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Abstract
We investigate certified robustness for GNNs un-
der graph injection attacks. Existing research
only provides sample-wise certificates by veri-
fying each node independently, leading to very
limited certifying performance. In this paper, we
present the first collective certificate, which cer-
tifies a set of target nodes simultaneously. To
achieve it, we formulate the problem as a binary
integer quadratic constrained linear programming
(BQCLP). We further develop a customized lin-
earization technique that allows us to relax the
BQCLP into linear programming (LP) that can
be efficiently solved. Through comprehensive
experiments, we demonstrate that our collective
certification scheme significantly improves cer-
tification performance with minimal computa-
tional overhead. For instance, by solving the
LP within 1 minute on the Citeseer dataset, we
achieve a significant increase in the certified ra-
tio from 0.0% to 81.2% when the injected node
number is 5% of the graph size. Our paper marks
a crucial step towards making provable defense
more practical. Our source code is available at
https://github.com/Yuni-Lai/CollectiveLPCert.

1. Introduction
Graph Neural Networks (GNNs) have emerged as the domi-
nant models for graph learning tasks, demonstrating remark-
able success across diverse applications. However, recent
studies (Zügner et al., 2018; Zügner & Günnemann, 2019;
Liu et al., 2022) have revealed the vulnerability of GNNs to
adversarial attacks, raising significant concerns regarding
their security. Notably, a new type of attack called Graph
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Figure 1: While the sample-wise certificate verifies target
nodes one by one, our collective certificate verifies a set of
target nodes simultaneously by linear programming.

Injection Attack (GIA) has raised considerable attention.
Unlike the commonly studied Graph Modification Attack
(GMA), which involves inserting and deleting edges, GIA
will inject carefully crafted malicious nodes into the graph.
Recent research (Chen et al., 2022; Tao et al., 2023; Ju
et al., 2023) has demonstrated that GIA is not only more
cost-efficient but also more powerful than GMA.

To counteract these attacks, significant efforts have been
dedicated to robustifying GNNs. Representative defense
approaches include adversarial training (Gosch et al., 2023),
the development of robust GNN architectures (Jin et al.,
2020; Zhu et al., 2019; Zhang & Zitnik, 2020), and the detec-
tion of adversaries (Zhang et al., 2019; 2020). While these
approaches are quite effective against known attacks, there
remains a concern that new adaptive attacks could under-
mine their robustness. To tackle the challenge of emerging
novel attacks, researchers have explored provable defense
approaches (Cohen et al., 2019; Li et al., 2023; Bojchevski
et al., 2020; Scholten et al., 2022; Schuchardt et al., 2023)
that offer certified robustness for GNN models: the predic-
tions of models are theoretically guaranteed to be consistent
if the attacker’s budget (e.g., the number of edges could be
modified) is constrained in a certain range.

Sample-wise vs. Collective certification The certifica-
tion against attacks over graphs can be categorized into two
types: sample-wise and collective. Sample-wise certifica-
tion approaches (Cohen et al., 2019; Bojchevski et al., 2020;
Lai et al., 2023) essentially verify the prediction for a node
one by one, assuming that the attacker can craft a different
perturbed graph each time to attack a single node (Figure
1, top). However, in reality, the attacker can only produce
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a single perturbed graphto simultaneously disrupt all pre-
dictions for a set of target nodesT (Figure 1, bottom). Such
a discrepancy makes sample-wise certi�cates rather pes-
simistic. In contrast, more recent works (Schuchardt et al.,
2020; 2023) aim to certify the set of nodes at once, provid-
ing collective certi�cation that can signi�cantly improve
the certifying performance.

In the domain of certifying GNNs, the majority of research
works (Bojchevski et al., 2020; Wang et al., 2021; Jia et al.,
2020; 2022; Scholten et al., 2022) focus onsample-wise
certi�cation againstGMA. The onlycollectivecerti�cation
scheme against GMA proposed by Schuchardt et al. (2020),
however, is not applicable to GIA. This is because the cer-
ti�cation scheme assumes a �xed receptive �eld of GNNs,
while GIA, which involves adding edges after injecting
nodes, inevitably expands the receptive �eld. Although
there are emerging works (Lai et al., 2023; Jia et al., 2023)
speci�cally designed to tackle GIA, they only offer sample-
wise certi�cates, resulting in limited certi�ed performance.

We are therefore motivated to derive the�rst collective
certi�ed robustness schemefor GNNs against GIA. To
achieve collective robustness, we leverage the inherent lo-
cality property of GNNs, where the prediction of a node
in ak-layer message-passing GNN is in�uenced solely by
its k-hop neighbors. This ensures that injected edges by
the attacker only impact a subset of the nodes. We address
the collective certi�cation problem by transforming it into
a budget allocation problem, considering the attacker's ob-
jective of modifying the predictions of as many nodes as
possible with a limited number of malicious nodes and max-
imum edges per node. By overestimating the number of
modi�ed nodes, we can certify the consistent classi�cation
of the remaining nodes.

However, the above problem yields a binary integer
polynomial-constrained program, which is known to be NP-
hard. We then propose acustomizedlinearization technique
to relax the original problem to a linear programming (LP),
which can be solved ef�ciently. The LP relaxation provides
a lower bound on the achievable certi�ed ratio, ensuring the
soundness of the veri�cation process. We conduct compre-
hensive experiments to demonstrate the effectiveness as well
as the computational ef�ciency of our collective certi�ca-
tion scheme. For example, when the injected node number
is 5% of the graph size, our collective robustness models
increase the certi�ed ratio from0:0%to over80:0%in both
Cora-ML and Citeseer datasets, and it only takes about1
minutes to solve the collective certifying problem.

Overall, we propose the �rst collective certi�cate for GNNs
against graph injection attacks. In particular, it is computa-
tionally ef�cient and can signi�cantly improve the certi�ed
ratio. Moreover, this certi�cation scheme isalmostmodel-
agnostic as it is applicable for any message-passing GNNs.

2. Background

2.1. Graph Node Classi�cation

We focus our study on graph node classi�cation tasks. Let
G = ( V; E; X ) 2 G represent an undirected graph, where
V = f v1; � � � ; vn g is the set ofn nodes,E = f eij =
(vi ; vj )g denotes the set of edges with each edgeeij con-
nectingvi andvj , andX 2 Rn � d represents the features
associated with nodes. Equivalently, we can use an adja-
cency matrixA 2 f 0; 1gn � n with A ij = 1 if eij 2 E and
A ij = 0 if eij =2 E to encode the graph structure ofG.
Each node has its labely 2 Y = f 1; � � � ; K g, but only a
subset of these labels are known. The goal of a multi-output
graph node classi�erf : G ! f 1; � � � ; K gn is to predict
the missing labels given the input graphG.

2.2. Message-Passing Graph Neural Networks

In this paper, we study certi�ed robustness approaches that
are applicable to the most commonly used GNNs that oper-
ate under the message-passing framework based on neigh-
bor aggregation. These message-passing GNNs (Kipf &
Welling, 2016; Gilmer et al., 2017; Veli�cković et al., 2018;
Geisler et al., 2020) encode the local information of each
node by aggregating its neighboring node features (i.e., em-
bedding) through various aggregation functions. During the
inference, the receptive �eld of a nodev in k-layer GNN
is just itsk-hops neighbors, and the nodes/edges beyond
the receptive �eld would not affect the prediction of the
node when the model is given. This locality enables the
application of collective certi�cates.

2.3. Certi�ed Robustness from Randomized Smoothing

Certi�ed robustness aims to provide a theoretical guarantee
of the consistency of a model's prediction under a certain
perturbation range on the input. Randomized smoothing is
a widely adopted and versatile approach for achieving such
certi�cation across a range of models and tasks (Jia et al.,
2020; Bojchevski et al., 2020; Li et al., 2023). Take the
graph model as an example; it adds random noise (such as
randomly deleting edges) to the input graph. Then, given
any classi�er f , it builds a smoothed classi�erg which
returns the “majority vote” regarding the random inputs.
Certi�cation is achieved based on the fact that there is a
probability of overlap between the random samples drawn
from the clean graph and the perturbed graph, in which the
predictions must be the same.

