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Abstract
Recent breakthroughs in generative modeling
have sparked interest in practical single-model
attribution. Such methods predict whether a sam-
ple was generated by a specific generator or not,
for instance, to prove intellectual property theft.
However, previous works are either limited to
the closed-world setting or require undesirable
changes to the generative model. We address
these shortcomings by, first, viewing single-model
attribution through the lens of anomaly detection.
Arising from this change of perspective, we pro-
pose FLIPAD, a new approach for single-model
attribution in the open-world setting based on
final-layer inversion and anomaly detection. We
show that the utilized final-layer inversion can be
reduced to a convex lasso optimization problem,
making our approach theoretically sound and com-
putationally efficient. The theoretical findings are
accompanied by an experimental study demon-
strating the effectiveness of our approach and its
flexibility to various domains.

1. Introduction
Deep generative models have taken a giant leap forward in
recent years; humans are not able to distinguish real and syn-
thetic images anymore (Nightingale & Farid, 2022; Mink
et al., 2022; Lago et al., 2022), and text-to-image models
like DALL-E 2 (Ramesh et al., 2022), Imagen (Saharia et al.,
2022), and Stable Diffusion (Rombach et al., 2022) have
sparked a controversial debate about AI-generated art (Rea,
2023). But this superb performance comes, quite literally,
at a price: besides technical expertise and dedication, large
training datasets and enormous computational resources are
needed. For instance, the training of the large-language
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Figure 1. Single-model attribution with FLIPAD. Given a gen-
erative model G, FLIPAD performs the following steps: 1) The
training data includes generated samples x(i)

G from G and samples
from a different source x

(i)

G′ . For each x we compute the optimiza-
tion target o by inverting the final activation σL. 2) For each output
o, we perform final-layer inversion by finding an activation ẑL−1

that is close to the expected activation z̄L−1 and an approximate
solution to o ≈ GL(ẑL−1). 3) Since final-layer inversion reveals
differences between different data sources, the activations can be
used as features to train an anomaly detector.

model GPT-3 (Brown et al., 2020) is estimated to cost al-
most five million US dollars (Li, 2020). Trained models
have become valuable company assets—and an attractive
target for intellectual-property theft. An interesting task
is, therefore, to attribute a given sample to the generative
model that created it.

Existing solutions to this problem can be divided into two
categories: fingerprinting methods (e.g., Marra et al., 2019a;
Yu et al., 2019) exploit the fact that most synthetic samples
contain generator-specific traces that a classifier can use
to assign a sample to its corresponding source. Inversion
methods (Albright & McCloskey, 2019; Zhang et al., 2021;
Hirofumi et al., 2022), on the other hand, are based on
the idea that a synthetic sample can be reconstructed most
accurately by the generator that created it. However, both
approaches are designed for the closed-world setting, which
means that they are designed to differentiate between models
from a given set that is chosen before training and stays
fixed during inference. In practice, this is rarely the case,
since new models keep emerging. For detecting intellectual
property theft, the setting of single-model attribution is more
suitable. Here, the task is to determine whether a sample
was created by one particular generative model or not, in
the open-world setting. Previous work has found that this
problem can be solved by complementing the model with
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Figure 2. The two dimensions of the model attribution problem.
Let A be the attribution method. While single-model attribution
solves a binary decision problem (G0 or something else?), multi-
model attribution can distinguish between more than two classes.
In an open-world setting, it is also possible that a sample stems
from an unknown generator.

a watermark that can be extracted from generated samples
(Yu et al., 2021; Kim et al., 2021; Yu et al., 2022; Nie et al.,
2023; Wen et al., 2023). Although watermarking has shown
to be very effective, a major disadvantage is that it has to be
incorporated into the training process, which a) might not
always be desirable or even possible and b) can deteriorate
generation quality.

In this work, we tackle the problem of single-model attribu-
tion in the open-world setting by viewing it as an anomaly
detection task, which has not been done in previous works.
This novel viewpoint motivates two simple, yet effective,
baselines for the single-model attribution task. Further-
more, we find that incorporating knowledge about the gener-
ative model can improve the attribution accuracy and robust-
ness. Specifically, we propose Final-Layer Inversion Plus
Anomaly Detection (FLIPAD). First, it extracts meaningful
features by leveraging the available model parameters to
perform final-layer inversion. Second, it uses established
anomaly detection techniques on the extracted features to
predict whether a sample was generated by our generative
model. While related to existing attribution methods based
on inversion, our method is i) significantly more efficient
due to the convexity of the optimization problem and ii) the-
oretically sound given the connection to the denoising basis
pursuit. We highlight that this approach can be performed
without altering the training process of the generative model.
Moreover, it is not limited to the image domain since fea-
tures are directly related to the generative process and do
not exploit visual characteristics like frequency artifacts.
We illustrate FLIPAD in Figure 1. Our contributions are
summarized as follows:

• We address the problem of single-model attribution in
the open-world setting, which previously has not been
solved adequately. Our work is the first to establish the
natural connection between single-model attribution
and anomaly detection. This change of perspective

motivates the application of anomaly detection on raw
inputs (RawPAD) and on DCT-features (DCTPAD).

• Building upon on these methods, we introduce
FLIPAD, which combines final-layer inversion and
anomaly detection. We prove that the proposed inver-
sion scheme can be reframed as a convex lasso opti-
mization problem, which makes it theoretically sound
and computationally efficient.

• In an empirical analysis, we show the effectiveness
and versatility of the proposed methods for a range
of generative models, including GANs and diffusion
models. Notably, our approach is not limited to the
image domain.

2. Problem Setup
We consider the problem of model attribution to have two
fundamental dimensions, which are illustrated in Figure 2.
First, we differentiate between single-model and multi-
model attribution. While in multi-model attribution the
task is to find out by which specific generator (of a given
set) a sample was created, single-model attribution only
cares about whether a sample stems from a single model of
interest or not. Note that, conceptually, real samples can be
considered to be generated by a model as well, and thus, the
task of distinguishing fake from real samples also fits into
this framework. Second, attribution can be performed in the
closed-world or open-world setting. The requirement for the
closed-world setting is that all generators which could have
generated the samples are known beforehand. In contrast,
in the open-world setting an attribution method is able to
state that the sample was created by an unknown generator.

The method proposed in this work solves the problem of
single-model attribution in the open-world setting. Nat-
urally, this setting applies to model creators interested in
uncovering illegitimate usage of their model (or samples
generated by it). In this scenario, FLIPAD only requires
resources that are already available to the model creator:
the model G itself (including its parameters), samples xG

generated by G, and real samples xreal used to train G. We
emphasize that no samples generated by other models are
needed. Therefore, we do not rely on restrictive data acqui-
sition procedures, which might involve i) using additional
computational resources to train models or sample new data,
ii) expensive API calls, or iii) access to models that are kept
private.

3. Related Work
We divide the existing work on deepfake attribution into
three areas: fingerprinting, inversion, and watermarking.
Regarding the problem setup, methods based on fingerprint-
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ing and inversion perform multi-model attribution in the
open-world setting, while watermarking provides single-
model attribution in the open-world setting. Note that all
existing methods are designed for image data. A categoriza-
tion of the related work is given in Appendix A.

Fingerprinting The existence of fingerprints in GAN-
generated images was demonstrated first by Marra et al.
(2019a). They show that by averaging the noise residuals
of generated images, different models can be distinguished
based on the correlation coefficient between the image of in-
terest and a set of model-specific fingerprints. Other works
show that the accuracy can be improved by training an attri-
bution network (Yu et al., 2019) or extracting fingerprints
in the frequency domain (Frank et al., 2020). Since finger-
printing only works in closed-world settings, methods to
efficiently extend the set of known models (without expen-
sive re-training) have been proposed (Marra et al., 2019b;
Xuan et al., 2019).

Inversion Inversion-based attribution is based on the find-
ing that an image can be reconstructed by the generator
that it originates from. While existing works (Albright &
McCloskey, 2019; Karras et al., 2020; Zhang et al., 2021;
Hirofumi et al., 2022) prove that this approach is effective,
it is computationally expensive since the optimal recon-
struction has to be found iteratively using backpropagation.
Additionally, since there is no guaranteed convergence due
to the non-convexity of the optimization problem, multiple
reconstruction attempts are necessary for each image.

Watermarking Watermarking methods solve the attribu-
tion problem by proactively altering the generative model
such that all generated images include a recognizable identi-
fier. Yu et al. (2021) were the first to watermark GANs by
encoding a visually imperceptible fingerprint into the train-
ing dataset. Generated images can be attributed by checking
the decoded fingerprint. In a follow-up work (Yu et al.,
2022), the authors propose a mechanism for embedding fin-
gerprints more efficiently by directly embedding them into
the model’s convolutional filters. A related work by Kim
et al. (2021) uses fine-tuning to embed keys into user-end
models, which can then be distinguished using a set of linear
classifiers. Recent works focus on embedding keys into the
latent representation of an image, for instance, by altering
its representation in specific dimensions (Nie et al., 2023) or
by perturbing its Fourier representation (Wen et al., 2023).
A disadvantage of watermarking methods is that the model
itself has to be altered, which might not always be feasible.

Other Related Work Girish et al. (2021) propose an ap-
proach for the discovery and attribution of GAN-generated
images in an open-world setting. Given a set of images, their
iterative pipeline forms clusters of images corresponding to

different GANs. A special kind of watermarking inspired
by backdooring (Adi et al., 2018) is proposed by Ong et al.
(2021). They train GANs which, given a specific trigger
input as latent z, generate images with a visual marking that
proves model ownership. As a consequence, this method
requires query access to the suspected model, making it
applicable in those scenarios only.

4. Methodology
We begin by developing a viewpoint on single-model attri-
bution through the lens of anomaly detection in Section 4.1.
This approach is complemented by a novel feature extrac-
tion method based on final-layer inversion. We provide
examples illustrating why these features are appropriate for
model attribution in Section 4.2, followed by a practical and
efficient algorithm for final-layer inversion in Section 4.3.

4.1. Leveraging Anomaly Detection for Single-Model
Attribution

Recalling Section 2, we aim at deciding whether a sample
was generated by our model or not. Treating samples from
our model as normal samples and samples from unknown
models as anomalies, we can rephrase the single-model attri-
bution problem to an anomaly detection task. Our proposed
approach, therefore, consists of two modular components.

The first one is the anomaly detection itself. We decide
to use DeepSAD (Ruff et al., 2020), which works par-
ticularly well in high-dimensional computer-vision tasks
but is also capable of generalizing to other domains. The
underlying idea of DeepSAD builds upon SVDD (Tax &
Duin, 2004) but leverages the success of modern deep neu-
ral networks. In essence, DeepSAD learns a deep fea-
ture extractor ϕ that maps normal samples xnorm close
and anomalies xanom far from a prefixed point c (i.e.,
∥ϕ(xnorm)−c∥ ≪ ∥ϕ(xanom)−c∥ ). The resulting distance
to c acts as the anomaly score. More details are provided in
Appendix B.

The second—and crucial—component is extracting the fea-
tures that serve as the input of the anomaly detector. A
trivial approach, which we refer to as RawPAD (Raw Plus
Anomaly Detection), is to simply use the raw input, that
is, to skip the feature extraction part, as features for the
anomaly detector. Another option is to use pre-existing
domain knowledge to handcraft suitable features. In the
case of GANs, we can exploit generation artifacts in the
frequency domain (Frank et al., 2020) by using the discrete
cosine transform of an image as features (DCTPAD).
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4.2. Layer Inversion Reveals Model-Characteristic
Features

However, it is not always known which handcrafted features
perform well, and they might not generalize to unseen mod-
els. We, therefore, propose an alternative feature extraction
method that is universally applicable, i.e., not restricted to
the image domain for instance. The key idea is to incorpo-
rate knowledge about the generative model itself. Inspired
by inversion-based attribution methods, we estimate the hid-
den representation of a given image before the final layer.
We first clarify how these hidden representations can be used
for single-model attribution by providing illustrative exam-
ples with simple linear generative models G : RD0 → RD1 .

