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Abstract
This paper presents a new generalization error
analysis for Decentralized Stochastic Gradient
Descent (D-SGD) based on algorithmic stability.
The obtained results overhaul a series of recent
works that suggested an increased instability due
to decentralization and a detrimental impact of
poorly-connected communication graphs on gen-
eralization. On the contrary, we show, for convex,
strongly convex and non-convex functions, that
D-SGD can always recover generalization bounds
analogous to those of classical SGD, suggesting
that the choice of graph does not matter. We then
argue that this result is coming from a worst-case
analysis, and we provide a refined optimization-
dependent generalization bound for general con-
vex functions. This new bound reveals that the
choice of graph can in fact improve the worst-case
bound in certain regimes, and that surprisingly, a
poorly-connected graph can even be beneficial for
generalization.

1. Introduction
Studying the ability of machine learning models to general-
ize to unseen data is a fundamental and long-standing objec-
tive. Among the several approaches that have been proposed
to bound generalization errors, the most prominent ones are
based on the complexity of the hypothesis class like the
Vapnik-Chervonenkis dimension or Rademacher complex-
ity (Bousquet et al., 2004), algorithmic stability (Bousquet
& Elisseeff, 2002), PAC-Bayesian bounds (Shawe-Taylor &
Williamson, 1997; McAllester, 1998; Catoni, 2007; Alquier
et al., 2024), or more recently information-theoretic gener-
alization bounds (Xu & Raginsky, 2017).
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Over the last few years, a substantial amount of work has
been dedicated to the study of the generalization proper-
ties of optimization algorithms, more specifically gradient-
based methods (Lin et al., 2016; London, 2017; Zhou et al.,
2018; Amir et al., 2021; Neu et al., 2021; Scaman et al.,
2024). In particular, since the seminal work of Hardt et al.
(2016), approaches based on algorithmic stability have en-
countered a large success as they allow to shed light on
the implicit regularization brought by (stochastic) gradient
methods (Kuzborskij & Lampert, 2018; Bassily et al., 2020;
Lei & Ying, 2020; Schliserman & Koren, 2022). However,
this large amount of work is mostly focusing on centralized
gradient-based algorithms.

Decentralized learning algorithms, such as the celebrated
Decentralized Stochastic Gradient Descent (D-SGD) algo-
rithm (Nedic & Ozdaglar, 2009), allow several agents to
train models on their local data by exchanging model up-
dates rather than the data itself. In D-SGD, agents solve
an empirical risk minimization task by alternating between
computing local gradient steps and averaging model pa-
rameters with their neighbors in a communication graph.
A sparser graph thus reduces the per-iteration communi-
cation cost but tends to increase the number of iterations
needed to converge. Most theoretical analyses of D-SGD
and its variants focus on understanding the optimization er-
ror by characterizing the convergence rate to the empirical
risk minimizer. They notably highlight the impact of the
communication graph and data heterogeneity across agents
(Koloskova et al., 2020; Neglia et al., 2020; Ying et al., 2021;
Le Bars et al., 2023). In contrast, the generalization error
of decentralized learning algorithms is far less understood.

In the work of Richards & Rebeschini (2020), the authors fo-
cus on a specific variant of D-SGD (thereafter referred to as
Variant A, see Algorithm 1) where the agents perform a local
stochastic gradient update before averaging their parameters
with their neighbors. With an analysis based on algorithmic
stability, they come to the conclusion that for convex func-
tions the decentralization does not have any impact, recov-
ering the same generalization bounds as those obtained by
Hardt et al. (2016) for centralized SGD. In contrast, a more
recent line of work (Sun et al., 2021; Zhu et al., 2022; Taheri
& Thrampoulidis, 2023) has investigated this question for
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a more practically relevant variant of D-SGD (thereafter
referred to as Variant B, see Algorithm 1), where this time
the averaging step and the local gradient computation are
done in parallel. The existing generalization results for this
variant, which is known to be more difficult to analyze (see
Richards & Rebeschini, 2020, Remark 4 therein), mainly
differ in their technical assumptions. Sun et al. (2021) con-
sider Lipschitz and smooth loss functions, Zhu et al. (2022)
focus on smooth and convex losses, while Taheri & Thram-
poulidis (2023) investigate the overparameterized regime,
for convex and Polyak-Lojasiewicz functions. Despite these
differences, these three studies all come to the same conclu-
sion: “decentralization has a negative impact on generaliza-
tion.” Specifically, their generalization bounds get larger as
the graph gets sparser, and eventually become vacuous for
non-connected graphs. In summary, the current literature
exhibits strikingly contrasting generalization properties for
these two common D-SGD variants, despite their similar
optimization performance. While questioning this gap is
the main motivation for our work, we also wonder how gen-
eralization upper bounds like those obtained by Richards
& Rebeschini (2020) can be completely independent of the
communication graph. This result is indeed rather counter-
intuitive, as we know how important the choice of commu-
nication graph can be for optimization (Neglia et al., 2020).

1.1. Contributions

In this work, we focus on the more complex Variant B and
prove that the dichotomy between the two variants of D-
SGD is only apparent. We show that they are in fact equiv-
alent in terms of stability and generalization performance,
improving upon the recent conclusions of Sun et al. (2021);
Zhu et al. (2022) and Taheri & Thrampoulidis (2023). Our
contributions, summarized in Table 1, are the following:

(1) In Section 3, we first consider convex and strongly
convex loss functions and show that we can recover, for
Variant B of D-SGD, the exact same generalization upper-
bounds than those of Variant A (Richards & Rebeschini,
2020) and standard SGD (Hardt et al., 2016). This leads to
the conclusion that, contrary to the optimization error, the
choice of graph and in particular poorly-connected graphs
do not have a detrimental impact on generalization.

(2) We then consider in Section 4 the less studied case of
non-convex functions, which, contrary to convex ones, were
not considered by Richards & Rebeschini (2020) for Vari-
ant A of D-SGD. Again, we show that, for both variants, it
is possible to recover almost identical generalization upper-
bounds as those obtained by Hardt et al. (2016) for SGD,
leading to the same conclusions as for convex cases regard-
ing the lack of impact of decentralization on generalization.

(3) We finally argue in Section 5 that our analysis, as well
as the one of Richards & Rebeschini (2020), characterize

Table 1. Simplified generalization bounds for (D)-SGD with Lips-
chitz and smooth loss functions. [H] indicates the results of Hardt
et al. (2016), [R] those of Richards & Rebeschini (2020), and
[S] those of Sun et al. (2021). For simplicity, we omit constant
factors. T is the number of iterations, m the number of agents, n
the number of local data points, and ρ ∈ [0, 1] the spectral gap of
the communication graph. We also have a ∈ (0, 1) a constant that
depends on the model parameters and Cρ a constant that depends
on ρ. For centralized SGD, we consider that the algorithm is run
over mn data points. We refer to Section 2.2 for the definitions of
Variants A and B of D-SGD.

SGD D-SGD
Variant A Variant B

Convex T
mn [H] T

mn [R]
T
mn + T

ρ [S]
T
mn [ours]

µ-Strongly
convex

1
µmn [H] 1

µmn [R]
1

µmn + 1
µρ [S]

1
µmn [ours]

Non-convex Ta

mn [H] Ta

m1−an [ours]
Ta

n + CρT
a [S]1

Ta

m1−an [ours]

“worst-case” generalization guarantees across many possi-
ble losses and data distributions. One may then wonder
if the communication graph can play a role under more
specific losses or distributions. To address this point, we
propose a refined analysis for convex functions, inspired by
optimization-dependent generalization bounds for classical
SGD (Kuzborskij & Lampert, 2018; Lei & Ying, 2020),
which confirms this is indeed the case. Quite surprisingly,
our new bound not only shows that in low-noise regimes spe-
cific choice of graphs can improve the worst-case bound, but
also that poorly-connected graphs can even be beneficial
to generalization.

Before moving to our main contributions, the following
section provides relevant background on the relationship
between algorithmic stability and generalization, presents
D-SGD, and discusses the main assumptions considered
throughout the paper.

2. Background
2.1. Stability and Generalization in Decentralized

Learning

We consider the general setting of statistical learning,
adapted to a decentralized framework with m agents. We
consider that agent k observes examples drawn from a local
data distribution Dk with support Z . The objective is to
find a global model θ ∈ Rd minimizing the population risk

1In the original paper (Sun et al., 2021), the authors give a
bound in O( Ta

mn
+ CρT

a). In Appendix E.3, we reveal that there
is a mistake in their proof, corrected in Table 1.
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defined by:

R(θ) ≜
1

m

m∑
k=1

EZ∼Dk
[ℓ(θ;Z)] ,

where ℓ is some loss function. We denote by θ⋆ a global
minimizer of the population risk, i.e., θ⋆ ∈ argminθ R(θ).

Although we cannot evaluate the population risk R(θ),
we have access to an empirical counterpart, computed
over m local datasets S ≜ (S1, . . . , Sm) where Sk =
{Z1k, . . . , Znk} is the dataset of agent k with Zik ∼ Dk.
Note that for simplicity we consider that all local datasets
are of same size n, but our analysis can be extended to the
heterogeneous case. The resulting empirical risk is given
by:

RS(θ) ≜
1

m

m∑
k=1

RSk
(θ) ≜

1

mn

m∑
k=1

n∑
i=1

ℓ(θ;Zik) .

One of the most famous and studied estimators is the em-
pirical risk minimizer, denoted by θ̂ERM ≜ argminθ RS(θ).
However, in most situations, this estimator cannot be di-
rectly computed. Instead, one relies on a potentially ran-
dom decentralized optimization algorithm A, taking as input
the full dataset S, and returning an approximate minimizer
A(S) ∈ Rd of the empirical risk RS(θ).

In this setting, we can upper-bound the expected excess risk
R(A(S)) − R(θ⋆) by the sum of the (expected) general-
ization error (ϵgen), and the (expected) optimization error
(ϵopt):

EA,S [R(A(S))−R(θ⋆)] ≤ ϵgen + ϵopt ,

where ϵgen ≜ EA,S [R(A(S)) − RS(A(S))] and ϵopt ≜

EA,S [RS(A(S)) − RS(θ̂ERM)]. The present work focuses
on the control of the expected generalization error ϵgen, for
which a popular approach is based on the stability analysis
of the algorithm A.2

Contrary to a large body of works using the well-known uni-
form stability (Bousquet & Elisseeff, 2002; Shalev-Shwartz
et al., 2010), our analysis relies on the notion of on-average
model stability (Lei & Ying, 2020) which has the advantage
to give tighter bounds in our analysis. Below, we recall this
notion, with a slight adaptation to the decentralized setting.

Definition 2.1. (On-average model stability). Let
S = (S1, . . . , Sm) with Sk = {Z1k, . . . , Znk} and S̃ =
(S̃1, . . . , S̃m) with S̃k = {Z̃1k, . . . , Z̃nk} be two inde-
pendent copies such that Zik ∼ Dk and Z̃ik ∼ Dk.

2While we focus here on the expected version of the gener-
alization error, some of these tools are also well-suited to pro-
vide high-probability generalization bounds (Feldman & Vondrak,
2019).

For any i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, let us de-
note by S(ij) = (S1, . . . , Sj−1, S

(i)
j , Sj−1, . . . , Sm), with

S
(i)
j = {Z1j , . . . , Zi−1j , Z̃ij , Zi+1j , . . . , Znj}, the dataset

formed from S by replacing the i-th element of the j-th
agent’s dataset by Z̃ij . A randomized algorithm A is said to
be on-average model ε-stable if

ES,S̃,A

[ 1

mn

n∑
i=1

m∑
j=1

||A(S)−A(S(ij))||2
]
≤ ε . (1)

A key aspect of on-average model stability is that it can
directly be linked to the generalization error, as shown in
the following lemma.
Lemma 2.2. (Generalization via on-average model stability
(Lei & Ying, 2020)). Let A be on-average model ε-stable.
Then, if ℓ(·; z) is L-Lipschitz for all z ∈ Z (see Assump-
tion 2.4), we have |EA,S [R(A(S))−RS(A(S))]| ≤ Lε.

