
Run-Time Task Composition with Safety Semantics

Kevin Leahy * 1 Makai Mann * 2 Zachary Serlin 2

Abstract
Compositionality is a critical aspect of scalable
system design. Here, we focus on Boolean com-
position of learned tasks as opposed to functional
or sequential composition. Existing Boolean com-
position for Reinforcement Learning focuses on
reaching a satisfying absorbing state in environ-
ments with discrete action spaces, but does not
support composable safety (i.e., avoidance) con-
straints. We provide three contributions: i) intro-
duce two distinct notions of compositional safety
semantics; ii) show how to enforce either safety
semantics, prove correctness, and analyze the
trade-offs between the two safety notions; and
iii) extend Boolean composition from discrete
action spaces to continuous action spaces. We
demonstrate these techniques using modified ver-
sions of value iteration in a grid world, Deep Q-
Network (DQN) in a grid world with image ob-
servations, and Twin Delayed DDPG (TD3) in
a continuous-observation and continuous-action
Bullet physics environment.

1. Introduction
Recent advances have established reinforcement learning
(RL) as a powerful tool for human-level performance in
games (Schrittwieser et al., 2020), robotics (Ibarz et al.,
2021), and other fields (Arulkumaran et al., 2017). How-
ever, there are still many technical hurdles to deploying these
algorithms in real-world scenarios. For many of these ap-
proaches, millions of samples are required before the desired
behavior is achieved. Additionally, there are concerns about
side effects, reward hacking, and transparency (Amodei
et al., 2016). Transfer learning (Taylor & Stone, 2009), and
in particular task composition (Nangue Tasse et al., 2020),
has emerged as a promising method for learning simple task

*Equal contribution 1Department of Robotics Engineering,
Worcester Polytechnic Institute, Lexington, MA, USA 2MIT Lin-
coln Laboratory, Lexington, MA, USA. Correspondence to: Kevin
Leahy <kleahy@wpi.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

primitives and composing them in a zero-shot manner to
perform more complex behaviors. Composing tasks in this
way ensures that if desired behavior is achieved at the level
of task primitives, then desired behavior will be achieved
when tasks are composed.

Prior work in composition has focused primarily on
reachability problems, in the form of stochastic shortest
paths (Nangue Tasse et al., 2020; 2022a;b). However, an-
other important property is safety. That is, avoiding unde-
sirable states on the way to reaching a final state. Here,
we present a method for composing simple policies to sat-
isfy complex behaviors with no additional training that also
include zero-shot safety considerations. To illustrate this
distinction, we include the following motivating example.
Example 1. Consider an autonomous waste management
vehicle, which picks up from M residential or commercial
zones, and drops off at one of N processing plants with a
combination of capabilities drawn from trash, recycling, and
hazardous waste processing. If carrying hazardous waste,
the truck must avoid residential zones.

One approach is to train policies for each of the M pick up
areas, plus two policies for each of the N plants–one that
avoids residential zones and one that does not, resulting in
M +2N policies. Our method instead trains a single policy
for each type of the five zone types: residential, commercial,
trash, recycling, and hazardous waste. We also add an addi-
tional policy for avoiding residential zones, resulting in six
total policies. These policies can be composed at runtime.
For example, a truck carrying both trash and recycle can
compose the trash and recycling policies to arrive at a pro-
cessing plant that handles both. Furthermore, the residential
avoidance policy can be composed via conjunction when the
truck is carrying hazardous waste. Notice that residential
areas are sometimes goals and sometimes obstacles.

Safety-aware learning has become of great interest in recent
years for learning-based systems in safety-critical applica-
tions (e.g., autonomous driving). We combine components
from both the safety-aware learning and task composition
communities to create safety-aware task composition.

Contributions: Our main contribution is a method for gen-
erating and composing multiple safety-aware policies using
Q-learning approaches that can be combined at deployment
using the presented safety-aware Boolean task algebra for-

1

Run-Time Task Composition with Safety Semantics

mulation. Specifically, (1) we present two new semantics to
create safety-aware Boolean task algebra that encode safety
constraints as (a) minimally entering states that are not ex-
plicitly goal states (by count) and (b) minimally entering
states that are prioritized as bad states; (2) we show how
to enforce either safety semantics, prove correctness under
some assumptions, and analyze the trade-offs between the
two safety notions; and (3) we extend Boolean composition
from discrete action spaces to continuous action spaces. We
demonstrate these techniques using modified versions of
value iteration in a grid world, Deep Q-Network (DQN) in
a grid world with image observations, and Twin Delayed
DDPG (TD3) in a continuous-observation and continuous-
action Bullet physics simulation environment.

Related work: This paper is most closely related to
Nangue Tasse et al. (2020) and its extensions (Nangue Tasse
et al., 2022a;b). In Nangue Tasse et al. (2020), the au-
thors present a Boolean task algebra for composing simple
discrete Q-tables. While that work considers Boolean com-
position, including negation, it only focuses on reachability
tasks. Negating a task in that context only means that an
agent will not terminate (by selecting a dedicated terminal
action) in a goal region associated with that task. However,
a more standard semantics for negation is avoidance. Let us
call theirs “reachability-only" (RO) semantics as opposed to
our “safety-aware" semantics.

Consider the truck in Example 1. It should avoid residen-
tial neighborhoods entirely when carrying hazardous waste.
Negation with RO semantics only prevents the truck from
ending its route in a residential neighborhood. Standard
avoidance cannot be captured in this framework, unless
passing through residential neighborhoods is always forbid-
den. Specifically, regions cannot switch between goals and
avoid zones with RO semantics. In this simple example,
one could add an extra Boolean state variable indicating
whether the truck is carrying hazardous waste and always
disallow passing through residential neighborhoods in that
case. However, due to the curse of dimensionality, this does
not scale well if there are more complex conditions.

Safety constraints have long existed in the formal methods
and controls communities (Pnueli, 1977; Baier & Katoen,
2008; Ames et al., 2019), but have recently been applied
to RL as well (Berducci et al., 2021; Dawson et al., 2023).
The prevailing approaches in safe RL literature constrain the
underlying Markov decision process to rule out unsafe be-
haviors (Alshiekh et al., 2018; Achiam et al., 2017; Tessler
et al., 2019; Yang et al., 2020). These approaches perma-
nently preclude agents from visiting regions deemed unsafe.
Safe RL focuses on how to train safe policies, whereas our
focus is on how to compose safe policies. Critically, our
approach does not require unsafe regions to be declared
up front. Rather, we train composable policies such that

T

T ,Rec

R

C T ,H

1

2 3 4

5 6 7

8

(a)

T

T ,Rec

R

C T ,H

(b)

T

T ,Rec

R

C T ,H

(c)

Figure 1: Environment inspired by Example 1 with regions
T=trash, Rec=recycle, H=hazardous waste, C=commercial,
and R=residential. 1a: P = {T ,Rec ,H ,C ,R}. G consists
of states 1-8. 1b: Two sample paths through the environ-
ment. The associated sequence of labels for both paths is
{∅, R, ∅, ∅, {T ,H }}, despite the differing paths. 1c: Dif-
ferent types of paths that all satisfy ϕ = T ∧ H . A pure
path in red, a minimum-violation (MV) path in blue, and a
prioritized safety (PS) path in orange for ϕ = T ∧H ∧ ¬R.
Note that the MV and PS paths start in the same region, but
the PS path is much longer to avoid producing the label R.

regions can dynamically be marked as desirable or undesir-
able at runtime. Future work may leverage the orthogonal
techniques developed in safe RL literature to improve the
quality and training time of our composable policies at the
task primitive level.