Example 4.1 (Impossible Output). Given an output x ∈
R3×3 and a transposed convolution1 Gk parameterized by
a (2× 2)-kernel k specified below, we can solve the linear
system Gk(z) = x to find a solution z:

x :=

0 0 1
0 4 6
4 12 9

 and k :=

(
0 1
2 3

)
⇒ z =

(
0 1
2 3

)
.

However, note that Gk is not surjective, and more specif-
ically, there exists no input z that could have generated
x′ = x + ((0, 0, 0)⊤, (0, ε, 0)⊤, (0, 0, 0)⊤) for ε ̸= 0.
Hence, even though x′ can be arbitrarily close to x—which
means that continuous feature mappings cannot reveal dif-
ferences between x and x′ in the limiting case—we can
argue that x′ has not been generated by Gk. This example
demonstrates the first requirement of a sample x to be gen-
erated by Gk: it needs to be an element of the image space
of Gk.
Example 4.2 (Unlikely Hidden Representation). Let G,G′ :
R2 → R2 be two linear generators given by the diagonal
matrices G := diag(2, 0.5) and G′ := diag(1, 1). Further-
more, let z ∼ N (0, I). Since G and G′ are surjective, they
have both the capacity to generate any output. But, given
some output x := (1, 1)⊤, one can readily compute that

logP
(
max

(
|G(z)− x|

)
≤ 0.1

)
≈ −7.16 ,

logP
(
max

(
|G′(z)− x|

)
≤ 0.1

)
≈ −6.06 ,

where the probability is taken over z, max denotes the max-
imum over all coordinates, and | · | is the component-wise
absolute value. We conclude that—even though x is in the
image space of both generators—G′ is much more likely
(note the logarithmic scale in the display) to generate an
output close to x. Once again, by inferring the hidden rep-
resentation of x, we obtain implicit information, which can
be used for model attribution.

1without padding and with stride one

Example 4.3 (Structured Hidden Representation). Lastly,
the hidden representation of x can reveal differences based
on its structure, such as its sparsity pattern. For illustration,
let us again consider two linear generators G and G′ given
by G = I ∈ Rd×d, G′ =

(
1 e2 . . . ed

)
∈ Rd×d,

where 1 ∈ Rd is the vector of ones and ej ∈ Rd are Eu-
clidean unit vectors. Again, both generators are surjective
but for x = 1 it is G(1) = x and G′(e1) = x. In particular,
there is no input to G with less than d non-zero entries ca-
pable of generating x, whereas G′ can generate x with the
simplest input, namely e1. Hence, the required input z illu-
minates implicit structures of x by incorporating knowledge
about the generator.

4.3. Introducing FLIPAD

The examples in the previous section demonstrate that incor-
porating knowledge about the generative model G can reveal
hidden characteristics of a sample. Inspired by the field of
compressed sensing, we now derive an optimization proce-
dure, which is capable of performing final-layer inversion in
deep generative models. Combining this feature extraction
method with the framework proposed in Section 4.1, we end
up with a powerful and versatile single-model attribution
method, which we coin FLIPAD (Final-Layer Inversion
Plus Anomaly Detection).

In contrast to the examples presented in Section 4.2, we
proceed with a complex deep generative model, which gen-
erates samples according to

x = G(z) = σL(GL(σL−1GL−1(· · ·G1(z) · · · ))) , (1)

for activation functions σl, linearities Gl : RDl−1 → RDl

for l ∈ {1, . . . , L}, and z are samples from the base random
variable z ∼ N (0, I). In the same spirit of Example 4.1 we
can prove that x cannot be generated by G if we can show
that there exists no input z ∈ RD0 such that x = G(z).
However, since G is typically a highly non-convex function,
it remains a non-trivial task to check for the above criterion.
Hence, we propose the following simplification: Is there
any (L− 1)-layer activation zL−1 ∈ RDL−1 such that x =
σL(GL(zL−1))? Moreover, we assume σL to be invertible2,
so that we can define o := σ−1

L (x) and solve the equivalent
optimization problem

find zL−1 ∈ RDL−1 such that o = GL(zL−1) . (2)

Note how this relaxes the intractable full inversion prob-
lem to a simpler inversion of a linear system similar to the
examples covered in Section 4.2.

In practice GL is typically surjective, that is, there always
exists some zL−1 ∈ RDL−1 such that o = GL(zL−1). And

2which is typically the case, e.g., for tanh or sigmoid activa-
tions
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Figure 3. Geometry of the optimization problem (3). According
to Proposition 4.4, the solution sets S (yellow) and S ′ (green) for
outputs o and o′, respectively, are shifted versions of another. The
solution ẑL−1 is the point where the smallest ℓ1-diamond (blue)
around z̄L−1 touches the solution set S. In particular, the second
and third components of ẑL−1, i.e., the ones corresponding to the
y- and z-axis, coincide with the component of z̄L−1.

even worse, linear algebra provides us with the following
fundamental result.

Proposition 4.4 (see e.g., Hefferon (2012), Lemma 3.7). Let
GL : RDL−1 → RDL be a surjective linear function and
o ∈ RDL . Furthermore, let zL−1 ∈ RDL−1 be a solution to
the linear system (2). Then, every z ∈ S solves the linear
system (2), where

S := {zL−1 + z : z ∈ ker(GL)} ,

and ker(GL) := {z ∈ RDL−1 : GL(z) = 0} de-
fines the kernel of GL. Hence, the solution set S is a
(DL−1 −DL)-dimensional affine space.

First, this tells us that if DL−1 > DL, there is not a single
solution but an affine space of solutions of dimensionality
DL−1−DL. For instance, our experiments in Section 5 use
a LSGAN with DL−1 = 64×64×64 = 262 144 and DL =
3× 64× 64 = 12 288, resulting in a 249 856-dimensional
solution space of (2). Secondly, the solution sets S1, S2 for
different outputs o1, o2 are just shifted versions of another.

Hence, since infinitely many activations zL−1 can gener-
ate o, we want to modify (2) such that we obtain reasonable
and more likely activations. In particular, we can consider
the expected activation generated by the generative model,
which we estimate via Monte-Carlo

z̄L−1 =
1

n

n∑
i=1

σL−1(GL−1(· · · (σ1(G1(z
(i)) · · · )

with samples z(i) from the model’s base distribution, that is,
from z ∼ N (0, I) and solve

ẑL−1 ∈ argmin
zL−1∈RDL−1

∥zL−1 − z̄L−1∥1

subject to o = GL(zL−1) .

(3)

This optimization problem is a modification of the basis
pursuit algorithm (Chen et al., 2001); in particular, it has a
similar interpretation: (3) returns solutions that are in the so-
lution space S and are close to the average activation z̄L−1.
The ℓ1-distance regularizes towards sparsity of ẑL−1−z̄L−1,
i.e., towards many similar components of ẑL−1 and z̄L−1.
We present a geometric illustration in Figure 3. In fact, ex-
ploiting the concept of sparsity is not new and has proven
to be useful in theory and practice. For instance, Parhi
& Nowak (2021) have shown that deep neural networks
are implicitly learning sparse networks, Lederer (2023) has
derived statistical guarantees for deep networks under spar-
sity, sparsity is a ubiquitous concept in high-dimensional
statistics (Lederer, 2022), and it has proven successful in
compressed sensing as well (Eldar & Kutyniok, 2012).

Finally, due to numerical inaccuracies of computations in
high-dimensional linear systems, we allow for some slack
ε > 0 and simplify (3) to a modification of the basis pursuit
denoising (Chen et al., 2001)

ẑL−1 ∈ argmin
zL−1∈RDL−1

∥zL−1 − z̄L−1∥1

subject to ∥GL(zL−1)− o∥2 ≤ ε ,

(4)

which is equivalent to the well-known (modified) lasso (Tib-
shirani, 1996) optimization problem, whose Lagrangian
form is given by

ẑL−1 ∈ argmin
zL−1∈RDL−1

∥GL(zL−1)− o∥22 + λ∥zL−1 − z̄L−1∥1,

(5)
where λ > 0 is a parameter that depends on ε.

Re-examining the examples in Section 4.2, we see that our
proposed optimization problem (5) now combines the un-
derlying motivations of all three examples: The reconstruc-
tion loss guarantees to provide solutions that approximately
solve the linear system (Example 4.1) and the regularization
towards the average activation z̄L−1 biases the solutions
towards reasonable activations (Example 4.2), which share
a similar structure to z̄L−1 (Example 4.3). The rationale is
that for an output o− that is not generated from G, we ex-
pect the estimated activations ẑ necessary for approximately
reconstructing o− using the model G to be distinguishable
from real activations of the model.

While our inversion scheme is closely related to the inver-
sion methods from Section 3, we want to emphasize that
FLIPAD enjoys several advantages summarized in the fol-
lowing theorem.
Theorem 4.5. (Informal) Assume that GL is a 2D-
convolution with kernel weights sampled from a continuous
distribution k. Then, (5) satisfies the following properties:
(i) It is equivalent to a lasso optimization problem; (ii) It
has a unique solution with probability 1; (iii) Under certain
moment assumption on k there exists some S ∈ N and con-
stants C0, C1 such that ∥ẑ−z∥2 ≤ C0/

√
S∥z−zS∥1+C1
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Figure 4. Cherry-picked channel dimension c of the average re-
constructed features according to (5) when G is a DCGAN. The
left-most figure shows the average activation z̄c over channel c,
and the remaining figures show the average feature taken over
DCGAN, real, WGAN-GP, LSGAN, and EBGAN samples, re-
spectively.

if ∥z− ẑ∥0 ≤ S, where zS is the best S-term approximation
of z3.

Before providing a proof sketch, let us first examine the
implications of Theorem 4.5: Property 1) allows us to use
fast and computationally tractable lasso algorithms such as
FISTA (Beck & Teboulle, 2009), which enjoys finite-sample
convergence guarantees. According to 2), it is not required
to solve the optimization problem on multiple seeds, as
in standard inversion techniques, see Section 3. Finally,
3) might be useful from a theoretical perspective, but we
want to highlight its limitations. The bound depends on
∥z − zS∥1, which might be expected to be small in diverse
problems in compressed sensing, but it is not necessarily
small for activations of a generative model. Finally, we
provide a brief description of the proof. All details can be
found in Appendix C and D.

Proof. (i) By a suitable zero-extension 0 = −GL(z̄) +
GL(z̄) within the ℓ2-norm in (5) and by using the linearity of
GL, we end up with a usual lasso optimization problem, see
Section C.1. (ii) Lasso optimization problems have a unique
solution if the columns of the design matrix are in general
linear position (Tibshirani, 2013). We show that this is the
case for convolutions GL with probability 1, see Section D.
(iii) If GL satisfies the restricted isometry property (Candès,
2008), then we can obtain bounds of the desired form for
lasso optimization problems. We modify a result by Haupt
et al. (2010) to prove this property for 2D-convolutions, see
Section C.3.

5. Experiments
We demonstrate the effectiveness of the proposed methods—
RawPAD, DCTPAD, and FLIPAD—in a range of extensive
experiments. We begin with smaller generative models
trained on CelebA and LSUN, which allow a fine-grained
evaluation in various setups. We extend the experiments to
modern large-scale diffusion models and style-based mod-
els, to medical image generators, and to tabular models.