Thanks to this lemma, it suffices to control the on-average
model stability of the decentralized algorithm A, in order to
get the desired generalization bound.

2.2. Decentralized SGD

Throughout this paper, we focus on the popular Decen-
tralized Stochastic Gradient Descent (D-SGD) algorithm
(Nedic & Ozdaglar, 2009; Lian et al., 2017), which aims
to find minimizers (or saddle points) of the empirical risk
RS(θ) in a fully decentralized fashion. This algorithm
is based on peer-to-peer communications between agents,
where a graph is used to encode which pairs of agents (also
referred to as nodes) can interact together. More specifi-
cally, this communication graph is represented by a weight
matrix W ∈ [0, 1]m×m, where Wjk > 0 gives the weight
that agent j gives to messages received from agent k, while
Wjk = 0 (no edge) means that j does not receive messages
from k.

Algorithm 1 Decentralized SGD (Lian et al., 2017)

Input: Initialize ∀k, θ(0)k = θ(0) ∈ Rd, iterations T ,
stepsizes {ηt}T−1

t=0 , weight matrix W .
for t = 0, . . . , T − 1 do

for each node k = 1, . . . ,m do
Sample Itk ∼ U{1, . . . , n}
Variant A:

θ
(t+1)
k ←

∑m
l=1 Wkl

(
θ
(t)
l − ηt∇ℓ(θ(t)l ;ZIt

l l
)
)

Variant B:
θ
(t+1)
k ←

∑m
l=1 Wklθ

(t)
l − ηt∇ℓ(θ(t)k ;ZIt

kk
)

end for
end for

D-SGD is summarized in Algorithm 1. As mentioned in
the introduction, there exists two main variants of this algo-
rithm. In Variant A, each agent k first performs a stochastic
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gradient update based on ∇ℓ(θ(t)k ;ZIt
kk
), i.e., the stochastic

gradient of ℓ evaluated at θ(t)k with Itk ∼ U{1, . . . , n} the in-
dex of the data point uniformly selected by agent k from its
local dataset Sk at iteration t. Then, it aggregates its updated
parameter vector with its neighbors according to the weight
matrix W . Variant B somehow reverses the two steps: each
agent first aggregates its parameter vector with its neighbors
and then performs a stochastic gradient update based on the
parameter vector it had before the averaging step.

Variant B is often seen as more efficient because the aggre-
gation step and the stochastic gradient calculation can be
done in parallel, while in Variant A, the aggregation step
cannot be performed before all agents have finished their
stochastic gradient update. From an optimization perspec-
tive however, both variants are guaranteed to converge at
the same rate (Lian et al., 2017).

The state of the art currently suggests that these two vari-
ants diverge mainly in terms of generalization error. While
Richards & Rebeschini (2020) focus on Variant A and show
that we can recover the same generalization bounds as cen-
tralized SGD, Sun et al. (2021); Zhu et al. (2022) and Taheri
& Thrampoulidis (2023) focus on Variant B and show an in-
creased instability due to decentralization. One of our main
contributions is to fill this gap in the current theory, by show-
ing that Variant B can also reach the same generalization
error as centralized SGD, making it equivalent to Variant A.
Remark 2.3. Due to its fully decentralized nature, D-SGD
(both variants) outputs m different parameters A1(S) ≜

θ
(T )
1 , . . . , Am(S) ≜ θ

(T )
m at the end of the optimization pro-

cess (one per agent). For this reason, the stability and gener-
alization analysis of the next sections will not be made with
respect to a single output A(S) as described in Section 2.1,
but rather with respect to (one of) these different outputs.

2.3. Main Assumptions

We focus on the classic setup of Hardt et al. (2016), also
considered by Richards & Rebeschini (2020) and Sun et al.
(2021) in prior work on the generalization analysis of D-
SGD. These works rely on the standard assumptions of
L-Lipschitzness and β-smoothness of the loss function.

Assumption 2.4. (L-Lipschitzness). We assume that the
loss function ℓ is differentiable w.r.t. θ and uniformly Lips-
chitz, i.e., ∃L > 0 such that ∀θ, θ′ ∈ Rd, z ∈ Z , |ℓ(θ; z)−
ℓ(θ′; z)| ≤ L∥θ − θ′∥2, or equivalently, ∥∇ℓ(θ; z)∥2 ≤ L.

Assumption 2.5. (β-smoothness). The loss function ℓ is
β-smooth i.e. ∃β > 0 such that ∀θ, θ′ ∈ Rd, z ∈ Z ,
∥∇ℓ(θ; z)−∇ℓ(θ′; z)∥2 ≤ β∥θ − θ′∥2.

Remark 2.6. By considering Lipschitz and smooth loss
functions, our results will be directly comparable to those
of Hardt et al. (2016); Richards & Rebeschini (2020) and
Sun et al. (2021). Nevertheless, we expect the conclusions

of this paper to be the same for the analyses with relaxed hy-
potheses (Zhu et al., 2022; Taheri & Thrampoulidis, 2023).
We leave this study for future research.

Our last assumption concerns the weight matrix W . It is
again very standard and used extensively in the literature
of decentralized optimization (see e.g., Lian et al., 2017;
Koloskova et al., 2020).

Assumption 2.7. (Mixing matrix). W is doubly stochastic,
i.e., WT1 = W1 = 1 where 1 is the vector (of size m) that
contains only ones.

Note that contrary to what is usually considered in the liter-
ature, we do not assume the communication graph W to be
connected. As an example, we allow W to be the identity
matrix, which would reduce D-SGD to m independent local
SGD algorithms.

3. Generalization Error for Convex Loss
Functions

This section presents our first main contribution. Focusing
on convex and strongly convex functions, we first demon-
strate that we can recover the exact same generalization
upper bounds for Variant A (obtained by Richards & Rebes-
chini, 2020) and Variant B of D-SGD. Hence, our bounds
unify these two variants and contradict (and greatly im-
prove upon) the recent results of Sun et al. (2021); Zhu
et al. (2022); Taheri & Thrampoulidis (2023). These authors
suggested that the generalization error in D-SGD (Variant
B) was adversely affected by sparse communication graphs.
Crucially, our analysis demonstrates that the generalization
error of D-SGD, regardless of the variant, is in fact not
impacted by the choice of communication graph, or by de-
centralization at all, as our bounds align closely with those
established by Hardt et al. (2016) for centralized SGD.

3.1. General Convexity

Theorem 3.1. Assume that the loss function ℓ(·; z) is convex,
L-lipschitz (Assumption 2.4) and β-smooth (Assumption
2.5). Let A1(S) = θ

(T )
1 , . . . , Am(S) = θ

(T )
m be the m

final iterates of D-SGD (Variant B) run for T iterations,
with mixing matrix W satisfying Assumption 2.7 and with
ηt ≤ 2mink{Wkk}

β . Then, ∀k = 1, . . . ,m, Ak(S) has a
bounded expected generalization error:

|EA,S [R(Ak(S))−RS(Ak(S))]| ≤
2L2

∑T−1
t=0 ηt

mn
. (2)

Sketch of proof (see Appendix B.1 for details). Prior re-
sults (Sun et al., 2021; Taheri & Thrampoulidis, 2023) are
suboptimal because they try to mimic state-of-the-art opti-
mization error analyses (Kong et al., 2021) which require to
control a consensus distance term

∑
k ∥θ

(t)
k − θ̄(t)∥2, where
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θ̄(t) = (1/m)
∑

k θ
(t)
k . This term, important to ensure the

minimization of the empirical risk, is small when all local
parameters are close to one another, which is the case only
if the communication graph is sufficiently connected. Our
proof relies on a tighter analysis, which does not require the
control of such consensus distance term.

Denote by Ak(S) = θ
(T )
k and Ak(S

(ij)) = θ̃
(T )
k , the final

iterates of agent k for D-SGD (Variant B) run over two data
sets S and S(ij) that differ only in the i-th sample of agent
j (see Def. 2.1 for notations). The objective is to control
the on-average model stability 1

mn

∑
i,j E[δ

(T )
k (i, j)], with

δ
(T )
k (i, j) = ∥θ(T )

k − θ̃
(T )
k ∥2, and then apply Lemma 2.2 to

conclude.

The crux of the proof is to recognize, in the updates of
Variant B, the gradient updates of a classical SGD with
step-size ηt/Wkk, and then use its 1-expansivity property
(Lemma A.3 in Appendix A) when ηt ≤ 2mink{Wkk}/β
to obtain the recursion

E[δ(t+1)
k (i, j)] ≤

m∑
l=1

WklE[δ(t)l (i, j)]

+
2ηt
n

E[∥∇ℓ(θ(t)k ;Zij)∥2]1{k=j}

≤
m∑
l=1

WklE[δ(t)l (i, j)] +
2Lηt
n

1{k=j} , (3)

where the second inequality is obtained by bounding the
gradient norm by L (Assumption 2.4). Having established
Eq. (3), the remainder of our proof proceeds along a path
similar to that taken by Richards & Rebeschini (2020) in
their proof for Variant A. We can recursively apply Eq. (3)
until t = 0 and use the fact that δ(0)k (i, j) = 0 for all k to get
E[δ(T )

k (i, j)] ≤ 2L
n

∑T−1
t=0 (WT−t−1)kjηt. Averaging over

i and j and using the fact that any power of W is also doubly
stochastic, we obtain that the on-average model stability is

upper bounded by 2L
∑T−1

t=0 ηt

mn , which concludes the proof
with a direct application of Lemma 2.2.

Richards & Rebeschini (2020, Lemma 13) and Theorem 3.1
demonstrate that, for convex functions, the generalization
bounds for both Variants A and B of D-SGD are identical—
including constant factors—to those obtained by Hardt et al.
(2016) for centralized SGD over mn data points. More-
over, this bound is optimal in the centralized setting (Zhang
et al., 2022). The only difference resides in the fact that,
for Variant B, we need to take smaller stepsizes (below
2mink{Wkk}/β in Theorem 3.1 compared to 2/β for the
others). This difference stems from the greater difficulty
in linking the iterates of Variant B to those of a standard
gradient descent, but is rather mild, as the assumptions to
ensure convergence of the associated optimization problem
are usually stronger (see Appendix E.2 for more details).

Overall, our theorem strictly improves upon the recent result
of the closest work (Sun et al., 2021), which obtained, for
Variant B of D-SGD, an upper-bound with an extra additive

term: 2L2 ∑T−1
t=0 ηt

mn +O(Tρ ), where ρ ∈ [0, 1] is the spectral
gap of W . This earlier result suggested that the general-
ization error is significantly influenced by the connectivity
of W , specifically suggesting that the error would diverge as
the graph becomes sparser (ρ→ 0). However, our findings
contradict this claim. Remarkably, the bound by Sun et al.
(2021) does not exhibit consistency, as it fails to approach
zero even as n increases.
Remark 3.2. In Sun et al. (2021), but also Zhu et al.
(2022) and Taheri & Thrampoulidis (2023), the authors
control the generalization error of the averaged final models
θ̄(T ) = (1/m)

∑m
k=1 θ

(T )
k , but not of individual final mod-

els. In this sense, our result is stronger, for two key reasons.
Firstly, Theorem 3.1 and all results in this paper can be
directly extended to the average model θ̄(T ), as detailed in
Appendix E.1. Secondly, this average model is not com-
puted at any stage of the D-SGD process (except where the
communication graph is complete). Therefore, examining
the generalization properties of this parameter introduces a
certain conflict with the fully decentralized context.

