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Abstract

We investigate certified robustness for GNNs un-
der graph injection attacks. Existing research
only provides sample-wise certificates by veri-
fying each node independently, leading to very
limited certifying performance. In this paper, we
present the first collective certificate, which cer-
tifies a set of target nodes simultaneously. To
achieve it, we formulate the problem as a binary
integer quadratic constrained linear programming
(BQCLP). We further develop a customized lin-
earization technique that allows us to relax the
BQCLP into linear programming (LP) that can
be efficiently solved. Through comprehensive
experiments, we demonstrate that our collective
certification scheme significantly improves cer-
tification performance with minimal computa-
tional overhead. For instance, by solving the
LP within 1 minute on the Citeseer dataset, we
achieve a significant increase in the certified ra-
tio from 0.0% to 81.2% when the injected node
number is 5% of the graph size. Our paper marks
a crucial step towards making provable defense
more practical. Our source code is available at
https://github.com/Yuni-Lai/CollectiveLPCert.

1. Introduction

Graph Neural Networks (GNNs) have emerged as the domi-
nant models for graph learning tasks, demonstrating remark-
able success across diverse applications. However, recent
studies (Ziigner et al., 2018; Ziigner & Giinnemann, 2019;
Liu et al., 2022) have revealed the vulnerability of GNNs to
adversarial attacks, raising significant concerns regarding
their security. Notably, a new type of attack called Graph
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Figure 1: While the sample-wise certificate verifies target
nodes one by one, our collective certificate verifies a set of
target nodes simultaneously by linear programming.

Injection Attack (GIA) has raised considerable attention.
Unlike the commonly studied Graph Modification Attack
(GMA), which involves inserting and deleting edges, GIA
will inject carefully crafted malicious nodes into the graph.
Recent research (Chen et al., 2022; Tao et al., 2023; Ju
et al., 2023) has demonstrated that GIA is not only more
cost-efficient but also more powerful than GMA.

To counteract these attacks, significant efforts have been
dedicated to robustifying GNNs. Representative defense
approaches include adversarial training (Gosch et al., 2023),
the development of robust GNN architectures (Jin et al.,
2020; Zhu et al., 2019; Zhang & Zitnik, 2020), and the detec-
tion of adversaries (Zhang et al., 2019; 2020). While these
approaches are quite effective against known attacks, there
remains a concern that new adaptive attacks could under-
mine their robustness. To tackle the challenge of emerging
novel attacks, researchers have explored provable defense
approaches (Cohen et al., 2019; Li et al., 2023; Bojchevski
et al., 2020; Scholten et al., 2022; Schuchardt et al., 2023)
that offer certified robustness for GNN models: the predic-
tions of models are theoretically guaranteed to be consistent
if the attacker’s budget (e.g., the number of edges could be
modified) is constrained in a certain range.

Sample-wise vs. Collective certification The certifica-
tion against attacks over graphs can be categorized into two
types: sample-wise and collective. Sample-wise certifica-
tion approaches (Cohen et al., 2019; Bojchevski et al., 2020;
Lai et al., 2023) essentially verify the prediction for a node
one by one, assuming that the attacker can craft a different
perturbed graph each time to attack a single node (Figure
1, top). However, in reality, the attacker can only produce
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a single perturbed grapto simultaneously disrupt all pre- 2. Background

dictions for a set of target nodds(Figure 1, bottom). Such o

a discrepancy makes sample-wise certi cates rather peg—'l' Graph Node Classi cation

simistic. In contrast, more recent works (Schuchardt et al\Ne focus our Study on graph node classi cation tasks. Let
2020; 2023) aim to Certify the set of nodes at once, prOVidG = (V, E; X) 2 G represent an undirected graph1 where
ing collective certi cation that can signi cantly improve v = fy;; :v,gis the set ofn nodes,E = fej =

the certifying performance. (vi;vj)g denotes the set of edges with each edgecon-

In the domain of certifying GNNs, the majority of research N€ctingvi andy;, andX 2 R" ¢ represents the features:
works (Bojchevski et al., 2020: Wang et al., 2021; Jia et al.25S0ciated with nodes. Equivalently, we can use an adja-
2020; 2022; Scholten et al., 2022) focus sample-wise ~CENCYy matrixA 2 f 0;1g" " with A; =1 if ¢ 2 E and

certi cation againsiGMA. The onlycollectivecerti cation j = 0if & 2 E to encode the graph structure Gf
scheme against GMA proposed by Schuchardt et al. (20205:2¢h node has its labgl2 ¥ = f1, ;K g, butonly a
however, is not applicable to GIA. This is because the cersubset of these Iat_)els are known. The goal _of a multl-.output
i cation scheme assumes a xed receptive eld of GNNs, 9raPh node classief : G !1f 1; ;K g" is to predict
while GIA, which involves adding edges after injecting the missing labels given the input graBh

nodes, inevitably expands the receptive eld. Although

there are emerging works (Lai et al., 2023; Jia et al., 2023%-2- Message-Passing Graph Neural Networks

speci cally designed to tackle GIA, they only offer sample-

X . e : In this paper, we study certi ed robustness approaches that
wise certi cates, resulting in limited certi ed performance.

are applicable to the most commonly used GNNs that oper-

We are therefore motivated to derive thst collective  ate under the message-passing framework based on neigh-
certi ed robustness schemefor GNNs against GIA. To  bor aggregation. These message-passing GNNs (Kipf &
achieve collective robustness, we leverage the inherent [§Velling, 2016; Gilmer et al., 2017; Velkovic et al., 2018;
cality property of GNNs, where the prediction of a node Geisler et al., 2020) encode the local information of each
in ak-layer message-passing GNN is in uenced solely bynode by aggregating its neighboring node features (i.e., em-
its k-hop neighbors. This ensures that injected edges bhedding) through various aggregation functions. During the
the attacker only impact a subset of the nodes. We addredgference, the receptive eld of a nodein k-layer GNN

the collective certi cation problem by transforming it into IS just itsk-hops neighbors, and the nodes/edges beyond
a budget allocation problem, considering the attacker's obthe receptive eld would not affect the prediction of the
jective of modifying the predictions of as many nodes ashode when the model is given. This locality enables the
possible with a limited number of malicious nodes and maxapplication of collective certi cates.

imum edges per node. By overestimating the number of

modi ed nodes, we can certify the consistent classi cation 2.3. Certi ed Robustness from Randomized Smoothing

of the remaining nodes. Certi ed robustness aims to provide a theoretical guarantee

However, the above problem yields a binary integerof the consistency of a model's prediction under a certain
polynomial-constrained program, which is known to be NPperturbation range on the input. Randomized smoothing is
hard. We then proposecaistomizedinearization technique a widely adopted and versatile approach for achieving such
to relax the original problem to a linear programming (LP),certi cation across a range of models and tasks (Jia et al.,
which can be solved ef ciently. The LP relaxation provides 2020; Bojchevski et al., 2020; Li et al., 2023). Take the
a lower bound on the achievable certi ed ratio, ensuring thegraph model as an example; it adds random noise (such as
soundness of the veri cation process. We conduct compraandomly deleting edges) to the input graph. Then, given
hensive experiments to demonstrate the effectiveness as welhy classi erf , it builds a smoothed classi eg which

as the computational ef ciency of our collective certi ca- returns the “majority vote” regarding the random inputs.
tion scheme. For example, when the injected node numbeterti cation is achieved based on the fact that there is a
is 5% of the graph size, our collective robustness modelgprobability of overlap between the random samples drawn
increase the certi ed ratio from:0%to over80:0%in both  from the clean graph and the perturbed graph, in which the
Cora-ML and Citeseer datasets, and it only takes about predictions must be the same.

minutes to solve the collective certifying problem.