3. Problem Statements

3.1. Threat Model: Graph Injection Attack

We focus on providing robustness certi�cates against graph
injection attacks (GIAs) under theevasionthreat model,
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where the attack perturbation occurs after the model training.
The adversaries aim to disrupt the node classi�cations of a
set of target nodes, denoted byT, as many as possible. To
this end, it can inject� additional nodes~V = f ~v1; � � � ; ~v� g
into the graph. These injected nodes possessarbitrary node
featuresrepresented by the matrix~X 2 R� � d. Additionally,
~E represents the set of edges introduced by the injected
nodes. To limit the power of the adversaries and avoid being
detected by the defender, we assume that each injected
node~v is only capable of injecting a maximum of� edges.
Thus, the degree of each injected node� (~v) is no more
than� . Let us represent the perturbed graph asG0, with its
corresponding adjacency matrix denoted asA0. We formally
de�ne the potential GIA as a perturbations set associated
with a given graphG = ( V; E; X ):

B �;� (G) := f G0(V0; E0; X 0)jV0 = V [ ~V; E0 = E [ ~E;

X 0 = X [ ~X; j ~Vj � �; � (~v) � �; 8~v 2 ~Vg: (1)

Given the absence of a collective certi�cate to address these
types of perturbations, our �rst contribution is to de�ne the
problem of collective robustness.

3.2. Problem of Collective Certi�ed Robustness

Following (Scholten et al., 2022), we employ randomized
smoothing to serve as the foundation of our certi�cation. In-
tuitively, by adding random noise to the graph, the message
from the injected node to a target node has some proba-
bility of being intercepted in the randomization, such that
the GNN models will not aggregate the inserted node's fea-
ture for prediction. We adopt node-aware bi-smoothing
(Lai et al., 2023), which was proposed to certify against
the GIA perturbation, as our smoothed classi�er. Given a
graphG, random graphs are created by a randomization
scheme denoted as� (G) = ( � e(G); � n (G)) . It consists
of two components: edge deletion smoothing� e(G) and
node deletion smoothing� n (G). Speci�cally, the former
randomly deletes each edge with probabilitype, and the
latter randomly deletes each node (together with its incident
edges) with probabilitypn . Based on these random graphs,
a smoothed classi�erg(�) is constructed as follows:

gv (G) := arg max
y2f 1;��� ;K g

pv;y (G); (2)

wherepv;y (G) := P(f v (� (G)) = y) represents the prob-
ability that the base GNN classi�erf returned the classy
for nodev under the smoothing distribution� (G), andg(�)
returns the “majority votes” of the base classi�erf (�).

Given a speci�c attack budget� and� , our objective is to
provide certi�cation for the number of target nodes inT that
are guaranteed to maintain consistent robustness against any
potential attack. We assume that the attacker's objective is to
maximize the disruption of predictions for the target nodes,

P
v2 T I f gv (G0) 6= gv (G)g, through the allocation of insert-

ing edges. By modeling a worst-case attacker that leads to
a maximum number of non-robust nodes, we can certify
that the remaining number of nodes is robust. Such that the
collective certi�cation can be formulated as an optimization
problem as follows:

min
G02 B �;� (G)

jTj �
X

v2 T

I f gv (G0) 6= gv (G)g; (3)

s.t. j ~Vj � �; � (~v) � �; 8~v 2 ~V:

Typically, when setting theT as a single node, the problem
degrades to a sample-wise certi�cate.

4. Collective Certi�ed Robustness

In this section, we derive the collective certi�cate for the
smoothed classi�er with any message-passing GNNs as the
base classi�er. To ensure the clarity of the presentation, we
begin by providing an overview of our approach.

4.1. Overview

The derivation of the robustness certi�cate relies on aworst-
caseassumption: in the message-passing process, if a node
receives even a single message from any injected node, its
prediction will be altered. It is important to note that this
assumption exaggerates the impact of the attack, thereby
validating the guarantee of the defense. Accordingly, we
de�ne message interferencefor a nodev as the eventEv

that the nodev receivesat leastone message from injected
nodes in message passing.

The achievement of collective certi�cation then constitutes
the following crucial steps. First, we derive an upper bound
on the probability of the message interference event, de-
noted asp(Ev ) (Section. 4.2.1). Second, we establish
the relation between the probabilityp(Ev ) and the pre-
diction probabilitypv;y (G), which allows us to bound the
change ofpv;y (G) under the perturbation rangeB �;� (G)
(Section. 4.2.2). Third, we derive the certifying condition
for smoothed classi�erg based on the results from the pre-
vious sections (Section. 4.2.3). Finally, we formulate the
collective certi�ed robustness problem as an optimization
problem (Section. 4.3).

4.2. Condition for Certi�ed Robustness

4.2.1. MESSAGE INTERFERENCE EVENT

We begin by introducing some necessary notations. We
useP k

~vv to represent all the existing paths from an injected
node~v 2 ~V to a testing nodev, where the length or dis-
tance of these paths is smaller thank. Each pathq in P k

~vv
consists of a series of linked edges. To simplify notation,
we de�ne� e(A) as an equivalent representation of� e(G),

3



Collective Certi�ed Robustness against Graph Injection Attacks

where� e(A) ij = 0 if the edge(i; j ) does not exist after the
sampling, and� e(A) ij = 1 if the edge(i; j ) remains. Sim-
ilarly, we represent� n (G) as� n (A) i , where� n (A) i = 0
indicates the deletion of nodei , and� n (A) i = 1 denotes
that the node remains unchanged. Then, we formally de�ne
the eventEv as:

9~v 2 ~V : (9q 2 P k
~vv : (8ni 2 q : � n (A0)n i = 1) (4)

^ (8(i; j ) 2 q : � e(A0) ij = 1)) :

That is at least one path from a malicious node~v to the
testing nodev is effective (all edges and nodes are kept in the
smoothing). Below, our goal is to quantify the probability
of Ev , so that we can provide an estimation of the potential
impact of injected nodes on the prediction probability.

However, directly estimating the event probabilityp(Ev ) is
dif�cult because we need to �nd out all the possible paths
P k

~vv for each node. Similar to (Scholten et al., 2022), we
have an upper bound forp(Ev ) � p(Ev ) by assuming the
independence among the paths:

Lemma 1. Let A be the adjacency matrix of the perturbed
graph with� injected nodes, and the injected nodes are in
the last� rows and columns. With smoothingpn > 0 and
pe > 0, we have the upper bound ofp(Ev ):

p(Ev ) � p(Ev ) (5)

=1 � p
jj A n :( n + � ) ;v jj 1

1 p
jj A 2

n :( n + � ) ;v jj 1

2 � � � p
jj A k

n :( n + � ) ;v jj 1

k ;

wherepi := 1 � (�pe �pn ) i ; 8i 2 f 1; 2; � � � ; kg, and adja-
cency matrixA contains the injected nodes encoded in the
(n + 1) th to (n + � )th row, andjj � jj 1 is l1 norm.

Proof. (Sketch) Letp( �E ~v
v ) denote the probability that all

paths are intercepted from an injected node~v to nodev in
the case that of considering each path independently. We
havep( �E ~v

v ) =
Q

q2 P k
~vv

(1 � (�pe �pn ) j qj ), where�pe := 1 � pe,
�pn := 1 � pn andjqj 2 f 1; � � � ; kg represent the length of
the pathq 2 P k

~vv from ~v to v. Furthermore,jjAk
n :( n + � ) ;v jj1

quanti�es the number of paths with a length ofk originating
from any malicious node and reaching nodev. Finally,
by considering multiple injected nodes, we havep(Ev ) =
1�

Q
~v2 ~V p( �E ~v

v ). See Appendix. A for complete proof.

4.2.2. BOUNDING THE CHANGE OF PREDICTION

Next, we �rst provide Lemma 2 to demonstrate that the
occurrence of the complement event ofEv , denoted as�Ev , is
the condition for the consistent prediction of base classi�er
f . Then, we prove that the change of prediction probability
for the smoothed classi�erg is bounded byp(Ev ):

Lemma 2. Given a testing nodev 2 G, perturbation
rangeB �;� (G), pn > 0 andpe > 0, we havef v (� (G)) =

f v (� (G0)) ; 8G0 2 B �;� (G) if event �Ev occurs:

8~v 2 ~V : (8q 2 P k
~vv : (9ni 2 q : � n (A0)n i = 0) (6)

_ (9(i; j ) 2 q : � e(A0) ij = 0)) :

Proof. For each pathq 2 P k
~vv , the message from the in-

jected node~v to the target nodev is intercepted if at least
one of the edges or nodes along the path is deleted. Con-
sequently, if all the paths are intercepted as a result of the
smoothing randomization� (G0), the prediction for the tar-
get nodev remains unchanged.

Now, we can establish a bound on the change in prediction
probability of the smoothed classi�erg, which serves as a
crucial step for deriving the certifying condition.
Theorem 1. Given a base GNN classi�erf trained on
a graphG and its smoothed classi�erg de�ned in (2), a
testing nodev 2 G and a perturbation rangeB �;� (G), let
Ev be the event de�ned in Eq.(4). The absolute change in
predicted probabilityjpv;y (G) � pv;y (G0)j for all perturbed
graphsG0 2 B �;� (G) is bounded by the probability of the
eventEv : jpv;y (G) � pv;y (G0)j � p(Ev ).