3.2. Strong Convexity

We now consider strongly convex functions. As such func-
tions cannot be Lipschitz (Assumption 2.4) over Rd, we
restrict our analysis to the optimization over a convex com-
pact set Θ as done by Hardt et al. (2016). Denoting by
ΠΘ(θ̃) = argminθ∈Θ ∥θ̃ − θ∥ the Euclidean projection
onto Θ, we consider the projected extension of the D-SGD
algorithm, which replaces the updates from Algorithm 1 by:

θ
(t+1)
j ←


∑m

k=1 WjkΠΘ

(
θ
(t)
k − ηt∇ℓ(θ(t)k ;ZIt

kk
)
)

(A)

ΠΘ

(∑m
k=1 Wjkθ

(t)
k − ηt∇ℓ(θ(t)j ;ZIt

jj
)
)

(B)

Theorem 3.3. Assume that the loss function ℓ(·; z)
is µ-strongly convex, L-Lipschitz over Θ (Assump-
tion 2.4) and β-smooth (Assumption 2.5). Let A1(S) =

θ
(T )
1 , . . . , Am(S) = θ

(T )
m be the m final iterates of the pro-

jected D-SGD (Variant B) run for T iterations, with mixing
matrix W satisfying Assumption 2.7 and with constant step-
size η ≤ mink{Wkk}/β. Then, ∀k = 1, . . . ,m, Ak(S) has
a bounded expected generalization error:

|EA,S [R(Ak(S))−RS(Ak(S))]| ≤
4L2

µmn
. (4)

The proof of Theorem 3.3, provided in Appendix B.2, es-
sentially follows the same scheme as the one derived above
for convex functions. Once again, the bound matches the
optimal one obtained for centralized SGD with strongly con-
vex functions in Hardt et al. (2016), and the one obtained
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by Richards & Rebeschini (2020) for Variant A of D-SGD.
Notice that, contrary to the general convex case, the general-
ization bound for strongly convex functions is independent
of the number of iterations T , which makes these problems
more stable and less likely to overfit.

Sun et al. (2021) derive a similar generalization bound but
with an extra additive error term in O( 1

µρ ). Their bound
is therefore strictly weaker: it is not converging to 0 as
the number of samples increases and is vacuous when the
communication graph is not connected (ρ = 0). This again
illustrates the suboptimality of these previous results and
the major improvement brought by ours.

3.3. Deriving excess risk bounds

Recall from Section 2.1 that the main objective of sta-
tistical learning is to control the excess risk ϵexcess ≜
EA,S [R(A(S))−R(θ⋆)], which can be upper-bounded by
the sum of the generalization error (ϵgen) and the optimiza-
tion error (ϵopt).

Our work is centered on the control of the generalization
error. However, with the rather abundant literature on the
control of optimization errors for D-SGD (Koloskova et al.,
2020; Neglia et al., 2020; Ying et al., 2021), one can com-
bine the results of these papers with ours to obtain bounds on
the excess risk, as explained below. Note that most bounds
on the optimization error from the literature are given for the
averaged parameter A(S) = θ̄(T ) or A(S) = 1

T

∑T
t=1 θ̄

(t).
Since our generalization bounds are also valid for these
averaged parameters (see Section E.1, proofs for the time-
average parameter are analogous), the following discussions
are made with respect to them.

For convex functions, one can adapt the optimization error
bound from Neglia et al. (2020, Proposition 3.1) to our nota-
tions and obtain ϵopt = O

(
1
ηT + ηL2

ρ

)
, where some constant

factors have been omitted for simplicity. Combining this
with our generalization bound of order O(TηL2

mn ), one can
take T = Θ(

√
mn
ηL ) with η ≤ min{ ρ

L
√
mn

; 2mink Wkk

β }, and

recover the classical rate of order O( L√
mn

) for ϵexcess, a rate
that can be found for instance in Hardt et al. (2016) or Lei
& Ying (2020) for centralized SGD.

For µ-strongly convex functions, our result from Theorem
3.3 exhibits a generalization bound independent of the al-
gorithm parameters η, W and T (as soon as η satisfies the
constraint of our theorem). Moreover, we know (see e.g.
Koloskova et al., 2020; Neglia et al., 2020) that the opti-
mization error ϵopt can be set arbitrary small (in particular
smaller than ϵgen), as soon as the graph W is connected, the
number of iterations T is sufficiently large and the stepsize η
is sufficiently small (in particular satisfying our constraint).
Hence, as soon as W is connected, there exists an instance
of parameters η, and T of D-SGD that gives an excess risk

bound ϵexcess with a ”fast” rate of order ϵgen = O( L2

µmn ), a
rate that can be found for instance in (Hardt et al., 2016) for
centralized SGD.

We emphasize that the convergence of the above excess
risk bounds actually depend on the communication graph.
Indeed, the convergence is possible only if the graph is
connected (i.e. ρ < 1, a necessary condition to control the
optimization error), and the number of iterations T needed
to make the optimization error small depends on ρ.

4. Generalization Error for Non-Convex Loss
Functions

The case of non-convex (but bounded) loss functions was
only investigated by Sun et al. (2021), for Variant B of D-
SGD. Similar to their findings in convex scenarios, they es-
tablished a generalization upper bound akin to that of Hardt
et al. (2016). However, their bound again includes an addi-
tional term that does not diminish with increasing sample
size. This raises the following question: can a finer-grained
analysis than that of Sun et al. (2021) recover, for both vari-
ants of D-SGD, a result analogous to that of Hardt et al.
(2016, Theorem 3.12) for centralized SGD with bounded
non-convex loss functions?

To answer this question, we adopt the set of hypotheses of
Hardt et al. (2016) and seek to extend their proof technique
to the decentralized framework. Hereafter, we provide our
generalization bound for bounded non-convex functions.
Theorem 4.1. Assume that ℓ(·; z) ∈ [0, 1] is an L-Lipschitz
(Assumption 2.4) and β-smooth (Assumption 2.5) loss func-
tion for every z. Let A1(S), . . . , Am(S) be the m final
iterates of D-SGD (Variant A and B) run for T iterations,
with mixing matrix W satisfying Assumption 2.7, such that
mink{Wkk} > 0, and with monotonically non-increasing
step sizes ηt ≤ c

t+1 , c > 0. Then, we have:

|EA,S [R(Ak(S))−RS(Ak(S))]|

≤ (1 +
1

βc
)(2cL2)

1
βc+1

T
βc

βc+1

nm
1

βc+1

. (5)

Sketch of proof (see Appendix C.1 for details). The crux of
the proof is to condition the analysis on the time t0 at which
the swapped sample is first selected, then it is possible to
minimize the generalization upper bound with respect to t0
and obtain a tighter bound. Hardt et al. (2016) employed
this same technique in conjunction with uniform stability
arguments; our approach diverges by integrating it with an
on-average model stability argument. This distinction is
critical, as it is precisely what eliminates the impact of the
graph in our analysis. Indeed, the discussion after Equa-
tion (3) shows that, before averaging over i and j, model
deviations δk(i, j) depend on the powers of the communica-
tion graph W . The appropriate conditioning on t0 combined
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with on-average model stability is given in the key Lemma
C.1 and ensures that ∀t0 ∈ N we have

|EA,S [R(Ak(S))−RS(Ak(S))]| ≤
t0
n

+ L∆
(T )
k ,

where ∆
(t)
k = 1

mn

∑
i,j E[δ

(t)
k (i, j)

∣∣δ(t0)(i, j) = 0] and δ
is the vector containings δ1, . . . , δm (see the proof sketch of
Theorem 3.1 for other notations). Then, using the (1+ηtβ)-
expansivity property of our updates, combined with the fact
that ∆(t0)

k = 0, we prove that:

∆
(T )
k ≤ 2L

βmn

(T

t0

)cβ

.

It then suffices to plug this equation into the first one and to
minimize it with respect to t0 to complete the proof.

For the clarity of the discussion, below we omit constant fac-
tors in β, c and L, but we stress that our bound has the exact
same constant factors as those in Hardt et al. (2016). Our
generalization bound is of order O(T

βc
βc+1 /nm

1
βc+1 ) and

several comments can be made. First, contrary to the convex
cases, our bound does not exactly match the one of Hardt
et al. (2016). Indeed, when centralized SGD is run over mn

data points, they obtain a bound of order O(T
βc

βc+1 /nm)
which is strictly better than our bound. This comes from
the fact that the proof technique relies on characterizing the
number of steps that occur before the algorithm picks the
data point that differs in S and S(ij). In centralized SGD,
the probability to pick this point is 1/mn at each iteration,
while it is only 1/n for D-SGD. Importantly, this means
that the weaker bound is not directly due to decentralization,
but rather to the fact that D-SGD selects m samples at each
iteration (instead of only one for SGD). A fairer compar-
isonthus be to compare D-SGD to centralized SGD with
batch size m.

Importantly, our generalization bound is valid for the two
variants of D-SGD, is still independent of the choice of
communication graph, and tends towards 0 as n and m
increase. This significantly improves the results obtained
for D-SGD in the prior work of Sun et al. (2021) for Variant
B only, where the obtained bound has an extra additive term
of order O(T

βc
βc+1Cρ), where Cρ depends on the spectral

gap ρ of W and can be arbitrarily large. Note that, as in
convex cases (Remark 3.2), their result is given for the
average of final iterates, for which our result is also valid
(see Proposition E.2 in Appendix E.1).
Remark 4.2. As pointed out in Table 1, there is a mistake
in the original proof of the upper bound of Sun et al. (2021,
Theorem 3). We explain this in Appendix E.3.

Finally, notice that for non-convex functions, the excess
population risk ϵexcess cannot be directly upper-bounded and
a discussion analogue to the one of Section 3.3 cannot be

made. Indeed, in the non-convex case, optimization errors
usually control an upper bound on the gradient norm of
the objective function and not on function values, which is
required by our definition of ϵopt.

5. Towards Optimization-Dependent
Generalization Bounds

Based on the results of the previous sections, one could con-
clude that decentralization and the choice of communication
graph do not have an impact on the generalization of D-SGD.
In this section, we suggest that this rather counter-intuitive
result comes from the fact that the previous analyses are
“worst-case”, thereby hiding the true influence of the graph
on certain types of loss functions and data distributions. In
order to highlight such potential effects, we propose to in-
vestigate a certain type of generalization bounds referred
to as optimization-dependent. This type of refined bounds,
also referred as “data-dependent” in Kuzborskij & Lampert
(2018), has been widely investigated in the generalization
error analysis of centralized gradient methods (Kuzborskij
& Lampert, 2018; Lei & Ying, 2020). Also based on algo-
rithmic stability arguments, they reveal that a good optimiza-
tion of the empirical risk can be beneficial for generalization
(hence the term “optimization-dependent”). Since it is well
known that the choice of graph affects the specific trajecto-
ries of the optimization algorithm and have an impact on the
optimization error (Koloskova et al., 2020), we can expect
this type of analysis to be appropriate to reveal the impact
of the graph’s connectivity on generalization.

Let us start with an additional assumption.

Assumption 5.1. (Bounded empirical variance). For
all agents k = 1, . . . ,m, training dataset S ∈ Zmn and
model parameter θ ∈ Rd, there exists σ2 > 0 such that
1
n

∑n
i=1 ∥∇ℓ(θ;Zik)−∇RSk

(θ)∥22 ≤ σ2.

This assumption is rather standard in the control of the opti-
mization error of stochastic gradient methods. Here, it is nec-
essary to reveal different regimes in our new optimization-
dependent bound, but notice that Assumption 5.1 is always
satisfied under Assumption 2.4, with σ2 = L2.

The following lemma first links generalization errors to em-
pirical risk minimization errors. Here, we focus on averaged
generalization errors, instead of looking at the one of any
fixed agent. This makes the analysis more tractable and
reveals interesting links with optimization errors.

Lemma 5.2. (Link with local optimization errors). Un-
der the same hypotheses as in Theorem 3.1 and additional
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Assumption 5.1, we have:

1

m

m∑
k=1

|EA,S [R(Ak(S))−RS(Ak(S))]|

≤ 2Lσ

mn

T−1∑
t=0

ηt +
2L

mn

T−1∑
t=0

ηt
1

m

m∑
j=1

E[∥∇RSj (θ
(t)
j )∥2]

Lemma 5.2, and all the results of this section, are proved in
Appendix D.