Overall, we propose the rst collective certi cate for GNNs 3. Problem Statements
a_lgalnst graph injection at_tac_ks. In pgrtlcular, itis computaé_l_ Threat Model: Graph Injection Attack
tionally ef cient and can signi cantly improve the certi ed

ratio. Moreover, this certi cation schemeasmostmodel-  We focus on providing robustness certi cates against graph
agnostic as it is applicable for any message-passing GNNjection attacks (GlIAs) under thevasionthreat model,
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where the attack perturbation occurs after the model trainingp. w27 1T (GY 8 g, (G)g, through the allocation of insert-
The adversaries aim to disrupt the node classi cations of ang edges. By modeling a worst-case attacker that leads to
set of target nodes, denoted byas many as possible. To a maximum number of non-robust nodes, we can certify
this end, it can inject additional node¥ = fw; ;v g thatthe remaining number of nodes is robust. Such that the
into the graph. These injected nodes possésrary node  collective certi cation can be formulated as an optimization
featuresrepresented by the matr) 2 R 9. Additionally,  problem as follows:

E represents the set of edges introduced by the injected ] X

nodes. To limit the power of the adversaries and avoid being c2a () IT] If9,(G) 6 0, (G)g: ()
detected by the defender, we assume that each injected ’ vaT

nodev is only capable of injecting a maximum ofedges. st jvj (v ;8w2W

Thus, the degree of each injected node) is no more

than . Let us represent the perturbed graplGiswith its ~ Typically, when setting th& as a single node, the problem
corresponding adjacency matrix denoted\dsWe formally ~ degrades to a sample-wise certi cate.

de ne the potential GIA as a perturbations set associated

with a given graptG = (V; E; X): 4. Collective Certi ed Robustness

B; (G):= fGAVEESXIV°= V[ ViE°= E[E In this section, we derive the collective certi cate for the
X0= X[ X:j¥j : (¥ :8v2Vg (1) smoothed classier with any message-passing GNNs as the
base classi er. To ensure the clarity of the presentation, we
Given the absence of a collective certi cate to address thesB€gin by providing an overview of our approach.
types of perturbations, our rst contribution is to de ne the
problem of collective robustness. 4.1. Overview

The derivation of the robustness certi cate relies omnast-
caseassumption: in the message-passing process, if a node
Following (Scholten et al., 2022), we employ randomizedreceives even a single message from any injected node, its
smoothing to serve as the foundation of our certi cation. In-Prediction will be altered. It is important to note that this
tuitively, by adding random noise to the graph, the messag@Ssumption exaggerates the impact of the attack, thereby
from the injected node to a target node has some prob¥@lidating the guarantee of the defense. Accordingly, we
bility of being intercepted in the randomization, such thatde ne message interferencéor a nodev as the evenk,
the GNN models will not aggregate the inserted node’s feathat the node receivesat leastone message from injected
ture for prediction. We adopt node-aware bi-smoothingh0odes in message passing.
(Lai et al., 2023), which was proposed to certify againstrhe achievement of collective certi cation then constitutes
the GIA perturbation, as our smoothed classi er. Given age following crucial steps. First, we derive an upper bound
graphG, random graphs are created by a randomizationy, the probability of the message interference event, de-
scheme denoted a4G) = ( <(G); n(G)). Itconsists  noted asp(E,) (Section. 4.2.1). Second, we establish
of two components: edge deletion smoothindG) and  the relation between the probabilit(E,) and the pre-
node deletion smoothing, (G). Speci cally, the former  gjction probabilitypy, (G), which allows us to bound the
randomly deletes each edge with probabifity and the  change ofoy,y (G) under the perturbation rande. (G)
latter randomly deletes each node (together with its incidentgection. 4.2.2). Third, we derive the certifying condition
edges) with probabilityp, . Based on these random graphs,for smoothed classi eg based on the results from the pre-
a smoothed classi eg( ) is constructed as follows: vious sections (Section. 4.2.3). Finally, we formulate the
— . collective certi ed robustness problem as an optimization
9.(G): ;azﬁgl;ma;é(g Py (G); ) problem (Section. 4.3).

3.2. Problem of Collective Certi ed Robustness

wherepy.y (G) := P(fy( (G)) = y) represents the prob-
ability that the base GNN classi dr returned the clasg

for nodev under the smoothing distribution(G), andg()  4.2.1. MESSAGE INTERFERENCE EVENT
returns the “majority votes” of the base classifef ).

4.2. Condition for Certi ed Robustness

We begin by introducing some necessary notations. We
Given a speci c attack budgetand , our objective isto  useP, to represent all the existing paths from an injected
provide certi cation for the number of target nodeslirthat  nodew 2 V to a testing node, where the length or dis-
are guaranteed to maintain consistent robustness against arance of these paths is smaller thanEach pattg in Pk,
potential attack. We assume that the attacker's objective is toonsists of a series of linked edges. To simplify notation,
maximize the disruption of predictions for the target nodesye de ne (A) as an equivalent representation @{G),

3
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where ¢(A); =0 if the edge(i;j ) does not exist after the f,( (G9); 8G°2 B. (G) if eventE, occurs:

sampling, and ¢(A); =1 if the edge(i;j ) remains. Sim- ] K. . ) _
ilarly, we represent , (G) as n(A);i, where ,(A); =0 8¢2V: (892 Py 1(9N 20: (A =0)  (6)

indicates the deletion of nodeand ,(A); = 1 denotes _(9:)29: e(AY; =0)):
that the node remains unchanged. Then, we formally de ne
the evenk, as: Proof. For each patly 2 PX,, the message from the in-

jected noder to the target node is intercepted if at least
Mw2V:(992 P :(8ni2g: n(A%, =1) (4  one of the edges or nodes along the path is deleted. Con-

~(83j)2q: e(AO)”. =1)): sequently, if all the paths are intercepted as a result of the
smoothing randomization(G9), the prediction for the tar-
That is at least one path from a malicious naeito the  get nodev remains unchanged. O

testing node is effective (all edges and nodes are kept in the

smoothing). Below, our goal is to quantify the probability Now, we can establish a bound on the change in prediction
of Ey, so that we can provide an estimation of the potentialprobability of the smoothed classi &, which serves as a
impact of injected nodes on the prediction probability. crucial step for deriving the certifying condition.