3See (11) in Section C.2 and the modification to (5) in Sec-
tion C.4

All experiments can be reproduced using our public code
repository.4

5.1. Setup

Throughout all experiments, we train on ntr labeled samples
(xG, 1) generated by G, and on ntr labeled negative samples
(xneg,−1) sampled either from the real set of images used
to train G or from another generative model G′. The latter
case is reasonable in settings, in which i) it is not entirely
clear on what data G was trained on (e.g. in Stable Diffu-
sion) or ii) when the real data is not available at all (e.g. in
medical applications). We repeat all experiments five times.
To evaluate the performance, we measure the classification
accuracy over ntest samples from G and G′, respectively,
where G′ ∈ G\{G} for a set of generative models G. We
compare the proposed methods with fingerprinting (SM-F)
and inversion (SM-Inv2 and SM-Invinc) methods, which we
adapt to the single-model setting (see Section E). All exper-
imental and architectural details as well as further empirical
results, containing standard deviations to all experiments
and visualizations, are deferred to Sections G and H in the
Appendix.

5.2. Results

We begin by considering a set G of small generative models,
namely DCGAN (Radford et al., 2016), WGAN-GP (Gulra-
jani et al., 2017), LSGAN (Mao et al., 2017), EBGAN (Zhao
et al., 2016) trained on either the CelebA (Liu et al., 2015)
or the LSUN bedroom (Yu et al., 2015) dataset.

Feature Extraction As a first sanity check of the signifi-
cance of the extracted features from (5), we present average
features of images generated by different sources in Figure 4.
While the average reconstructed features from images gen-
erated by the model are very close to its actual average
activation, the other images exhibit fairly different features.
We provide further examples and investigate the robustness
with respect to the parameter λ in Section H of the Appendix.
These results provide qualitative evidence that the extracted
features are distinguishable and detectable by an anomaly
detector, which we demonstrate in the next paragraph.

Single-Model Attribution We present the single-model
attribution performance of each method in Table 1. First of
all, we see that the adapted methods are very unstable, their
accuracy ranges from 50% to almost perfect attribution. Due
to their inferior performance, yet high and restrictive com-
putational costs of SM-Inv2 and SM-Invinc (see the runtime
evaluation below), we exclude them from the remaining
experiments on those datasets. Even though RawPAD and
DCTPAD are performing slightly better, their performance

4https://github.com/MikeLasz/flipad
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CelebA LSUN

DCGAN WGAN-GP LSGAN EBGAN DCGAN WGAN-GP LSGAN EBGAN

SM-F 64.81 50.18 53.57 95.78 69.94 52.96 56.30 74.58
SM-Inv2 98.52 99.80 62.55 99.80 51.44 50.20 65.46 54.35
SM-Invinc 51.23 50.16 52.64 78.46 50.61 50.35 51.61 52.12
RawPAD 94.95 59.12 99.53 99.54 67.14 52.36 98.22 93.96
DCTPAD 81.33 64.95 96.79 92.08 80.48 68.10 67.93 90.40
FLIPAD 99.34 99.40 98.94 99.68 97.75 97.73 98.19 99.38

Table 1. Single-model attribution accuracy averaged over all G′ ∈ G over five runs. A more detailed report is provided in Table 8 in the
Appendix. Note, due to their excessive computational load, we do not repeat the inversion methods multiple times.

CelebA LSUN

DCGAN WGAN-GP LSGAN EBGAN DCGAN WGANGP LSGAN EBGAN

RawPAD 95.77 61.49 97.48 74.35 61.82 51.65 92.71 90.46
DCTPAD 50.01 49.81 55.37 55.45 49.84 51.03 51.44 50.96
FLIPAD 99.31 97.88 69.75 99.76 98.04 97.52 88.84 89.79

Table 2. Average single-model attribution accuracy for the same model trained on different initialization seeds. Each score denotes the
average accuracy over all G′ ∈ G over five runs.

is not as consistent as FLIPAD’s, which achieves excellent
results with an average attribution accuracy of over 97.5%
in all cases. In a second line of experiments, we evaluate
the single-model attribution performance in a notably more
difficult task: For a model G, we set G as the set of models
with the exact same architecture and training data but initial-
ized with a different seed. We present the results in Table 2
and observe a similar pattern as in the previous experiments.
Since FLIPAD involves the knowledge of the exact weights
of G, we argue that it enables reliable model attribution even
in the case of these subtle model variations.

Single-Model Attribution on Perturbed Samples To
hinder model attribution, an adversary could perturb the
generated samples. We investigate the attribution perfor-
mance on perturbed samples in the immunized setting, i.e.,
we train the models on data that is modified by the same
type of perturbation. For the sake of simplicity, we average
the attribution accuracies over all models and present the
results in Table 3. For blurred and cropped images we ob-
serve superior performance of FLIPAD over RawPAD and
DCTPAD. However, in the case of JPEG compression and
the presence of random noise, we can see a performance
drop of FLIPAD. In contrast, those perturbations influence
the performance of RawPAD only slightly. Table 13 demon-
strates how the performance is improved by allowing a more
liberal false negative rate (see Section G.1).

Stable Diffusion In this experiment, we evaluate that
FLIPAD is effective against the powerful text-to-image
model Stable Diffusion (Rombach et al., 2022). Since mul-
tiple versions of Stable Diffusion have been released, an
appropriate setting is to attribute images to a specific ver-

sion. In particular, we consider Stable Diffusion v2-1 to be
our model, while the set of other generators consists of v1-1,
v1-1+ (similar to v1-1 but with a different autoencoder5),
v1-4, and v2. In contrast to previous experiments, we use
images from v1-4 instead of real images for training, since
it is not entirely clear on which data the model was trained.
The results are provided in Table 4. All methods can dis-
tinguish between v2-1 and v1-4, which they are trained on.
Given that v1-1 and v1-4 share the exact same autoencoder,
this is less surprising. While DCTPAD fails to generalize to
other generative models, the other approaches achieve high
attribution accuracies above 90% across all models.

Style-based Generative Models In the next experiment,
we analyze the single-model attribution of style-based gen-
erative models trained on FFHQ (Karras et al., 2019).
Specifically, G consists of StyleGAN2 (Karras et al., 2021),
StyleGAN-XL (Sauer et al., 2022), StyleNAT (Walton et al.,
2022), StyleSwin (Zhang et al., 2022), and of FFHQ im-
ages. We consider StyleGAN2 to be our model G. Note
that the skip-connections in StyleGAN2 do not prohibit but
complicate the application of FLIPAD considerably.6 Con-
sequently, we omit its application in this setting and shift
our attention to DCTPAD. It is known that StyleGANs pos-
sess distinctive DCT artifacts (Frank et al., 2020), which
DCTPAD apparently benefits from, as demonstrated by the
attribution accuracy in Table 4. The performance is on par
with SM-F.

5https://huggingface.co/stabilityai/sd-
vae-ft-mse

6We discuss this challenge in more detail in Section F of the
Appendix.
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CelebA LSUN

Blur Crop Noise JPEG Blur Crop Noise JPEG
1 3 60 55 0.05 0.1 90 80 1 3 60 55 0.05 0.1 90 80

RawPAD 88.71 87.86 88.69 89.33 84.09 80.36 87.05 86.45 77.73 76.65 76.24 75.76 73.47 69.86 75.68 74.87
DCTPAD 82.67 77.41 83.42 82.84 63.78 58.61 71.09 68.83 76.91 65.71 74.70 73.78 51.43 50.43 55.20 52.77
FLIPAD 99.36 98.34 98.25 98.27 76.06 68.80 83.46 81.36 98.13 97.21 94.64 89.96 66.58 53.17 72.83 67.70

Table 3. Single-model attribution accuracy with immunization averaged over all G ∈ G, G′ ∈ G\{G} over five runs. For blurring we
consider kernel sizes of 1 and 3, for cropping we extract a center crop of 60× 60 and 55× 55 pixels followed by upsampling to 64× 64
pixels. For noise we use standard deviations of 0.05 and 0.01, for JPEG we use quality factors of 90 and 80.

Stable Diffusion Style-Based Models Medical Image Models

v1-4 v1-1 v1-1+ v2 real StyleGAN-XL StyleNAT StyleSwin WGAN-GP C-DCGAN

SM-F 93.75 93.75 93.75 93.75 99.60 99.60 99.60 99.60 99.81 99.81
RawPAD 91.85 92.70 90.00 89.25 55.00 54.17 53.62 51.84 99.73 78.76
DCTPAD 95.45 95.55 49.40 48.90 99.93 99.93 99.54 99.85 99.73 71.49
FLIPAD 92.08 92.65 90.55 91.30 - - - - 99.75 99.63

Table 4. Single-model attribution accuracy for Stable Diffusion v2-1, StyleGAN2, and DCGAN trained on BCDR. Each score denotes the
average accuracy against G′ as indicated by the column name over five runs.

TVAE CTGAN CopulaGAN

SM-Inv2 88.02 95.74 94.45
RawPAD 90.61 96.60 94.93
FLIPAD 91.18 98.07 96.70

Table 5. Single-model attribution accuracy of KL-WGAN trained
on Redwine against G′ as indicated by the column name averaged
over five runs.

Generative Models for Medical Image Data In contrast
to the models in Section 5.2, generative models for medical
images are facing very different challenges. Most impor-
tantly, medical data is typically much more scarce and the
images are contextually different (Alyafi et al., 2020; Varo-
quaux & Cheplygina, 2022), which is why they require a
separate treatment. We set G to consist of a DCGAN, a
WGAN-GP, and a c-DCGAN (Szafranowska et al., 2022;
Osuala et al., 2023) trained on the BCDR (Lopez et al.,
2012), which contains 128× 128 breast mammography im-
ages. Since access to the original dataset is restricted, we
train the models on samples from G and from WGAN-GP.
We report the single-model attribution accuracies in Table 4
and observe that both, RawPAD and DCTPAD, are perform-
ing well on attributing samples from WGAN-GP but fail to
generalize to C-DCGAN. Both, SM-F and FLIPAD, achieve
close to perfect performance.

Generative Models for Tabular Data Many model at-
tribution methods are specifically tailored toward high-
dimensional image data, such as SM-F, making use of well-
studied image processing pipelines. However, to the best
of our knowledge, there is not a single work conducting

model attribution for tabular data, which we address in the
following experiment. We set G to be the set consisting
of KL-WGAN (Song & Ermon, 2020), CTGAN, TVAE,
and CopulaGAN (Xu et al., 2019) trained on the Redwine
dataset (Cortez et al., 2009). Since the real dataset is small,
we train the model attribution methods on samples from G
and from TVAE. As displayed in Table 5, FLIPAD achieves
the highest attribution performance for all G′.

Runtime Comparison Finally, we summarize the most
relevant computational procedures and their corresponding
wall-clock time in Table 6. To highlight the computational
requirements of full inversion (SM-Inv2 and SM-Invinc), we
also applied it to Stable Diffusion. Due to its computational
constraints, we inverted only 12 samples7 using SM-Inv2
and SM-Invinc. Inverting these 12 samples already took
595.73 and 617.37 minutes, respectively. The values pre-
sented in the above table are the inferred values for 100
samples, e.g., 4964.42 ≈ 595.73/12 · 100. All computa-
tions were conducted on an NVIDIA A40 GPU. While our
proposed methods are not as efficient as SM-F, they are still
fast and significantly more efficient than those based on full
inversion.