From Lemma 5.2, we notice that we can bound σ and the
gradient norms ∥∇RSj (θ

(t)
j )∥2 by L and recover (up to a

factor 2), the worst-case upper bound from Theorem 3.1.
This illustrates well the “worst-case” notion mentioned
above, but also the fact that the upper bound of Lemma
5.2 can be better than the one of Theorem 3.1 in some
regimes. This will notably be the case in “low noise”
regimes, when σ ≪ L, and when the expected gradient
norms E[∥∇RSj

(θ
(t)
j )∥2] reach small values. Interestingly,

these gradient norms are linked with the optimization error
of local empirical risks: E[∥∇RSj

(θ
(t)
j )∥2] will get smaller

as the parameter θ(t)j of the j-th agent minimizes the associ-
ated local empirical risk RSj (θ). In other words, the more
rapidly each agent optimizes its own local empirical risk,
the smaller (and the better) the bound in Lemma 5.2.

The fact that the agents should minimize their local empiri-
cal risks may seem surprising at first. Indeed, as opposed to
the minimization of the full empirical risk, it suggests that
local SGD (D-SGD with identity graph) should be preferred
to D-SGD with any other communication graph. This quite
counter-intuitive observation comes from the averaging of
the node-wise generalization errors, which increases sta-
bility. Using tools from convex optimization, we can now
provide a more explicit upper bound, given in the following
theorem.
Theorem 5.3. (optimization-dependent generalization
bound) Consider the same setting as in Theorem 3.1, with
a constant stepsize η and additional Assumption 5.1. As-
sume further that W is symmetric. Then, there exists a
graph-dependent constant CW <∞ such that:

1

m

m∑
k=1

|EA,S [R(Ak(S))−RS(Ak(S))]|

≤ 2
√
2L
√
Tη

mn

√√√√ 1

m

m∑
j=1

E[RSj (θ
(0))−RSj (θ

∗
Sj
)]

+
2LσηT

mn
+

2L
√
βση

3
2T

mn
+

2L2TηCW

mn
,

where θ∗Sj
is the (local) empirical risk minimizer of RSj

.

Here, CW corresponds to an upper bound on the series
C

(t)
W ≜

∑t−1
s=0 ∥W s −W s+1∥2. Its existence is guaranteed

(see Lemma D.4 in Appendix D), but unfortunately in most
cases C(t)

W and CW do not have a closed form expression.
However, it can be shown for instance that CW = 0 for
W = I (local SGD) or CW = 1 for W = 1

m11T (complete
graph with uniform weights). More generally, a condition
for CW to be small is to be close to the identity graph.

Upper bound analysis. The first term of the upper bound is
of order O(

√
T

mn ) and depends on the averaged optimization
error at initialization. This illustrates that if we are good
at the initial point θ0, few steps of D-SGD are going to be
necessary before reaching a stable point. The other terms
are of order O( T

mn ), the last one being graph-dependent
with the constant CW , while the other two depend on the
variance σ2. From the worst case point of view, we therefore
recover the rate O( T

mn ) provided in Theorem 3.1. However,
this new bound is more informative as it showcases other
regimes. For instance, when σ and CW are sufficiently
small, the first term becomes dominant, and the bound
becomes of order O(

√
T

mn ), which strictly improves the
worst-case upper bound. Last but not least, if W = I and
η ≤ 1√

T
, we have CW = 0 and we obtain a bound of order

O

 4
√
T

mn

√√√√ 1

m

m∑
j=1

E[RSj
(θ(0))−RSj

(θ∗Sj
)] +

σ
√
T

mn

 ,

which is the same as the optimization-dependent bound
obtained in Kuzborskij & Lampert (2018, Theorem 3) for
centralized SGD with mn data points. This illustrates that
our results generalize those obtained for centralized SGD in
past studies.

In Figure 1, we represent the generalization errors observed
empirically for different communication graphs (see Ap-
pendix E.4 for experimental details). In the low noise
regime (left plot), we observe that the generalization er-
ror is strongly impacted by the choice of graph, the best
one being the identity. This is in line with our analysis, as
in the low noise regime the graph-dependent term of our
bound becomes dominant. On the contrary, in the high noise
regime (right plot), the choice of communication graph is
less significant as we essentially recover the worst-case be-
havior, in which the choice of communication graph does
not matter. Interestingly, we observe that in the firsts itera-
tions of the low-noise regime, all curves have the same slope.
This suggests that during this phase, generalization errors
evolve linearly and do not depend on the graph, exhibiting
the worst-case behavior described by Eq. (2). Then, as the
algorithm continues, the optimization progresses (depend-
ing on the graph), making the algorithm more stable and the
worst-case bound too conservative.

In the end, after refuting results which claimed that a poorly
connected graph was detrimental to generalization, our
bound and our empirical results show that such a graph
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Figure 1. Empirical generalization error, as a function of the number of iterations T , and for different communication graphs. Constant
stepsize η = 0.03. (Left) Low-noise regime with σ ≃ 0. (Right) Noisy regime with σ > 0. See Appendix E.4 for experimental details.

can, on the contrary, help generalization in certain regimes.
This can be contrasted, however, with the fact that the op-
timization error ϵopt of the full empirical risk must also be
controlled, which can only be done with a connected graph.
Overall, our analysis paves the way for the future devel-
opment of optimization-dependent generalization bounds,
whose ability to characterize the practical impact of decen-
tralization and choice of graph is well illustrated by our
results.

6. Conclusion
In this paper, we showed that previous generalization error
analyses of Variant B of D-SGD were very loose and led
to incorrect conclusions regarding the impact of decentral-
ization on generalization. On the contrary, we show that
Variants A and B recover upper bounds analogous to those
obtained in the centralized setting, suggesting that decen-
tralization and the choice of graph do not have an impact on
generalization. We then argue that this result is coming from
a worst-case analysis and propose a refined bound revealing
that the choice of graph can in fact improve the worst-case
bound in certain regimes, and that a poorly-connected graph
can even be beneficial for generalization.

All our generalization results, however, should not be com-
pletely dissociated from the optimization error. As seen
in Section 3.3, if we want to recover the optimal excess
risk bounds from the centralized setting, the optimization
error must be sufficiently small. Contrary to the generaliza-
tion error, this means that the graph should be connected
and the number of iterations sufficiently large (depending
on the connectivity of the communication graph). Future
work could therefore include a better understanding of the
generalization-optimization trade-off, notably with respect
to the minimum number of iterations needed to reach the
optimal bounds. In an other vein, future investigations could
relax the Lipschitz condition, by considering an analysis
similar to those proposed by Lei & Ying (2020); Schlis-

erman & Koren (2022; 2023), or develop more refined
optimization-dependent generalization bounds that would
be able to capture, for instance, the impact of data hetero-
geneity between agents.
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Appendix

A. Technical lemmas
Below, we provide important definitions and lemmas that are going to be useful in our analysis. All proofs can be found in
Hardt et al. (2016).
Definition A.1. The (stochastic) gradient update rule with η > 0, z ∈ Z and loss function ℓ is given by

Gη,z(θ) = θ − η∇ℓ(θ; z).

Definition A.2. An update rule G(θ) is said to be ν-expansive if:

sup
θ,θ′

∥G(θ)−G(θ′)∥2
∥θ − θ′∥2

≤ ν.

Lemma A.3. (Expansivity of Gη,z). If ℓ is β-smooth (Assumption 2.5), we have:

1. Gη,z(θ) is (1 + ηβ)-expansive;

2. Assume in addition that ℓ(·; z) is convex and η < 2/β. Then Gη,z(θ) is 1-expansive;

3. Assume in addition that ℓ(·; z) is µ-strongly convex and η < 2
β+µ . Then Gη,z(θ) is (1− ηβµ

β+µ )-expansive.

Lemma A.4. (Growth recursion) Fix an arbitrary sequence of gradient update rule Gη1,z1 , . . . , GηT ,zT and another
sequence Gη1,z′

1
, . . . , GηT ,z′

T
with same loss function ℓ (Def. A.1). Let θ0 = θ′0 be a starting point in Rd and define

δt = ∥θt − θ′t∥ where θt, θ′t are defined recursively through

θt+1 = Gηt,zt(θt), θ
′
t+1 = Gη′

t,z
′
t
(θ′t).

Then, we have the recurrence relation

δ0 = 0

δt+1 ≤
{

νδt if Gηt,zt = Gηt,z′
t

is ν-expansive
min {1, ν}δt + 2ηtL if ℓ is L-Lipschitz and Gηt,zt is ν-expansive

B. Proofs of Section 3
B.1. Theorem 3.1

First, notice that if mink{Wkk} = 0, by assumption we have ηt ≤ 2mink{Wkk}
β = 0. Hence our algorithm is perfectly

stable and the bound is trivially obtained as A(S) = θ(0) is data-independent. In the following, we focus on the case where
mink{Wkk} > 0.

Thanks to Lemma 2.2, we simply need to prove that A(S) is on average ε-stable with ε ≤ 2L
∑T−1

t=0 ηt

mn . Taking the notations
of Def. 2.1, we denote by Ak(S) = θ

(T )
k , and Ak(S

(ij)) = θ̃
(T )
k , the outputs of agent k for D-SGD (Variant B) at round T ,

run over S and S(ij) respectively. More generally, {θ(t)k }Tt=0 (respectively {θ̃(t)k }Tt=0), refer to the iterates of agent k run
over S (respectively S(ij)). We also denote by {Z ′

vk}vk the elements of the data set S(ij), i.e. Z ′
vk = Zvk for (v, k) ̸= (i, j)

and Z ′
ij = Z̃ij ̸= Zij .

For all k = 1, . . . ,m and t ≥ 1, we have

∥θ(t+1)
k −θ̃(t+1)

k ∥2 =
∥∥∥ m∑

l=1

Wklθ
(t)
l − ηt∇ℓ(θ(t)k ;ZIt

kk
)−

m∑
l=1

Wklθ̃
(t)
l + ηt∇ℓ(θ̃(t)k ;Z ′

It
kk
)
∥∥∥
2

=
∥∥∥Wkk

(
θ
(t)
k −

ηt
Wkk
∇ℓ(θ(t)k ;ZIt

kk
)− θ̃

(t)
k +

ηt
Wkk
∇ℓ(θ̃(t)k ;Z ′

It
kk
)
)
+

m∑
l ̸=k

Wkl(θ
(t)
l − θ̃

(t)
l )

∥∥∥
2

≤Wkk

∥∥∥θ(t)k −
ηt

Wkk
∇ℓ(θ(t)k ;ZIt

kk
)− θ̃

(t)
k +

ηt
Wkk
∇ℓ(θ̃(t)k ;Z ′

It
kk
)
∥∥∥
2
+

m∑
l ̸=k

Wkl

∥∥∥θ(t)l − θ̃
(t)
l

∥∥∥
2

(6)

12
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Thanks to Lemma A.3 (part. 2) in Appendix A and the fact that, by assumption, ∀k, ηt

Wkk
≤ 2

β , the update rules
Gηt,ZIt

k
k
(θ) = θ − ηt

Wkk
∇ℓ(θ;ZIt

kk
) and Gηt,Z′

It
k
k
(θ) = θ − ηt

Wkk
∇ℓ(θ;Z ′

It
kk
) are 1-expansive. Hence:

If k ̸= j, we have ZIt
kk

= Z ′
It
kk

, which gives from Eq. (6) and Lemma A.4 that:

∥θ(t+1)
k − θ̃

(t+1)
k ∥2 ≤Wkk

∥∥∥θ(t)k −
ηt

Wkk
∇ℓ(θ(t)k ;ZIt

kk
)− θ̃

(t)
k +

ηt
Wkk
∇ℓ(θ̃(t)k ;ZIt

kk
)
∥∥∥
2
+

m∑
l ̸=k

Wkl

∥∥∥θ(t)l − θ̃
(t)
l

∥∥∥
2

≤Wkk

∥∥∥θ(t)k − θ̃
(t)
k

∥∥∥
2
+

m∑
l ̸=k

Wkl

∥∥∥θ(t)l − θ̃
(t)
l

∥∥∥
2

≤
m∑
l=1

Wkl

∥∥∥θ(t)l − θ̃
(t)
l

∥∥∥
2

(7)

If k = j:

With probability 1− 1
n , Itj ̸= i so ZIt

jj
= Z ′

It
jj

and we therefore have again the relation of Equation (7).