Proof. (Sketch)pv;y (G) � pv;y (G0) � P(f v (� (G)) =
y ^ Ev ) = p(Ev ) � P(f v (� (G)) = yjEv ) � p(Ev ). See
Appendix. A for complete proof.

4.2.3. CERTIFYING CONDITION

With the upper bound of the probability changepv;y (G)
provided in Theorem 1 and upper bound ofp(Ev ) provided
in Lemma 1, we can derive the certifying condition for
smoothed classi�erg under a given perturbation range:
Corollary 1. Given a base GNN classi�erf trained on
a graphG and its smoothed classi�erg, a testing node
v 2 G and a perturbation rangeB �;� (G), let Ev be the
event de�ned in Eq.(4). We havegv (G0) = gv (G) for all
perturbed graphsG0 2 B �;� (G) if:

p(Ev ) < [pv;y � (G) � maxy6= y � pv;y (G)]=2; (7)

wherey� 2 Y is the predicted class ofgv (G).

Proof. With Theorem 1, we havegv (G0) = gv (G) if
pv;y � (G) � p(Ev ) > max y6= y � pv;y (G) + p(Ev ), which
is equivalent top(Ev ) < [pv;y � (G) � maxy6= y � pv;y (G)]=2.

Nevertheless, quantifyingp(Ev ) is still challenging due to
the unknown pathsP k

~vv or the perturbed adjacency matrix.
To tackle the challenge, we introduce the following col-
lective certifying framework that models the problem of
certifying node injection perturbation as an optimization
problem. More importantly, we can certify a set of nodes at
the same time to enhance the certifying performance.
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4.3. Collective Certi�cation as Optimization

With Corollary 1, we know that nodev is not certi�ably
robust ifp(Ev ) � [pv;y � (G) � maxy6= y � pv;y (G)]=2. Under
a limited attack budget, the worst-case attacker can lead to a
maximum number of non-robust nodes among target nodes
in T, which can be formulated as follows:

max
G02 B �;� (G)

M =
X

v2 T

I f p(Ev ) � cv =2g; (8)

s.t. j ~Vj � �; � (~v) � �; 8~v 2 ~V;

wherecv := pv;y � (G) � maxy6= y � pv;y (G), is the classi�-
cation gap of smoothed classi�er. To obtain the certi�ably
robust node number among all testing nodes, the optimal
objective valueM � of (8) can serve as an upper bound for
non-robust nodes, and hence the remainingjTj � M � nodes
are certi�ed robust. Plugging inp(Ev ) with (5), and taking
the logarithm of thep(Ev ), we transformed the problem(8)
to a binary integerpolynomial-constrained programming
(We put the problem and formulation details in Appendix.
B).

Typically, for two-layer GNNs (k = 2 ), we formulate the
problem into a binary integer quadratic constrained linear
programming problem (BQCLP). LetA0 be the original
adjacency matrix of the existingn nodes in the graphG, and
A1 denote the adjacency matrix from injected� malicious
nodes to the existing nodes, andA2 be the adjacency matrix
representing the internal connection between the malicious
nodes. Then the problem(8) becomes the BQCLP problem
as follows (See Appendix. B for detailed formulation):

max
A 1 ;A 2 ;m

M = t > m; (9)

s.t. ~p1A>
1 1� + ~p2(A1A0 + A2A1)> 1� � C � m;

A11n + A21� � �; A >
2 = A2;

A1 2 f 0; 1g� � n ; A2 2 f 0; 1g� � � ; m 2 f 0; 1gn ;

wheret is a constant zero-one vector that encodes the po-
sition of the target node setT, m is a vector that indi-
cates whether the nodes are non-robust,~p1 = log(p1) and
~p2 = log(p2) are two negative constants,C 2 Rn is a
vector with negative constant elementslog(1 � cv

2 ), 1n de-
notes all-ones vector with lengthn, > represents matrix
transposition, and� denotes element-wise multiplication.

5. Effective Optimization Methods

The BQCLP problem(9) is non-convex and known to be
NP-hard. In this section, we introducetwoeffective methods
to relax problem(9) to a Linear Programming (LP) to solve
it ef�ciently. The �rst method (termedCollective-LP1)
relies on standard techniques to avoid quadratic terms; the
second method (termedCollective-LP2) employs a novel

customized reformulation that can signi�cantly improve the
solution quality and computational ef�ciency.

5.1. Standard Linear Relaxation (Collective-LP1)

To solve problem(9) ef�ciently, one common solution is
to replace the quadratic terms in the constraint with linear
terms by introducing extra slack variables. We adopt the
standard technique (Wei, 2020) to address the quadratic
terms inA2A1. Speci�cally, letA2( ij ) denotes the element
of i th row andj th column in matrixA2 and A1( jv ) de-
notes the element in matrixA1. For each quadratic term
A2( ij ) A1( jv ) (8i 2 f 1; � � � ; � g; 8j 2 f 1; � � � ; � g; 8v 2
f 1; � � � ; ng) in A2A1, we can equivalently reformulate
Qv( ij ) := A2( ij ) A1( jv ) with corresponding constraints:
Qv( ij ) 2 B, Qv( ij ) � A2( ij ) , Qv( ij ) � A1( jv ) , and
A2( ij ) + A1( jv ) � Qv( ij ) � 1. We further relax all the
binary constraints to the box constraints[0; 1], leading to an
LP as follows:

max
A 1 ;A 2 ;m;

Q 1 ;Q 2 ; ��� ;Q n

M = t > m; (10)

s.t. ~p1A>
1 1� + ~p2A>

0 A>
1 1� + ~p2O � C � m;

A11n + A21� � �; A >
2 = A2;

Qv = ( Qv( ij ) ) � � � ; v 2 f 1; 2; � � � ; ng;

O = [ 1>
� Q11� ; 1>

� Q21� ; � � � ; 1>
� Qn 1� ]> ;

Qv � 1� [A1(: ;v ) ]
> ; Qv � A2; Qv 2 [0; 1]� � � ;

1� [A1(: ;v ) ]
> + A2 � Qv � 1;

A1 2 [0; 1]� � n ; A2 2 [0; 1]� � � ; m 2 [0; 1]n :

The more detailed formulation of problem(10) is supplied
in Appendix. B. This transformation makes our collective
robustness problem solvable in polynomial time.

Validity of relaxation for certi�cation. It is important
to note that the relaxed LP problem always has a larger
feasible region than the original BQCLP problem. As a
result, the optimal�M � (i.e., the maximum number of non-
robust nodes) of the relaxed problem is always greater than
the original problem. That is, the number of robust nodes
(jTj� �M � ) certi�ed by the relaxed problem is always smaller
or equal to that obtained from the original problem, such
that the relaxation always yields sound veri�cation.

Nevertheless, this technique results in introducingO(� 2jTj)
(extra) variables among the matrixO. To improve ef�ciency,
we next design a more ef�cient reformulation that only
requiresO(� jTj) extra variables.

5.2. Customized Linear Relaxation (Collective-LP2)

To reduce the number of the extra variables, we notice that
there is a vector in the quadratic termA>

1 A>
2 1� , and we can
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�rst combine theA>
2 1� to reduce the dimension. We de�ne

a vector variablez := A>
2 1� to replace the termA>

2 1� in
the problem (9). Then we can reformulate it as:

max
A 1 ;z; m

M = t > m; (11)

s.t. ~p1A>
1 1� + ~p2A>

0 A>
1 1� + ~p2A>

1 z � C � m;

A11n + z � �; A 1 2 f 0; 1g� � n ;

z 2 f 0; 1; � � � ; min( �; � )g� � 1; m 2 f 0; 1gn :

To linearize the problem, we need to deal with the quadratic
term A>

1 z. If a binary variablex 2 B, and a continu-
ous variablez 2 [0; u], thenw := xz is equivalent to
(Wei, 2020): w � ux; w � z; ux + z � w � u; 0 � w.
To apply it, we �rst relax thez to [0; min (�; � )]. As-
suming that� � � , for each quadratic termA>

1( ij ) zj

(8i 2 f 1; � � � ; ng; 8j 2 f 1; � � � ; � g) in A>
1 z, we create

a substitution variableQ( ij ) = A>
1( ij ) zj with corresponding

constraints:0 � Q( ij ) , Q( ij ) � �A >
1( ij ) , Q( ij ) � zj , and

�A >
1( ij ) + zj � Q( ij ) � � . We further relax all the binary

constraints to[0; 1] interval constraints. Then the problem
(9) can be relaxed to an LP as follows:

max
A 1 ;m;

Q 2 Rn � �

M = t > m; (12)

s.t. ~p1A>
1 1� + ~p2A>

0 A>
1 1� + ~p2Q1� � C � m;

A11n + z � �; A 1 2 [0; 1]� � n ;

Q � �A >
1 ; Q � 1n z> ;

�A >
1 + 1n z> � Q � �;

Q 2 [0; � ]n � � ; z 2 [0; � ]� � 1; m 2 [0; 1]n :

We put the detailed formulation in Appendix. B. Next, we
analyze the complexity of problem (10) and (12).