Discussion In summary, we conclude that, first, SM-Inv2
and SM-Invinc perform well only in very few settings and
their computational load restricts their practicality consid-
erably. Second, SM-F achieves excellent performance for
high-dimensional images but fails for low-dimensional im-
ages (64× 64). Furthermore, its application is bound to the
image domain. Third, RawPAD and DCTPAD are simple

7we could fit only a batch of size 4 on an NVIDIA A40 GPU
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Essential Computation CelebA (1 000 samples) LSUN (1 000 samples) StableDiffusion (100 samples)

SM-F Computing Fingerprints 1.82 1.77 0.32
SM-Inv2 Inverting Samples 300.75 292.22 4964.42
SM-Invinc Inverting Samples 452.60 451.75 5144.75
RawPAD Training DeepSAD 1.68 1.72 1.67
DCTPAD Computing DCT 0.40 0.42 0.03

+ Training DeepSAD + 1.78 + 1.76 + 1.68
FLIPAD Final-Layer Inversion 17.48 20.05 11.63

+ Training DeepSAD + 8.29 + 8.21 + 2.81

Table 6. Wall-clock run time of the essential computations in minutes.

baselines that work decently in most settings but tend to
generalize worse to the open-world setting. However, for
the style-based generators, DCTPAD achieves excellent re-
sults, even for unseen generative models. Lastly, FLIPAD
is capable of adapting to various settings and performs best,
or only slightly worse, than competing methods.

6. Conclusion
This work tackles a neglected but pressing problem: de-
termining whether a sample was generated by a specific
model or not. We associate this task, which we term single-
model attribution, with anomaly detection—a connection
that has not been drawn previously. While applying anomaly
detection directly to the images performs reasonably well,
the performance can be further enhanced by incorporating
knowledge about the generative model. More precisely,
we develop a novel feature-extraction technique based on
final-layer inversion. Given an image, we reconstruct plau-
sible activations before the final layer under the premise
that it was generated by the model at hand. This reconstruc-
tion task can be reduced to a lasso optimization problem,
which, unlike existing methods, can be optimized efficiently,
globally, and uniquely. Beyond these beneficial theoretical
properties, our approach is not bound to a specific domain
and achieves excellent empirical results on a variety of dif-
ferent generative models, including GANs and diffusion
models.
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Impact Statement
Generative AI has the potential to cause significant ethi-
cal and societal harm. As the past has revealed, a myr-
iad of misuses of generative models exist, including deep
fake generation (Nguyen et al., 2022) to defame individu-
als (Heikkilä, 2024), the spread of fake speech (Howcroft,
2018) and disinformation and propaganda (Ryan-Mosley,
2023) to manipulate political campaigns (Chesney & Citron,
2019a;b). As generative models become more accessible
and efficient, the risk of large-scale generation of harmful
content intensifies.

In light of these threats, diminishing the spread of misin-
formation and identifying the sources of misuse should be
considered as one of the main challenges of future research
in this field. Our work is dedicated to contributing to this
effort, making a valuable step towards the direction of ac-
countable and responsible generative AI systems and their
monitoring.
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A. Summary of the Related Work
We complement the summary provided in Section 3 with an overview given in Table 7.

Method Target Setting

Fingerprinting

Marra et al. (2019a) multi-model closed-world
Yu et al. (2019) multi-model closed-world
Xuan et al. (2019) multi-model closed-world
Marra et al. (2019b) multi-model closed-world
Frank et al. (2020) multi-model closed-world

Inversion

Albright & McCloskey (2019) multi-model closed-world
Karras et al. (2020) single-model closed-world
Zhang et al. (2021) multi-model closed-world
Hirofumi et al. (2022) both both

Watermarking

Yu et al. (2021) single-model open-world
Kim et al. (2021) single-model open-world
Yu et al. (2022) single-model open-world
Wen et al. (2023) single-model open-world
Nie et al. (2023) single-model open-world

Ours single-model open-world

Table 7. Classification of the related work.

B. Deep Semi-Supervised Anomaly Detection
In anomaly detection, we seek to identify samples that are most likely not generated by a given generative process. We call
such samples out-of-distribution samples. But in contrast to classical binary classification procedures, anomaly detection
methods strive for bounded decision areas for the in-distribution samples, while logistic regression for instance yields
unbounded decision areas. For example, SVDD (Tax & Duin, 2004) maps the data into a kernel-based feature space and
finds the smallest hypersphere that encloses the majority of the data. Samples outside that hypersphere are then deemed
as out-of-distribution samples. Recently, (Ruff et al., 2018) replaced the kernel-based feature space with a feature space
modeled by a deep network, which was further extended to the semi-supervised setting in (Ruff et al., 2020). More
specifically, given n unlabeled samples x1, . . . , xn, and m labeled samples (x̃1, ỹ1), . . . , (x̃m, ỹm), where ỹ = 1 denotes an
inlier sample, and ỹ = −1 denotes an outlier sample, Ruff et al. (2020) seek to find a feature transformation function ϕ
parameterized by weights W = (W 1, . . .WL). The corresponding optimization problem is defined as

W∗ ∈ argmin
W

1

n+m

n∑
i=1

∥ϕ(xi;W)− c∥22

+
η

n+m

n∑
j=1

(
∥ϕ(x̃j ;W)− c∥22

)ỹj (6)

+
λ

2

L∑
l=1

∥W l∥2F ,

where η > 0 is a hyperparameter balancing the importance of the labeled samples, and c is a point in the feature space
representing the center of the hypersphere. Intuitively, out-of-distribution samples x are mapped further away from c,
resulting in a large ℓ2-distance ∥ϕ(x;W∗)− c∥2 and AD is performed by fixing a threshold τ > 0 to classify

ŷ =

{
1 , if ∥ϕ(x;W∗)− c∥2 ≤ τ

−1 , if ∥ϕ(x;W∗)− c∥2 > τ
. (7)

We explain how we tuned τ in Section G.1.

13



Single-Model Attribution of Generative Models Through Final-Layer Inversion

While DeepSAD has been applied to typical anomaly detection tasks, it has never been applied for attributing samples to a
generative model. Moreover, in our setting described in Section 2, we assume to have only access to samples generated by
G and to real samples. Hence, DeepSAD reduces to a supervised anomaly detection method in this case.

C. Recovery Guarantees for the Optimization Problem 5
In this section, we equip the proposed optimization problem (5) with theoretical recovery guarantees of the activation
for random 2D-convolutions8. First, we show in Section C.1 the equivalence of (5) to a standard lasso-problem. Hence,
we can draw a connection to the theory of compressed sensing, which we briefly review in Section C.2. We show how
2D-convolutions originate from deleting rows and columns of a Toeplitz matrix in Section C.3, which motivates a proof for
the restricted isometry property for 2D-convolutions. Finally, we generalize the recovery bounds for the classical lasso to
our modified lasso problem in Section C.4.

C.1. (5) is equivalent to a Lasso-Problem

We can rewrite (5) as follows:

ẑL−1 = argmin
zL−1∈RDL−1

∥GL(zL−1)− o∥22 + λ∥zL−1 − z̄∥1

= argmin
zL−1∈RDL−1

∥GL(zL−1)−GL(z̄) +GL(z̄)− o∥22

+ λ∥zL−1 − z̄∥1
= argmin

zL−1∈RDL−1

∥GL(zL−1 − z̄)− (o−GL(z̄))∥22

+ λ∥zL−1 − z̄∥1 .

Furthermore, since

min
zL−1∈RDL−1

∥GL(zL−1 − z̄L−1)− o′∥22 + λ∥zL−1 − z̄L−1∥1

= min
zL−1∈RDL−1

∥GL(zL−1)− o′∥22 + λ∥zL−1∥1 ,

for o′ := o−GL(z̄), we can recover ẑL−1 = ẑ′L−1 + z̄L−1, where

ẑ′L−1 = argmin
zL−1∈RDL−1

∥GL(zL−1)− o′∥22 + λ∥zL−1∥1 . (8)

Hence, to solve (5), we can solve (8) using standard lasso-algorithms such as FISTA (Beck & Teboulle, 2009). Additionally,
note that the optimization problem is convex and satisfies finite-sample convergence guarantees, see Beck & Teboulle
(2009).

C.2. Background on Compressed Sensing

Having observed an output o ∈ RDout , the goal of compressed sensing is the recovery of a high-dimensional but structured
signal z∗ ∈ RDin with Din >> Dout that has produced o = Φ(z∗) for some transformation Φ : RDin → RDout . In its
simplest form, we define Φ as a linear function that characterizes an underdetermined linear system

o = Gz∗

where G ∈ RDout×Din is the defining matrix of Φ. G is usually referred to as the measurement matrix. As stated in
Proposition 4.4, there usually exists a vector space of solutions {z ∈ RDin |o = Gz}, and hence, signal recovery seems
impossible. However, under certain assumptions on the true (but unknown) signal z∗ and measurement matrix G, we can
derive algorithms that are guaranteed to recover z∗, which is the subject of compressed sensing. In this section, we review
some results from compressed sensing for sparse signals along the lines of the survey paper by Eldar & Kutyniok (2012).

8Transposed 2D-convolutions can be treated similarly.
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One fundamental recovery algorithm for sparse signals is the basis pursuit denoising (Chen et al., 2001)

min
z

∥z∥1 subject to ∥G(z)− o∥2 ≤ ε (9)

for some noise level ε > 0. Next, we define one set of assumptions on z∗ and G—namely sparsity of z∗ and the restricted
isometry property of G—that allow the recovery of z∗ using (9).

Definition C.1. For S ∈ N, we call a vector z ∈ RDin S-sparse, if

∥z∥0 := #{j ∈ {1, . . . , Din} : zj ̸= 0} ≤ S .

We denote the set of all S-sparse vectors by ΣS ⊂ RDin .

Definition C.2. Let G be a Dout ×Din matrix. We say G has the restricted isometry property of order S ∈ N, if there
exists a δS ∈ (0, 1) such that

(1− δS)∥z∥22 ≤ ∥Gz∥22 ≤ (1 + δS)∥z∥22 ∀z ∈ ΣS . (10)

In that case, we say that G is (S, δS)-RIP.

To provide some intuition to that definition, note that G is (S, δS)-RIP if

∥Gz∥22 = z⊤G⊤Gz ≈ ∥z∥22 = z⊤z ∀z ∈ ΣS ,

where the approximation is due to the bounds in (10). Hence, the RIP is, loosely speaking, related to the condition
z⊤G⊤Gz ≈ z⊤z for S-sparse vectors z, i.e., G behaves like an orthogonal matrix on vectors z ∈ ΣS . In fact, the restricted
isometry property can be interpreted as a generalized relaxation of orthogonality for non-square matrices.

Lastly, let us define zS as the best S-term approximation of z∗, i.e.,

zS = argmin
z∈ΣS

∥z∗ − z∥1 . (11)

Theorem C.3 (Noisy Recovery (Candès, 2008)). Assume that G is (2S, δ2S)-RIP with δ2S <
√
2 − 1 and let ẑ be the

solution to (9) with a noise-level ∥ε∥2 ≤ E. Then, there exist constants C0, C1 such that

∥ẑ − z∗∥2 ≤ C0√
S
∥z∗ − zS∥1 + C1E .

This fundamental theorem allows deriving theoretical recovery bounds for sparse signals under the RIP-assumption on G.
Unfortunately, the combinatorial nature9 of the RIP makes it difficult to certify. In fact, it has been shown that certifying RIP
is NP-hard (Bandeira et al., 2013). However, it can be shown that random matrices drawn from a distribution satisfying a
certain concentration inequality are RIP with high probability (Baraniuk et al., 2008). Those random matrices include, for
instance, the set of Gaussian random matrices, which could be used to model random fully-connected layers.

In the remainder of Section C we will deal with the derivation of the RIP for random 2D-convolutions (Section C.3) and a
modified version of Theorem C.3 for the proposed optimization problem (5) (Corollary C.8 and Section C.4).

C.3. Recovery Guarantees for 2D-Convolutions

To the best of our knowledge, there exist RIP-results for random convolutions, however, they are restricted to unsuited matrix
distributions, such as Rademacher entries (Krahmer et al., 2013), and/or do not generalize to 2D-convolutions in their full
generality (Haupt et al., 2010), including convolutions with multiple channels, padding, stride, and dilation. In this section,
we prove that randomly-generated 2D-convolutions indeed obey the restricted isometry property with high probability,
which allows the application of recovery guarantees as provided by Theorem C.3. We begin by viewing 2D-convolutions as
Toeplitz matrices with deleted rows and columns. In fact, this motivates a proof strategy for the RIP of 2D-convolutions by
recycling prior results (Haupt et al., 2010).

