fix u ∈ Sn−1

d∑
j=1

|
n∑

i=1

Xij · ui| ≥ cϵd

with probability of 1 − exp(cd log(ϵ)). To see this, note that are cd entries with magnitude c1ϵ, with a probability of
1− exp(cd log(ϵ)). We used the fact that

Pr(|X1 · u| ≤ ϵ) ≤ Cϵ.

which holds as the entries of X1 are iid, and have a bounded density, see (Rudelson & Vershynin, 2015). Taking a net of
ϵ/2-over the sphere that has a cardinality of (1 + 2/ϵ)n ≤ exp(−n log(ϵ)) concludes the proof.
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