5.3. Comparison of Computational Complexity

For problem(10), in the �rst constraints, the rows corre-
sponding to the nodes that do not belong to the target node
setT will not affect the objectiveM . Although we de�nen
matrix Qv for the sake of convenience, onlyjTj of them are
actually effective. For the node witht i = 0 , the valuemi

will not affect the objectiveM , such that we can always set
mi = 0 , and the �rst constraint always holds. Hence, there
areO(3� 2jTj + � 2 + � + jTj) effective linear constraints,
andO(� 2jTj + � 2 + �n + jTj) effective variables.

For problem(12), similar to(10), only jTj rows ofQ are
actually effective. There areO(3� jTj + � + jTj) effective
linear constraints, andO(�n + � jTj + jTj) effective vari-
ables. Our well-designed formulation makes the collective
problem scalable regarding the number of injected nodes�
or the target node numberjTj. In the next section, we show
that this improved LP formulation is both more ef�cient and
effective by experimental evaluation.

6. Experimental Evaluation

In this section, we conduct a comprehensive evaluation of
our proposed collective certi�cate. Given the absence of
other collective baselines for graph injection attacks (GIA),
we compare our collective certi�cationCollective-LP1and
Collective-LP2, with the existingSample-wiseapproach
(Lai et al., 2023). We present a detailed analysis of the exper-
imental results, highlighting the strengths and advantages
of our collective certi�cation methods.

6.1. Experimental Setup

Datasets and Base Model. We follow the literature
(Schuchardt et al., 2020; Lai et al., 2023) on certi�ed robust-
ness and evaluate our methods on two graph datasets: Cora-
ML (Bojchevski & Günnemann, 2017) and Citeseer (Sen
et al., 2008). The Cora-ML dataset contains2; 810nodes,
7; 981 edges,7 classes, and the Citeseer contains2; 110
nodes,3; 668edges,6 classes. We employ two representa-
tive message-passing GNNs, Graph Convolution Network
(GCN) (Kipf & Welling, 2016) and Graph Attention Net-
work (GAT) (Veli�cković et al., 2017), with a hidden layer
size of64 as our base classi�ers. We use50 nodes per class
for training and validation respectively, while the remaining
as testing nodes. We also train the base model with random
noise augmentation following (Lai et al., 2023).

Threat Models and Certi�cate. We set the degree con-
straint per injected node as the average degree of existing
nodes, which are6 = d5:68e and4 = d3:48e respectively
on Cora-ML and Citeseer datasets. We evaluate our pro-
posed collective certi�cate with various amounts of injected
nodes� 2 f 20; 50; 80; 100; 120; 140; 160g. Grid search
is employed to �nd the suitable smoothing parameterspe

andpn from 0:5 to 0:9 respectively. We exclude those pa-
rameters that lead to poor accuracy that are worse than the
Multilayer Perceptron (MLP) model which does not depend
on graph structure. Following (Bojchevski et al., 2020;
Lai et al., 2023), we employ Monte Carlo to estimate the
smoothed classi�er with a sample size ofN = 100; 000.
We apply the Clopper-Pearson con�dence interval with Bon-
ferroni correction to obtain the lower bound ofpA and upper
bound ofpB . We set the con�dence level as� = 0 :01. Due
to the overwhelming computation cost of the original col-
lective certifying problem known as NP-hard, we solve our
proposed relaxed LP problems by default. All our collective
certifying problem is solved using MOSEK (ApS, 2019)
through the CVXPY (Diamond & Boyd, 2016) interface.

Evaluation Metrics. Among the testing nodes that are
correctly classi�ed, we randomly select100nodes as the
target node setT. We report thecerti�ed ratio on the target
nodes set, which is the ratio of nodes that are certi�ably
robust under a given threat model. We repeat5 times with
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different random selections and report the average results.
Additionally, we evaluate the global attack scenario in which
theT is all the nodes in the graph in Appendix. D.5.

6.2. Effectiveness of Collective Certi�ed Robustness

In this section, we aim to verify the effectiveness of our
proposed collective approach in enhancing the certi�ed ro-
bustness performance.

6.2.1. COMPARING COLLECTIVE WITH SAMPLE-WISE.

(a) Certi�ed Ratio (GCN) (b) Certi�ed Ratio (GCN)

(c) Certi�ed Ratio (GAT) (d) Certi�ed Ratio (GAT)

Figure 2: Comparison of certi�ed performance (More re-
sults with other parameters are shown in Appendix. D).

In Figure 2 and Table 1, we exhibit the certi�ed ratio of
the three certi�cates regarding various numbers of injected
nodes� . With the same smoothing parameter, both proposed
collective certi�cates achieve a higher certi�able radius,
outperforming the sample-wise approach signi�cantly when
the� is large. For example, in the Citeseer dataset, when
� = 140, our Collective-LP1 and Collective-LP2 have the
certi�ed ratios of 73:0%, and81:2%, while sample-wise
can certify0:0%nodes. Moreover, the improvement of our
collective certi�cate is even more signi�cant in the global
attack setting (Appendix. D.5).

When the� is small, the LP collective robustness does not
outperform the sample-wise robustness. This can be at-
tributed to the integrality gap of the relaxation technique
utilized in the LP formulation, which we further illustrated
in Section. 6.3.Interestingly, this difference becomes negli-
gible in the case of a global attack, as shown in Appendix.
D.5. Nevertheless, in practical scenarios, we can easily
combine the sample-wise and collective certi�cates with
minimal effort to achieve stronger certi�ed performance in
both small and large attack budgets. Since the sample-wise

and collective models share the same smoothed model, we
only need to estimate the smoothing prediction once to avoid
extra computation. By integrating both certi�cates, we can
leverage their respective strengths and enhance the overall
robustness of the system.

Table 1: Comparison of certi�ed ratio between sample-wise
and collective certifying schemes under various parameters.

Cora-ML (� = 6 ) �
parameters

(pe-pn ) methods 20 50 100 120 140

0.7-0.9
Sample-wise 1.000 0.000 0.000 0.000 0.000
Collective-LP1 0.9200.7680.4520.3160.178
Collective-LP2 0.9260.8360.6860.6240.564

0.9-0.8
Sample-wise 1.000 0.000 0.000 0.000 0.000
Collective-LP1 0.9500.8780.7300.6660.600
Collective-LP2 0.9500.8940.8000.7600.726

0.9-0.9
Sample-wise 1.000 1.000 1.000 0.000 0.000
Collective-LP1 0.978 0.948 0.9000.8800.862
Collective-LP2 0.978 0.948 0.9000.8800.862

Citeseer (� = 4 ) 20 50 100 120 140

0.7-0.9
Sample-wise 1.000 0.990 0.000 0.000 0.000
Collective-LP1 0.950 0.8460.6400.5460.452
Collective-LP2 0.950 0.8920.7960.7560.718

0.8-0.7
Sample-wise 0.000 0.000 0.000 0.000 0.000
Collective-LP10.8560.5040.0000.0000.000
Collective-LP20.8940.7560.5340.4460.360

0.9-0.8
Sample-wise 1.000 0.000 0.000 0.000 0.000
Collective-LP1 0.9700.9200.8200.7750.730
Collective-LP2 0.9700.9300.8620.8400.812

A superior certifying scheme should not only possess a
higher certi�ed ratio but also a higher clean accuracy that
represents the initial performance of the model. We also
evaluate the trade-off between the certi�ed ratio and the
clean accuracy of the smoothed model in Figure 3. As
we employ the same smoothed model, both the collective
scheme and the sample-wise scheme exhibit the same clean
accuracy when they share identical smoothing parameters,
while our collective approach consistently achieves a higher
certi�ed ratio, particularly when� exceeds the certi�able
radius of the sample-wise approach. Finally, these results
highlight the advantageous trade-off achieved by our pro-
posed collective approach in both smaller� and larger� .