However, directly estimating the event probabiligg,) is ' "eorem 1. Given a base GNN classi ef trained on
dif cult because we need to nd out all the possible paths & 9raPhG and its smoothed classi eg de ned in (2), a
P for each node. Similar to (Scholten et al., 2022), wel€Sting node 2 G and a perturbation rangé ; (G), let

have an upper bound f@E,)  p(E,) by assuming the E, be the event de ned in E¢4). The absolute change in

ind d th ths: predicted probabilitypy,y (G)  Ppvy (GY)j for all perturbed
independence among e.pa S _ graphsG®2 B . (G) is bounded by the probability of the
Lemma 1. LetA be the adjacency matrix of the perturbed evente, : ipiy (G)  pvy (G p(Ey).

graph with injected nodes, and the injected nodes are in
the last rows and columns. With smoothipg > 0and  pygof, (Sketch) By (G) Py (GY P(fu( (G) =

P> 0, we have the upper bound . ): y”~ Ev) = p(Ev) P(fv( (G)) = ViEv) p(Ey). See
oE) Appendix. A for complete proof. O
P(Ev) P(Ev) (5)
=1 diAn:(n+ );vjjlpjziAﬁ:(n+ yiv ji1 p{iAl;;(n+ ) Jll 4.2.3. ERTIFYING CONDITION

With the upper bound of the probability changg, (G)

wherepi == 1 (pepn)'; 81 2 11,2, ;kg, and adja-  provided in Theorem 1 and upper boundE, ) provided
cency matrixA contains the injected nodes encoded in thej, | emma 1. we can derive the certifying condition for

h h . e .
(n+1)™ to(n+ )" row, andjj jj1isly norm. smoothed classi eg under a given perturbation range:

Corollary 1. Given a base GNN classi ef trained on
Proof. (Sketch) Letp(Ey) denote the probability that all a graph G and its smoothed classi eg, a testing node
paths are intercepted from an injected nede nodevin v 2 G and a perturbation rang® . (G), letE, be the
the case that@f considering each path independently. Wevent de ned in Eq(4). We havey, (G9 = g, (G) for all
havep(Ey) = = gopx (1 (Pepn)'¥), wherepe :=1  pe,  perturbed graph&°2 B, (G) if:
ph =1 pyandjg2f 1, ; kg represent the length of - .
the pathg 2 P, from v tov. FurthermorejjAX . i1 P(EV) <[Py (G) maxysy pvy (G)=2 (V)
quanti es the number of paths with a lengthlobriginating ~ wherey 2 Y is the predicted class af, (G).
from any malicious node and reaching node Finally,
by gpnsidering multiple injected nodes, we h@(By) = Proof. With Theorem 1, we havey, (G = g,(G) if
1 w2 v P(EY). See Appendix. A for complete proof.] Pvy (G) p(Ev) > maxygy pvy (G) + p(Eyv), which
is equivalent tg(Ey) < [pvy (G) maxysy Pvy (G)]=2.
4.2.2. BOUNDING THE CHANGE OF PREDICTION O

Next, we rst provide Lemma 2 to demonstrate the_lt theNevertheIess, quantifyi
occurrence of the complement eveniqf, denoted ak, , is

the condition for the consistent prediction of base classi erg 1ckie the challenge, we introduce the following col-

f. Then, we prove that 'the_change of prediction prObab'“tylective certifying framework that models the problem of
for the smoothed classi eg is bounded by(E.): certifying node injection perturbation as an optimization
Lemma 2. Given a testing node 2 G, perturbation problem. More importantly, we can certify a set of nodes at
rangeB . (G),pn, > Oandpe > 0, we havd ,( (G)) = the same time to enhance the certifying performance.

ng(E, ) is still challenging due to
the unknown pathRk, or the perturbed adjacency matrix.
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4.3. Collective Certi cation as Optimization customized reformulation that can signi cantly improve the

) . . solution quality and computational ef ciency.
With Corollary 1, we know that node is not certi ably q y P y

robustifp(Ey) [pvy (G) maxysy Pvy (G)]=2. Under
a limited attack budget, the worst-case attacker can lead to
maximum number of non-robust nodes among target node¥o solve problen(9) ef ciently, one common solution is

%.1. Standard Linear Relaxation (Collective-LP1)

in T, which can be formulated as follows: to replace the quadratic terms in the constraint with linear
X terms by introducing extra slack variables. We adopt the
L. M= Ifp(E) & =2g; (8)  standard technique (Wei, 2020) to address the quadratic
‘ vaTt terms inA,A;. Speci cally, letA,j; y denotes the element
st jvi 5 (¥ 8¢2V, of i™ row andj™ column in matrixA, and Ay, de-
notes the element in matri;. For each quadratic term
wherec, = pyy (G) maxysy Pvy(G), is the classi - AgiiyAivy B 2 f1 ;g8 2fl ; g8v 2
cation gap of smoothed classi er. To obtain the certiably f1:** :ng) in A,A;, we can equivalently reformulate
robust node number among all testing nodes, the optima(bv(ij y = AgiiyAyy) with corresponding constraints:
objective valueM of (8) can serve as an upper bound for Quii) 2 B, Qui) Axiys Quii) Ay, and

non—robyst nodes, and hence.the remqimTrjg M nod_es Ay + Aivy  Quii) 1. We further relax all the
are certi ed robust. Plugging ip(Ey) with (5), and taking  pinary constraints to the box constraiffis1], leading to an
the logarithm of thg(E, ), we transformed the proble(8)  Lp as follows:

to a binary integepolynomial-constrained programming

(We put the problem and formulation details in Appendix. max M=t"m;: (10)
B) széfz\;z’m;b n

Typically, for two-layer GNNsK = 2), we formulate the st. pAIl + RAGATL + O C m;
problem into a binary integer quadratic constrained linear Arl, + Ayl CAS = Ag;

programming problem (BQCLP). L&, be the original

adjacency matrix of the existingnodes in the grap®, and Q=(Qu)) sv2iLiz  ing

A denote the adjacency matrix from injectechalicious 0=[1"Q:11;1"Q21; ;17QnlT;

nodes to the eX|st_|ng nodes, ahd pe the adjacency mat_rlg Q  1[Ay ;V)]> QA Q201

representing the internal connection between the malicious .

nodes. Then the proble(B) becomes the BQCLP problem 1Al +A2 QL

as follows (See Appendix. B for detailed formulation): A1 2[0;1] ";A,2[0;1] ;m 2]0;1]":

Jmax M = t”m; (9)  The more detailed formulation of probleft0)is supplied
re . . _ in Appendix. B. This transformation makes our collective

st pATLl + p(A1Ao+ A2A1)"1  C m; robustness problem solvable in polynomial time.

Ail, + Asl T AS = Ag;
A12f0;1g "™ A,2f0;1g ;m 2f0;1g"; Validity of relaxation for certi cation. It is important
to note that the relaxed LP problem always has a larger

wheret is a constant zero-one vector that encodes the pdeasible region than the original BQCLP problem. As a
sition of the target node sét, m is a vector that indi- result, the optimaM (i.e., the maximum number of non-
cates whether the nodes are non-robpist log(p;) and  robust nodes) of the relaxed problem is always greater than
p> = log(p,) are two negative constant§, 2 R" is a  the original problem. That is, the number of robust nodes
vector with negative constant elemetag(l %), 1, de- (T M )certi ed by the relaxed problem s always smaller
notes all-ones vector with length > represents matrix Or equal to that obtained from the original problem, such
transposition, and denotes element-wise multiplication.  that the relaxation always yields sound veri cation.

Nevertheless, this technique results in introdud(g?jTj)
5. Effective Optimization Methods (extra) variables among the matfix To improve ef ciency,
we next design a more ef cient reformulation that only

The BQCLP problent9) is non-convex and known to be requiresO( jTj) extra variables.