Existing prior work synthesizes rewards that enable both
safety and reachability according to hierarchical struc-
tures (Berducci et al., 2021) or specification languages (Joth-
imurugan et al., 2019; 2021; Žikelić et al., 2023). However,
these approaches are not designed to perform composition-
ally at run-time. That is, to combine two tasks, a new policy
needs to be trained. Further, there has been an effort to
address more general forms of policy composition (Adam-
czyk et al., 2023). Such work provides bounded optimality
on the arbitrary composition of tasks, but does not provide
guarantees on exact zero-shot composition.

2. Problem formulation
2.1. Markov decision processes

Let P be a set of atomic propositions to be used for labeling
regions of the state space. We model an agent’s environ-
ment (and its motion in the environment) as a deterministic
labeled Markov decision process (MDP). From now on, we

2

Run-Time Task Composition with Safety Semantics

use MDP to refer to labeled MDPs unless otherwise noted.
An MDP is written as a tuple ⟨S,A, τ, R, L⟩, where S is
the state space, A is the action space, τ : S × A → S is
the transition function, R : S × A× S → R is the reward
function, and L : S → 2P is a labeling function mapping
each state to a set of atomic propositions.

An execution of an MDP is a finite sequence of tuples x =
⟨s0, ∅⟩, ⟨s1, l1⟩, . . ., where si ∈ S are states and li ∈ 2P

are labels. We use li to denote label variables, and A, B, C
to denote arbitrary labels. We consider MDPs that only emit
symbols when the label given by L changes. The first label
in an execution is always the empty set. This behavior is
illustrated in Fig. 1b. The red path and the blue path produce
the same sequence of labels. Although the red path passes
through two states labeled R, the second state produces ∅,
since it shares the same label as the previous state.

We further introduce the projection of an execution ↾L :
S × 2P → 2P , that projects an execution onto the set
of associated labels. That is, for an execution x =
⟨s0, l0⟩, ⟨s1, l1⟩, . . ., we write ↾L(x) = l0, l1, We de-
note the sequence of non-empty symbols from the projec-
tion as ↾+L . For example, if ↾L(x) = ∅, ∅, A, ∅, {A,B}, ∅, B,
then ↾+L(x) = A, {A,B}, B. Let |↾L| and |↾+L | denote the
length of each of these projections.

The labeling function of an MDP induces a set G ⊆ S,
consisting of all labeled states of S. We refer to these as
goals. Any state not belonging to any G is unlabeled and
maps to the empty set.

We can inductively define Boolean formulas over P as

ϕ := p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 , (1)

where p ∈ P is a proposition; ϕ is a formula; and ¬, ∧, and
∨ are the standard Boolean operations of negation, conjunc-
tion, and disjunction, respectively.

For a given Boolean formula ϕ over P , we say that an
execution x of an MDP satisfies the formula (written x |= ϕ)
if the last element of ↾+L(x) satisfies the formula (in the
Boolean sense). E.g., if the associated task is A, as long as
the last element of ↾+L(x) contains the symbol A, then the
task is satisfied. We assume there is a reserved action for
terminating the trace. Note that in Nangue Tasse et al. (2020)
semantics, a symbol is only produced at the end of the trace.
Thus in their semantics, every trace x has |↾+L(x)| = 1.

For a Boolean formula ϕ, we denote the set of all goal states
satisfying this formula as Gϕ := {g ∈ G | L(g) |= ϕ}. We
refer to a contiguous set of goal states with the same label l
as a region. Note that by our labeled MDP semantics, the
agent only receives symbols l upon entering a region. G
can be partitioned into regions. Fig. 1a illustrates a labeled
environment and shows the differences between P and G.

2.2. Safety properties

In this work, we want proper policies–policies that are guar-
anteed to reach an satisfying state given some specification
ϕ–that have additional properties. Namely, they should
avoid passing through unsafe (or undesired) states. We
consider three sub-classes of proper paths in an MDP:

1. Pure paths – proper paths that do not produce any
symbols except the satisfying symbols at the end of the
execution;

2. Minimum-violation (MV) paths – proper paths that
produce the minimum number of other symbols; and

3. Prioritized safety (PS) paths – proper paths that com-
pletely avoid certain regions, and produce an MV path
over the remaining regions.

Motivation: These safe path definitions are inspired by tem-
poral logic (TL) planning. To accomplish a task specified in
Linear Temporal Logic (Pnueli, 1977), an agent must satisfy
Boolean formulae to take transitions in a (Büchi) automaton.
Satisfying any different formula first could lead to an unin-
tended transition that violates the specification. It is often
important to satisfy only the desired formula. See Belta et al.
(2017) for details on planning under TL constraints. RO
semantics will not attempt to avoid unintended transitions.

Intuitively, if a specification is not available at training time,
a pure path is the most desirable. Such paths terminate at the
desired states and produce no extraneous (non-satisfying)
symbols. MV paths prioritize reachability goals, while min-
imizing extraneous symbols as much as possible. PS paths,
on the other hand, place higher weight on avoiding certain
symbols. Consider ϕ := T ∧H ∧ ¬R. If there is no pure
path to a {T,H} state, MV would take the path that pro-
duces the fewest non-satisfying symbols, whereas PS would
take a longer path to avoid producing R symbols as depicted
in Fig. 1c. We define two separate semantics for safety with
solutions to satisfy each type of safety property in the sequel,
and discuss trade-offs for each type of safety in Sec. 3.2.

Formally, we define these paths with respect to a Boolean
formula ϕ over P as follows.
Definition 1 (Pure path). An execution x produces a pure
path if |↾+L(x)| = 1 and x |= ϕ.
Definition 2 (Minimum-violation path). An execution x
produces a minimum-violation (MV) path if |↾+L(x)| > 1
and x |= ϕ, and there is no execution x′ such that |↾+L(x′)| <
|↾+L(x)|.
Definition 3 (Safety path). An execution x produces a safety
path if, for some bad formula ϕB , x |= ϕ and no finite prefix
of x satisfies ϕB .
Definition 4 (Prioritized safety path). An execution x pro-
duces a prioritized safety path (PS) if it is a safety path, and
there is no execution x′ that is also a safety path, such that
|↾+L(x′)| < |↾+L(x)|.