With probability 1
n however, Itj = i and in that case ZIt

jj
= Zij ̸= Z̃ij = Z ′

It
jj

. With probability 1
n , we therefore have:

∥θ(t+1)
j − θ̃

(t+1)
j ∥2 ≤Wjj

∥∥∥θ(t)j −
ηt
Wjj
∇ℓ(θ(t)j ;Zij)− θ̃

(t)
j +

ηt
Wjj
∇ℓ(θ̃(t)j ; Z̃ij)

∥∥∥
2
+

m∑
l ̸=j

Wjl

∥∥∥θ(t)l − θ̃
(t)
l

∥∥∥
2

(8)

Lem.A.4
≤ Wjj

(
∥θ(t)j − θ̃

(t)
j ∥2 +

2ηtL

Wjj

)
+

m∑
l ̸=j

Wjl

∥∥∥θ(t)l − θ̃
(t)
l

∥∥∥
2

=

m∑
l=1

Wjl

∥∥∥θ(t)l − θ̃
(t)
l

∥∥∥
2
+ 2ηtL

Denoting by δ
(t)
k (i, j) ≜ ∥θ(t)k − θ̃

(t)
k ∥2 and combining previous results, we get for all k = 1, . . . ,m, the recursion:

E[δ(T )
k (i, j)] ≤

m∑
l=1

WklE[δ(T−1)
l (i, j)] +

2ηtL

n
1{k=j} .

In vector format, this writes E[δ(T )(i, j)] ≤WE[δ(T−1)(i, j)] + 2ηtL
n ej (the inequality is meant coordinate-wise), where

δ(t)(i, j) contains the values of δ(t)k (i, j), ∀k and ej is the j-th element of the canonical basis. Unrolling this recursion until
t = 0, and noticing that δ(0)k (i, j) = 0, we get:

E[δ(T )(i, j)] ≤ 2L

n

T−1∑
t=0

WT−t−1ejηt =⇒ E[δ(T )
k (i, j)] ≤ 2L

n

T−1∑
t=0

(WT−t−1)kjηt (9)

Averaging over i and j and using the fact that the power of W is also doubly stochastic, i.e.
∑

j(W
T−t−1)kj = 1, we obtain

that the on-average model stability is upper bounded by 2L
∑T−1

t=0 ηt

mn , which concludes the proof with a direct application of
Lemma 2.2.

B.2. Theorem 3.3

Like for convex functions, if mink{Wkk} = 0 we have ηt = 0, and the bound is trivially obtained. In the following, we
therefore focus on the case where mink{Wkk} > 0.
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The proof is analogous to the one obtained for the general convex case (Theorem 3.1). We keep the same notations, where
Eδ(T )

k (i, j) = E∥θ(T )
k − θ̃

(T )
k ∥2 is the quantity we wish to control, on average over i and j. Using the fact that the Euclidean

projection ΠΘ is 1-expansive (see e.g. Lemma 4.6 in Hardt et al. (2016)), we can directly obtain Equation (6) using the
same arguments.

Thanks to Lemma A.3 (part. 3), we notice that for all k, the update rules Gη,ZIt
k
k
(θ) = θ − η

Wkk
∇ℓ(θ;ZIt

kk
) and

Gη,Z′
It
k
k
(θ) = θ − η

Wkk
∇ℓ(θ;Z ′

It
kk
) are (1 − ηµ

2Wkk
)-expansive. Indeed, since we always have µ ≤ β and by assumption

η
Wkk

≤ 1
β ≤

2
β+µ , we can apply the lemma and then use the fact that ηβµ

Wkk(β+µ) ≥
ηβµ

2Wkkβ
= ηµ

2Wkk
. We now follow the

proof of the convex case by splitting the analysis similarly.

If k ̸= j, we have ZIt
kk

= Z ′
It
kk

, which gives from Eq. (6) and Lemma A.4 with the (1− ηµ
2Wkk

)-expansivity, that:

∥θ(t+1)
k − θ̃

(t+1)
k ∥2 ≤Wkk

(
1− ηµ

2Wkk

)∥∥∥θ(t)k − θ̃
(t)
k

∥∥∥
2
+

m∑
l ̸=j

Wkl

∥∥∥θ(t)l − θ̃
(t)
l

∥∥∥
2

=

m∑
l=1

Wkl

∥∥∥θ(t)l − θ̃
(t)
l

∥∥∥
2
− ηµ

2

∥∥∥θ(t)k − θ̃
(t)
k

∥∥∥
2

(10)

If k = j:

With probability 1− 1
n , Itj ̸= i so ZIt

jj
= Z ′

It
jj

and we therefore have again the relation of Eq. (10).

With probability 1
n however, Itj = i and in that case ZIt

jj
= Zij ̸= Z̃ij = Z ′

It
jj

. With probability 1
n , we therefore have:

∥θ(t+1)
j − θ̃

(t+1)
j ∥2 ≤Wjj

∥∥∥θ(t)j −
η

Wjj
∇ℓ(θ(t)j ;Zij)− θ̃

(t)
j +

η

Wjj
∇ℓ(θ̃(t)j ; Z̃ij)

∥∥∥
2
+

m∑
l ̸=j

Wjl

∥∥∥θ(t)l − θ̃
(t)
l

∥∥∥
2

Lem.A.4
≤ Wjj

((
1− ηµ

2Wjj

)
∥θ(t)j − θ̃

(t)
j ∥2 +

2ηL

Wjj

)
+

m∑
l ̸=j

Wjl

∥∥∥θ(t)l − θ̃
(t)
l

∥∥∥
2

=

m∑
l=1

Wjl

∥∥∥θ(t)l − θ̃
(t)
l

∥∥∥
2
− ηµ

2

∥∥∥θ(t)j − θ̃
(t)
j

∥∥∥
2
+ 2ηL

Combining previous results, we get for all k = 1, . . . ,m, the recursion:

E[δ(T )
k (i, j)] ≤

m∑
l=1

WklE[δ(T−1)
l (i, j)]− ηµ

2
E[δ(T−1)

k (i, j)] +
2ηL

n
1{k=j} .

In vector format, this writes (the inequality is meant coordinate-wise)

E[δ(T )(i, j)] ≤
(
W − ηµ

2
I
)
E[δ(T−1)(i, j)] +

2ηtL

n
ej ,

where δ(T )(i, j) contains the values of δ(T )
k (i, j), ∀k and ej is the j-th element of the canonical basis. Unrolling this

recursion until t = 0, and noticing that δ(0)k (i, j) = 0, we get:

E[δ(T )(i, j)] ≤ 2ηL

n

T−1∑
t=0

(
W − ηµ

2
I
)t

ej .

Averaging the previous equation over i and j and using the fact that
∑m

j=1 ej = 1, we have

14



Stability and Generalization of D-SGD

1

mn

n∑
i=1

m∑
j=1

E[δ(T )(i, j)] ≤ 2ηL

mn

T−1∑
t=0

(
W − ηµ

2
I
)t

1 .

Since (W − ηµ
2 I)1 = (1− ηµ

2 )1, by induction we have (W − ηµ
2 I)t1 = (1− ηµ

2 )t1 and we can finally get ∀k:

1

mn

n∑
i=1

m∑
j=1

E[δ(T )
k (i, j)] ≤ 2ηL

mn

T−1∑
t=0

(
1− ηµ

2

)t

≤ 4L

µmn
, (11)

which makes Ak on average ε-stable (Def. 2.1) with ε = 4L
µmn . Like in the convex case, a direct application of Lemma 2.2

completes the proof.

C. Proofs of Section 4
C.1. Theorem 4.1

Our analysis for the non-convex case relies on on-average model stability and leverages the fact that D-SGD can make
several steps before using the one example that has been swapped. This idea is summarized in the following lemma.

Lemma C.1. Assume that the loss function ℓ(·, z) is nonnegative and L-Lipschitz for all z. For all i = 1, . . . , n and
j = 1, . . . ,m, let {θ(t)k }Tt=0 and {θ̃(t)k (i, j)}Tt=0, the iterates of agent k = 1, . . . ,m for D-SGD (Variant A and B) run on S
and S(ij) respectively. Then, for every t0 ∈ {0, 1, . . . , T} we have:

|EA,S [R(Ak(S))−RS(Ak(S))]| ≤
t0
n
sup
θ,z

ℓ(θ; z) +
L

mn

n∑
i=1

m∑
j=1

E[δ(T )
k (i, j)

∣∣δ(t0)(i, j) = 0] (12)

where δ(t)(i, j) is the vector containing ∀k = 1, . . . ,m, δ(t)k (i, j) = ∥θ(t)k − θ̃
(t)
k (i, j)∥2.

Proof. Consider the notation of Def. 2.1 and notice that

R(Ak(S)) =
1

m

m∑
j=1

EZ∼Dj
[ℓ(Ak(S);Z)] =

1

mn

m∑
j=1

n∑
j=1

ES̃ [ℓ(Ak(S); Z̃ij)].

Then, for all k = 1, . . . ,m, by linearity of expectation we have

EA,S [R(Ak(S))−RS(Ak(S))] = EA,S,S̃

[
1

mn

m∑
j=1

n∑
i=1

(
ℓ(Ak(S); Z̃ij)− ℓ(Ak(S);Zij)

)]

= EA,S,S̃

[
1

mn

m∑
j=1

n∑
i=1

(
ℓ(Ak(S

(ij));Zij)− ℓ(Ak(S);Zij)
)]

.

Hence,

|EA,S [R(Ak(S))−RS(Ak(S))]| ≤ EA,S,S̃

[
1

mn

m∑
j=1

n∑
i=1

∣∣∣ℓ(Ak(S
(ij));Zij)− ℓ(Ak(S);Zij)

∣∣∣]

=
1

mn

m∑
j=1

n∑
i=1

EA,S,S̃

[∣∣∣ℓ(Ak(S
(ij));Zij)− ℓ(Ak(S);Zij)

∣∣∣]

Let the event E(i, j) = {δ(t0)(i, j) = 0}, we have ∀i, j:
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EA,S,S̃

[∣∣ℓ(Ak(S
(ij));Zij)− ℓ(Ak(S);Zij)

∣∣]
= P(E(i, j))E[|ℓ(Ak(S

(ij));Zij)− ℓ(Ak(S);Zij)|
∣∣E(i, j)]

+ P(E(i, j)c)E[|ℓ(Ak(S
(ij));Zij)− ℓ(Ak(S);Zij)|

∣∣E(i, j)c]
≤ E[|ℓ(Ak(S

(ij));Zij)− ℓ(Ak(S);Zij)|
∣∣E(i, j)] + P(E(i, j)c) · sup

θ,z
ℓ(θ; z)

≤ LE[∥Ak(S)−Ak(S
(ij))∥

∣∣E(i, j)] + P(E(i, j)c) · sup
θ,z

ℓ(θ; z)

= LE[δ(T )
k (i, j)

∣∣E(i, j)] + P(E(i, j)c) · sup
θ,z

ℓ(θ; z)

It remains to bound P(E(i, j)c). Let T0 be the random variable of the first time step D-SGD uses the swapped example.
Since we necessarily have {T0 > t0} ⊂ E(i, j), we have E(i, j)c ⊂ {T0 ≤ t0} and therefore P(E(i, j)c) ≤ P(T0 ≤ t0) =∑t0

t=1 P(T0 = t) ≤
∑t0

t=1
1
n = t0

n . Averaging over i and j completes the proof.