NP-hard. In this section, we introdutigo effective methods
to relax problen{9) to a Linear Programming (LP) to solve
it ef ciently. The rst method (termedCollective-LP1)
relies on standard techniques to avoid quadratic terms; th&o reduce the number of the extra variables, we notice that
second method (termetollective-LP2) employs a novel there is a vector in the quadratic teAj A3 1 , and we can

5.2. Customized Linear Relaxation (Collective-LP2)
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rst combine theA> 1 to reduce the dimension. We de ne 6. Experimental Evaluation
a vector variablg := A3 1 toreplace the term; 1 in

the problem (9). Then we can reformulate it as: In this section, we conduct a comprehensive evaluation of

our proposed collective certi cate. Given the absence of

max M =t"m; (11)  other collective baselines for graph injection attacks (GIA),
Ai;z;m . . . .
S . S ' we compare our collective certi catioBollective-LP1 and
st. pATl + RAGATLl + ATz C m; Collective-LP2, with the existingSample-wiseapproach
Al +z ;A.2f0;1g " (Laietal., 2023). We present a detailed analysis of the exper-

imental results, highlighting the strengths and advantages
of our collective certi cation methods.

To linearize the problem, we need to deal with the quadratic

term A7 z. If a binary variablex 2 B, and a continu- 6.1. Experimental Setup

ous variablez 2 [0;u], thenw := xz is equivalent to .
(Wei, 2020):w  ux;w  ziux+z w W0 w. Datasets and Base Model. We follow the literature

To apply it, we rst relax thez to [0:min (: )]. As- (Schuchardt et al., 2020; Lai et al., 2023) on certi ed robust-
' ’ ’ ness and evaluate our methods on two graph datasets: Cora-

z2f0;1;, min(; )g %m2f01g":

suming that , for each quadratic terrﬁq(ij VZi ) ° - :
8 21 g8 2fL ; g inAlz we create ML (Bojchevski & Glinnemann, 2017) and Citeseer (Sen
T ; A . . et al., 2008). The Cora-ML dataset conta?810nodes,
asubstl.tunon variabl®; ) = Az with corresponding 7. 9o, edges,7 classes, and the Citeseer contain10
constraintsO  Qgj), Qi) A%y Qi) Z.and nodes3; 668edgess classes. We employ two representa-
Aliry*z Qi . We further relax all the binary tive message-passing GNNs, Graph Convolution Network
constraints td0; 1] interval constraints. Then the problem (GCN) (Kipf & Welling, 2016) and Graph Attention Net-
(9) can be relaxed to an LP as follows: work (GAT) (Velickovic et al., 2017), with a hidden layer
S size of64 as our base classi ers. We uS6 nodes per class
max M =t"m; (12)  for training and validation respectively, while the remaining
QzR" as testing nodes. We also train the base model with random
st. pATl + ppAGATl + Q1 C m; noise augmentation following (Lai et al., 2023).
Al +z  ;A12[01] ™
- - Threat Models and Certi cate. We set the degree con-
Q A1:Q a7 straint per injected node as the average degree of existing
Al +1,22 Q ; nodes, which aré = d5:68e and4 = d3:48erespectively
Q2[0: " :z2[0;, ] “m2[01]: on Cora-ML and Citeseer datasets. We evaluate our pro-

posed collective certi cate with various amounts of injected
We put the detailed formulation in Appendix. B. Next, we nodes 2 f 20;50;80; 100 120, 140, 160g. Grid search

analyze the complexity of problem (10) and (12). is employed to nd the suitable smoothing paramefgrs
andp, from 0:5 to 0:9 respectively. We exclude those pa-
5.3. Comparison of Computational Complexity rameters that lead to poor accuracy that are worse than the

Multilayer Perceptron (MLP) model which does not depend

For pr_oblem(lO), in the st constraints, the rows corre- on graph structure. Following (Bojchevski et al., 2020;
sponding to the nodes that do not belong to the target nodlt_eai et al., 2023), we employ Monte Carlo to estimate the

setT will not affect the objectiveV . Although we de nen smoothed classi er with a sample size Nf = 100; 000

gqcigz(lIQ\;;f(ggg\?esali(gr(iLZO:;ggl\e/;t(if’:o(r)]n]tjh(()af ;[/r;irjneire We apply the Clopper-Pearson con dence interval with Bon-
will notyaffect the .objectiveM such trllat wé can alwaysI set ferroni correction to obtain the lower boundf and upper
m; =0, and the rst constrai,nt always holds. Hence therebound ofps . We set the con dence level as= 0:01 Due

' YR - 7 ' ¢ to the overwhelming computation cost of the original col-
areO(3 2.JTJ * 9 T J.TJ.) effect|_ve Ilne_ar constraints, lective certifying problem known as NP-hard, we solve our
andO( “jTj+ =+ n + JTj) effective variables. proposed relaxed LP problems by default. All our collective
For problem(12), similar to(10), only jTj rows of Q are  certifying problem is solved using MOSEK (ApS, 2019)
actually effective. There ai®(3 jTj+ + jTj) effective  through the CVXPY (Diamond & Boyd, 2016) interface.
linear constraints, an@(n + |Tj+ jTj) effective vari-
ables. Our well-designed formulation makes the collectiveEvaluation Metrics. Among the testing nodes that are
problem scalable regarding the number of injected nodes correctly classi ed, we randomly selet00 nodes as the
or the target node numbgrj. In the next section, we show target node sef. We report thecerti ed ratio on the target
that this improved LP formulation is both more ef cient and nodes set, which is the ratio of nodes that are certi ably
effective by experimental evaluation. robust under a given threat model. We refgtitnes with
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different random selections and report the average resultand collective models share the same smoothed model, we
Additionally, we evaluate the global attack scenario in whichonly need to estimate the smoothing prediction once to avoid

theT is all the nodes in the graph in Appendix. D.5. extra computation. By integrating both certi cates, we can
leverage their respective strengths and enhance the overall
6.2. Effectiveness of Collective Certi ed Robustness robustness of the system.

Ir:;h:)sszgcégréc\tl;lveeim rtga\éeh”iglézﬁait?r?t'\;ﬁgi?ﬂ?;glrjcr)TabIe 1. Comparison of certi ed ratio between sample-wise
prop bp 9 and collective certifying schemes under various parameters.
bustness performance.

Cora-ML ( =6)
parameters methods 20 50 100 120 140

(Pe-pn)
Sample-wise  1.000 0.000 0.000 0.000 0.000
0.7-0.9 Collective-LP1 0.9210.7680.4520.3160.178
Collective-LP2 0.9210.8360.6860.6240.564
Sample-wise 1.000 0.000 0.000 0.000 0.000
0.9-0.8 Collective-LP1 0.95(0.8780.7300.6660.600
Collective-LP2 0.95(0.8940.8000.7600.726
Sample-wise 1.000 1.000 1.000 0.000 0.000
0.9-0.9 Collective-LP1 0.978 0.948 0.9(0.8800.862

Citeseer ( =4) 20 50 100 120 140
Sample-wise  1.000 0.990 0.000 0.000 0.000

0.7-0.9 Collective-LP1 0.950 0.840.6400.5460.452

Collective-LP2 0.950 0.890.7960.7560.718
Sample-wise  0.000 0.000 0.000 0.000 0.000

0.8-0.7 Collective-LP10.8560.5040.0000.0000.000

Collective-LPz0.8940.7560.5340.4460.360
Sample-wise 1.000 0.000 0.000 0.000 0.000

0.9-0.8 Collective-LP1 0.97(0.9200.8200.7750.730

6.2.1. @®MPARING COLLECTIVE WITH SAMPLE-WISE.