3

Run-Time Task Composition with Safety Semantics

3. Penalty-enforced safety
To enforce the semantics described in Defs. 1–4, we incorpo-
rate penalties on the production of labels that do not satisfy
the current task. These include penalties for passing through
regions that should be avoided, as well as for terminating
in regions that are undesired. Intuitively, we will craft the
reward functions such that there is a hierarchy of bad behav-
iors to be avoided. Less bad behaviors will be taken to avoid
worse behaviors whenever possible. Worse behaviors will
have a larger penalty, and each increase in the penalty must
be sufficiently large to preserve the ordering. To enforce
our penalty hierarchy, we use a penalty multiplier η. We
can create a hierarchy of increasingly bad penalties by mul-
tiplying by η (or an upper bound of η). The hierarchy can
extend indefinitely using real numbers, or until there is risk
of underflow for machine representations. The multiplier
must be sufficiently large to penalize behaviors such as early
termination or passing through unsafe regions.

First, we derive the value of η, which will be used to prove
our main results later in the paper. This value of η is neces-
sary for theoretical proofs, but in practice a smaller value
can often be used to achieve the same results.

Let Φ be the set of all achievable specifications in a given
environment. For ϕ1, ϕ2 ∈ Φ, and proposition q ∈ P ,
let AvoidPathLen(Gϕ1

, Gϕ2
, q) return the length of the

longest of all shortest paths between any state s1 ∈ Gϕ1 and
state s2 ∈ Gϕ2 that passes through the minimum number of
q-regions. Similarly, AvoidPathLen(Gϕ1

, Gϕ2
,¬q) does

the same but avoiding ¬q-regions. In English, this is the
maximum number of steps required to get from any state
in a ϕ1-region to any state in a ϕ2-region while passing
through a minimum number of obstacles defined by q or ¬q.
Definition 5. We define a penalty multiplier η ∈ N by:

η := argminN [∀ϕ1, ϕ2 ∈ Φ, q ∈ P .

N ≥ AvoidPathLen(Gϕ1 , Gϕ2 , q)∧
N ≥ AvoidPathLen(Gϕ1 , Gϕ2 ,¬q)]

Intuitively, η should be set so that it is larger than the longest
of all shortest paths. That way, a longer path with a lower
penalty for every step of the path is preferred to a shorter
path that incurs even one worse penalty.
Remark 3.1. In an RL setting we do not know η exactly,
because we do not know the length of all paths. However, in
practice we can either estimate η from interactions with the
environment, set it to a very large number, or set it heuristi-
cally. Setting η to a conservative (i.e., very large negative)
value results in longer time to convergence. Fortunately, in
a deterministic MDP, η has a very intuitive meaning: it is
the number of steps an agent may detour in order to avoid
undesirable regions.

Table 1 depicts the penalty hierarchy achieved with succes-

Table 1: Penalty hierarchy

Symbol Penalty type Value

Rstep step Rstep (ex. -0.1)
Rbadstep bad pass through ηRstep

Rworststep worst pass through η2Rstep

Rbadterm bad termination η2Rstep

Rworstterm worst termination η3Rstep

sive multiplication by η. Notice that the worst pass-through
penalty and the bad termination penalty are identical, other-
wise, each penalty is worse by a factor of η. This means that
it is better to incur a lighter penalty η times, than to incur
the next worse penalty once.

Given these penalties, we denote the reward function for a
given task as Rp(si, a, g, si+1), which takes values:

Rworstterm, if si+1 ̸= g ∧ done

Rbadstep, if si+1 ̸= g ∧ ¬done
Rbadterm, if si+1 = g ∧ p ̸∈ li ∧ done

Rgoal, if si+1 = g ∧ p ∈ li ∧ done

Rstep, otherwise ,

(2)

where done denotes the end of an episode, g ∈ G and
p ∈ P are defined in Sec. 2.1, and Rgoal is positive.

3.1. Penalties for prioritized safety

PS semantics have a stricter notion of avoidance, and there-
fore they require a slightly different reward structure than
the one presented in (2). For PS semantics, we instead train
negated policies directly with additional penalties for G¬p.
Since we do not use a negation operator in this context,
we cannot negate arbitrary Boolean formulas over tasks;
however, any Boolean formula can be reduced to negation
normal form (NNF). In NNF, negation only appears be-
fore literals (in this case tasks), thus we can represent any
Boolean formula as conjunctions and disjunctions over pos-
itive and negated tasks. The reward function for a negated
task is written as R¬p(si, a, g, si+1) and takes values:

Rworstterm, if si+1 ̸= g ∧ done

Rworststep, if p ∈ li ∧ ¬done
Rbadstep, if si+1 ̸= g ∧ p ̸∈ li ∧ ¬done
Rbadterm, if si+1 = g ∧ p ∈ li ∧ done

Rgoal, if si+1 = g ∧ p ̸∈ li ∧ done

Rstep, otherwise

(3)

There are two main differences from the reward structure
for a positive task. First, the conditions for obtaining Rgoal

and Rbadterm are switched. This is because the goal is to

4

Run-Time Task Composition with Safety Semantics

terminate somewhere that does not satisfy p. Additionally,
we add a penalty for passing through any state labeled with
p. This penalty encourages paths that pass through regions
labeled with other symbols (if necessary) rather than passing
through regions containing p.

3.2. Theoretical analysis and comparison of policies

With the reward structures described above, we wish to
prove the following for both MV and PS semantics:

1. If a pure path exists, the optimal policy will select it;

2. If a pure path does not exist, the optimal policy will
follow a MV (resp. PS) path; and

We now introduce theorems formalizing these properties.
Theorem 1. The reward structure in (2) produces MV paths.

Proof. We introduce the following notation for the purposes
of this proof and the proofs of subsequent theorems.

Variables that capture path length:

• lunlabeled - the total length of states in a path that do
not produce a symbol

• lbadLabel - the total length of states in a path that pro-
duce an undesired label

• lworstPassThrough - the total length of states in a path
that produce a negated label

Indicator functions for termination:

• 1goal - 1 if terminates at goal, 0 otherwise

• 1badTerm - 1 if terminates at bad state, 0 otherwise

• 1worstTerm - 1 if terminates at negated state, 0 other-
wise

Note that the indicator functions are mutually exclusive.
That is, only one of them can equal 1. Further, let lmax :=
lunlabeled + lbadLabel + lworstPassThrough. This is the path
length and by definition η ≥ lmax for any optimal path.

The total undiscounted reward received for a path between
two states, s1 and s2 is the following:

R = Rgoal1goal +Rstep∗[(
η21badTerm + η31worstTerm + η41neverTerm

)
+

(
lunlabeled + ηlbadLabel + η2lworstPassThrough

)]
,
(4)

where the first term is the reward for terminating at the
goal, the second line consists of penalties for terminating
elsewhere, and the third line consists of penalties for passing
through other regions.

Since Rstep < 0, the first line is always greater than the sec-
ond two lines for any path, since it is always non-negative.