6.2.2. COMPARING TWO COLLECTIVE CERTIFICATES.

In comparing our two LP-based collective certi�cates, it
is evident that our customized relaxation (Collective-LP2)
consistently achieves higher or equivalent certi�ed ratios
compared to the standard technique (Collective-LP1). For
instance, in the Cora-ML dataset, whenpe = 0 :7, pn = 0 :9,
and� = 140, Collective-LP2 improves the certi�ed ratio by
216%compared to Collective-LP1 (Table 1). Furthermore,
with the same clean accuracy, Collective-LP2 is always
superior to Collective-LP1 in certi�ed ratios (Figure 3).
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(a) smaller� (GCN) (b) smaller� (GCN)

(c) larger� (GCN) (d) larger� (GCN)

(e) larger� (GAT) (f) larger� (GAT)

Figure 3: Trade-off between clean accuracy and certi�ed
ratio (More results with other� are shown in Appendix. D).

In Figure 4, we present a comparison of the runtime be-
tween our two LP-based collective certi�cates. It is evident
that Collective-LP2 exhibits a signi�cantly lower runtime
compared to Collective-LP1, particularly as� increases. Re-
markably, even for a larger value of� like � = 140, our
Collective-LP2 can be solved in approximately1 minute.
This indicates the practicality and ef�ciency of our pro-
posed method, making it feasible for real-world scenarios
with larger attack budgets.

6.3. Effectiveness of Linear Relaxation

In this section, we investigate the impact of our LP relax-
ation technique on the certi�ed performance of our col-
lective certi�cation method. Speci�cally, we compare the
certi�ed ratios obtained from both the original integer prob-
lem (BQCLP) and the LP problem (Collective-LP2). Figure
5 provides a graphical representation of these results. Due to
the computational overhead associated with solving the inte-
ger problem, we limit our analysis to a smaller attack budget,
� � 12. We observe that the certi�ed ratio of the integer
problem remains relatively stable as� increases. However,
the certi�ed ratio of Collective-LP2 undergoes a decline of
approximately5%. This decrease in certi�ed performance

(a) Runtime (b) Runtime

Figure 4: Runtime comparison of LP collective models.

(a) Integrality Gap (b) Integrality Gap

Figure 5: Certi�ed ratio comparison between optimizing
original BQCLP problem and relaxed LP problem.

is attributed to the sacri�ce made in the relaxation process
of the LP formulation. It also partially explains why our
approach may exhibit a weaker certi�ed ratio compared to
the sample-wise approach when� is small.

7. Related Work

In this section, we summarize the previous work that is
closely related to certi�ed robustness. Randomized smooth-
ing has emerged as a prominent black-box technique that
provides certi�ed robustness. It was �rst proposed for de-
fending againstl2 norm ball perturbation in the computer
vision models (Cohen et al., 2019). Recent work extends it
to certify graph node classi�cation tasks (Bojchevski et al.,
2020; Wang et al., 2021; Jia et al., 2020; 2022; Scholten
et al., 2022) againstl0-norm ball perturbation, typically
the graph modi�cation attacks (GMAs). To improve the
certi�ed performance, some researchers (Schuchardt et al.,
2020; 2023) develop collective robustness schemes. These
schemes assume a realistic attacker whose objective is to
perturb a set of nodes simultaneously, thereby improving
the overall robustness against adversarial attacks.

Despite the progress made in defending against GMAs,
the robustness against graph injection attacks (GIAs) has
received relatively little attention. (Jia et al., 2023; Lai et al.,
2023) further extended it to certify against GIAs. However,
these models provide sample-wise certi�cates instead of
collective ones. To the best of our knowledge, there is
currently no collective certi�cate designed for GIAs.
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8. Limitations and Future Works

Our collective certi�cate is obtained through the solution
of a relaxed linear programming (LP) problem, which ef-
fectively reduces the computational complexity to linear
time. However, this relaxation does come at a cost, as it
introduces an integrality gap that compromises the certi�ed
performance. Consequently, in situations where the attack
budget� is small and the sample-wise certi�cate proves
effective, the collective certi�cate may not yield superior
results.

Nevertheless, in practical scenarios, we can easily combine
the sample-wise and collective certi�cates with minimal ef-
fort to achieve stronger certi�ed performance across a range
of attack budgets, whether small or large. It is worth noting
that since both the sample-wise and collective models share
the same smoothed model, we only need to estimate the
smoothing prediction once, avoiding computational over-
head. By integrating both certi�cates, we can leverage their
respective strengths and enhance the overall robustness of
the system.

It is important to note that, despite the improvement ob-
tained by collective certi�cation, sample-wise certi�cation
is still irreplaceable. The choice between sample-wise and
collective certi�cates depends on the speci�c threat model
being considered. If the focus is on ensuring the robustness
of an individual node, the sample-wise certi�cate is more
suitable. On the other hand, if the objective is to ensure
the overall robustness of a majority of nodes, the collective
certi�cate is more appropriate.

In future research, we plan to explore the development
of tighter relaxations, such as semi-de�nite programming
(SDP), to better handle the quadratic constraints. This could
potentially yield improved certi�ed performance and further
enhance the robustness of our approach. Furthermore, we
plan to extend the relaxation technique to accommodate
polynomial constraints for deeper GNNs withk > 2. This
extension will allow us to address more complex scenarios
and further strengthen the applicability of our approach in
real-world settings.

9. Conclusion

In this paper, we present the�rst collective robustness cer-
ti�cate speci�cally designed for defending against graph
injection attacks (GIAs), which encompass edge addition
perturbations known to be more challenging to certify than
edge deletions. Our collective certi�cate improves the certi-
�ed performance by assuming that the attacker's objective
is to disrupt the predictions of as many target nodes as pos-
sible, using a shared single graph instead of different graphs
for each node. We model the collective certifying problem
by upper-bounding the number of non-robust nodes under a

worst-case attacker, such that the remaining nodes are guar-
anteed to be robust. However, it yields a binary quadratic
constrained programming that is NP-hard. To address this,
we propose novel relaxations to formulate the problem into
linear programming that can be ef�ciently solved. Extensive
experimental results demonstrate that our proposed collec-
tive certi�cate achieves signi�cantly higher certi�ed ratios
and larger certi�able radii compared to existing approaches.
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This paper proposes a novel approach to enhance the ro-
bustness of graph-based machine learning, with potentially
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transaction networks, and traf�c prediction. By introducing
collective certi�ed robustness for message-passing graph
neural networks, we provide a guarantee that a certain ratio
of nodes will remain certi�ably robust even under a speci-
�ed attack budget (a maximum number of malicious nodes
and edges might be injected in the graph). The potential
risks might be that the number of injected nodes or edges
might be more than the system owner's expectation, thereby
mitigating the certi�cation.

References

ApS, M. The MOSEK optimization toolbox for MAT-
LAB manual. Version 9.0., 2019. URLhttp://docs.
mosek.com/9.0/toolbox/index.html .

Bojchevski, A. and G̈unnemann, S. Deep gaussian em-
bedding of graphs: Unsupervised inductive learning via
ranking.arXiv preprint arXiv:1707.03815, 2017.

Bojchevski, A., Gasteiger, J., and Günnemann, S. Ef�cient
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A. Theorectical Proofs

Lemma 1. (Restate) LetA be the adjacency matrix of the perturbed graph with� injected nodes, and the injected nodes are
in the last� rows and columns. With smoothingpn > 0 andpe > 0, we have the upper bound ofp(Ev ):

p(Ev ) � p(Ev ) (13)

=1 � p
jj A n :( n + � ) ;v jj 1

1 p
jj A 2

n :( n + � ) ;v jj 1

2 � � � p
jj A k

n :( n + � ) ;v jj 1

k ;

wherepi := 1 � (�pe �pn ) i ; 8i 2 f 1; 2; � � � ; kg, and adjacency matrixA contains the injected nodes encoded in the(n + 1) th

to (n + � )th row, andjj � jj 1 is l1 norm.