Figure 2: Comparison of certi ed performance (More re-p syperior certifying scheme should not only possess a
sults with other parameters are shown in Appendix. D). higher certi ed ratio but also a higher clean accuracy that
represents the initial performance of the model. We also
In Figure 2 and Table 1, we exhibit the certi ed ratio of evaluate the trade-off between the certi ed ratio and the
the three certi cates regarding various numbers of injectecclean accuracy of the smoothed model in Figure 3. As
nodes . With the same smoothing parameter, both proposeave employ the same smoothed model, both the collective
collective certi cates achieve a higher certi able radius, scheme and the sample-wise scheme exhibit the same clean
outperforming the sample-wise approach signi cantly whenaccuracy when they share identical smoothing parameters,
the is large. For example, in the Citeseer dataset, whewhile our collective approach consistently achieves a higher
= 140, our Collective-LP1 and Collective-LP2 have the certi ed ratio, particularly when exceeds the certi able
certi ed ratios of 73:0%, and81:2%, while sample-wise radius of the sample-wise approach. Finally, these results
can certify0:0% nodes. Moreover, the improvement of our highlight the advantageous trade-off achieved by our pro-
collective certi cate is even more signi cant in the global posed collective approach in both smalleand larger .
attack setting (Appendix. D.5).

. . 6.2.2. @MPARING TWO COLLECTIVE CERTIFICATES.
When the is small, the LP collective robustness does not

outperform the sample-wise robustness. This can be aih comparing our two LP-based collective certi cates, it
tributed to the integrality gap of the relaxation techniqueis evident that our customized relaxation (Collective-LP2)
utilized in the LP formulation, which we further illustrated consistently achieves higher or equivalent certi ed ratios
in Section. 6.3Interestingly, this difference becomes negli-compared to the standard technique (Collective-LP1). For
gible in the case of a global attacks shown in Appendix. instance, in the Cora-ML dataset, when=0:7, p, =0:9,

D.5. Nevertheless, in practical scenarios, we can easilgnd = 140, Collective-LP2 improves the certi ed ratio by
combine the sample-wise and collective certi cates with216%compared to Collective-LP1 (Table 1). Furthermore,
minimal effort to achieve stronger certi ed performance in with the same clean accuracy, Collective-LP2 is always
both small and large attack budgets. Since the sample-wissuperior to Collective-LP1 in certi ed ratios (Figure 3).

7
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(a) smaller (GCN) (b) smaller (GCN) (a) Runtime (b) Runtime

Figure 4: Runtime comparison of LP collective models.

(c) larger (GCN) (d) larger (GCN)
(a) Integrality Gap (b) Integrality Gap
Figure 5: Certi ed ratio comparison between optimizing
original BQCLP problem and relaxed LP problem.
(e) larger (GAT) (f) larger (GAT) is attributed to the sacri ce made in the relaxation process

of the LP formulation. It also partially explains why our
Figure 3: Trade-off between clean accuracy and certi edapproach may exhibit a weaker certi ed ratio compared to
ratio (More results with other are shown in Appendix. D). the sample-wise approach wheis small.

In Figure 4, we present a comparison of the runtime be—7' Related Work

tween our two LP-based collective certi cates. Itis evident|n this section, we summarize the previous work that is
that Collective-LP2 exhibits a signi cantly lower runtime closely related to certi ed robustness. Randomized smooth-
compared to Collective-LP1, particularly asncreases. Re- ing has emerged as a prominent black-box technique that
markably, even for a larger value oflike = 140, our  provides certi ed robustness. It was rst proposed for de-
Collective-LP2 can be solved in approximatélyninute.  fending against, norm ball perturbation in the computer
This indicates the practicality and ef ciency of our pro- vision models (Cohen et al., 2019). Recent work extends it
posed method, making it feasible for real-world scenariogo certify graph node classi cation tasks (Bojchevski et al.,

with larger attack budgets. 2020; Wang et al., 2021; Jia et al., 2020; 2022; Scholten
et al., 2022) againdy-norm ball perturbation, typically
6.3. Effectiveness of Linear Relaxation the graph modi cation attacks (GMAs). To improve the

. . . . . certi ed performance, some researchers (Schuchardt et al.,
In this section, we investigate the impact of our LP relax- ) :

. ) X 2020; 2023) develop collective robustness schemes. These
ation technique on the certi ed performance of our col-

lective certi cation method. Speci cally, we compare the schemes assume a realistic attacker whose objective is to
certi ed ratios obtained from both the original integer prob- perturb a set of nodes simultaneously, thereby improving

lem (BQCLP) and the LP problem (Collective-LP2). Figure the overall robustness against adversarial attacks.
5 provides a graphical representation of these results. Due Despite the progress made in defending against GMAS,
the computational overhead associated with solving the intdhe robustness against graph injection attacks (GIAs) has
ger problem, we limit our analysis to a smaller attack budgetreceived relatively little attention. (Jia et al., 2023; Lai et al.,
12. We observe that the certi ed ratio of the integer 2023) further extended it to certify against GIAs. However,
problem remains relatively stable asncreases. However, these models provide sample-wise certi cates instead of
the certi ed ratio of Collective-LP2 undergoes a decline of collective ones. To the best of our knowledge, there is
approximately6%. This decrease in certi ed performance currently no collective certi cate designed for GIAs.

8
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8. Limitations and Future Works worst-case attacker, such that the remaining nodes are guar-
anteed to be robust. However, it yields a binary quadratic

Ofur colllect(ijvlg certi cate is obtained througlh the st?llu;ior; constrained programming that is NP-hard. To address this,
of a relaxed linear programming (LP) problem, which e “we propose novel relaxations to formulate the problem into

fectively reduces the computational complexity to linearj,oa nrogramming that can be ef ciently solved. Extensive

_t|me;j However, this Ir_elaxatlorl: does come at ahcost, as 'éxperimental results demonstrate that our proposed collec-
introduces an integrality gap that compromises the certi edy o cortj cate achieves signi cantly higher certi ed ratios

performance. Consequently, in situations where the attacky,  arger certi able radii compared to existing approaches.
budget is small and the sample-wise certi cate proves

effective, the collective certi cate may not yield superior
results. Acknowledgements
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that since both the sample-wise and collective models share

the same smoothed model, we only need to estimate thﬁnpact Statement

smoothing prediction once, avoiding computational over-

head. By integrating both certi cates, we can leverage theifThis paper proposes a novel approach to enhance the ro-

respective strengths and enhance the overall robustnesshstness of graph-based machine learning, with potentially

the system. wide-ranging applications in areas such as social networks,

transaction networks, and traf ¢ prediction. By introducing

collective certi ed robustness for message-passing graph
eural networks, we provide a guarantee that a certain ratio

It is important to note that, despite the improvement ob
tained by collective certi cation, sample-wise certi cation
is still irreplaceable. The choice between sample-wise an

lect i cates d d th ¢ threat model f nodes will remain certi ably robust even under a speci-
cotiective certi cates depends on the Spec ¢ threat MOde! oy 444 ) budget (a maximum number of malicious nodes
being considered. If the focus is on ensuring the robustnes

Znd ed ight be injected in th h). Th tential
of an individual node, the sample-wise certi cate is more hd edges might be injected in the graph) © potertia

isks might be that the number of injected nodes or edge
suitable. On the other hand, if the objective is to ensur S¢S Mg ’ rotiny S Of Sges

i : emight be more than the system owner's expectation, thereby
the overall robustness of a majority of nodes, the COHeCt'V%itigating the certi cation

certi cate is more appropriate.
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A. Theorectical Proofs

Lemma 1. (Restate) LeA be the adjacency matrix of the perturbed graph witimjected nodes, and the injected nodes are
in the last rows and columns. With smoothipg > 0andpe > 0, we have the upper bound pgE, ):

P(Ev)  P(Ev) (13)
”AFIZI'I*' 'V“ jjAﬁ:n+ V“ jjAth‘* V“ .
=1 pli (n+ ); 111p2 (n+ w1 p, " '
wherep; ;=1  (pepn)'; 8i 21 1;2;  ;kg, and adjacency matriA contains the injected nodes encoded in(he- 1) "
to(n+ )™ row, andjj jj1isly norm.