We must prove two properties:

1. If a pure path exists, it will be taken, otherwise a mini-
mally violating path will be taken; and

2. If a goal is reachable by any path, the MV path will be
taken, without terminating early at an undesired goal.

If a pure path exists, then 1goal is achievable and there
exists a path consisting entirely of lunlabeled. Since lmax ≥
lunlabeled and Rstep ≤ 0, we know that

Rpure = Rgoal +Rsteplunlabeled (5)
≥ Rgoal +Rsteplmax (6)
≥ Rgoal +Rstepη . (7)

The last line is equivalent to the total reward for a path of
length one, consisting only of a bad label. This implies that
a pure path always returns a higher reward than a path with
even a single bad label. This is because η exceeds lmax.
Therefore, the same logic holds for states that pass through
negated goals or achieve other pass-through penalties, due
to the increase of each penalty by η.

Remark 3.2. Note that we assume η ≥ lmax. While this is
necessary in theory, in practice it is typically sufficient to
use a penalty of relatively large magnitude. Relaxing this as-
sumption in practice is useful for speeding up convergence.

In the worst case, the MV path reaches goal g via a path
that achieves a penalty for a bad step at every step. The total
accumulated reward for such a path is

RworstMinV iol = Rgoal +RstepηlbadLabel (8)
≥ Rgoal +Rstepηlmax (9)

≥ Rgoal +Rstepη
2 , (10)

while the reward for a path of length 1 that terminates at any
other goal is

RearlyTerm = Rstepη
2 +Rstep (11)

≤ Rstepη
2 +Rgoal (12)

≤ RworstMinV iol , (13)

where the first inequality follows from the fact that Rgoal >
Rstep, and the second follows from (8)-(10). Since a path
of length 1 that terminates at any other goal is worse than
the worst-case MV path, any longer path that terminates at
any other goal is also worse than the longest MV path.

Theorem 2. The reward structure in (2) for positive tasks
and (3) for negated tasks produces PS paths.

5

Run-Time Task Composition with Safety Semantics

Proof. For negated tasks trained with (3), we can follow
similar logic as the proof of Theorem 1. Here, a path of
length one that passes through a state containing a symbol
that violates PS produces a reward of

RpriorSafety = Rgoal +Rstepη
2 (14)

≥ Rgoal +Rstepηlmax (15)
= Rgoal +RbadSteplmax , (16)

where the second line follows from the fact that η ≥ lmax.
The last line is equivalent to the reward accrued by a path
of length lmax − 1 that exclusively passes through states
that give a reward of RbadStep. Therefore, any path that
passes through a negated label achieves a reward that is
worse than the longest possible path that passes through any
other (non-goal) labels. Otherwise, the hierarchy follows
the same pattern as MV policies.

4. Policy Composition
This section details how to compose policies trained under
the safety semantics introduced in Sec. 3, with the goal of
learning several tasks up front and then composing them
to create a superexponential number of new tasks with no
further training via a Boolean algebra over those tasks.

Let a set of tasks be a collection of MDPs which differ
only in reward function, R, and goal states, G ⊆ S. To
combine tasks in a Boolean fashion, we use methods first
developed in Nangue Tasse et al. (2020). The notion for
extended reward functions and extended Q-value functions
is reproduced below for completeness (see Nangue Tasse
et al. (2020) for more detail).
Definition 6. An extended Q-value function Q̄ : S × G ×
A → R is defined

Q̄(s, g, a) = r̄(s, g, a) +
∑
s′∈S

τ(s, a, s′)V̄ π̄(s′, g) , (17)

where V̄ π̄(s′, g) is the value function corresponding to pol-
icy π̄ under reward r̄.

For a given task, there is a corresponding MDP with its own
extended reward, as well as an associated extended Q-value
function. The policy π̄ corresponding to an extended Q-
value function is obtained by taking the max over g ∈ G.
By explicitly including goals as inputs, extended Q-value
functions maintain knowledge of optimal values when the
goal corresponds to the task encoded in the extended reward,
as well as when the goal does not correspond to the desired
task. Intuitively, this captures how good or bad a given goal
is in relation to the task. This concept is crucial for the
correct composition of policies.

The Boolean operations of conjunction (∧), disjunction (∨),
and negation (¬) can be performed over tasks in a zero-shot

fashion as follows:

Q̄∗
1 ∨ Q̄∗

2(s, g, a) = max{Q̄∗
1(s, g, a), Q̄

∗
2(s, g, a)} , (18)

Q̄∗
1 ∧ Q̄∗

2(s, g, a) = min{Q̄∗
1(s, g, a), Q̄

∗
2(s, g, a)} (19)

¬Q̄∗(s, g, a) = (Q̄∗
U (s, g, a) + Q̄∗

∅(s, g, a))

− Q̄∗(s, g, a)
(20)

where Q̄∗
U and Q̄∗

∅ correspond to the extended Q-value
functions for the max and min over all rewards, respectively.
Further details are in Nangue Tasse et al. (2020) as well as
Sec. C in the Supplementary Material.

Prioritized Safety Composition. The PS reward structure
of Equation 3 produces the correct semantics for a single
negated task. Often, this works for composition as well.
However, due to some edge cases, we cannot guarantee that
(non-pure) PS paths will be taken under arbitrary composi-
tions of negated tasks. Intuitively, this is because policies
encode optimal paths for each goal, but the optimal PS path
for combinations of negated tasks may not correspond to
an optimal path for any of the original policies. This can
result in chattering (infinite loops) in some cases. To provide
formal guarantees we must make an additional assumption.
Assumption 4.1. We assume either: i) only a single learned
negated policy is used in composition at a time during de-
ployment 1; or, ii) any PS path in the environment of interest
will only have to pass through a known, finite number, k, of
non-satisfying regions in G and we train an extended value
function that maintains more corresponding paths.

Intuitively, the issue is that different negated tasks may not
agree on the same path to a given goal, since they must avoid
different symbols. This can lead to chattering in some cases.
Assumption 4.1 manages this problem by limiting the usage
to one negated policy at a time, or adding bookkeeping to
maintain more paths for avoiding certain (combinations of)
symbols. See the Supplementary Details for discussion of
this assumption, and details on how to train extended value
functions that maintain more paths.

4.1. Theoretical Analysis

Our contribution is proof that composition rules (18)–(20)
respect the safety semantics defined in Sec. 2 when trained
using the rewards defined in Sec. 3.
Assumption 4.2. For each task p, there exists an optimal
policy πp, and associated Q- and value-functions, Qp and
Vp, respectively. We are agnostic to how these policies are
produced. I.e., πp can be found via dynamic programming
(such as policy or value iteration), or by deep RL techniques.

Assumption 4.2 means we can focus on how to apply the
results that learning a task provides to us, rather than the

1This policy can be more complex than a single task (e.g., one
could learn ¬p1 ∧ ¬p2), but it must be learned ahead of time.

6

Run-Time Task Composition with Safety Semantics

learning process itself. We also remind the reader of our
assumption that rewards and penalties only differ on labeled
states, defined by Defs. (2) and (3), as applicable.

For an extended Q-value function, each tuple (p, g, s) of
task, goal, and state contains information about the value
of each possible action and therefore the best action to take
from state s. Taken in sequence, this induces an MV path
for that task-goal pairing.