Proof. According to (Scholten et al., 2022), we have an upper bound forp(Ev ) � p(Ev ) by assuming the independence
among the paths. Letp( �E ~v

v ) denote the probability that all paths are intercepted from an injected node~v to nodev in the case
that of considering each path independently. We havep( �E ~v

v ) =
Q

q2 P k
~vv

(1 � (�pe �pn ) j qj ), where�pe := 1 � pe, �pn := 1 � pn

andjqj 2 f 1; � � � ; kg represent the length of the pathq 2 P k
~vv from ~v to v. (�pe �pn ) j qj is the probability that all edges and all

nodes in the pathq are not deleted,1� (�pe �pn ) j qj is the probability that at least one of edges or one of nodes are deleted, such
that the pathq is intercepted. Then, by considering multiple injected nodes, we havep(Ev ) = 1 �

Q
~v2 ~V p( �E ~v

v ). Finally,
we have thep(Ev ) as follows:

p(Ev ) (14)

= 1 �
Y

~v2 ~V

p( �E ~v
v )

= 1 �
Y

~v2 ~V

f
Y

q2 P k
~vv

(1 � (�pe �pn ) j qj )g

= 1 �
Y

~v2 ~V

f (1 � �pe �pn )A ~vv (1 � (�pe �pn )2)A 2
~vv � � � (1 � (�pe �pn )k )A k

~vv g

= 1 � p
jj A n :( n + � ) ;v jj 1

1 p
jj A 2

n :( n + � ) ;v jj 1

2 � � � p
jj A k

n :( n + � ) ;v jj 1

k ;

wherepi := 1 � (�pe �pn ) i . In particular, the constantpk denotes the probability that a path with a length ofk is intercepted.
According to graph theory,Ak

~vv is the number of paths from node~v to nodev with distance/length/steps of exactlyk in
the graph. LetAn :( n + � ) ;v denote the slicing of matrixA, taking thevth column and the rows from(n + 1) th to (n + � )th .
ThenjjAk

n :( n + � ) ;v jj1 quanti�es the number of paths with a length ofk originating from any malicious node and reaching
nodev.

Theorem 1. (Restate) Given a base GNN classi�erf trained on a graphG and its smoothed classi�erg de�ned in (2),
a testing nodev 2 G and a perturbation rangeB �;� (G), let Ev be the event de�ned in Eq.(4). The absolute change in
predicted probabilityjpv;y (G) � pv;y (G0)j for all perturbed graphsG0 2 B �;� (G) is bounded by the probability of the
eventEv : jpv;y (G) � pv;y (G0)j � p(Ev ).

Proof. By the law of total probability, we have

P(f v (� (G0)) = y)

= P(f v (� (G0)) = y ^ Ev ) + P(f v (� (G0)) = y ^ �Ev ):

Note that, we de�ne the eventEv based on the sampling of perturbed graph� (G0). However, the clean graphG is smaller
thanG0, and the intersection/overlap graph of them isG \ G0 = G. Subtly, we can still use the eventEv de�ned on� (G0)
to divide the sample space of� (G) by regarding the modelf v (� (G)) only take part of the� (G0) as input, which is the
intersected part ofG: � (G0) \ G, and the result does not relate to the part that beyondG (i.e., the injected nodes). Such that,
we also have

P(f v (� (G)) = y)

= P(f v (� (G)) = y ^ Ev ) + P(f v (� (G)) = y ^ �Ev ):

12
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Due to the fact that the injected node does not have any message passing tov would not affect thepv;y (G), we have
P(f v (� (G0)) = yj �Ev ) = P(f v (� (G)) = yj �Ev ), so thatP(f v (� (G)) = y ^ �Ev ) = P(f v (� (G0)) = y ^ �Ev ). Following
(Scholten et al., 2022), we have similar deduction as follows:

pv;y (G) � pv;y (G0)

= P(f v (� (G)) = y ^ Ev ) + P(f v (� (G)) = y ^ �Ev )

� P(f v (� (G0)) = y ^ Ev ) � P(f v (� (G0)) = y ^ �Ev )

= P(f v (� (G)) = y ^ Ev ) � P(f v (� (G0)) = y ^ Ev )

� P(f v (� (G)) = y ^ Ev )

= p(Ev ) � P(f v (� (G)) = yjEv )

� p(Ev ):

A.1. More discussion on the single-node certifying condition (Corollary 1).

In Corollary 1, we present a single-node certifying condition. Here, we aim to further discuss its theoretical implications by
comparing it with the work of (Lai et al., 2023).

Assuming thatpv;y � (G) � maxy6= y � pv;y (G) = 1 , in this case, our certifying condition isp(Ev ) < 1=2, while the certifying
condition of (Lai et al., 2023) is1 � ~p < 1=2. Note thatp(Ev ) is the probability that there exists at least one message from
injected nodes to the target node within its receptive �eld, and1 � ~p is the probability that there exists at least one inserted
edge that is not deleted in the whole graph. As a result,p(Ev ) is always smaller than1 � ~p. That is, for a node with the
same con�dence gappv;y � (G) � maxy6= y � pv;y (G), our condition is easier to satisfy, thus providing better robust ratio. This
advantage can be attributed to the gray-box knowledge of the target model. In our paper, we assume that the target model
belongs to message-passing Graph Neural Networks (GNNs), following the approach of (Scholten et al., 2022).

B. Details of Optimization Formulation

B.1. Formulating problem (8) as polynomial constrained programming.

For problem (8), we plug inp(Ev ) with (5), and then we have the following optimization problem:

max
A n : ; : ; m

M =
X

v2 T

mv ; (15)

s.t. 2p(Ev ) � cv � mv ; 8v 2 T;

p(Ev ) = 1 � (p
jj A n :( n + � ) ;v jj 1

1 p
jj A 2

n :( n + � ) ;v jj 1

2 � � � p
jj A k

n :( n + � ) ;v jj 1

k );

jjA~v: jj1 � �; 8~v 2 f n + 1 ; � � � ; n + � g;

A ij 2 f 0; 1g; 8i 2 f n + 1 ; � � � ; n + � g; 8j 2 f 1; � � � ; n + � g;

mv 2 f 0; 1g; 8 v 2 f 1; � � � ; ng;

wheremv = 1 (the element in vectorm) indicates that the robustness for nodev can not be veri�ed. Speci�cally, it means
that2p(Ev ) � cv , and it disobeys our certifying condition.

There are exponential terms inp(Ev ), which is dif�cult to solve by existing optimization tools. We further formalize the
problem. By taking the logarithm of thep(Ev ), we are able to transform the exponential constraint in problem(15) into
polynomial constraint:

~Pv � log(1 �
cv

2
) � mv ; (16)

~Pv = jjAn :( n + � ) ;v jj1 � ~p1 + jjA2
n :( n + � ) ;v jj1 � ~p2 + � � � + jjAk

n :( n + � ) ;v jj1 � ~pk ;

where~pk = log(pk ) is a constant, and~Pv is equivalent tolog(1 � p(Ev )) . Then the problem(15) is transformed to a binary

13
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polynomial constrained programming:

max
A n : ; : ; m

M =
X

v2 T

mv ; (17)

s.t. ~Pv � log(1 �
cv

2
) � mv ;

~Pv = jjAn :( n + � ) ;v jj1 � ~p1 + jjA2
n :( n + � ) ;v jj1 � ~p2 + � � � + jjAk

n :( n + � ) ;v jj1 � ~pk ;

jjA~v: jj1 � �; 8~v 2 f n + 1 ; � � � ; n + � g;

A ij 2 f 0; 1g; 8i 2 f n + 1 ; � � � ; n + � g; 8j 2 f 1; � � � ; n + � g;

A> = A;

mv 2 f 0; 1g; 8 v 2 f 1; � � � ; ng:

B.2. Formulating problem (17)as BQCLP(9).

In this section, we discuss the process from(17) to (9). In the case ofk = 2 , the problem(17)becomes a binary quadratic
constrained problem as follows:

max
A n : ; : ; m

M =
X

v2 T

mv ; (18)

s.t. jjAn :( n + � ) ;v jj1 � ~p1 + jjA2
n :( n + � ) ;v jj1 � ~p2 � log(1 �

cv

2
) � mv ;

jjA~v: jj1 � �; 8~v 2 f n + 1 ; � � � ; n + � g;

A ij 2 f 0; 1g; 8i 2 f n + 1 ; � � � ; n + � g; 8j 2 f 1; � � � ; n + � g;

A> = A;

mv 2 f 0; 1g; 8 v 2 f 1; � � � ; ng:

Next, we divide the adjacency matrixA into four parts as shown in Fig.6, and then theA2 can be interpreted as:

Figure 6: Illustration of adjacency matrix notation.

A2 =
�
(A0A0 + A>

1 A1)(n � n ) (A0A>
1 + A>

1 A2)( � � n )

(A1A0 + A2A1)( � � n ) (A1A>
1 + A2A2)( � � � )

�
:

Then, thel1 norm ofA2
n :( n + � ) ;v can be represented as:

[jjA2
n :( n + � ) ;1jj1; jjA2

n :( n + � ) ;2jj1; � � � ; jjA2
n :( n + � ) ;n jj1]> = ( A1A0 + A2A1)1� : (19)

Also, same as above, together with Fig.6,jjA~v: jj1 is described as:

[jjAn : jj1; jjA (n +2): jj1; � � � ; jjA (n + � ): jj1]> = A11n + A21� : (20)

Finally, combine (19) and (20), problem (18) can be formulated as:

max
A 1 ;A 2 ;m

M = t > m;

s.t. ~p1A>
1 1� + ~p2(A1A0 + A2A1)> 1� � C � m;

A11n + A21� � �; A >
2 = A2;

A1 2 f 0; 1g� � n ; A2 2 f 0; 1g� � � ; m 2 f 0; 1gn ;

wheret is a constant zero-one vector that encodes the position of the target node setT, m is a vector that indicates whether
the nodes are successfully attacked,C 2 Rn is a vector with negative constant elementslog(1 � cv

2 ), for v = 1 ; 2; � � � ; n.