Proof. According to (Scholten et al., 2022), we have an upper boung(t6§) p(E,) by assuming the independence
among the paths. L@(E\) denote the probability that all pat@s are intercepted from an injectedwitdeodev in the case
that of considering each path independently. We h#t#)) = = ,p« (1 (Pepn)'¥), wherepe :=1  pe,pn =1 py

andjqg 2 f 1; ; kg represent the length of the paj2 PX fromwtov. (pepn)!¥ is the probability that all edges and all
nodes in the path are not deletedl, (pepn)'¥ is the probability that at least one of edges or onq-\pf nodes are deleted, such
that the pathy is intercepted. Then, by considering multiple injected nodes, we & = 1 w2v P(EY). Finally,

we have theo(E,) as follows:

ME@ (14)
=1 P(EV
¢ v g
=1 f (1 (pepn)Jq])g
szv 2Pk
=1 FL PeP)™ (L (PeP)D™™ (1 (pepn) )™ g
w2V

.. . o2 - — .
_ JAn:(n+ ywv ”An:(n+ );v”3l JJAn:(n+ );\,111_
=1 p P Py :

wherep; :=1 (pepn)'. In particular, the constami, denotes the probability that a path with a lengttka$ intercepted.
According to graph theonA¥, is the number of paths from nodeto nodev with distance/length/steps of exackyin
the graph. LeA,.(h+ )., denote the slicing of matriR, taking thev™ column and the rows frofm +1) " to(n+ ).

ThenjjAﬁ:(n+ );ijl guanti es the number of paths with a lengthlobriginating from any malicious node and reaching
nodev. O

Theorem 1. (Restate) Given a base GNN classifetrained on a graphs and its smoothed classi g de ned in(2),

a testing noder 2 G and a perturbation rang® . (G), letE, be the event de ned in Ed4). The absolute change in
predicted probabilityipy.y (G)  pv.y (G9] for all perturbed graphsz°2 B. (G) is bounded by the probability of the
eventEy: jpvy (G) Py (G P(EV).

Proof. By the law of total probability, we have

P(fu( (GY) =)
= P(fy( (GY) =y~ Ey)+ P(fu( (GY) = y" Ev):

Note that, we de ne the eveiit, based on the sampling of perturbed gragis®. However, the clean graph is smaller
thanG® and the intersection/overlap graph of then®is G°= G. Subtly, we can still use the evet, de ned on (G°)

to divide the sample space ofG) by regarding the modél, ( (G)) only take part of the (G9 as input, which is the
intersected part dB:  (G9\ G, and the result does not relate to the part that bey®fice., the injected nodes). Such that,
we also have

PEv( (G) =)
= P(fv( (G)) = y" Ev)+ P(fu( (G)) = y" Ev):
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Due to the fact that the injected node does not have any message passiwgutd not affect thepy,, (G), we have
P(fv( (G9) = yjEy) = P(fv( (G)) = YjEy), so thatP(fy( (G)) = y” Ey) = P(fy( (G%) = y~ E,). Following
(Scholten et al., 2022), we have similar deduction as follows:

Pvy (G)  Puy (GO

P(fy( (G))= y"Ey)+ P(fv( (G) = y" Ev)
P(fv( (G = y~E,) P(fu( (GY=y"E))

P(fv( (G))= y"Ev) P(fy( (G) = y"E.)

P(fy( (G))= y" Ey)

P(Ev) P(fv( (G)) = YiEy)

P(Ev):

A.1. More discussion on the single-node certifying condition (Corollary 1).

In Corollary 1, we present a single-node certifying condition. Here, we aim to further discuss its theoretical implications by
comparing it with the work of (Lai et al., 2023).

Assuming thap,,y (G) maxysy Pviy (G) = 1, inthis case, our certifying condition §E,) < 1=2, while the certifying

condition of (Lai et al., 2023) i& p < 1=2. Note thatp(E,) is the probability that there exists at least one message from
injected nodes to the target node within its receptive eld, andpis the probability that there exists at least one inserted

edge that is not deleted in the whole graph. As a rep(H#,) is always smaller thah p. That is, for a node with the

same con dence gapy;,y (G) maxysy Pvy (G), our condition is easier to satisfy, thus providing better robust ratio. This
advantage can be attributed to the gray-box knowledge of the target model. In our paper, we assume that the target model
belongs to message-passing Graph Neural Networks (GNNs), following the approach of (Scholten et al., 2022).

B. Details of Optimization Formulation

B.1. Formulating problem (8) as polynomial constrained programming.

For problem (8), we plug ip(E,) with (5), and then we have the following optimization problem:

X
max M = my; (15)
An:':; m
' v2T

st. 2p(Ey) ¢ my;8v2T;

PEN=1 (Pre );vjilpgAﬁ;(m yw i p{iAﬁm iy,
JiAw]i1 ; 8w 2fn+1; n+ g

Aj 210,19, 8i 2fn+1; ;n+ ;8 2f1; n+ g
m, 2f0;1g;8v 2f1; i Nng;

wherem, =1 (the element in vectan) indicates that the robustness for nadean not be veri ed. Speci cally, it means
that2p(Ey) ¢y, and it disobeys our certifying condition.

There are exponential termspE, ), which is dif cult to solve by existing optimization tools. We further formalize the

problem. By taking the logarithm of th®#E, ), we are able to transform the exponential constraint in prolfléyinto
polynomial constraint:

P, logl ) my; (16)
P—V = jjAn:(n+ );ijl pl + JJAﬁ(n+ );vjjl p2 + + JJAI:\(n+ );vjjl pR,
wherepx = log(pk) is a constant, anB, is equivalenttdog(1 p(Ey)). Then the problenil5)is transformed to a binary
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polynomial constrained programming:

max M = my; a7
An:':; m
' v2T

s.t. Py, log(l %) my;

Py = iAnins ywlis P+ AR e yulin P2+ DAL ydin P
jAw]1 ; 8v2fn+1; ;n+ g

Aj 210,19, 8i 2fn+1; ;n+ ;8 2f1; n+ g

A = A

my 2f0;19;8v 2f1; ;Nng:

B.2. Formulating problem (17)as BQCLP (9).