Remark 4.3. Note that the proof of composition for PS
semantics only holds for negation in the case that there is
a path free of bad states (e.g. states satisfying ϕB from
Definition 3). If no such path exists, it is possible to obtain
chattering in the policy even under Assumption 4.1.

We can now provide our three main theorems pertaining to
safety semantics under composition.

Theorem 3. The disjunction operator defined in (18) results
in policies that satisfy the disjunction of their goals, while
maintaining the safety semantics of the individual policies.

Theorem 4. The conjunction operator defined in (19) results
in policies that satisfy the conjunction of their goals, while
maintaining the safety semantics of the original policies.

Theorem 5. The negation operator defined in (20) for MV
semantics results in policies that correspond to the negation
of their original goals and retain MV semantics.

Proof Sketch 1. Intuitively, the intertask rewards respect the
intratrask hierarchical reward we introduced in Sec. 3. That
is, if a path is safe for one task, the semantics of composition
will not alter the hierarchical rewards within a task, nor
will it induce other behavior, such as chattering. Complete
proofs are in Appendix B.

Policies composed with these semantics will produce pure
paths when possible, and MV or PS paths if necessary. The
resulting traces behave differently than those produced by
the RO semantics of Nangue Tasse et al. (2020). Fig. 2
depicts a comparison between the two. Generally, RO se-
mantics will pass through any regions (labeled or not) that
fall on the shortest path to a goal state.

There are trade-offs associated with the choice of safety
semantics. Namely, MV safety is a weaker notion of safety,
treating all non-satisfying states as equally undesirable. In
exchange for that weaker notion of safety, the negation
operation defined in (20) maintains the MV semantics. On
the other hand, PS semantics have a stronger notion of
safety, enforcing strict avoidance of a certain subset of G.
To accomplish these semantics, we require Assumption 4.1
and must train negated policies separately.

See the Appendix for additional explanation and experi-
ments highlighting the fundamental challenge of PS and the
proposed solutions based on Assumption 4.1.

(a) RO: square (b) SA: square

(c) RO: square ∧ ¬purple (d) SA: square∧not-purple

Figure 2: This figure compares reachability-only (RO) se-
mantics to safety-aware (SA) semantics.

5. Continuous Action Spaces
Given two optimal extended Q-value functions, Q̄∗

1 and Q̄∗
2,

with their associated optimal policies, π̄∗
1 and π̄∗

2 , we can
compute the policy corresponding to their conjunction as

π̄∗
Q̄∗

1∧Q̄∗
2
(s, g) =

π̄∗
1(s, g) if Q̄∗

1(s, g, π̄
∗
1(s, g)) ≤

Q̄∗
2(s, g, π̄

∗
2(s, g))

π̄∗
2(s, g) otherwise .

(21)

Similarly, for disjunction, we can compute the resulting
policy as

π̄∗
Q̄∗

1∨Q̄∗
2
(s, g) =

π̄∗
1(s, g) if Q̄∗

1(s, g, π̄
∗
1(s, g)) ≥

Q̄∗
2(s, g, π̄

∗
2(s, g))

π̄∗
2(s, g) otherwise .

(22)

Negation cannot be computed directly, so we must learn a
policy for each negated task. We train negated policies with
MV semantics and apply them using NNF.
Theorem 6. Eqs. (21)–(22) facilitate MV task composition.

Proof. To extend Boolean task composition to continuous
action spaces for MV semantics, we train negated policies
separately. We now prove that disjunction and conjunction
over these positive and negated learned tasks behave as
expected.

Disjunction For disjunction of two tasks, the associated
extended Q̄-function (18) requires evaluating the max oper-

7

Run-Time Task Composition with Safety Semantics

ator. For discrete action spaces, the max can be determined
by comparing over all actions in A. For continuous ac-
tion spaces, that is not feasible, so we must determine the
optimal choice analytically.

From a policy standpoint, let’s consider Q̄∗
1 ∨ Q̄∗

2. The
optimal action will be π∗

Q̄∗
1∨Q̄∗

2
: S → A and is given by

π∗
Q∗

1∨Q∗
2
(s) = argmax

a∈A
[max
g∈G

Q̄∗
1 ∨ Q̄∗

2(s, g, a)]

where
Q̄∗

1 ∨ Q̄∗
2(s, g, a) = max{Q̄∗

1(s, g, a), Q̄
∗
2(s, g, a)} .

(23)
Note that we can swap the order of maximizing over
a ∈ A and g ∈ G. Thus, we denote a policy π(s, g)
as the optimal action for reaching goal g with the min-
imum number of penalties. Since we know by defini-
tion that Q̄∗(s, g, ·) is maximized by the corresponding
π∗(s, g), then the solution to (23) is either π∗

1(s) or π∗
2(s)

where π∗
i (s) := max g∈Gπ

∗
i (s, g). That is, the global maxi-

mum for Q̄∗
1 ∨ Q̄∗

2(s, g, ·) is either the global maximum of
Q̄∗

1(s, g, ·) or the global maximum of Q̄∗
2(s, g, ·).

Therefore, the optimal policy for disjunction of two tasks is

π∗
Q̄∗

1∨Q̄∗
2
(s, g) =

π∗
1(s, g) if Q̄∗

1(s, g, π
∗
1(s, g)) ≥

Q̄∗
2(s, g, π

∗
2(s, g))

π∗
2(s, g) otherwise .

(24)

The optimal action is chosen using max g∈Gπ
∗
Q̄∗

1∨Q̄∗
2
(s, g).

Proof Sketch 2. The proof of correctness follows the same
reasoning as Proof B.1.

Conjunction We follow similar logic to reason about con-
junction. For conjunction of two tasks, the associated ex-
tended Q̄-function is given by (19). The best action for a
conjunction of terms is written

π∗
Q∗

1∧Q∗
2
(s) = argmax

a∈A
[max
g∈G

min{Q̄∗
1(s, g, a), Q̄

∗
2(s, g, a)}].

(25)

The resulting policy is therefore

π∗
Q̄∗

1∧Q̄∗
2
(s, g) =

π∗
1(s, g) if Q̄∗

1(s, g, π
∗
1(s, g)) ≤

Q̄∗
2(s, g, π

∗
2(s, g))

π∗
2(s, g) otherwise .

(26)
Proof Sketch 3. For MV semantics or PS semantics with As-
sumption 4.1, we are guaranteed that the composed policies
either agree on the value of a path for the same satisfying
goal with a high value, or is dominated by a low-value (due
to a non-satisfying goal, unsafe action, or long path) due to
the minimum operation. Note that there could be more than
one optimal path and thus different possible actions. How-
ever, for goals that satisfy both tasks, they must agree on the

value and thus we do not have a preference between these
two paths. Thus, the optimal action is encoded by either π∗

1

or π∗
2 . The justification follows the same reasoning as Proof

B.2.

Note, we face the same limitations for PS in continuous
action spaces as in discrete action spaces. However, we
can rely on the same assumptions in Assumption 4.1 and
leverage the same approaches used in Appendix F to lift this
notion to continuous action spaces as well.