We can now move on to the proof of the main theorem. We first apply Lemma C.1 and the fact that, by assumption, ℓ ∈ [0, 1],
so that for any t0 ∈ {0, 1, . . . , T} and any k = 1, . . . ,m, we have:

|EA,S [R(Ak(S))−RS(Ak(S))]| ≤
t0
n

+
L

mn

n∑
i=1

m∑
j=1

E[δ(T )
k (i, j)

∣∣δ(t0)(i, j) = 0] (13)

It remains to control the right-hand term of Equation (13). We start with the proof for the variant B of D-SGD. The proof for
Variant A will follow.

Variant B:

For a fixed couple (i, j), we are first going to control the vector ∆(t)(i, j) ≜ E[δ(t)(i, j)|δ(t0)(i, j) = 0]. When it is clear
from context, we simply write θ̃

(t)
k (i, j) = θ̃

(t)
k . The proof is analogous to the one obtained for convex cases (Theorem 3.1

and 3.3) and we can start directly from Equation (6) using the same arguments.

Thanks to Lemma A.3 (part. 3), we notice that for all k, the update rules Gηt,ZIt
k
k
(θ) = θ − ηt

Wkk
∇ℓ(θ;ZIt

kk
) and

Gηt,Z′
It
k
k
(θ) = θ − ηt

Wkk
∇ℓ(θ;Z ′

It
kk
) are (1 + ηtβ

Wkk
)-expansive. Following the proof of the convex cases, we can split the

analysis similarly.

If k ̸= j, we have ZIt
kk

= Z ′
It
kk

, which gives from Eq. (6) and Lemma A.4 with the (1 + ηtβ
Wkk

)-expansivity, that:

∥θ(t+1)
k − θ̃

(t+1)
k ∥2 ≤Wkk

(
1 +

ηtβ

Wkk

)∥∥∥θ(t)k − θ̃
(t)
k

∥∥∥
2
+

m∑
l ̸=j

Wkl

∥∥∥θ(t)l − θ̃
(t)
l

∥∥∥
2

=

m∑
l=1

Wkl

∥∥∥θ(t)l − θ̃
(t)
l

∥∥∥
2
+ ηtβ

∥∥∥θ(t)k − θ̃
(t)
k

∥∥∥
2

(14)

If k = j:

With probability 1− 1
n , Itj ̸= i so ZIt

jj
= Z ′

It
jj

and we therefore have again the relation of Eq. (14).

With probability 1
n however, Itj = i and in that case ZIt

jj
= Zij ̸= Z̃ij = Z ′

It
jj

. With probability 1
n , we therefore have:
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∥θ(t+1)
j − θ̃

(t+1)
j ∥2 ≤Wjj

∥∥∥θ(t)j −
ηt
Wjj
∇ℓ(θ(t)j ;Zij)− θ̃

(t)
j +

ηt
Wjj
∇ℓ(θ̃(t)j ; Z̃ij)

∥∥∥
2
+

m∑
l ̸=j

Wjl

∥∥∥θ(t)l − θ̃
(t)
l

∥∥∥
2

Lem.A.4
≤ Wjj

((
1 +

ηtβ

Wjj

)
∥θ(t)j − θ̃

(t)
j ∥2 +

2ηtL

Wjj

)
+

m∑
l ̸=j

Wjl

∥∥∥θ(t)l − θ̃
(t)
l

∥∥∥
2

=

m∑
l=1

Wjl

∥∥∥θ(t)l − θ̃
(t)
l

∥∥∥
2
+ ηtβ

∥∥∥θ(t)j − θ̃
(t)
j

∥∥∥
2
+ 2ηtL

From the previous equations, we get that ∆(t+1)(i, j) ≤ (W + ηtβI)∆
(t)(i, j) + 2ηtL

n ej (the inequality, and the following
ones are meant coordinate-wise). Let ∆(t) = 1

mn

∑
i,j ∆

(t)(i, j), then using the fact that ηt ≤ c
t+1 , c > 0, we have ∀t ≥ t0:

∆(t+1) ≤ (W + ηtβI)∆
(t) +

2ηtL

mn
1

≤ (W +
cβ

t+ 1
I)∆(t) +

2cL

mn(t+ 1)
1

Since ∆(t0) = 0, we can unroll the previous recursion from T to t0 + 1 and get:

∆(T ) ≤ 2cL

Tmn
1+

T−1∑
t=t0+1

{ T∏
τ=t+1

(
W +

cβ

τ
I
)} 2cL

tmn
1

=
2cL

Tmn
1+

T−1∑
t=t0+1

{ T∏
τ=t+1

(
1 +

cβ

τ

)} 2cL

tmn
1 ,

where in the last equality we used the fact that (W + cβ
τ I)1 = (1 + cβ

τ )1, which by induction gives
∏

τ

(
W + cβ

τ I
)
1 =∏

τ

(
1 + cβ

τ

)
1. Then, we focus on the coordinate of interest k and using the fact that 1 + x ≤ exp(x), we have:

∆
(T )
k ≤ 2cL

Tmn
+

T−1∑
t=t0+1

{ T∏
τ=t+1

exp
(cβ
τ

)} 2cL

tmn

=
2cL

Tmn
+

T−1∑
t=t0+1

exp
(
cβ

T∑
τ=t+1

1

τ

) 2cL

tmn

≤ 2cL

Tmn
+

T−1∑
t=t0+1

exp
(
cβ log

(T
t

)) 2cL

tmn

=
2cL

Tmn
+

T−1∑
t=t0+1

(T
t

)cβ 2cL

tmn

=
2cLT cβ

T cβ+1mn
+

2cLT cβ

mn

T−1∑
t=t0+1

t−cβ−1

=
2cLT cβ

mn

T∑
t=t0+1

t−cβ−1

≤ 2cLT cβ

mn

t−βc
0

cβ
=

2L

βmn

(T

t0

)cβ

, (15)
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where the last inequality is obtained using bounds over (partial) harmonic series.

Plugging this result into (13), we obtain

|EA,S [R(Ak(S))−RS(Ak(S))]| ≤
t0
n

+
2L2

βmn

(T

t0

)cβ

.

Then, taking t0 =
(

2L2c
m

) 1
cβ+1

T
cβ

cβ+1 (approximate minimizer of the right-hand term above), we have

|EA,S [R(Ak(S))−RS(Ak(S))]| ≤ (1 +
1

βc
)(2cL2)

1
βc+1

T
βc

βc+1

m
1

βc+1n
,

which concludes the proof for Variant B.
Remark C.2. Note that the inequality (15) is not optimal in the specific case t0 = 0 (it diverges) and somehow prevents us
from taking t0 = 0 in the proof. However, taking this value could be optimal in some regimes. Hence, the analysis and our
final bound could be slightly improved by looking at the minimum between the cases where t0 = 0 or not. When taking
t0 = 0, the bound in Eq. (15) can be improved to 2cLT cβ

mn (1 + 1
cβ ).

Variant A:

The proof for the variant A is essentially the same, where instead of Equation (6), we have:

∥θ(t+1)
k − θ̃

(t+1)
k ∥2 =

∥∥∥ m∑
l=1

Wkl

(
θ
(t)
l − ηt∇ℓ(θ(t)l ;ZIt

l l
)
)
−

m∑
l=1

Wkl

(
θ̃
(t)
l + ηt∇ℓ(θ̃(t)l ;Z ′

It
l l
)
)∥∥∥

2

=

m∑
l=1

Wkl

∥∥∥θ(t)l − ηt∇ℓ(θ(t)l ;ZIt
l l
) + θ̃

(t)
l + ηt∇ℓ(θ̃(t)l ;Z ′

It
l l
)
∥∥∥
2

(16)

Since, thanks to Lemma A.3 (part. 1), the update rules Gηt,ZIt
l
l
(θ) = θ−ηt∇ℓ(θ;ZIt

l l
) and Gηt,Z′

It
l
l
(θ) = θ−ηt∇ℓ(θ;Z ′

It
l l
)

are (1 + ηtβ)-expansive, we can use the same arguments as before to show that

E[∥θ(t)l − ηt∇ℓ(θ(t)l ;ZIt
l l
) + θ̃

(t)
l + ηt∇ℓ(θ̃(t)l ;Z ′

It
l l
)∥
∣∣Ft] ≤ (1 + ηtβ)∥θ(t)l − θ̃

(t)
l ∥+

2Lηt
n

1{l=j} ,

where Ft is the natural filtration at time t.

Combining previous equations and the notation of the proof of Variant B, we get the vector format relation:

∆(t+1) ≤ (1 + ηtβ)W∆(t) +
2ηtL

mn
1

≤ (1 +
cβ

t+ 1
)W∆(t) +

2cL

mn(t+ 1)
1

Since ∆(t0) = 0, we can unroll the previous recursion from T to t0 + 1 and get:

∆(T ) ≤ 2cL

Tmn
1+

T−1∑
t=t0+1

{ T∏
τ=t+1

(
1 +

cβ

τ

)
W

} 2cL

tmn
1

=
2cL

Tmn
1+

T−1∑
t=t0+1

{ T∏
τ=t+1

(
1 +

cβ

τ

)} 2cL

tmn
1 ,

where in the last equality we used the fact that (1 + cβ
τ )W1 = (1 + cβ

τ )1. From this point, the proof is the same as the one
of Variant B, starting from the beginning of the derivation of Equation (15).
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D. Proofs of Section 5
Like in the proof of Theorem 3.1, we simply need to consider the case where mink{Wkk} > 0, the case mink{Wkk} = 0
being trivial since it implies that ηt = 0.

D.1. Lemma 5.2

We start the proof with the following lemma.

Lemma D.1. (Link with point-wise gradient norms). Under the same hypothesis as Theorem 3.1:

|EA,S [R(Ak(S))−RS(Ak(S))]| ≤
2L

mn

T−1∑
t=0

ηt

m∑
j=1

(WT−t−1)kj
1

n

n∑
i=1

E[∥∇ℓ(θ(t)j ;Zij)∥2]

Proof. Until Equation (8), the proof of Lemma D.1 is exactly the same as the one of Theorem 3.1. Let’s start the proof from
this point:

If k = j, then with probability 1
n we have:

∥θ(t+1)
j − θ̃

(t+1)
j ∥2 ≤Wjj

∥∥∥θ(t)j −
ηt
Wjj
∇ℓ(θ(t)j ;Zij)− θ̃

(t)
j +

ηt
Wjj
∇ℓ(θ̃(t)j ; Z̃ij)

∥∥∥
2
+

m∑
l ̸=j

Wjl

∥∥∥θ(t)l − θ̃
(t)
l

∥∥∥
2

≤
m∑
l=1

Wjl

∥∥∥θ(t)l − θ̃
(t)
l

∥∥∥
2
+ ηt

∥∥∥∇ℓ(θ(t)j ;Zij)
∥∥∥
2
+ ηt

∥∥∥∇ℓ(θ̃(t)j ; Z̃ij)
∥∥∥
2

Since the gradient norms ∥∇ℓ(θ(t)j ;Zij)∥2 and ∥∇ℓ(θ̃(t)j ; Z̃ij)∥2 have same law, they have the same expectation and we
have:

E[∥θ(t+1)
j − θ̃

(t+1)
j ∥2] ≤

m∑
l=1

WjlE[∥θ(t)l − θ̃
(t)
l ∥2] +

2ηt
n

E[∥∇ℓ(θ(t)j ;Zij)∥2]

Combining with the result for k ̸= j in the proof of Theorem 3.1, we have the following relation in vector format:

E[δ(T )(i, j)] ≤WE[δ(T−1)(i, j)] +
2ηt
n

E[∥∇ℓ(θ(t)j ;Zij)∥2] · ej

≤ 2

n

T−1∑
t=0

WT−t−1ηtE[∥∇ℓ(θ(t)j ;Zij)∥2] · ej

where the second inequality is obtained by unrolling the recursion until t = 0. For any agent k = 1, . . . , n, we therefore
have

E[δ(T )
k (i, j)] ≤ 2

n

T−1∑
t=0

(WT−t−1)kjηtE[∥∇ℓ(θ(t)j ;Zij)∥2] (17)

Averaging over i and j and using Lemma 2.2 gives the final result.