In this section, we discuss the process frdm) to (9). In the case ok = 2, the problem(17) becomes a binary quadratic
constrained problem as follows:

X
max M = my; (18)
Anp:;;m
' v2T

St JjAnn+ ywiin p1+jjA§:(n+ );vjjl P2 log(1 %) my;
JAwlin  ;8¥2fn+1l; n+ g
Aj 210,19, 8 2fn+1; ;n+ ;8 2f1, n+ g
A” = A
m, 2f0;1g;8v2f1l, ;ng:

Next, we divide the adjacency matixinto four parts as shown in Fig.6, and then th&can be interpreted as:

Figure 6: lllustration of adjacency matrix notation.

a2= (RoRot ATA1) @, n) (AoAL + ATAZ)( i
(A1A0+ A2A1)( ny  (A1AT + A2A2)( )
Then, thel; norm of A7, . ., can be represented as:
[jjAﬁ:(nwL );1jj1;jjA§:(n+ );2jj1; ;jjAﬁ:(n+ );njjl]> =(A1A0+ A2A1)1 ¢ (19)

Also, same as above, together with Figj8..jj1 is described as:
liAngiziiAme2y i1 GHiA@s il = A1ln + Azl (20)
Finally, combine (19) and (20), problem (18) can be formulated as:

max M =t">m;
A1Azm

st prAT1l + p(A1A0+ AZA1))"1  C m;
Aily + Al AZ = Ag;
A1 2f0;1g ";A,2f0;1g ;m2f0;1g";

wheret is a constant zero-one vector that encodes the position of the target nddersét a vector that indicates whether
the nodes are successfully attackéd? R" is a vector with negative constant elemeog(1 %), forv=1;2; ;n.
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B.3. Formulating problem (9) as Linear Programming Problem (10).

Here, we discuss the details of the process of relaxing the BQCLP prdB)dmthe LP problen{10). In problem(9), there

are 2n quadratic terms amonij,A;. To tackle the challenge, we introduce the following transformation to transform it
into an LP problem. Speci cally, we rst substitute the quadratic terms with linear terms and relax all the binary variables to
continuous variables ifd; 1].

If x 2 B,y 2 B are two integer binary variables, then the quadratic teyroan be substitute by a single variakle= xy
with the combination of linear constraints (Wei, 202@): x;z y;x+y z 1,z 2 B. We usea) andly)
to denotes the element iff row andj™ column of matrixA; andA, respectively. For each quadratic tebpj)agjy
@8i2f1, ; g8 2f1, ; g8v2fl  ;ng)in AyA;, we create a substitution variatdg y := by )a;y) with
Corresponding ConStrainth(ij ) 2 B, Qv(ij ) b(” ) Qv(ij ) Ay ) andb(ij ) + Ajv) QV(ij ) 1. The EXiSting linear
terms remain unchanged. Now, the BQCLP problem has transformed into binary linear programming (BLP).

Next, we formulate the problem using matrix representation. We rstlyQise substitut§ A,A;)” 1 , and we have the
rst constraint as:

prATl + ;AGATL + ;O C m:

We list the elements of th&; andA, as follows:

2 3 2
a;n app a3 ain b1 b bis by
a1 21
A1 = Raz c 4 A= @by (21)
a1 an b b
Then, the matrix multiplication of, andA; is
3
bria1n + bppapr+  + by ai bpapnt+ bpap+t +bas biiain + bpagy +  + by ag
AA §b21311 + bpan+ +hpai bpaptbpap+ +hha bpiagn + bpaon +  + bp ay z
2R1 = . . . .
biays+ brayy+ +Db a; bianp+bran+ +b a; biamm+bram+ +b a,

By the de nition of matrixQy, forv 2 f 1;2;  ;ng, we have the following equivalent representation:

2 3 2 3
Quay Quaz Qu) buiayy  pragy biayy
Quey Que2 Que ) broazy  bp2agy b say,
Q= : : : = : : .. : :
Qv( 1) Qv( 2) Qv( ) b.L ay bZ ay b ay
We notice thatA;A1)” 1 isto sumtheA,A; by its column, and ead®, contains all the terms for each vector summation.
Thenwe hav®® = (AA1)” =[17Q:1 ;17 Q.1 ; ;1°Qn1 7.
Further, by decomposing the meaning®f, we have
2 3 3 2 3.
b1 b b aiy Ay v iy
b2 b b ay Ay azy azy .
Q=9 . : : : S S L=hA2 1o = Az 1 {Awm]
b b b ay ay ay ay
To make theQ, equivalent to the quadratic terms, for ev€dy, we need to add its constraints:
Qv Az; Qv 1 [Al(: ;v)]>; 1 [Al(: ;v)]> + Az Qv L

15
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Finally, we relaxedA1, A,, Q, to relax all the binary variables to continuous variablefji ]:

Qv2[0;1] ;A12[0;1] " A22[0;1] ;m2][0;1]":

Then we have the linear programming problem (10) as follows:

max M=t"m;
A 1A o m;
Q1 Q2; Qn

st. pIA]l + RAJAIL + ;O C m
A1l, + Aol ;
Qu=(Qui)) :v2f12 ;ng;
0=[1"Q11:;17Qx1; ;1"QnlT;
Qn 1 [Al(:;v)]>?
Qv Ay
1 [Al(:;v)]> +A Q L
Qv2[01] ;
A1 2[0;1] "
A, 2[0;1] ;
AZ = Az
m 2 [0; 1]":

B.4. Formulating problem (9) as Linear Programming Problem (12).
We start from (9), and we have the rst constraint:
prAT 1l + AJATL + ;ATAZ1L C m:

Then, we substitutd3 1 with z,

2 3
b1 b bis by

2 3 2 3
b1 b+t b+bs+ +b
N _ . o1 + o + bzs +  +b
z:=A71 = RBby . : (22)
: byitbotbat  +b o
by b ) ’
Then, from (22), the constraint is transformed into
prATl + ;AGATL + ;AJz C m; (23)
z2f0;1;,2;, ;min(; )g 82f0;12 ; o
In (9), since there exists the constraiftj 1, + Asl , SO we have; satisesz; 2f0;1;2; ;min(; )g. Next, we

deal with the quadratic ter; z.

If x 2 B is a binary variable, and 2 [0; u] is a continuous variable, then the quadratic tegntan be substitute by a single
variablez ;= xy with the combination of linear constraints (Wei, 202@): ux;w z;ux+z w u;0 w. Toapply
it, we rstrelax thezto[O;min(; )].
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We know thatA] z satis es that

2 32 3
a1 A Az ai_ Tz 2
a2 ax Aazp a o z 17y + axnzpx + +az
> . 2 127 + a7y + + a o,z
Al Z= Ragz aApz Az : 237 = )
' ' ' ' anzy + agmzz t +anz .
Qin  d2n  Aszn an z (1)
Then, we create a new variable mat@xto substituteA7 z, with each of its elementy; := a; z;(8i 2 1;2; 'ng;j 2
f1,2;, ; g). Thatis:
2 3 2 3
iz Che G a11Z1 a1y a1z
b1 2 7] 1271 a7y a oz
Q= : — L= . . ) . :
Ch1 COh2 Ch AinZ1 a2z an Zz
We now haveA] z = Q1 . Assuming that , for each quadratic termi(ij 2 @i2f1 ing8 2f1 Q)
in A7 z, we create a substitution varialilg;; = AZ(U X with corresponding constrainte:  Qjj y, Qi) A i(ij )
Qijy zZ.,and A I(ij )t 7 Qi) . Further, with matrix notation, we have
0 Q A7;
0 1,z Q (1 Al); (24)