6. Experimental Details and Analysis
We demonstrate safety-aware task composition in three en-
vironments:

1. a 2D static grid world with row and column observation
spaces and 5 actions (each direction and stay); optimal
policies obtained with value iteration

2. a 2D item collection grid world with image observa-
tions and 4 actions (each direction); optimal policies
approximated by DQN

3. Bullet-Safety-Gym (Gronauer, 2022), a 3D
physics simulation with 96D LIDAR-like observations
and a (continuous) 2D force vector action space; opti-
mal policies approximated by TD3

For each experiment, we trained a policy for each base
task. For PS semantics, we also trained policies for negated
tasks. All Boolean combinations of tasks shown in the re-
sults were obtained at run time, by applying (18)-(20) (or
(21) and (22) in the continuous case) on the corresponding
policies without any further training. All function approxi-
mation experiments were conducted with an NVIDIA Volta
GPU, and tuned over three learning rates using curriculum
learning, where penalties were added after the policy could
successfully reach goals. We selected the best policies for
the demonstrations over four random seeds. See the Supple-
mentary Material for videos.

For Environment 1, optimal policies were found using value
iteration.

For Environment 2, we use a modified version of the code
from Nangue Tasse et al. (2020). We made updates to
include penalties and perform curriculum learning in the
following order:

1. train a model to reach uniformly sampled goal items
without any penalties (or use a pre-trained model from
Nangue Tasse et al. (2020)); allocated 2M steps, but
converges earlier (1M steps)

2. refine the model by further training on random envi-
ronments but with penalties required for safety added;

8

Run-Time Task Composition with Safety Semantics

(a) ¬A ∧ C (b) not-A ∧ C

(c) square (d) blue ∧ ¬circle (e) square ∧
not-purple

(f) sphere (g) sphere ∧
not-purple

(h) sphere ∨
not-purple

(i)
blue ∧ sphere

Figure 3: Example optimal policies and trajectories. Envi-
ronment 1: Color scale shows the value at the state, arrows
show policy direction, and a circle denotes a stay action. 3a
shows an MV path using analytical negation and 3b shows a
PS path using a learned “not-A" policy. Both have multiple
pure paths. Note that these align with the example paths
used in Fig. 1c. Environment 2: Fig. 3c shows a pure path,
3d shows MV using a negated task, and 3e shows a PS path
using a learned negated task, “not-purple". Environment 3:
Fig. 3f depicts a path to the nearest sphere, 3g goes to the
nearest sphere that is not purple, 3h goes to the nearest ob-
ject that is either a sphere or not purple (the blue box), and
3i heads to the blue sphere while avoiding other goals.

allocated 2M steps, but also converges earlier (<1M
steps)

3. refine the model further on closely spaced items, be-
cause the model learns to perform well on random
environments, but those tend to have spread out items
rather than tightly constrained layouts; 20-60K steps

For Environment 3 we use a modified version of the TD3
code from Fujimoto et al. (2018). We added a collection
task to Bullet-Safety-Gym for this environment that
mirrored the one in Environment 2. Unlike the previous
two environments, we train a dedicated policy for each goal,
which we found to perform better in this case. We trained
on random environments for up to 4M steps. To achieve
the policies used in the demo, we trained on that static
environment for an additional 1M steps. We incorporated
penalties immediately for this environment, because there

did not appear to be any advantage to curriculum learning
in this case.

Figs. 3a–3b depict composed optimal policies learned with
value iteration for Environment 1 that highlight the differ-
ent safety semantics. Similarly, Figs. 3c–3e demonstrate
different safety semantics in Environment 2. Penalty-free
Boolean task composition (Nangue Tasse et al., 2020) heads
straight toward a satisfying item without regard for other
items in the way (not pictured). Finally, Figs. 3f–3i depict
our approach in Environment 3. To our knowledge, this is
the first application of Boolean task composition in a contin-
uous action space. See Appendix D for additional analysis
and comparisons.

7. Conclusion and future work
We have extended the theory of Boolean task composition
in RL to facilitate two notions of safety constraints and sup-
port continuous action spaces. We proved correctness of the
approach for optimal policies in deterministic MDPs, and
demonstrated that it generalizes well to scenarios requiring
function approximation. Despite some limitations (See Ap-
pendix A), we believe that the general approach of Boolean
task composition introduced by Nangue Tasse et al. (2020)
is significant and promising. We have addressed two such
limitations by introducing safety semantics and continuous
action spaces support, and recent work has demonstrated the
ability to extend composition to stochastic and discounted
settings (Nangue Tasse et al., 2022a). Future work can take
composition even further, including (potential-based) re-
ward shaping, reducing redundancy in learning the extended
value functions, and new techniques for solving the plan-
ning problem to determine which Boolean compositions
to execute for more complex sequences of tasks (e.g., as
defined by a temporal logic).

Impact statement
This paper presents work whose goal is to advance the field
of Reinforcement Learning (RL). There are many potential
societal consequences of RL, and Machine Learning more
broadly. We hope that this work facilitates use of RL that is
more transparent and comprehensible to users, facilitating
greater trust and reliability in RL.

Acknowledments and disclosure of funding
Thank you to the anonymous reviewers and Paula Donovan
for the their thoughtful feedback.

The NASA University Leadership initiative (grant
#80NSSC20M0163) provided funds to assist the authors
with their research, but this article solely reflects the opin-
ions and conclusions of its authors and not any NASA entity.

9

Run-Time Task Composition with Safety Semantics

References
Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained

policy optimization. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pp. 22–31.
PMLR, 06–11 Aug 2017.

Adamczyk, J., Tiomkin, S., and Kulkarni, R. Leveraging
prior knowledge in reinforcement learning via double-
sided bounds on the value function, 2023.

Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B.,
Niekum, S., and Topcu, U. Safe reinforcement learn-
ing via shielding. In Proceedings of the AAAI conference
on artificial intelligence. AAAI Press, 2018. ISBN 978-
1-57735-800-8.

Ames, A. D., Coogan, S., Egerstedt, M., Notomista, G.,
Sreenath, K., and Tabuada, P. Control barrier functions:
Theory and applications. In 2019 18th European Control
Conference (ECC), pp. 3420–3431, 2019. doi: 10.23919/
ECC.2019.8796030.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schul-
man, J., and Mané, D. Concrete problems in ai safety.
arXiv preprint arXiv:1606.06565, 2016.

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and
Bharath, A. A. A brief survey of deep reinforcement
learning. arXiv preprint arXiv:1708.05866, 2017.

Baier, C. and Katoen, J. Principles of model checking. MIT
Press, 2008.

Balakrishnan, A., Jakšić, S., Aguilar, E. A., Ničković, D.,
and Deshmukh, J. V. Model-free reinforcement learning
for symbolic automata-encoded objectives. arXiv preprint
arXiv:2202.02404, 2022.

Belta, C., Yordanov, B., and Gol, E. Formal Meth-
ods for Discrete-Time Dynamical Systems, volume 89.
Springer, 01 2017. ISBN 978-3-319-50762-0. doi:
10.1007/978-3-319-50763-7.