14
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B.3. Formulating problem (9) as Linear Programming Problem(10).

Here, we discuss the details of the process of relaxing the BQCLP problem(9) to the LP problem(10). In problem(9), there
are� 2n quadratic terms amongA2A1. To tackle the challenge, we introduce the following transformation to transform it
into an LP problem. Speci�cally, we �rst substitute the quadratic terms with linear terms and relax all the binary variables to
continuous variables in[0; 1].

If x 2 B, y 2 B are two integer binary variables, then the quadratic termxy can be substitute by a single variablez := xy
with the combination of linear constraints (Wei, 2020):z � x; z � y; x + y � z � 1; z 2 B. We usea( ij ) andb( ij )

to denotes the element ini th row andj th column of matrixA1 andA2 respectively. For each quadratic termb( ij ) a( jv )

(8i 2 f 1; � � � ; � g; 8j 2 f 1; � � � ; � g; 8v 2 f 1; � � � ; ng) in A2A1, we create a substitution variableQv( ij ) := b( ij ) a( jv ) with
corresponding constraints:Qv( ij ) 2 B, Qv( ij ) � b( ij ) , Qv( ij ) � a( jv ) , andb( ij ) + a( jv ) � Qv( ij ) � 1. The existing linear
terms remain unchanged. Now, the BQCLP problem has transformed into binary linear programming (BLP).

Next, we formulate the problem using matrix representation. We �rstly useO to substitute(A2A1)> 1� , and we have the
�rst constraint as:

~p1A>
1 1� + ~p2A>

0 A>
1 1� + ~p2O � C � m:

We list the elements of theA1 andA2 as follows:

A1 =

2

6
6
6
6
6
6
4

a11 a12 a13 � � � a1n

a21

a31
...

...
...

a� 1 � � � a�n

3

7
7
7
7
7
7
5

; A2 =

2

6
6
6
6
6
6
4

b11 b12 b13 � � � b1�

b21

b31
...

...
...

b� 1 � � � b��

3

7
7
7
7
7
7
5

: (21)

Then, the matrix multiplication ofA2 andA1 is

A2A1 =

2

6
6
6
4

b11a11 + b12a21 + � � � + b1� a� 1 b11a12 + b12a22 + � � � + b1� a� 2 � � � b11a1n + b12a2n + � � � + b1� a�n

b21a11 + b22a21 + � � � + b2� a� 1 b21a12 + b22a22 + � � � + b2� a� 2 � � � b21a1n + b22a2n + � � � + b2� a�n
...

...
...

...
b� 1a11 + b� 2a21 + � � � + b�� a� 1 b� 1a12 + b� 2a22 + � � � + b�� a� 2 � � � b� 1a1n + b� 2a2n + � � � + b�� a�n

3

7
7
7
5

:

By the de�nition of matrixQv , for v 2 f 1; 2; � � � ; ng, we have the following equivalent representation:

Qv =

2

6
6
6
4

Qv(11) Qv(12) � � � Qv(1 � )

Qv(21) Qv(22) Qv(2 � )
...

...
...

...
Qv( � 1) Qv( � 2) � � � Qv( �� )

3

7
7
7
5

:=

2

6
6
6
4

b11a1v b21a1v � � � b� 1a1v

b12a2v b22a2v b� 2a2v
...

...
...

...
b1� a�v b2� a�v � � � b�� a�v

3

7
7
7
5

:

We notice that(A2A1)> 1� is to sum theA2A1 by its column, and eachQv contains all the terms for each vector summation.
Then we haveO = ( A2A1)> = [ 1>

� Q11� ; 1>
� Q21� ; � � � ; 1>

� Qn 1� ]> .

Further, by decomposing the meaning ofQv , we have

Qv :=

2

6
6
6
4

b11 b21 � � � b� 1

b12 b22 � � � b� 2
...

...
...

...
b1� b2� � � � b��

3

7
7
7
5

�

2

6
6
6
4

a1v a1v � � � a1v

a2v a2v � � � a2v
...

...
...

...
a�v a�v � � � a�v

3

7
7
7
5

= A2 � 1�

2

6
6
6
4

a1v

a2v
...

a�v

3

7
7
7
5

>

= A2 � 1� [A1(: ;v ) ]
> :

To make theQv equivalent to the quadratic terms, for everyQv , we need to add its constraints:

Qv � A2; Qv � 1� [A1(: ;v ) ]
> ; 1� [A1(: ;v ) ]

> + A2 � Qv � 1:
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Finally, we relaxedA1, A2, Qv to relax all the binary variables to continuous variables in[0; 1]:

Qv 2 [0; 1]� � � ; A1 2 [0; 1]� � n ; A2 2 [0; 1]� � � ; m 2 [0; 1]n :

Then we have the linear programming problem (10) as follows:

max
A 1 ;A 2 ;m;

Q 1 ;Q 2 ; ��� ;Q n

M = t > m;

s.t. ~p1A>
1 1� + ~p2A>

0 A>
1 1� + ~p2O � C � m

A11n + A21� � �;

Qv = ( Qv( ij ) ) � � � ; v 2 f 1; 2; � � � ; ng;

O = [ 1>
� Q11� ; 1>

� Q21� ; � � � ; 1>
� Qn 1� ]> ;

Qv � 1� [A1(: ;v ) ]
> ;

Qv � A2;

1� [A1(: ;v ) ]
> + A2 � Qv � 1;

Qv 2 [0; 1]� � � ;

A1 2 [0; 1]� � n ;

A2 2 [0; 1]� � � ;

A>
2 = A2;

m 2 [0; 1]n :

B.4. Formulating problem (9) as Linear Programming Problem(12).

We start from (9), and we have the �rst constraint:

~p1A>
1 1� + ~p2A>

0 A>
1 1� + ~p2A>

1 A>
2 1� � C � m:

Then, we substituteA>
2 1� with z,

z := A>
2 1� =

2

6
6
6
6
6
6
4

b11 b12 b13 � � � b1�

b21

b31
...

...
...

b� 1 � � � b��

3

7
7
7
7
7
7
5

( �;� )

2

6
6
6
6
6
4

1
1
1
...
1

3

7
7
7
7
7
5

( �; 1)

=

2

6
6
6
4

b11 + b12 + b13 + � � � + b1�

b21 + b22 + b23 + � � � + b2�
...

b� 1 + b� 2 + b� 3 + � � � + b��

3

7
7
7
5

( �; 1)

: (22)

Then, from (22), the constraint is transformed into

~p1A>
1 1� + ~p2A>

0 A>
1 1� + ~p2A>

1 z � C � m; (23)

zi 2 f 0; 1; 2; � � � ; min (�; � )g 8i 2 f 0; 1; 2; � � � ; � g:

In (9), since there exists the constraint:A11n + A21� � � , so we havezi satis�eszi 2 f 0; 1; 2; � � � ; min (�; � )g. Next, we
deal with the quadratic termA>

1 z.

If x 2 B is a binary variable, andz 2 [0; u] is a continuous variable, then the quadratic termxy can be substitute by a single
variablez := xy with the combination of linear constraints (Wei, 2020):w � ux; w � z; ux + z � w � u; 0 � w. To apply
it, we �rst relax thez to [0; min (�; � )].
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We know thatA>
1 z satis�es that

A>
1 z =

2

6
6
6
6
6
6
4

a11 a21 a31 � � � a� 1

a12 a22 a32 � � � a� 2

a13 a23 a33 � � �
...

...
...

...
...

...
a1n a2n a3n � � � a�n

3

7
7
7
7
7
7
5

2

6
6
6
6
6
4

z1

z2

z3
...

z�

3

7
7
7
7
7
5

=

2

6
6
6
4

a11z1 + a21z2 + � � � + a� 1z�

a12z1 + a22z2 + � � � + a� 2z�
...

a1n z1 + a2n z2 + � � � + a�n z�

3

7
7
7
5

(n; 1)

:

Then, we create a new variable matrixQ to substituteA>
1 z, with each of its element:qij := aji zi ; (8i 2 f 1; 2; � � � ; ng; j 2

f 1; 2; � � � ; � g). That is:

Q =

2

6
6
6
4

q11 q12 � � � q1�

q21 q22 � � � q2�
...

...
...