9The assumption of a certain behavior for S-sparse inputs can be interpreted as an assumption on all Dout × S submatrices of G.
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Definition C.4. Let G ∈ RDout×Din be a matrix given by

G :=



g0 g−1 g−2 . . . . . . g−(Din−1)

g1 g0 g−1
. . .

...

g2 g1
. . . . . . . . .

...
...

. . . . . . . . . g−1 g−2

...
. . . g1 g0 g−1

g(Dout−1) . . . . . . g2 g1 g0


.

Then, we call G the Toeplitz matrix generated by the sequence {gi}i∈I for I := {−(Din − 1), . . . , 0, . . . , Dout − 1}.

We begin by illustrating the relationship between Toeplitz matrices and standard 2D-convolutions along the example
depicted in Figure 5. Algorithmically, we can construct the matrix G by performing the following steps. First, we begin
with constructing the Toeplitz matrix T (k) generated by the sequence

g0 = k0,0, g−1 = k0,1, g−4 = k1,0, g−5 = k1,1,

gj = 0 for j ̸∈ {0,−1,−4,−5} .

Secondly, we delete any row that corresponds to a non-conformal 2D-convolution, such as the convolution applied on the
values x0,3, x1,3, x1,0, x2,0, as illustrated in the last row in Figure 5. Similarly, we can implement strided convolutions by
deleting rows of T (k). Dilation is implemented by dilating T (k), i.e., padding zeros in the sequence that generates T (k)
and multi-channel 2D-convolutions are implemented by simply stacking one-channel matrices Gchannel i in a row-wise
fashion. Padded 2D-convolutions can be implemented by either padding zeros to the input, see Figure 6, or by deleting
the corresponding columns of G without altering the input. In summary, we can construct a 2D-convolution by generating
a Toeplitz matrix from the sequence of zero-padded10 kernel parameters, from which we delete nr rows and nc columns,
where nr is given by the input dimensions and the stride, whereas nc is given by the padding.

Those relationships motivate how we approach the proof for RIP for 2D-convolutions. First, we recycle a result by (Haupt
et al., 2010) and generalize the restricted isometry property for Toeplitz matrices generated by sequences {gi}pi=1 containing
zeros (Theorem C.5). Secondly, we show that deleting rows and columns of the Toeplitz matrix retains the RIP to some
extent (Lemma C.6 and Lemma C.7). Combining both ideas provides the RIP, and therefore a recovery bound, for random
2D-convolutions with multiple channels, padding, stride, and dilation (Corollary C.8).

Theorem C.5. Let {gi}pi=1 be a sequence of length p = p0 + pr such that

• gi = 0 for i ∈ O and

• gi ∼ gi, where gi are i.i.d. zero-mean random variables with variance E(g2
i ) = 1/pr and |gi| ≤

√
c/pr for some

c ≥ 1 and i ̸∈ O,

where O ⊂ {1, . . . , p} with cardinality |O| = p0. Furthermore, let G be the Toeplitz matrix generated by the sequence
{gi}pi=1. Then, for any δS ∈ (0, 1) there exist constants c1, c2, such that for any sparsity level S ≤ c2

√
pr/ log(Din) it

holds with probability at least 1− exp(−c1pr/S
2) that G is (S, δS)-RIP.

This result is very similar to Theorem 6 by Haupt et al. (2010). In fact, the difference here is that we pad the sequence that
generates the Toeplitz matrix by zero values {gi}i∈O. To prove this modified version, we note that we can apply Lemma 6
and Lemma 7 by Haupt et al. (2010) for the sequence of zero-padded random variables {gi}pi=1 as well. Besides that, we
can perform the exact same steps as in the proof of Theorem 6 by Haupt et al. (2010), which is why we leave out the proof.

We want to highlight that the sparsity level S and the probability for G being (S, δS)-RIP both scale with pr, which is
essentially determined by the number of kernels and the kernel size of the 2D-convolution.

Lemma C.6. Let G ∈ RDout×Din be (S, δS)-RIP and let G:,−j ∈ RDout×(Din−1) be the matrix resulting from deleting the
jth column from G. Then it follows that G:,−j is (S − 1, δS)-RIP.

10the exact padding is given by the number of channels and the dilation
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Figure 5. Convolutional arithmetic as matrix multiplication. Each row shows one convolutional operation. Left: Conventional illustration
of a 2D-convolution. Right: 2D-convolution as matrix multiplication G · x.
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Figure 6. Padded convolutional arithmetic as matrix multiplication. Left: Conventional illustration of a padded 2D-convolution. Right:
2D-convolution as matrix multiplication G · x.

Proof. Let z′ ∈ RDin−1 be a S − 1-sparse vector and consider its zero-padded version z ∈ RDin with marginals zi defined
by

zi :=


z′i if i < j

0 if i = j

z′i−1 if i > j

.

Note that z is S-sparse and since G is assumed to be (S, δS)-RIP it follows that

(1− δS)∥z∥22 ≤ ∥Gz∥22 ≤ (1 + δS)∥z∥22 .

It holds that
∥Gz∥22 = ∥G:,−jz

′∥22 and ∥z∥22 = ∥z′∥22
and therefore

(1− δS)∥z′∥22 ≤ ∥G:,−jz
′∥22 ≤ (1 + δS)∥z′∥22 ,

which proves that G:,−j is (S − 1, δS)-RIP.

Lemma C.7. Let G ∈ RDout×Din be (S, δS)-RIP and let G−j,: ∈ R(Dout−1)×Din be the matrix resulting from deleting the
jth row from G. Then it follows that G−j,: is (S, δ′S)-RIP, where

δ′S := δS + Smax
i

G2
j,i .

Proof. Let z ∈ ΣS . Since G is assumed to be (S, δS)-RIP, it holds that

∥G−j,:z∥22 ≤ ∥Gz∥22 ≤ (1 + δS)∥z∥22 ≤ (1 + δ′S)∥z∥22 ,

where the first inequality follows from the positivity of the summands, the second inequality follows from (10), and the third
inequality follows from δS ≤ δ′S . Hence, it remains to prove the lower bound from (10):

∥G−j,:z∥22 =

Dout∑
i=1
i ̸=j

(
G⊤

i,:z
)2

=

(Dout∑
i=1

(
G⊤

i,:z
)2)−

(
G⊤

j,:z
)2

=

(Dout∑
i=1

(
G⊤

i,:z
)2)−

(
G⊤

j,SzS
)2

,

where S := {j : zj ̸= 0} denotes the support of z. Finally, we can apply the Cauchy-Schwartz inequality to conclude that

∥G−j,:z∥22 ≥ (1− δS)∥z∥22 − ∥Gj,S∥22∥zS∥22 = (1− δ′S)∥z∥22

since ∥z∥22 = ∥zS∥22. Hence, Gj,: is (S, δ′S)-RIP.
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Gathering our results, we can derive the following probabilistic recovery bound.

Corollary C.8. Let G be a 2D-convolution resulting from nr row deletions with nk kernel parameters sampled from an i.i.d.
zero-mean random variables ki with E(k2

i ) = 1/nk and |ki| ≤
√

c/nk for some c ≥ 1. Then, there exists a S ∈ N and
C0, C1, C2 ≥ 0 such that if additionally |ki| ≤

√
C2/ndS then it holds with high probability that

∥ẑ − z∗∥2 ≤ C0√
S
∥z∗ − zS∥1 + C1E , (12)

where E ≥ ∥ε∥2 is the noise-level.

Proof. From Theorem C.5, it follows that there exists a δS <
√
2− 1 and a sparsity level S such that the Toeplitz matrix

T (G) corresponding to G is (δS , S)-RIP with high probability. Furthermore, let us define C2 :=
√
2−1− δS . By iteratively

deleting nd rows from on T (G), we end up with G, which is—according to Lemma C.6—(δ′S , S)-RIP with

δ′S = δS + ndSmax
i

ki ≤ δS + ndS
C2

ndS
= δS + C2 =

√
2− 1 .

Hence, we can apply Theorem C.3 to conclude that there exist constants C0, C1 such that

∥ẑ − z∗∥2 ≤ C0√
S
∥z∗ − zS∥1 + C1E .

Note that by iteratively applying Lemma C.6, we can derive a similar result for 2D-convolutions that employ zero-padding,
which we leave out for the sake of simplicity.

C.4. Extending the Results to the Optimization Problem (5)

So far, we have only derived recovery guarantees for solutions of the optimization problem (9). Fortunately, as presented
in (8) in the main paper, we can readily draw a connection between (9) and (5).

Definition C.9 ((z̄, S)-Similarity). Let z, z̄ ∈ RD. We say that z is (z̄, S)-similar, if ∥z − z̄∥0 is S-sparse. We denote the
set of all (z̄, S)-similar vectors by ΣS(z̄).

In the following, we switch back to the notation from Section 4 but leave out the layer index11 to emphasize the generality
of this section, i.e.,

ẑ = argmin
z∈RDin

∥Gz − o∥22 + λ∥z − z̄∥1 ,

ẑ′ = argmin
z∈RDin

∥Gz − o′∥22 + λ∥z∥1 ,

with o′ = o−Gz̄ = G(z∗− z̄). Since z∗− z̄ is the input producing o′, we define z∗′ = z∗− z̄. Then, we can readily extend
sparse recovery results, such as Corollary C.8, to (z̄, S)-similar recovery results by applying a simple zero-extensions:

∥ẑ − z∗∥22 = ∥ẑ − z̄ + z̄ − z∗∥22 = ∥(ẑ − z̄)− (z∗ − z̄)∥22
= ∥ẑ′ − z∗′∥22 .

The right-hand side can be upper-bounded by our sparse recovery bound (12) since, per definition, (z̄, S)-similarity of z∗

implies S-sparsity of z∗′.

D. Uniqueness of the Solution of (5)

The optimization problem (5) can be reformulated as an equivalent lasso optimization problem (Section C.1), offering the
advantage of leveraging efficient optimization algorithms like FISTA (Beck & Teboulle, 2009), which are guaranteed to

11compare with (8) for instance
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converge. In addition, we show in this section that the solution is also unique, i.e., FISTA converges to a unique solution.
Therefore, there is no need to solve the optimization problem for different seeds, as seen in similar methods discussed in
Section 3. We prove the uniqueness by applying techniques from Tibshirani (2013).
In the following, we assume that Din > Dout.

Definition D.1. Let G ∈ RDout×Din . We say that G has columns in general position if for any selection of columns
Gi1 , . . . , GiDin

of G and any signs σ1, . . . , σiDin
∈ {−1, 1} it holds

Aff({σ1Gi1 , . . . , σnGiDin
}) ∩ {±Gi : i ̸∈ {i1, . . . , iDin}} = ∅ ,

where Aff(S) := {
∑N

n=1 λnsn :
∑N

n=1 λn = 1} defines the affine hull of the set S = {s1, . . . , sN}.

Lemma D.2 ((Tibshirani, 2013)). If the columns of G ∈ RDout×Din are in general position, then for any λ > 0, o ∈ RDout

the lasso problem
ẑ = argmin

z∈RDin

∥Gz − o∥22 + λ∥z∥1

has a unique solution.

In the following, we prove that a 2D-convolution has columns in general position.