Berducci, L., Aguilar, E. A., Ničković, D., and Grosu, R.
Hierarchical potential-based reward shaping from task
specifications. arXiv preprint arXiv:2110.02792, 2021.

Dawson, C., Gao, S., and Fan, C. Safe control with
learned certificates: A survey of neural lyapunov, bar-
rier, and contraction methods for robotics and control.
IEEE Transactions on Robotics, pp. 1–19, 2023. doi:
10.1109/TRO.2022.3232542.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In Interna-
tional conference on machine learning, pp. 1587–1596.
PMLR, 2018.

Gronauer, S. Bullet-safety-gym: A framework for con-
strained reinforcement learning. Technical report, media-
TUM, 2022.

Ibarz, J., Tan, J., Finn, C., Kalakrishnan, M., Pastor, P., and
Levine, S. How to train your robot with deep reinforce-
ment learning: lessons we have learned. The International
Journal of Robotics Research, 40(4-5):698–721, 2021.

Jothimurugan, K., Alur, R., and Bastani, O. A composable
specification language for reinforcement learning tasks.
Advances in Neural Information Processing Systems, 32,
2019.

Jothimurugan, K., Bansal, S., Bastani, O., and Alur, R.
Compositional reinforcement learning from logical speci-
fications. In Beygelzimer, A., Dauphin, Y., Liang, P., and
Vaughan, J. W. (eds.), Advances in Neural Information
Processing Systems, 2021.

Nangue Tasse, G., James, S. D., and Rosman, B. A boolean
task algebra for reinforcement learning. In NeurIPS,
2020.

Nangue Tasse, G., James, S., and Rosman, B. Generalisa-
tion in lifelong reinforcement learning through logical
composition. In International Conference on Learning
Representations, 2022a.

Nangue Tasse, G., Jarvis, D., James, S., and Rosman, B.
Skill machines: Temporal logic composition in reinforce-
ment learning. CoRR, abs/2205.12532, 2022b.

Ng, A. Y., Harada, D., and Russell, S. Policy invariance
under reward transformations: Theory and application to
reward shaping. In ICML, pp. 278–287. Morgan Kauf-
mann, 1999.

Pnueli, A. The temporal logic of programs. In 18th Annual
Symposium on Foundations of Computer Science (sfcs
1977), pp. 46–57, 1977. doi: 10.1109/SFCS.1977.32.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):
604–609, 2020.

Taylor, M. E. and Stone, P. Transfer learning for reinforce-
ment learning domains: A survey. J. Mach. Learn. Res.,
10:1633–1685, dec 2009. ISSN 1532-4435.

Tessler, C., Mankowitz, D. J., and Mannor, S. Reward
constrained policy optimization. In International Confer-
ence on Learning Representations, 2019. URL https:
//openreview.net/forum?id=SkfrvsA9FX.

10

https://openreview.net/forum?id=SkfrvsA9FX
https://openreview.net/forum?id=SkfrvsA9FX

Run-Time Task Composition with Safety Semantics

Yang, T.-Y., Rosca, J., Narasimhan, K., and Ramadge, P. J.
Projection-based constrained policy optimization. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=rke3TJrtPS.

Žikelić, Ð., Lechner, M., Verma, A., Chatterjee, K., and Hen-
zinger, T. A. Compositional policy learning in stochastic
control systems with formal guarantees. arXiv preprint
arXiv:2312.01456, 2023.

11

https://openreview.net/forum?id=rke3TJrtPS
https://openreview.net/forum?id=rke3TJrtPS

Run-Time Task Composition with Safety Semantics

A. Limitations
We inherit many of the same limitations of Nangue Tasse et al. (2020), including a sparse reward structure and reliance
on deterministic MDPs for theoretical guarantees. We expect that reward shaping (Balakrishnan et al., 2022; Berducci
et al., 2021; Ng et al., 1999) can be adapted to this scenario to address the former, and the latter can easily be relaxed in
practice. Further, Boolean task composition approaches for RL depend on the MDP being identical across tasks except the
reward, and, for certain environments, not all Boolean compositions may be valid. In practice, we observed that penalties
for the safety semantics made it more difficult for policies to converge. This is expected because reachability under safety
constraints is complex and may require greater global reasoning to find pure or minimally violating paths. In addition, the
rewards start quite negative in early exploration. We addressed this via curriculum learning, but we expect that future work
in reward shaping can better address this limitation. We also note that the modularity of Boolean task composition helps
identify issues during training, because each individual task can be inspected independently and trained for longer as needed.

B. Proofs
For the following proofs, we introduce Lemma B.1 below.

Lemma B.1. From a given state s, a policy π̄ trained under the reward structure given by (2) (resp. (3)) encodes a path
corresponding to the shortest MV (resp. PS) path from s.

Proof Sketch 4. We assume a deterministic MDP. Then, using the definitions of optimal policies, this lemma follows directly
from Theorems 1 & 2, respectively.

B.1. Proof of Theorem 3

Proof. For two extended Q-value functions, Q̄1 and Q̄2, disjunction defined by (18) results in policy

π̄1∨2(s) = argmax
a∈A

{max
g∈G

max{Q̄1(s, g, a), Q̄2(s, g, a)}} . (27)

For policies π̄1 and π̄2 that each encode MV semantics (resp. PS semantics) and an arbitrary state s, we can assume
without loss of generality that π̄1 encodes the shorter MV path to some goal g. Note that π̄2 may encode a path for either
the same goal g or a different goal g′. If we call their corresponding executions x1 and x2, then we know (by definition)
that |↾+L(x1)| ≤ |↾+L(x2)|, so the sequence of labeled states must be shorter for x1 as well. Since they are both MV, and
all rewards other than the goal reward are negative, the shorter path has a higher cumulative reward-to-go, and therefore
V̄1(s) ≥ V̄2(s). Because π̄ encodes an optimal path for at least one goal g, the same reasoning can be applied for s′, the state
reached from s by applying π̄(s). This is equivalent to the definition of disjunction, and therefore respects MV semantics
(resp. PS semantics).

Assumption B.2. For the following proof, we assume that conjunction is semantically meaningful. I.e., for p1 ∧ p2, there
exists at least one goal that satisfies p1 ∧ p2.

B.2. Proof of Theorem 4

Proof. For two extended Q-value functions, Q̄1 and Q̄2, conjunction defined by (19) results in policy

π̄1∧2(s) = argmax
a∈A

{max
g∈G

min{Q̄1(s, g, a), Q̄2(s, g, a)}} . (28)

Consider tasks p1 and p2, and their corresponding optimal extended value functions, Q̄∗
1 and Q̄∗

2. Let g∗ ∈ G be the goal
that satisfies both tasks with the lowest-penalty path from s. Further, let g ∈ G be a goal that satisfies both tasks but has no
lower penalty path from s than g∗, and g′ ∈ G be a goal that does not satisfy either of the tasks.

For simplicity, we first consider MV semantics. By construction, maxa∈AQ̄
∗
1(s, g

∗, a) = maxa∈AQ̄
∗
2(s, g

∗, a) because g∗

satisfies both tasks and the penalties are identical in MV. Thus, the maximizing action is identical for both value functions.
There can be more than one maximizing action, in which case we have no preference.