A12f0;1g9,z2[0; ;Q2[0; [

Finally, we relax all the binary variables to be continuous variables, We have problem (12) as follows:

max M =t>m; (25)
Aq1:mz
Q2RN

st. ATl + RAJATL + Q1 C m;

Ail, + 2z ;

Q AI;

Q 1,77

Al +1,27 Q ;

Q2[o; I" ;

A1 2[0;1] "

z2[0; ] %

m 2 [0; 1]":

C. Algorithm of our proposed methods

Train a base classi erf. Following the work of (Lai et al., 2023), our rst step is to train a graph model to serve as

the base classi er. To enhance the model's generalization ability on the smoothing samples, we incorporate random noise
augmentation during the training process. The training procedure is summarized in Algorithm 1, providing an overview of
the steps involved. Given a clean grapha smoothing distribution (G) with smoothing parameteps andp,, and the

number of training epochs, the algorithm iteratively trains the model on randomly generated graphs. In each epoch, a
random graplG, is drawn from the smoothing distributior(G). The model is then trained on the training nodes using this
randomly generated graph. This process is repeated for the speci ed number of training epochs.

17
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Algorithm 1 Graph model training (Lai et al., 2023).

Require: Clean graphG, smoothing distribution (G) with smoothing parametes andpy,, training epoctt.
1. fore=1; ;E do
2:  Draw a random grape (G).
3: f = train _model(f (G¢)) on training nodes.
4: end for
5: return A base classieff ().

Obtaining prediction probability of smoothed classi er g. Next, we need to obtain the prediction results of a smoothed
classi er. As depicted in Algorithm 2, we samplé¢ graphsGs; G,;:::; Gy from the smoothed distribution(G) =

( «(G); n(G)) based on the base classi tr To estimate the probabilistic prediction, we employ a Monte Carlo process.
For each sampled grajh , we calculate the prediction probakﬁlnyy (G), which represents the frequency of the predicted

classy for the vertexv. This can be approximated pgy (G) iz1 1(fv(Gi) = y)=N, wherel is the indicator function.

Let denote the top class probabilily := py,y (G) and runner-up class probabilipg := maxysy pv:y (G), we want to

bound the impact of randomness. Speci cally, we compute the lower boupg @fenoted apa ) and upper bound of
ps (denoted apg). Applying the Clopper-Pearson Bernoulli con dence interval, we obtairpthand theps” under a

con dence level of=C , whereC represents the number of classes in the model. o

Algorithm 2 Monte Carlo sampling (Lai et al., 2023).

Require: Clean graplG, smoothing distribution (G) with smoothing parameters andp,, trained base classi €r( ),
sample numbeN , con dence level .

: DrawN random graph$G;j G; (G)gN, .

counts= jfi : f(Gj) = ygj,fory=1; ;C.

Ya;Ye = top two indices ircounts.

Na;Ng = countsfya]; counts[yg].

: pa;Ps = CPBernolliina;ng;N; ).

: return pa, Ps.

Collective certi cation via solving an optimization problem. We obtain the collective certi ed robustness by solving
the optimization problem problem (10) or (12). The process is described in Algorithm 3.

In this algorithm, we rst set up the constast andp, based on the given smoothing paramefgrandp,, . Next, for each
nodev in the target node sét, we obtain the lower boungh and the upper bounpk™ using Algorithm 2. These bounds

are based on the prediction probabilities of the smoothed classi er for the currenvnatle then compute the value

C, = pa Ps and prepare the constant vec@mith elementdog(1 %) for each node. The objective function of the
optimization problem is based on eiti{&0) or (12), depending on the chosen formulation. The constraints are also set up
accordingly. Finally, we solve the linear programming using an LP solver, such as MOSEK, to obtain the optimisl value
The certi ed ratio, which represents the percentage of nodes in the targetisat have been successfully certi ed, is then
computed agjTj M )5Tj.

D. Other Experimental Results
D.1. Trade off between Clean accuracy and the certi ed ratio on GCN model.

In this section, we present the remaining experiments as outlined in Section. 6.1. A superior certifying method should not
only achieve a higher certi ed ratio but also maintain or improve the clear accuracy, which represents the original model's
performance. We compare the results of these two metrics for our method under different parameter settings as shown in
Figure 7. In the gures, the data points situated closer to the upper right side represent higher certi ed ratios and clean
accuracy. Itis evident that both of our proposed methods consistently outperform the sample-wise method, demonstrating
their superior performance under various attacker power
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Algorithm 3 Certi ed robustness via solving optimization problem (10) or (12).

Require: Smoothing parametefs andp,, graph adjacent matri&o, perturbation budget and , target node sefk.
1: Set constanp; = log(X  (pepn))-

2: Set constanp, = log(1  (PePn)?).

3: forvinT do

4:  Obtainpa, ps from Algorithm. 2 for current node.
5.  Computec, = pa  Ps.
6

7

8

9

Prepare constant vect@r with each elementog(1 ).
: end for
: Setup objective function in (10) or (12).
: Setup constraints in (10) or (12).

10: Solve the optimization problem using LP solver such as MOSEK td/get

11: Return Certied ratio(jTj] M )ITj.

@ (b) (© (d)

(e) ® (9) (h)

Figure 7: Clean accuracy and the certi ed ratio of our collective model under various smoothing parameters on GCN model.

D.2. GCN certi ed ratio of our methods under different smoothing parameters.

In addition, we conducted experiments to compare the performance of our methods with the sample-wise method under
different combinations of parametgisandp,, on the Cora and Citeseer datasets. The results are shown in Figure 8.

From the gures, we can observe that our proposed methods always exhibit a larger certi able radius. For example, when
exceed$0, the sample-wise method fails to defend against any attacks, while our methods are still able to provide certi able
guarantees.

D.3. Evaluation on PubMed dataset.

In this subsection, we conduct more experiments on a larger dataset. PubMed (Sen et al., 2008) contains 19,717 nodes and
44,324 edges. We evaluate the sample-wise, Collective-LP1 and Collective-LP2 on the GAT model. The results presented in
Figure 9 show that our proposed collective certi cates outperform the baseline signi cantly.

D.4. Time complexity comparison of two relaxations.

Furthermore, we provide more detailed results on the runtime of the two proposed methods with different parameters in
Figure 10. From the gures, we can observe that as the attack budgeteases, the proposed Collective-LP2 method
demonstrates superior ef ciency compared to Collective-LP1 in both datasets. This ef ciency advantage is particularly
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@ (b) (© (d)

(e) ® (9) (h)

Figure 8: Certi ed ratio of our collective model under various smoothing parameters on GCN model.

(a) Certi ed Ratio (b) Trade-off

Figure 9: Certi ed performance on PubMed dataset with GAT model.

evident when exceedd20. Notably, when = 160, the Collective-LP1 takes approximately000seconds to complete
the computation. On the other hand, the time consumption of Collective-LP2 remains consistentl9®sémonds.

These results highlight the computational advantage of Collective-LP2 over Collective-LP1, especially for larger attack
budgets. The reduced runtime of Collective-LP2 ensures the practicality and ef ciency of our proposed method, making it
suitable for real-world scenarios with larger attack budgets.

(a) Collective-LP1 (b) Collective-LP1 (c) Collective-LP2 (d) Collective-LP2

Figure 10: Runtime of our collective model under various smoothing parameters.
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