Proposition D.3. Let G ∈ RDout×Din be a 2D-convolution with kernel k ∈ RDk with pairwise different kernel values and
Dk ≥ 2. Then, there exist binary matrices Uj ∈ {0, 1}Dout×Din for j ∈ {1, . . . , Din} such that:

1. the jth column of G can be written as Gj = Uj · k ∈ RDout ;

2. The supports of Uj ,
Sj := {(l,m) ∈ {1, . . . , Dout} × {1, . . . , Din} :

(
Uj

)
l,m

̸= 0}

are pairwise disjoint for all j.

Proof. G is a 2D-convolution, therefore, each column Gj is a sparse vector with lth entry (Gj)l ∈ {0, k1, . . . , kDk
}, i.e., it

is either 0 or one of the kernel values. Hence, we can define the Uj by

(Uj)l,m =

{
1 , if (Gj)l = km

0 , otherwise
(13)

for all (l,m) ∈ {1, . . . , Dout} × {1, . . . , Din}. Using that construction, we get(
Uj · k

)
l
= (Uj)l · k

=

{
km , if (Gj)l = km

0 , otherwise

= (Gj)l for all l ∈ {1, . . . , Dout} ,

where (Uj)l denotes the lth row of Uj . This proves the first claim, that is, Gj = Uj · k. The second claim becomes
immediate from our construction: Assume that there exist j, j′ with j ̸= j′ but Sj ∩ Sj′ ̸= ∅. This means that there exists
a (l,m) such that (Uj)l,m = (Uj′)l,m. According to (13), this means that (Gj)l = km = (Gj′)l, which contradicts the
Toeplitz-like structure of G, see Section C.3. Hence, Sj and Sj′ must be disjoint.

Theorem D.4. Let G ∈ RDout×Din be a 2D-convolution with kernel values kj sampled from independent continuous
random variables kj . Then, G has columns in general position with probability 1.

Before proving Theorem D.4, let us provide a basic result from linear algebra.

Lemma D.5. Let G1, . . . , Gn+1 ∈ RD for some n,D ∈ N. Then it is

Gn+1 ∈ Aff({G1, . . . , Gn})
⇔ Gn+1 −Gn ∈ span(G1 −Gn, . . . , Gn−1 −Gn) ,

where span denotes the linear span.
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Proof. Let Gn+1 −Gn ∈ span(G1 −Gn, . . . , Gn−1 −Gn). Therefore, there exist λ1, . . . , λn−1 ∈ R such that

Gn+1 −Gn =

n−1∑
j=1

λj(Gj −Gn)

⇔ Gn+1 =

n−1∑
j=1

λjGj −
n−1∑
j=1

λjGn +Gn

⇔ Gn+1 =

n−1∑
j=1

λjGj +

(
1−

n−1∑
j=1

λj

)
Gn .

The above coefficients of Gj satisfy

n−1∑
j=1

λj +

(
1−

n−1∑
j=1

λj

)
= 1 .

Therefore, we have shown that there exist coefficients λ′
j such that Gn+1 =

∑n
j=1 λ

′
jGj , that is, Gn+1 ∈

Aff({G1, . . . , Gn}.
Conversely, let Gn+1 ∈ Aff({G1, . . . , Gn}. Then, there exist λ1, . . . , λn ∈ R with

∑n
j=1 λj = 1 such that

Gn+1 =

n∑
j=1

λjGj

⇔ Gn+1 −Gn =

n∑
j=1

λjGj −Gn

=

n∑
j=1

λjGj −
n∑

j=1

λjGn

=

n∑
j=1

λj(Gj −Gn) ,

which proves that Gn+1 −Gn ∈ span(G1 −Gn, . . . , Gn−1 −Gn).

Next, we provide the proof of Theorem D.4.

Proof. Let Gi1 , . . . , GiDin
, GiDin+1

be a collection of Din + 1 columns of G. We show that GiDin+1
∈

Aff({Gi1 , . . . , GiDin
}) by proving that GiDin+1

−GiDin
∈ span(Gi1 −GiDin

, . . . , GiDin−1
−GiDin

) with probability 1,
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see Lemma D.5. According to Proposition D.3, there exist binary matrices Uj such that

GiDin+1
−GiDin

∈ span(Gi1 −GiDin
,

. . . , GiDin−1
−GiDin

)

⇔ (UiDin+1
− UiDin

) · k ∈ span((Ui1 − UiDin
) · k,

. . . , (UiDin−1
− UiDin

) · k)
⇔ ∃(λ1, . . . , λDin−1) ̸= (0, . . . , 0) :

(UiDin
− UiDin−1

) · k =

Din−1∑
j=1

λj(Uij − UiDin
) · k

⇔ ∃(λ1, . . . , λDin−1) ̸= (0, . . . , 0) :

0 =

(Din+1∑
j=1

j ̸=Din

λj(Uij − UiDin
)

)
· k, with λDin+1 := −1

⇒ k ∈ nul

(Din+1∑
j=1

j ̸=Din

λj(Uij − UiDin
)

)
(14)

for the above choice of λ1, . . . λDin−1, λDin+1 ,

where nul(A) denotes the null-space of A. We show that (14) holds with probability 0 by proving that the null-space has
dimension less than Dk. By the rank-nullity theorem, this is equivalent to showing that

rank(U) ≥ 1 for U :=

Din+1∑
j=1

j ̸=Din

λj(Uij − UiDin
) .

Since U is a linear mapping, it is sufficient to show that there exists some k ∈ R such that Uk ̸= 0.
Without loss of generality, let λ1 ̸= 0. Then, since U1 ̸= 0, we know that there exist some l,m such that (U1)l,m = 1. Then,
it holds for k = em, where em is the mth Euclidean unit vector, that

(
Uk

)
l
=

(Din−1∑
j=1

λjUjem −
Din−1∑
j=1

λjUDinem

)
l

=

(Din∑
j=1

λjUjem

)
l

= λ1 ̸= 0 ,

where λDin
:= −

∑Din

j=1 λj . Note, the last equality follows by the fact that all Uj have pairwise disjoint supports. Since the
lth component of Uk is not zero, we conclude that there exists some k ∈ RDk such that Uk ̸= 0. Therefore, rank(U) ≥ 1,
from which derive that dim(nul(U)) < Dk, i.e., the null-space of U has Lebesgue mass 0.
In summary, if GiDin+1

∈ Aff({Gi1 , . . . , GiDin
}), then k needs to be in a Lebesgue null-set, which has probability 0 since

kj are assumed to be continuous random variables. We can repeat the same arguments independent of the sign of GiDin+1
,

the sign of Gi1 , . . . , GiDin
, for each Gi with i ̸∈ {i1, . . . , iDin

}, and for any collection of {i1, . . . , iDin
}. By taking a union

bound over all choices, we conclude that the columns of G are in general position with probability 1.

Finally, plugging the pieces together, we prove the uniqueness of (5).

Corollary D.6. Let G ∈ RDout×Din be a 2D-convolution with kernel values kj sampled from independent continuous
random variables kj . Then, the optimization problem (5) has a unique solution with probability 1.

Proof. As shown in Section C.1, we can rewrite (5) to the equivalent lasso optimization problem (8). According to
Theorem D.4, the columns of G are in general linear position with probability 1. Using Lemma D.2, we conclude that (5)
has a unique solution with probability 1.
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E. Adapting Closed-World Attribution Methods to the Open-World Setting
While the method proposed in this work provides an efficient solution to the problem of single-model attribution in the open-
world setting, it might not be suitable under all circumstances (e.g., if final-layer inversion is infeasible due to non-invertible
ReLU-activations). Furthermore, if a particularly effective method exists in the closed-world setting, it might be beneficial
to build upon this strong foundation. We, therefore, propose two adapted methods, SM (single-model)-Fingerprinting and
SM-Inversion, which leverage the existing approaches to the open-world setting. Both return an anomaly score s(x) that can
be used to identify outliers by comparing it to a threshold τ . All samples with an anomaly score greater than τ are classified
as outliers.

SM-Fingerprinting Marra et al. (2019a) propose to use the photo response non-uniformity (PRNU) to obtain noise
residuals from images. The fingerprint fG is computed by averaging the residuals over a sufficient amount of images
generated by G. Given an unknown image x, the anomaly score is defined as the negative inner product between x and fG,
s(x) := −f̃⊤

G x̃, where f̃G and x̃ are the flattened and standardized versions of f̃G and x, respectively. In the following, we
refer to this kind of SM-Fingerprinting as SM-F.

SM-Inversion For inversion-based methods, the anomaly score is naturally given by the distance between the original
image x ∈ RD and its best reconstruction G(ẑ). It is defined as s(x) := 1/D∥x−G(ẑ)∥, where ∥ · ∥ is either the ℓ2-norm
(Albright & McCloskey, 2019) or a distance based on a pre-trained Inception-V312 (Szegedy et al., 2016) as proposed by
Zhang et al. (2021). In the following, we refer to the two variants as SM-Inv2 and SM-Invinc. The reconstruction seed ẑ is
found by performing multiple gradient-based reconstruction attempts, each initialized on a different seed, and selecting the
solution resulting in the smallest reconstruction distance.

F. Final-Layer Inversion with Skip-Connections
The inversion scheme of FLIPAD, as written down in Section 4.3, is not suited for architectures that employ skip-connections.
But note that this does not mean that it cannot be adapted to that setting. To see that, consider the output of a residual network
x = σL(GLzlast + zskip), where zlast is the last hidden activation, zskip is the part that is added from the skip-connection,
GL is the matrix representing the last linear layer, and σL is the last activation function. We can rewrite the above as
x = σL(G

′
L(zlast, zskip)

⊤), where G′
L is an extended matrix padded by binary values, which takes as input the concatenated

vector (zlast, zskip)⊤. Now, we are ready to apply the same techniques as proposed in Section 4.3. The difference is that,
instead of only reconstructing zlast, we additionally need to reconstruct zskip.

While being a valuable and interesting extension (both, from a practical and theoretical point of view), we have not
investigated this idea further due to the following technical considerations. First, architectures like StyleGAN employ skip-
connections from multiple hidden layers to the output. This may result in prohibitively large zskip := (zskip1

, . . . , zskiph
)⊤,

where zskipj
for j ∈ {1, . . . , h} denote the latents corresponding to the jth skip-layer. Secondly, the structural properties,

such as the level of sparsity, in each hidden layer might be different. Therefore, the regularization term in (5) should treat
latents from each hidden layer separately. While, in theory, we could use a separate regularization parameter λ for each
group of latents, the implementation involves nontrivial engineering decisions and hyperparameter choices.

From a theoretical point of view, we need to expand the results from Appendix C to convolutional operations padded by
binary values. For instance, reconstruction guarantees for binary matrices can be derived using the robust null space property
(see e.g., Lotfi & Vidyasagar (2020)).

Another way of extending FLIPAD to skip-connections could build upon the results by Lei et al. (2019). Their proposed
linear program inverts a single layer, leading to solutions that satisfy recovery guarantees (see Theorem 4 in Lei et al. (2019))
for zlast under assumptions closely related to the restricted isometry property (Definition C.2).

12In our experiments on 64× 64 CelebA and LSUN, we omit resizing to 299× 299, since this would introduce significant upsampling
patterns.
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G. Experimental Details
G.1. Thresholding Method

We select the threshold τ in (7) by fixing a false negative rate fnr and set τ as the (1− fnr)-quantile of {s(x)}xi∈Xval
, where

s(x) is the anomaly score function and Xval is a validation set consisting of nval inlier samples (i.e., generated by G). We
specify nval for each experiment is the following sections. In all of our experiments, we set fnr = 0.005 or fnr = 0.05 in the
case of the Stable Diffusion experiments. In the latter, we decide to set a higher fnr due to the smaller validation set size.