Going back to the proof of Lemma 5.2, we can now average over k the equation from Lemma D.1 and use the double
stochasticity of WT−t−1 to get
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1

m

m∑
k=1

|EA,S [R(Ak(S))−RS(Ak(S))]| ≤
2L

mn

T−1∑
t=0

ηt
1

mn

n∑
i=1

m∑
j=1

E[∥∇ℓ(θ(t)j ;Zij)∥2] (18)

≤ 2L

mn

T−1∑
t=0

ηt
1

mn

n∑
i=1

m∑
j=1

E[∥∇ℓ(θ(t)j ;Zij)−∇RSj
(θ

(t)
j )∥2] +

2L

mn

T−1∑
t=0

ηt
1

m

m∑
j=1

E[∥∇RSj
(θ

(t)
j )∥2]

=
2L

mn

T−1∑
t=0

ηt
1

mn

n∑
i=1

m∑
j=1

E
[√
∥∇ℓ(θ(t)j ;Zij)−∇RSj

(θ
(t)
j )∥22

]
+

2L

mn

T−1∑
t=0

ηt
1

m

m∑
j=1

E[∥∇RSj
(θ

(t)
j )∥2]

≤ 2L

mn

T−1∑
t=0

ηt
1

m

m∑
j=1

√√√√ 1

n

n∑
i=1

E
[
∥∇ℓ(θ(t)j ;Zij)−∇RSj

(θ
(t)
j )∥22

]
+

2L

mn

T−1∑
t=0

ηt
1

m

m∑
j=1

E[∥∇RSj
(θ

(t)
j )∥2] ,

where we used Jensen inequality in the last step. Using the fact that, by Assumption 5.1, we have 1
n

∑n
i=1 ∥∇ℓ(θ

(t)
j ;Zij)−

∇RSj (θ
(t)
j )∥22 ≤ σ2 finishes the proof.

D.2. Theorem 5.3

We start proving that under, the hypothesis of Theorem 5.3, all the eigenvalues of W belong to (−1, 1].

Lemma D.2. Let W be an n×n symmetric, stochastic matrix with positive elements on the diagonal, then all the eigenvalues
of W are in (−1, 1].

Proof. As W is symmetric and stochastic, then the module of its largest eigenvalue is equal to 1 and all eigenvalues are in
[−1, 1]. We want now to prove that no eigenvalue can be equal to −1. By an opportune permutation of the nodes, we can
write the matrix W as follows

W =


W1 0n1×n2

· · · 0n1×nC

0n2×n1
W2 · · · 0n2×nC

· · · · · · · · · · · ·
0nC×n1 0nC×n2 · · · WC

 ,

where 0n×m denotes an n × m matrix with 0 elements,
∑C

c=1 nc = n, and each matrix Wc has size nc × nc and is
irreducible (Meyer, 2001)[p. 671]. Each matrix corresponds to a connected component of the communication graph.

The eigenvalues of W (taken with their multiplicity) are the eigenvalues of the different matrices Wc, for c = 1, . . . , C. It is
then sufficient to prove that the eigenvalues of each Wc are in (−1, 1]. This result follows immediately from the fact that Wc

is irreducible with non-negative elements on the diagonal, then it is primitive (Meyer, 2001)[Example 8.3.3], i.e., 1 is the
only eigenvalue on the unit circle.

The objective of the proof is to control the term
∑T−1

t=0 ηt
1
m

∑m
j=1 E[∥∇RSj (θ

(t)
j )∥2] in Lemma 5.2. It starts with the

following descent lemma.

Lemma D.3. (Descent Lemma). Let the same setting as Theorem 3.1, with a constant stepsize η > 0 and additional
Assumption 5.1. We have:

η

m

m∑
j=1

E[∥∇RSj
(θ

(t)
j )∥22] ≤

2

m

m∑
j=0

E
[
RSj

(θ
(t)
j )−RSj

(θ
(t+1)
j )

]
+ βσ2η2 +

1

mη

m∑
j=1

E∥
m∑
l=1

Wjlθ
(t)
l − θ

(t)
j ∥

2
2
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Proof. For all j = 1, . . . ,m, the convexity and β-smoothness of RSj
gives:

RSj
(θ

(t+1)
j )−RSj

(θ
(t)
j ) ≤ ⟨∇RSj

(θ
(t)
j ), θ

(t+1)
j − θ

(t)
j ⟩+

β

2
∥θ(t+1)

j − θ
(t)
j ∥

2
2

≤
〈
∇RSj

(θ
(t)
j ),

m∑
l=1

Wjlθ
(t)
l − η∇ℓ(θ(t)j ;ZIt

jj
)− θ

(t)
j

〉
+

β

2

∥∥∥ m∑
l=1

Wjlθ
(t)
l − η∇ℓ(θ(t)j ;ZIt

jj
)− θ

(t)
j

∥∥∥2
2

≤ −η
〈
∇RSj

(θ
(t)
j ),∇ℓ(θ(t)j ;ZIt

jj
)
〉
+
〈
∇RSj

(θ
(t)
j ),

m∑
l=1

Wjlθ
(t)
l − θ

(t)
j

〉
+

β

2

(∥∥∥ m∑
l=1

Wjlθ
(t)
l − θ

(t)
j

∥∥∥2
2
− 2η

〈
∇ℓ(θ(t)j ;ZIt

jj
),

m∑
l=1

Wjlθ
(t)
l − θ

(t)
j

〉
+ η2

∥∥∥∇ℓ(θ(t)j ;ZIt
jj
)
∥∥∥2
2

)
(19)

Taking the conditional expectation of (19) given Ft, the natural filtration at time t, and the dataset S gives:

E[RSj
(θ

(t+1)
j )−RSj

(θ
(t)
j )|Ft, S] ≤ −η

∥∥∥∇RSj
(θ

(t)
j )

∥∥∥2
2
+ (1− βη)

〈
∇RSj

(θ
(t)
j ),

m∑
l=1

Wjlθ
(t)
l − θ

(t)
j

〉
+

β

2

∥∥∥ m∑
l=1

Wjlθ
(t)
l − θ

(t)
j

∥∥∥2
2
+

βη2

2n

n∑
i=1

∥∥∥∇ℓ(θ(t)j ;Zij)
∥∥∥2
2

≤
(βη2

2
− η

)∥∥∥∇RSj (θ
(t)
j )

∥∥∥2
2
+

β

2

∥∥∥ m∑
l=1

Wjlθ
(t)
l − θ

(t)
j

∥∥∥2
2
+

βσ2η2

2

+ (1− βη)
〈
∇RSj

(θ
(t)
j ),

m∑
l=1

Wjlθ
(t)
l − θ

(t)
j

〉
(20)

Applying the inequality ⟨a, b⟩ ≤ α
2 ∥a∥

2
2+

α−1

2 ∥b∥
2
2, which is true ∀α > 0, to the last term in Equation 20 gives, with α = η:

E[RSj
(θ

(t+1)
j )−RSj

(θ
(t)
j )|Ft, S] ≤ −

η

2

∥∥∥∇RSj
(θ

(t)
j )

∥∥∥2
2
+

1

2η

∥∥∥ m∑
l=1

Wjlθ
(t)
l − θ

(t)
j

∥∥∥2
2
+

βσ2η2

2

Passing to the expectation and rearranging the terms gives:

ηE[∥∇RSj
(θ

(t)
j )∥22] ≤ 2E[RSj

(θ
(t+1)
j )−RSj

(θ
(t)
j )] + βσ2η2 +

1

η
E[∥

m∑
l=1

Wjlθ
(t)
l − θ

(t)
j ∥

2
2] .

Summing over j = 1, . . . ,m and dividing by m provides the desired result.

The following lemma controls the last term in Lemma D.3, under the setting of Theorem 5.3.

Lemma D.4. (Decentralization error control). Let the same setting as Theorem 3.1, with a constant stepsize η and
additional Assumption 5.1. Assume further that W is symmetric. Then, there exist a graph-dependent constant CW <∞
such that:

1

mη

m∑
j=1

E[∥
m∑
l=1

Wjlθ
(t)
l − θ

(t)
j ∥

2
2] ≤ ηL2(C

(t)
W )2 ,

where C
(t)
W ≜

∑t−1
s=0 ∥W s −W s+1∥2 ≤ CW and ∥ · ∥2 is the ℓ2-operator norm.
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Proof. Let us rewrite the desired quantity in matrix form. Let Θ(t) ∈ Rm×p be the matrix that contains the parameters
θ
(t)
1 , . . . , θ

(t)
m row-wise. In other word, the j-th row of Θ(t) is θ(t)Tj . Similarly, let ∇L(Θ(t);ZIt) ∈ Rm×p be the matrix

that contains the stochastic gradients∇ℓ(θ(t)j ;ZIt
jj
), j = 1, . . . ,m, also row-wise. When it is clear from context, we simply

write ∇L(Θ(t)). In matrix form, the quantity of interest is equal to 1
mηE∥WΘ(t) − Θ(t)∥2F and the D-SGD (variant B)

updates are:

Θ(t) = WΘ(t−1) − η∇L(Θ(t−1);ZIt−1)

= W tΘ(0) − η

t−1∑
s=0

W s∇L(Θ(t−s−1)) .

Hence,

1

mη
E∥WΘ(t) −Θ(t)∥2F =

1

mη
E∥(I −W )Θ(t)∥2F

=
1

mη
E
∥∥∥(I −W )

(
W tΘ(0) − η

t−1∑
s=0

W s∇L(Θ(t−s−1))
)∥∥∥2

F

=
1

mη
E
∥∥∥(W t −W t+1)Θ(0) − η

t−1∑
s=0

(W s −W s+1)∇L(Θ(t−s−1))
∥∥∥2
F

=
η

m
E
∥∥∥ t−1∑

s=0

(W s −W s+1)∇L(Θ(t−s−1))
∥∥∥2
F
, (21)

where we used the fact that (W t −W t+1)Θ(0) = (W t −W t+1)(Θ(0) − 11T

m Θ(0)) = 0, since all agents start from the
same initialization point θ(0).

Let’s now control the quantity of interest without the square over the norm:

∥∥∥ t−1∑
s=0

(W s −W s+1)∇L(Θ(t−s−1))
∥∥∥
F
≤

t−1∑
s=0

∥∥∥(W s −W s+1)∇L(Θ(t−s−1))
∥∥∥
F

≤
t−1∑
s=0

∥W s −W s+1∥2∥∇L(Θ(t−s−1))∥F

A.2.4
≤
√
mL

t−1∑
s=0

∥W s −W s+1∥2 =
√
mLC

(t)
W

Raising the last quantity to the square and plugging it into Equation (21) gives the main result of Lemma D.4. It remains
to prove that ∃CW <∞ such that C(t)

W ≤ CW . To this aim, we are going to show the sufficient condition that the series
C

(∞)
W =

∑∞
s=0 ∥W s −W s+1∥2 converges to some limit CW <∞.

Let as ≜ ∥W s−W s+1∥2 be any term of the series and denote by λ1, . . . , λm, the eigenvalues of W , which are in (−1, 1] by
Lemma D.2. We therefore have as = supk{|λs

k−λ
s+1
k |} = supk{|λk|s|1−λk|}. We note that if λk = 1, |λk|s|1−λk| = 0,

so we can omit the eigenvalues equal to 1 is the computation of as:

as = sup
k:λk ̸=1

{|λk|s|1− λk|} .