...
qn 1 qn 2 � � � qn�

3

7
7
7
5

=

2

6
6
6
4

a11z1 a21z2 � � � a� 1z�

a12z1 a22z2 � � � a� 2z�
...

...
...

...
a1n z1 a2n z2 � � � a�n z�

3

7
7
7
5

:

We now haveA>
1 z = Q1� . Assuming that� � � , for each quadratic termA>

1( ij ) zj (8i 2 f 1; � � � ; ng; 8j 2 f 1; � � � ; � g)

in A>
1 z, we create a substitution variableQ( ij ) = A>

1( ij ) zj with corresponding constraints:0 � Q( ij ) , Q( ij ) � �A >
1( ij ) ,

Q( ij ) � zj , and�A >
1( ij ) + zj � Q( ij ) � � . Further, with matrix notation, we have

0 � Q � �A >
1 ;

0 � 1n z> � Q � � (1 � A>
1 ); (24)

A1 2 f 0; 1g; z 2 [0; � ]; Q 2 [0; � ]:

Finally, we relax all the binary variables to be continuous variables, We have problem (12) as follows:

max
A 1 ;m;z

Q 2 Rn � �

M = t > m; (25)

s.t. ~p1A>
1 1� + ~p2A>

0 A>
1 1� + ~p2Q1� � C � m;

A11n + z � �;

Q � �A >
1 ;

Q � 1n z> ;

�A >
1 + 1n z> � Q � �;

Q 2 [0; � ]n � � ;

A1 2 [0; 1]� � n ;

z 2 [0; � ]� � 1;

m 2 [0; 1]n :

C. Algorithm of our proposed methods

Train a base classi�er f . Following the work of (Lai et al., 2023), our �rst step is to train a graph model to serve as
the base classi�er. To enhance the model's generalization ability on the smoothing samples, we incorporate random noise
augmentation during the training process. The training procedure is summarized in Algorithm 1, providing an overview of
the steps involved. Given a clean graphG, a smoothing distribution� (G) with smoothing parameterspe andpn , and the
number of training epochsE, the algorithm iteratively trains the model on randomly generated graphs. In each epoch, a
random graphGe is drawn from the smoothing distribution� (G). The model is then trained on the training nodes using this
randomly generated graph. This process is repeated for the speci�ed number of training epochs.
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Algorithm 1 Graph model training (Lai et al., 2023).

Require: Clean graphG, smoothing distribution� (G) with smoothing parameterspe andpn , training epochE.
1: for e = 1 ; � � � ; E do
2: Draw a random graphGe � � (G).
3: f = train model(f (Ge)) on training nodes.
4: end for
5: return A base classi�erf (�).

Obtaining prediction probability of smoothed classi�er g. Next, we need to obtain the prediction results of a smoothed
classi�er. As depicted in Algorithm 2, we sampleN graphsG1; G2; : : : ; GN from the smoothed distribution� (G) =
(� e(G); � n (G)) based on the base classi�erf . To estimate the probabilistic prediction, we employ a Monte Carlo process.
For each sampled graphGi , we calculate the prediction probabilitypv;y (G), which represents the frequency of the predicted
classy for the vertexv. This can be approximated aspv;y (G) �

P N
i =1 I (f v (Gi ) = y)=N, whereI is the indicator function.

Let denote the top class probabilitypA := pv;y � (G) and runner-up class probabilitypB := maxy6= y � pv;y (G), we want to
bound the impact of randomness. Speci�cally, we compute the lower bound ofpA (denoted aspA ) and upper bound of
pB (denoted aspB ). Applying the Clopper-Pearson Bernoulli con�dence interval, we obtain thepA and thepB under a
con�dence level of�=C , whereC represents the number of classes in the model.

Algorithm 2 Monte Carlo sampling (Lai et al., 2023).

Require: Clean graphG, smoothing distribution� (G) with smoothing parameterspe andpn , trained base classi�erf (�),
sample numberN , con�dence level� .

1: DrawN random graphsf Gi j � Gi � � (G)gN
i =1 .

2: counts = jf i : f (Gi ) = ygj, for y = 1 ; � � � ; C.
3: yA ; yB = top two indices incounts.
4: nA ; nB = counts[yA ]; counts[yB ].
5: pA ; pB = CP Bernolli(nA ; nB ; N; � ).
6: return pA , pB .

Collective certi�cation via solving an optimization problem. We obtain the collective certi�ed robustness by solving
the optimization problem problem (10) or (12). The process is described in Algorithm 3.

In this algorithm, we �rst set up the constant~p1 and~p2 based on the given smoothing parameterspe andpn . Next, for each
nodev in the target node setT, we obtain the lower boundpA and the upper boundpB using Algorithm 2. These bounds
are based on the prediction probabilities of the smoothed classi�er for the current nodev. We then compute the value
cv = pA � pB and prepare the constant vectorC with elementslog(1 � cv

2 ) for each nodev. The objective function of the
optimization problem is based on either(10) or (12), depending on the chosen formulation. The constraints are also set up
accordingly. Finally, we solve the linear programming using an LP solver, such as MOSEK, to obtain the optimal valueM � .
The certi�ed ratio, which represents the percentage of nodes in the target setT that have been successfully certi�ed, is then
computed as(jTj � M � )=jTj.

D. Other Experimental Results

D.1. Trade off between Clean accuracy and the certi�ed ratio on GCN model.

In this section, we present the remaining experiments as outlined in Section. 6.1. A superior certifying method should not
only achieve a higher certi�ed ratio but also maintain or improve the clear accuracy, which represents the original model's
performance. We compare the results of these two metrics for our method under different parameter settings as shown in
Figure 7. In the �gures, the data points situated closer to the upper right side represent higher certi�ed ratios and clean
accuracy. It is evident that both of our proposed methods consistently outperform the sample-wise method, demonstrating
their superior performance under various attacker power� .
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Algorithm 3 Certi�ed robustness via solving optimization problem (10) or (12).

Require: Smoothing parameterspe andpn , graph adjacent matrixA0, perturbation budget� and� , target node setT.
1: Set constant~p1 = log(1 � (�pe �pn )) .
2: Set constant~p2 = log(1 � (�pe �pn )2).
3: for v in T do
4: ObtainpA , pB from Algorithm. 2 for current nodev.
5: Computecv = pA � pB .
6: Prepare constant vectorC with each element:log(1 � cv

2 ).
7: end for
8: Setup objective function in (10) or (12).
9: Setup constraints in (10) or (12).

10: Solve the optimization problem using LP solver such as MOSEK to getM � .
11: Return Certi�ed ratio (jTj � M � )=jTj.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Clean accuracy and the certi�ed ratio of our collective model under various smoothing parameters on GCN model.

D.2. GCN certi�ed ratio of our methods under different smoothing parameters.

In addition, we conducted experiments to compare the performance of our methods with the sample-wise method under
different combinations of parameterspe andpn on the Cora and Citeseer datasets. The results are shown in Figure 8.

From the �gures, we can observe that our proposed methods always exhibit a larger certi�able radius. For example, when�
exceeds60, the sample-wise method fails to defend against any attacks, while our methods are still able to provide certi�able
guarantees.

D.3. Evaluation on PubMed dataset.

In this subsection, we conduct more experiments on a larger dataset. PubMed (Sen et al., 2008) contains 19,717 nodes and
44,324 edges. We evaluate the sample-wise, Collective-LP1 and Collective-LP2 on the GAT model. The results presented in
Figure 9 show that our proposed collective certi�cates outperform the baseline signi�cantly.

D.4. Time complexity comparison of two relaxations.

Furthermore, we provide more detailed results on the runtime of the two proposed methods with different parameters in
Figure 10. From the �gures, we can observe that as the attack budget� increases, the proposed Collective-LP2 method
demonstrates superior ef�ciency compared to Collective-LP1 in both datasets. This ef�ciency advantage is particularly
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Certi�ed ratio of our collective model under various smoothing parameters on GCN model.

(a) Certi�ed Ratio (b) Trade-off

Figure 9: Certi�ed performance on PubMed dataset with GAT model.

evident when� exceeds120. Notably, when� = 160, the Collective-LP1 takes approximately1; 000seconds to complete
the computation. On the other hand, the time consumption of Collective-LP2 remains consistently below90seconds.

These results highlight the computational advantage of Collective-LP2 over Collective-LP1, especially for larger attack
budgets. The reduced runtime of Collective-LP2 ensures the practicality and ef�ciency of our proposed method, making it
suitable for real-world scenarios with larger attack budgets.

(a) Collective-LP1 (b) Collective-LP1 (c) Collective-LP2 (d) Collective-LP2

Figure 10: Runtime of our collective model under various smoothing parameters.
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