G.2. Generative Models trained on CelebA and LSUN

In the following, we describe the generative models utilized in Section 5 in full detail. All models were optimized using
Adam with a batch size of 128, a learning rate of 0.0002 and—if not stated differently—parameters β1 = 0.5, β2 = 0.999.
The goal was not to train SOTA-models but rather to provide a diverse set of generative models as baselines for evaluating
attribution performances in the setting described in Section 2. We visualize generated samples in Figure 7. All experiments
on CelebA and LSUN utilize ntr = 10 000 and nval = ntest = 1000 samples.

(a) CelebA (b) LSUN

Figure 7. Examples of generated images. The first row represents real images, and each further row represents samples from DCGAN,
WGAN-GP, LSGAN, EBGAN, respectively.

DCGAN Our DCGAN Generator has 5 layers, where the first 4 layers consist of a transposed convolution, followed by
batchnorm and a ReLU-activation, and the last layer consists of a transposed convolution (without bias) and a tanh-activation.
The transposed convolutions in- and output-channel dimensions are 100 → 512 → 256 → 128 → 64 → 3 and have a
kernel size of 4, stride of 2, and a padding of 1 (besides the first transposed convolution, which has a padding of 0). The
discriminator has 5 layers, where the first layer is a convolution (without bias) followed by a leaky-ReLU-activation, the
next 3 consist of a convolution, batchnorm, and leaky-ReLU-activation, and the last layer consists of a convolution and
a final sigmoid-activation. We set the leaky-ReLU tuning parameter to 0.2. The convolutions channel dimensions are
3 → 64 → 128 → 256 → 512 → 1, and we employed a kernel of size 4, stride of 2, and a padding of 1 in all but the last
layer, which has a padding of 0. We used soft-labels of 0.1 and 0.9 and trained the generator in each iteration for 50 and 10
epochs for CelebA and LSUN, respectively.

WGAN-GP We utilized the same architecture for the generator as the one in DCGAN. The discriminator is similar to
the one in DCGAN but uses layernorm instead of batchnorm and has no sigmoid-activation at the end. We trained the
generator every 5th iteration and utilized a gradient penalty of λ = 10. In that case, we used β1 = 0.0 and β2 = 0.9 as
Adam parameters and trained for 200 and 10 epochs for CelebA and LSUN, respectively.

LSGAN The generator consists of a linear layer mapping from 100 to 128× 8× 8 dimensions, followed by 3 layers, each
consisting of a nearest-neighbor upsampling (×2), a convolution, batchnorm, and a ReLU-activation. The final layer consists
of a convolution, followed by a tanh-activation. The convolution channel dimensions are 128 → 128 → 128 → 64 → 3
and utilize a kernel of size 3, stride of 1, and a padding of 1. The discriminator consists of 5 layers discriminator blocks and a
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final linear layer. Each discriminator block contains a convolution, leaky-ReLU with parameter 0.2, dropout with probability
0.25, and batchnorm in all but the first layer. The convolution channel dimensions are 3 → 16 → 32 → 64 → 128 → 128
and have a kernel of size 3, stride of 2, and padding of 1. The final linear layer maps from 512 to 1 dimensions. We trained
the generator every 5th iteration for 100 and 10 epochs for CelebA and LSUN, respectively.

EBGAN The architecture of the generator is similar to the one of the DCGAN generator. The discriminator uses an
encoder-decoder architecture. The encoder employs convolutions (without bias) mapping from 3 → 64 → 128 → 256
channel dimensions, each having a kernel of size 4, stride of 2, and padding of 1. Between each convolution, we use
batchnorm and a leaky-ReLU-activation with parameter 0.2. The decoder has a similar structure but uses transposed
convolutions instead of convolutions with channel dimensions 256 → 128 → 64 → 3 and ReLUs instead of leaky-ReLUs.
We set the pull-away parameter to 0.1 and trained the generator every 5th iteration for 100 and 5 epochs for CelebA and
LSUN, respectively.

G.3. Stable Diffusion

We generate samples using the diffusers13 library which provides checkpoints for each version of Stable Diffusion. We use a
subset of the COCO2014 annotations (Lin et al., 2014) as prompts and sample with default settings. All generated images
have a resolution of 512× 512 pixels. We set ntr = 2000, nval = 100, ntest = 200.

G.4. Style-based Generators

Each style-based generative model comes with an official implementation, which offers pre-trained models on FFHQ for
download. We used those implementations to generate ntr = 10 000, nval = ntest = 1000 images of resolution 256× 256.

G.5. Medical Image Generators

We sampled from the pretrained models provided by the medigan library (Osuala et al., 2023). The model identifiers14 are 5,
6, and 12 for the DCGAN, WGAN-GP, and c-DCGAN, respectively. The resolution images have a resolution of 128× 128
pixels. We set ntr = 10 000, nval = ntest = 1000.

G.6. Tabular Generators

The KL-WGAN was trained for 500 epochs as specified in Song & Ermon (2020) using the official repository15. CTGAN,
TVAE, and Copula GAN were trained using the implementations and the default settings provided by the SDV library (Patki
et al., 2016). We set ntr = 100 000 and nval = ntest = 10 000.

G.7. Hyperparameters of Attribution Methods

DeepSAD DeepSAD uses the ℓ2-distance to the center c as anomaly score, see (7). We propose 3 variants of DeepSAD
for the problem of single-model attribution:

1. RawPAD, i.e., DeepSAD trained on downsampled versions of the images. In the experiments involving the architectures
from Section G.2, we downsample to 32× 32 images using nearest neighbors interpolation. In the Stable Diffusion
experiments, we center-crop to 128× 128 images due to the large downsampling factor. In the style-based experiments,
we downsample to 128× 128 using nearest neighbors interpolation. When the image is downsampled to 32× 32, we
set ϕ as the 3-layer LeNet that was used on CIFAR-10 in Ruff et al. (2020), otherwise we use a 4-layer version of the
LeNet-architecture. In the tabular experiments, we set ϕ to be a standard feed-forward network with hidden dimensions
512 → 1024 → 1024 → 512 → 256 → 128.

2. DCTPAD, i.e., DeepSAD on the downsampled DCT features of the images. We obtain those features by computing the
2-dimensional DCT on each channel, adding a small constant ϵ = 1e−10 for numerical stability, and taking the log. To
avoid distorting the DCT-spectra, we reduce the image size by taking center-crops. We use the same architecture ϕ as
in RawPAD.

13https://github.com/huggingface/diffusers
14The model identifiers specify the exact medigan-models.
15https://github.com/ermongroup/f-wgan
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3. FLIPAD, i.e., DeepSAD on activations result from the optimization problem (5). We solved the optimization problem
using FISTA (Beck & Teboulle, 2009) with the regularization parameter λ set to 0.0005 for the experiments involving the
models from Section G.2, to 0.00001 for the Stable Diffusion experiments, to 0.001 for the medical image experiments,
and to 0.0005 for the Redwine and Whitewine experiments. We found that reducing the feature dimensions via
max-pooling performed best. The spatial dimensions are similar to the setup in RawPAD. In the experiments using
the architectures from Section G.2, we end up with 64 × 32 × 32-dimensional features, where the first dimension
represents the channel dimension. Hence, we modified the channel dimensions of the convolutions used in ϕ to
64 → 128 → 256 → 128. We use the same ϕ for the medical image experiments. In the Stable Diffusion experiments,
we account for the smaller amount of training data by selecting only 3—out of a total of 128—channels. We do this by
choosing the channels that differ the most on average between the in- and out-of-distribution classes. We use the exact
same ϕ as in RawPAD and DCTPAD. For the tabular experiments, we choose the same architecture as in RawPAD
with an adapted input dimension.

In the experiments involving the models from Section G.2 and the medical images, we trained ϕ using the adam optimizer
for 50 epochs with a learning rate of 0.0005, which we reduce to 5e−5 after 25 epochs, and a weight-decay of 0.5e−6. In
the Stable Diffusion, StyleGAN, and tabular experiments, we increase the number of epochs to 100 and reduce the learning
rate after 25 and 50 epochs to 0.5e−6 and 0.5e−7, respectively.

SM-Fingerprinting To compute the fingerprint fG we take the average of ntr samples from G.

SM-Inversion For each image x we perform 10 reconstruction attempts with different initializations. We optimize using
Adam (Kingma & Ba, 2015) with a learning rate of 0.1 and 1 000 optimization steps. Since the inversion methods do not
require training, we compensate the advantage by replacing the validation set with the bigger training set (nval < ntr in all
our experiments). That is, we use ntr samples to find the threshold τ described in Section G.1.

H. Additional Experiments
Activations are distinctive across Generative Models The motivational examples in Section 4.2, as well as our theoretical
derivation of FLIPAD in Section 4.3, are based on the assumption that the activations, and therefore also the intrinsic
computations involved in the generative process, differ from model to model. In the following, we provide qualitative
evidence for that by presenting average activations that arise from the forward pass in various different models. For fully
distinct models, such as those in Figure 8 and Figure 9, we can see a clear difference in the activation pattern. The difference
is less visible in Figure 10, which shows the activations of the investigated Stable Diffusion models. Note that those models
share much more similarities: v1-1 and v1-4 share the same autoencoder. The same applies to v1-1+, v2, and v2-1. Hence,
we can see distinguishable activation patterns among models using a different autoencoder, which are much more subtle if
the models are sharing the same autoencoder.

Feature Extraction We visualize the average images (Figure 11), that is, the average of the input of RawPAD, and the
average DCT-features (Figure 12), that is, the average of the input of DCTPAD. It is seen that the averaged images look very
similar. Qualitatively, FLIPAD improves on that as demonstrated in Figure 4 in the main paper, and once more, in Figure 13.
Furthermore, the features remain distinguishable even when varying the regularization parameter λ as visualized in Figure 14
and Figure 15. For illustration purposes, we select the 3 channel dimensions (out of 64 total activation dimensions in
DCGAN), which differ the most during training, i.e., we choose the channel that maximizes the channel-wise average
distance between reconstructed DCGAN and real images. Notably, the corresponding average single-model attribution
accuracies are 99.11, 99.10, 99.44, 86.84 in CelebA and 99.99, 96.58, 99.63, 85.90 for λ ∈ {0.0001, 0.0005, 0.001, 0.1}.
Therefore, the performance remains stable in λ.

Single-Model Attribution We provide a more detailed view of the experiments from Table 1 by showing each model’s
attribution accuracies against all individual models in Table 8. Furthermore, we present the corresponding AUCs in Table 9.
However, we want to highlight that those results should be taken with a grain of salt since AUC is measuring an overly
optimistic potential of a classifier. In practice, we rely on a specific choice of threshold τ which might deteriorate the actual
attribution performance. Choosing that threshold becomes even more crucial in the open-world setting, in which we do
not have any access to the other models we test against, making the calibration of the threshold using only validation data
considerably more difficult.
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Figure 8. Average activations of DCGAN, WGAN-GP, LSGAN, EBGAN (from left to right) trained on CelebA. The rows depict the
average last activation over the 6th, 22th, and 29th activation channel.

We report standard deviations to the experiments from the main paper in Table 10, 11, and 14.

Single-Model Attribution with less Training Data Table 12 shows the performance of FLIPAD when using less
training samples. Particularly, we repeat the experiments from Table 1 with 1 000 and 5 000 real and generated samples.
Unsurprisingly, we observe a performance drop but the performance remains high in most cases. The only exception is when
training FLIPAD with only 1k samples from LSGAN. However, further empirical investigations reveal that we can fix it by
setting the thresholding value τ to a lower value. When setting τ to a more liberal choice, for instance, the 95%-quantile, we
can improve the performance considerably. In this case, the averaged attribution accuracy on LSGAN increases to 87.75 and
87.34 in CelebA and LSUN with only 1 000 samples, respectively. But note that our considered perspective from the model
trainer (see Section 2) implicitly implies that we do not have strict training data limitations. Since this perspective assumes
to have access to G we can, potentially, generate infinitely many samples from G. Furthermore, training a generative
model typically requires great amounts of real training data, which we can reuse to train FLIPAD. Hence, the training data
requirements in our considered setting are rather weak.