If all eigenvalues are equal to 1, as = 0 for all s ∈ N and we directly have the convergence. Otherwise, we are going to show
that the series converge by using the Cauchy root test, which states that a series converges if lim sups→∞ |as|

1
s = r < 1.

As a matter of fact, we have
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|as|
1
s = sup

k:λk ̸=1
{|λk|s|1− λk|}

1
s

= sup
k:λk ̸=1

{|λk||1− λk|
1
s } −→

s→∞
sup

k:λk ̸=1
{|λk|} < 1 ,

which allows to conclude that the series converges and that there exists CW <∞ such that C(t)
W ≤ CW .

We can now prove Theorem 5.3.Combining Lemma D.4 with Lemma D.3, we have:

η

m

m∑
j=1

E[∥∇RSj
(θ

(t)
j )∥22] ≤

2

m

m∑
j=0

E
[
RSj

(θ
(t)
j )−RSj

(θ
(t+1)
j )

]
+ βσ2η2 + ηL2(C

(t)
W )2

≤ 2

m

m∑
j=0

E
[
RSj

(θ
(t)
j )−RSj

(θ
(t+1)
j )

]
+ βσ2η2 + ηL2C2

W (22)

Moreover, from Lemma 5.2 and with multiple use of Jensen inequality, we have

1

m

m∑
k=1

|EA,S [R(Ak(S))−RS(Ak(S))]| ≤
2LσηT

mn
+

2L

mn

T−1∑
t=0

η
1

m

m∑
j=1

E[∥∇RSj
(θ

(t)
j )∥2]

≤ 2LσηT

mn
+

2L
√
Tη

mn

√√√√T−1∑
t=0

η
1

m

m∑
j=1

E[∥∇RSj
(θ

(t)
j )∥22] (23)

Summing Equation (22) over t = 0 . . . , T − 1 gives:

T−1∑
t=0

η
1

m

m∑
j=1

E[∥∇RSj
(θ

(t)
j )∥22] ≤

2

m

m∑
j=0

E
[
RSj

(θ
(0)
j )−RSj

(θ
(T )
j )

]
+ Tβσ2η2 + TηL2C2

W

≤ 2

m

m∑
j=0

E
[
RSj

(θ
(0)
j )−RSj

(θ∗Sj
)
]
+ Tβσ2η2 + TηL2C2

W

Plugging this last equation into (23) gives the final result.

E. Additional results and discussions
E.1. On the generalization of A(S) = θ̄(T )

In Remarks 3.2, we claimed that our generalization bounds are all also valid for the average of final iterates A(S) = θ̄(T ).
This is ensured by the following propositions.

Proposition E.1. Let A(S) = θ̄(T ). Under the same set of hypotheses, the upper-bounds derived in Theorem 3.1, Theorem
3.3 and Theorem 5.3 are also valid upper-bounds on |EA,S [R(A(S))−RS(A(S))]|.

Proof. Extension of Theorem 3.1: Like in the proof of the latter theorem, we are going to show that A(S) is on-average

ε-stable with ε ≤ 2L
∑T−1

t=0 ηt

mn .
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1

mn

∑
i,j

E[∥A(S)−A(S(i,j))∥2] ≤
1

mn

∑
i,j

1

m

m∑
k=1

E[∥Ak(S)−Ak(S
(i,j))∥2]

≤ 1

mn

∑
i,j

1

m

m∑
k=1

E[δ(T )
k (i, j)] ,

where we took back the notation of the proof in B.1. Then based on Equation (9) and the double stochasticity of W and its
powers, we get the desired result.

Extension of Theorem 3.3: In the same way, using this time Equation (11) we have:

1

mn

∑
i,j

E[∥A(S)−A(S(i,j))∥2] ≤
1

mn

∑
i,j

1

m

m∑
k=1

E[δ(T )
k (i, j)] ≤ 4L

µmn
,

which shows that A(S) with µ-strongly convex functions is on-average 4L
µmn -stable.

Extension of Theorem 5.3: It suffices to show that Lemma 5.2 is also valid for |EA,S [R(A(S))−RS(A(S))]|. Again we
are going to use the link between generalization and on-average stability. This time, using Equation (17) , we have:

1

mn

∑
i,j

E[∥A(S)−A(S(i,j))∥2] ≤
1

mn

∑
i,j

1

m

m∑
k=1

E[δ(T )
k (i, j)]

≤ 1

mn

∑
i,j

1

m

m∑
k=1

2

n

T−1∑
t=0

(WT−t−1)kjηtE[∥∇ℓ(θ(t)j ;Zij)∥2]

=
2

mn

T−1∑
t=0

ηt
1

mn

n∑
i=1

m∑
j=1

E[∥∇ℓ(θ(t)j ;Zij)∥2]

Using Lemma 2.2, we therefore have

|EA,S [R(A(S))−RS(A(S))]| ≤ 2L

mn

T−1∑
t=0

ηt
1

mn

n∑
i=1

m∑
j=1

E[∥∇ℓ(θ(t)j ;Zij)∥2] .

We recognize the right-hand term of Equation (18) and using the same arguments, we finally show that

|EA,S [R(A(S))−RS(A(S))]| ≤ 2Lσ

mn

T−1∑
t=0

ηt +
2L

mn

T−1∑
t=0

ηt
1

m

m∑
j=1

E[∥∇RSj
(θ

(t)
j )∥2] .

Proposition E.2. Let A(S) = θ̄(T ). Under the same set of hypotheses, the upper-bound derived in Theorem 4.1 is also a
valid upper-bound on |EA,S [R(A(S))−RS(A(S))]|.

Proof. Replacing Ak by A in the proof of Lemma C.1, and using the fact that ℓ ∈ [0, 1] we get:
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|EA,S [R(A(S))−RS(A(S))]| ≤ L

mn

∑
i,j

E[∥A(S)−A(S(ij))∥
∣∣E(i, j)] + t0

n

≤ L

mn

∑
i,j

1

m

m∑
k=1

E[∥θ(T )
k − θ̃

(T )
k ∥

∣∣E(i, j)] + t0
n

=
1

m

m∑
k=1

∆
(T )
k +

t0
n

where ∆
(T )
k is defined in the proof of Theorem 4.1 and can be controlled in the exact same way (Eq. (15)), leading to the

same final result.

E.2. On the stepsize assumption in Theorem 3.1

In this section, we show that the assumption η ≤ 2mink Wkk

β is rather mild, and automatically verified for typical choices of
stepsize that ensure the convergence of D-SGD. More specifically, note that, when W is symmetric, the iterates of Variant B
are precisely the (stochastic) gradient steps for the optimization of the objective function

F (Θ) =

m∑
k=1

EZ∼Dk
[ℓ(θk;Z)] +

1

2η
Θ⊤(I −W )Θ ,

where Θ ∈ Rm×d is the concatenation of all local parameters. As this objective function is smooth and convex, typical
convex optimization analysis requires the stepsize to be smaller than 1/βF , where βF > 0 is the smoothness constant of F
(see e.g. Bubeck, 2015 or Garrigos & Gower, 2023, Theorem 3.4). However, a simple calculation shows that βF ≤ β+ 1−λm

η

(and this bound is tight as we have equality for the loss function ℓ(θ, z) = θ2/2), and the condition on the stepsize under our
assumptions is thus η

(
β + 1−λm

η

)
≤ 1, which gives

η ≤ λm

β
.

Finally, we conclude by noting that mink Wkk = mink e
⊤
k Wek ≥ minu : ∥u∥=1 u

⊤Wu = λm, and thus the condition
η ≤ λm

β directly implies η ≤ mink Wkk

β and the assumption of Theorem 3.1.

E.3. Mistake in Sun et al. (2021)

In Table 1 and Section 4, we claim that there is unfortunately a mistake in the proof of Theorem 3 in Sun et al. (2021), where
the authors provide their generalization upper-bound for non-convex functions. In the paper, they provide an upper bound of
order O

(
T

βc
βc+1 ( 1

mn + Cρ)
)
, however, here we suggest that they should have a bound of order O

(
T

βc
βc+1 ( 1n + Cρ)

)
instead.

Let’s start by determining which part of the proof is wrong. To do this, we take the most recent version of the article on
Arxiv as a reference, which can be found at: https://arxiv.org/pdf/2102.01302.pdf. The proof of Theorem
3 can be found on page 15, it relies on Lemma 7 which can be found on page 11. This Lemma is key in their proof and
analogue to our Lemma C.1 with a uniform rather than an on-average model stability argument. With our notation, it states
that ∀z ∈ Z, S and S′ that differ in a single data point, they have:

E[|ℓ(θ̄(T ); z)− ℓ(
¯̃
θ(T ); z)|] ≤ t0

n
sup
θ,z

ℓ(θ; z) + LE
[
∥θ̄(T )

k − ¯̃
θ(T )∥

∣∣∣∥θ̄(t0) − ¯̃
θ(t0)∥ = 0

]
.

At this point, we observe that their Lemma is very similar to ours and notably that the first term, like us, is divided by n. The
rest of the proof essentially consists of controlling the second term in the upper bound above. They show (page 16) that:

E
[
∥θ̄(T )

k − ¯̃
θ(T )∥

∣∣∣∥θ̄(t0) − ¯̃
θ(t0)∥ = 0

]
≤

(2Lc
mn

+ 4(1 + cL)LCρ

)
cβ

(
T

t0

)cβ

.
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However, when they plug this last equation into the one coming from Lemma 7 above, they claim that they have:

E[|ℓ(θ̄(T ); z)− ℓ(
¯̃
θ(T ); z)|] ≤ t0

mn
+ L

(2Lc
mn

+ 4(1 + cL)LCρ

)
cβ

(
T

t0

)cβ

. (24)

Here, we can see that for no specific reason, t0 is now divided by mn instead of n only, which is a mistake. This obviously
increases stability, and taking t0 = c

1
cβ+1T

cβ
cβ+1 leads to their final result. However, by taking this value for t0 and dividing

the first term by n only would give a rate of order O
(
T

βc
βc+1 ( 1n + Cρ)

)
instead. We could imagine to take a better value for

t0 in the corrected version of Eq. (24). However, this is out of the scope of this paper and and in any case, the resulting
bound would be worse than ours due to the additional term in Cρ.

E.4. Experimental setup

We consider a logistic regression problem with two classes. Each data point (X,Y ) is i.i.d. and drawn as follows. With
probability 0.5, the point is first associated to a class Y = 0 or 1. If Y = 0 then X follows a bivariate random Gaussian
variable with vector mean (1,−1) and isotropic covariance I . If Y = 1, then the vector mean is (−1, 1). To make the
problem slightly more complicated and avoid separability, Y is then flipped with probability 0.1. We take the loss ℓ to be:

ℓ(θ; (x, y)) = −y log
( 1

1 + exp (−xT θ)

)
− (1− y) log

( exp (−xT θ)

1 + exp (−xT θ)

)
.

For the training, we have m = 20 agents. To simulate the low noise regime, we take n = 1 local data point (i.e. full
batch: σ2 = 0), while we take n = 10 local data points in the higher noise regime. We then run D-SGD (Variant B) for
T = 500 iterations, with constant step size η = 0.03 and initial point θ(0) = 0. We consider four communication graphs:
(i) Complete graph with uniform weights 1/m, (ii) Identity graph I (local SGD), (iii) Circle graph with self-edges and
uniform weighs 1/3, and (iv) Complete graph with diagonal elements equal to 0.95 and remaining elements uniformly equal
to 0.05/(m− 1).

At each iteration t = 1, . . . , T , we compute a test loss (empirical population risk) using 500 i.i.d. data points, evaluated
at all parameters θ(t)1 , . . . , θ

(t)
m , and compute the difference with the associated training loss (full empirical risk). Theses

differences empirically correspond to local generalization errors, we then average them to match with Theorem 5.3.

We repeat the experiment over 50 different training-test data sets and for each data set, we run the algorithm 3 times, which
leads to 150 different runs of D-SGD for each communication graphs. At the end, we average all these 150 runs and take the
absolute value.
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