In summary, we conclude that we typically do not have strict data constraints in our investigated setting. Still, in a
hypothetical limited data regime, FLIPAD also performs very well in most settings. In some cases (here in the case of
LSGAN), one may consider adjusting the validation procedure for selecting the threshold τ . This leads to more false
negatives but can increase the overall attribution accuracy.
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Figure 9. Average activations of DCGAN, WGAN-GP, LSGAN, EBGAN (from left to right) trained on LSUN. The rows depict the
average last activation over the 7th, 29th, and 30th activation channel.

Single-Model Attribution on Perturbed Samples To illustrate the effect of the considered perturbations on the images,
we present an overview in Figure 16. We observed that we can improve the attribution performance of our proposed methods
by choosing the thresholding method more liberal. Specifically, in the presence of perturbations, we can set fnr = 0.05 to
find τ (compare with Section G.1). We provide the improved results in Table 13.

Generative Models for Tabular Data In addition to the models trained on Redwine, we repeat the experiments for models
trained on the Whitewine dataset (Cortez et al., 2009). The results are reported in Table 15. Here, we can see a different
behavior: SM-Inv2 outperforms RawPAD and FLIPAD. Moreover, we observe in our experiments that FLIPAD tends to
perform better when λ approaches 0. This behavior suggests that it might be less meaningful to regularize towards the mean
activation in the Whitewine experiments. Investigating other types of regularization in (5), however, is out of the scope of
this work.

We report the corresponding standard deviations in Table 16.
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Figure 10. Average activations of Stable Diffusion v1-1, v1-1+, v1-4, v2, v2-1 (from left to right). The rows depict the average last
activation over the 60th, 78th, and 86th activation channel.
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Figure 11. Average image on CelebA for real, DCGAN, WGAN-GP, LSGAN, and EBGAN samples (from left to right). Each row
represents one color channel.

30



Single-Model Attribution of Generative Models Through Final-Layer Inversion

Figure 12. Average DCT-features on CelebA for real, DCGAN, WGAN-GP, LSGAN, and EBGAN samples (from left to right). Each row
represents one color channel.

Figure 13. Cherry-picked channel dimension c of the average reconstructed features according to (5) when G is a DCGAN. The left-most
figure shows the average activation z̄c over channel c, the remaining figures show the average feature taken over DCGAN, real, WGAN-GP,
LSGAN, and EBGAN samples, respectively.
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Figure 14. Average reconstructed features according to (5) when G is a DCGAN trained on CelebA. Each subfigure, from top to bottom,
represents the reconstructed features for a different regularization parameter λ ∈ {0.0001, 0.0005, 0.001, 0.1}, respectively. Every
line represents one activation channel, and the columns (from left to right) show averages taken over real activations and reconstructed
DCGAN, real, WGAN-GP, LSGAN, and EBGAN activations, respectively.
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Figure 15. Average reconstructed features according to (5) when G is a DCGAN trained on LSUN. Each subfigure, from top to bottom,
represents the reconstructed features for a different regularization parameter λ ∈ {0.0001, 0.0005, 0.001, 0.1}, respectively. Every
line represents one activation channel, and the columns (from left to right) show averages taken over real activations and reconstructed
DCGAN, real, WGAN-GP, LSGAN, and EBGAN activations, respectively.
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CelebA LSUN

Real DCGAN WGAN-GP LSGAN EBGAN Real DCGAN WGANGP LSGAN EBGAN

SM-F
DCGAN 64.82 - 67.64 66.18 60.61 70.06 - 69.34 70.74 69.63
WGAN-GP 50.31 49.97 - 50.31 50.13 53.07 52.92 - 52.52 53.31
LSGAN 53.70 52.18 54.01 - 54.37 56.28 57.31 56.92 - 54.67
EBGAN 96.28 92.19 96.56 98.07 - 75.10 74.68 74.48 74.07 -

SM-Inv2

DCGAN 99.55 - 99.45 99.55 95.55 51.20 - 52.00 51.05 51.50
WGAN-GP 99.80 99.80 - 99.80 99.80 50.15 49.95 - 50.20 50.50
LSGAN 71.40 59.65 67.90 - 51.25 67.20 64.50 65.30 - 64.85
EBGAN 99.80 99.80 99.80 99.80 - 54.80 53.25 55.15 54.20 -

SM-Invinc

DCGAN 51.45 - 51.10 51.25 51.10 50.80 - 50.65 50.50 50.50
WGAN-GP 50.15 50.10 - 50.25 50.15 50.65 50.30 - 50.15 50.30
LSGAN 53.30 52.50 52.90 - 51.85 52.15 51.05 51.10 - 52.15
EBGAN 79.65 73.25 79.25 81.70 - 52.30 51.90 52.35 51.95 -

RawPAD
DCGAN 98.23 - 98.03 96.92 86.63 69.30 - 66.61 62.15 70.52
WGAN-GP 65.45 60.18 - 59.78 51.08 52.96 51.20 - 52.87 52.41
LSGAN 99.65 99.50 99.65 - 99.33 98.23 97.98 98.33 - 98.33
EBGAN 99.65 99.26 99.59 99.67 - 94.53 94.10 93.79 93.40 -

DCTPAD
DCGAN 99.81 - 80.20 95.44 49.86 99.64 - 74.98 96.96 50.34
WGAN-GP 99.68 49.71 - 60.70 49.71 99.04 49.71 - 73.91 49.73
LSGAN 99.70 98.74 96.34 - 92.39 97.95 52.44 67.15 - 54.18
EBGAN 99.66 70.39 98.69 99.59 - 99.65 65.93 96.45 99.59 -

FLIPAD
DCGAN 99.72 - 99.72 99.72 98.21 99.69 - 99.69 99.66 91.95
WGAN-GP 99.83 99.15 - 98.80 99.83 99.65 98.71 - 99.27 93.29
LSGAN 99.68 99.38 97.95 - 98.77 99.57 98.86 96.00 - 98.32
EBGAN 99.68 99.68 99.68 99.68 - 99.68 98.49 99.67 99.68 -

Table 8. Detailed view of the individual model attribution accuracies leading to the results in Table 1. Each score corresponds to an
average over five runs. Note, due to their excessive computational load, we do not repeat the inversion methods multiple times.

CelebA LSUN

DCGAN WGAN-GP LSGAN EBGAN DCGAN WGANGP LSGAN EBGAN

SM-F 95.45 79.09 87.94 99.84 96.99 79.09 86.73 98.36
SM-Inv2 99.42 100.00 99.25 100.00 71.64 80.36 99.33 97.66
SM-Invinc 83.14 67.39 85.66 99.25 61.12 55.71 74.31 92.28
RawPAD 99.33 85.03 99.99 99.96 93.82 74.65 99.83 99.53
DCTPAD 82.85 75.69 99.80 97.47 84.89 79.22 82.91 94.31
FLIPAD 99.91 99.96 99.91 100.00 99.81 99.49 99.73 99.98

Table 9. Averaged area under curve (AUC) values corresponding to the results in Table 1.
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CelebA LSUN

DCGAN WGAN-GP LSGAN EBGAN DCGAN WGAN-GP LSGAN EBGAN

SM-F 2.95 0.26 0.95 2.81 1.60 0.87 1.65 4.16
SM-Inv2 1.98 0.00 9.00 0.00 0.42 0.23 1.20 0.83
SM-Invinc 0.17 0.06 0.62 3.64 0.14 0.21 0.62 0.23
RawPAD 5.53 5.60 0.20 0.21 3.79 1.08 0.34 1.66
DCTPAD 20.09 21.11 2.93 12.95 20.43 21.04 18.76 14.57
FLIPAD 0.73 0.56 0.92 0.07 4.48 2.79 1.54 0.58

Table 10. Standard deviation corresponding to the results from Table 1. For illustration purposes, we scale all values by 102.

CelebA LSUN

DCGAN WGAN-GP LSGAN EBGAN DCGAN WGANGP LSGAN EBGAN

RawPAD 2.21 3.11 1.23 15.72 3.29 0.88 5.04 3.73
DCTPAD 0.27 0.14 4.31 4.13 0.19 2.33 1.05 1.42
FLIPAD 0.61 5.49 3.85 0.11 2.32 3.77 5.41 9.61

Table 11. Standard deviation corresponding to the results from Table 2. For illustration purposes, we scale all values by 102.

CelebA LSUN

DCGAN WGAN-GP LSGAN EBGAN DCGAN WGANGP LSGAN EBGAN

FLIPAD-1k 96.89 95.97 55.77 99.73 91.97 97.00 82.52 98.33
FLIPAD-5k 99.05 98.75 95.24 99.65 95.61 97.54 94.88 99.40
FLIPAD-10k 99.34 99.40 98.94 99.68 97.75 97.73 98.19 99.38

Table 12. Single-model attribution accuracy of FLIPAD using 1 000, 5 000, and 10 000 real and generated samples. The results are
averaged over five runs.

CelebA LSUN

Blur Crop Noise JPEG Blur Crop Noise JPEG
1 3 60 55 0.05 0.1 90 80 1 3 60 55 0.05 0.1 90 80

RawPAD 90.90 90.03 91.15 91.27 87.67 83.68 89.72 89.14 83.95 83.05 83.59 82.61 80.73 77.78 82.44 81.90
DCTPAD 83.35 80.19 83.34 83.33 70.86 64.02 76.49 74.98 79.09 73.08 79.26 78.28 55.04 52.20 61.97 57.80
FLIPAD 97.40 97.52 97.23 97.29 82.15 73.76 88.18 84.12 96.58 96.78 96.12 95.22 78.73 60.47 85.50 81.42

Table 13. Single-model attribution accuracy with immunization averaged over all G,G′ ∈ G over five runs using a more liberal
thresholding selection (fnr = 0.05). We use the same perturbations as in Table 3.

Stable Diffusion Style-Based Models Medical Image Models

v1-4 v1-1 v1-1+ v2 real StyleGAN-XL StyleNAT StyleSwin WGAN-GP C-DCGAN

SM-F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10
RawPAD 4.10 3.36 1.35 0.71 4.10 3.36 2.89 1.75 0.12 19.76
DCTPAD 1.32 1.24 0.29 0.29 0.07 0.07 0.16 0.08 0.18 17.97
FLIPAD 1.35 1.04 1.19 1.56 - - - - 0.11 0.19

Table 14. Standard deviation corresponding to the results from Table 4. For illustration purposes, we scale all values by 102.

TVAE CTGAN Cop.GAN

SM-Inv2 95.69 96.38 96.21
RawPAD 84.22 80.85 81.44
FLIPAD 84.15 80.58 80.84

Table 15. Single-model attribution accuracy of KL-WGAN trained on Whitewine against G′ as indicated by the column name averaged
over five runs.
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Orig. 1 3

(a) Blur CelebA

Orig. 1 3

(b) Blur LSUN

Orig. 60 55

(c) Crop CelebA

Orig. 60 55

(d) Crop LSUN

Orig. 90 80

(e) JPEG CelebA

Orig. 90 80

(f) JPEG LSUN

Orig. 0.05 0.1

(g) Noise CelebA

Orig. 0.05 0.1

(h) Noise LSUN

Figure 16. Visualization of different perturbations.

Redwine Whitewine
TVAE CTGAN Cop.GAN TVAE CTGAN Cop.GAN

SM-Inv2 16.51 12.50 14.61 18.87 16.23 13.53
RawPAD 14.89 8.37 21.20 13.29 15.44 13.17
FLIPAD 12.50 5.57 18.37 12.82 16.48 11.17

Table 16. Standard deviation corresponding to the results from Table 5 and Table 15. For illustration purposes, we scale all values by
103.
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