Furthermore, we know that max g∈G,a∈AQ̄
∗
i (s, g, a) < max g∈G,a∈AQ̄

∗
i (s, g

∗, a) because there is no lower penalty path to
g. Applying the minimum operator for conjunction preserves this element-wise inequality and thus, the composed policy
will choose actions for the path to g∗.

12

Run-Time Task Composition with Safety Semantics

Finally, because the η2Rstep penalty on bad terminations, either Q̄∗
1(s, g

′, a) or Q̄∗
2(s, g

′, a) has a low value com-
pared to the paths to g∗. Due to the minimum operation in conjunction, this is the preserved value for Q̄∗

1∧2 and
max g∗∈G,a∈AQ̄

∗
1∧2(s, g, a) < max g∗∈G,a∈AQ̄

∗
1∧2(s, g

∗, a). Thus, the composed policy will choose actions corresponding
to paths to g∗.

For PS semantics, we rely on Assumption 4.1. Using Option 1 from the assumption, we have only a single conjuncted
safety constraint. Unsafe actions leading to Rworststep penalties have low values that dominate the minimum operation.
The termination penalties are the same. The chosen path will correspond to the best PS path to a goal that satisfies both the
safety constraint and the other conjunct. See Appendix F for more details and an explanation of Option 2.

B.3. Proof of Theorem 5

Proof. Following Lemma B.1, let τs,g denote the shortest MV path between a state s and a goal g, not including g, with
associated reward rs,g . Considering MV semantics, when a task is negated, the reward only varies on states where done is
true. All step rewards (good or bad) are the same. Therefore, two paths vary only on their terminal cost between a task and
the negation of a task. Then, training a negated task directly corresponds to

Q̄∗
¬p(s, g, a) = rs,g +R¬p , (29)

where R¬p is the cost of bad termination, i.e., Rbadterm = η2Rstep.

The negation operator results in extended value function

¬Q̄∗
p(s, g, a) = rs,g + ¬Rp , (30)

where ¬Rp is given by (rMAX + rMIN)−Rgoal. Since rMAX equals Rgoal and rMIN equals Rbadterm (See Appendix C)
then (29) equals (30).

C. Maximum and minimum policy
For MV semantics and the semantics of Nangue Tasse et al. (2020), there is a minimum policy used in negation, Q̄∗

U and Q̄∗
∅.

See Sec. 4 for a review. These policies can either be approximated, or learned. To learn the maximum policy, give the goal
reward for every goal in G. For the minimum policy, give the worst expected penalty for each goal in G. Note that this is
not the penalty used to prevent terminating at the wrong goal, which should never occur assuming the environment contains
that goal. In Nangue Tasse et al. (2020) this is the step penalty. In our case, it is the bad termination penalty, Rbadterm.

D. Additional Experimental Results
In this section we expand on the experimental results of Sec. 6. Fig. 4 depicts several other example compositions in the
simple grid world. Recall that these policies are optimal because this is converged value iteration and has no function
approximation. The negated policies in this figure are learned for PS (as opposed to the MV semantics given by the negation
operator in (20)). We did not utilize Assumption 4.1 and the associated approaches detailed in F. This demonstrates that PS
often works without chattering in practice, despite requiring additional assumptions for a formal guarantee.

E. Approximated Training Steps to Achieve All Tasks
Fig. 5 shows a comparison of approximate training steps required for different approaches to achieve all Boolean combina-
tions of an increasing number of tasks. We considered a policy converged when a rolling average of evaluated rewards settles
within 3% of the overall maximum reward during training in the discrete and continuous environments. We approximately
extrapolate the training steps for each approach by multiplying the number of policies that need to be learned for different
approaches by the time to train one task or the combination of base tasks. We compare the (approximated) total times to
achieve all tasks for: i) learning extended value functions for positive tasks only (using analytic negation), for composition
with MV; ii) learning extended value functions for positive tasks and all possible safety constraints (Option 1 of Assumption
4.1), for composition with PS; iii) learning all Boolean combinations (regular value functions) directly for positive tasks
only, which we call individual tasks with MV; and iv) learning all Boolean combinations (regular value functions) directly
for positive and negated tasks, which we call individual tasks with PS. This plot is on a log scale, but the difference is still
exponential because the number of possible compositions is doubly exponential in the individual task combination traning

13

Run-Time Task Composition with Safety Semantics

(a) A (b) B (c) C

(d) A ∧B (e) B ∧ C (f) A ∧B ∧ C

(g) A ∨B (h) B ∨ C (i) A ∨B ∨ C

(j) not-A ∧ not-B (k) not-A ∨ not-B (l) A ∧ not-B ∧ not-C

Figure 4: Several task composition examples in the example environment using value iteration.

14

Run-Time Task Composition with Safety Semantics

Figure 5: Comparison of approximated training steps required for each method

A

A,B

A

B

B

A,B,C C

⋆

Figure 6: Example optimal vs non-optimal path

cases. We observe that the cost of learning negated tasks for PS is negligible at this scale. Furthermore, even learning all
possible safety constraints scales significantly better than learning all individual tasks. We also note that many use cases do
not require learning all possible safety constraints. The environment of interest may only have a subset of the space of safety
constraints that is relevant. Also, note that moving from the discrete to continuous domain, there is an increase in training
time within a given approach, but that overall increase in training time is negligible in comparison to the individual learning
cases as the number of tasks considered grows.

F. Prioritized safety assumption and solutions
Here we provide more information on Assumption 4.1 of Section 3.1. Recall that PS puts extra weight on avoiding
specifically negated region labels and that we train negated tasks explicitly. Due to the avoidance assymmetry, we cannot
guarantee that composition between negated tasks works as desired in every case (despite it often working practice) without
an additional assumption. The primary failure mode is chattering (infinite loops).

Chattering occurs when the optimal policies for negated tasks have not encoded the same pure paths and the environment
layout causes them to disagree. In this case, the best action in the composed policy might not be the optimal action from
either negated task. Note that only optimal paths are stored in an extended value function. Any non-optimal action typically
reflects the value of moving off and back onto an optimal path.

For example, consider the optimal path depicted in blue in Figure 6. Let the value for action a and goal C at the ⋆ state be

15

Run-Time Task Composition with Safety Semantics

A

B

C

D

E

A

A,B

B

A

B

C

D

E

A

A,B

B

(a) Environments

(b) Minimum violation

(c) Prioritized safety

(d) Prioritized safety (combined ¬C ∧ ¬D)

Figure 7: A comparison of semantics when there are multiple negations in environments handpicked to show issues. Every
policy is solving this specification: A ∧B ∧ ¬C ∧ ¬D. The left column shows a case where there are pure paths and the
right column is a slightly different environment with no pure paths. The combined PS approach learned one policy for
(¬C ∧ ¬D). Note the chattering at (2, 3) in 7c.

16

Run-Time Task Composition with Safety Semantics

denoted Q̄∗(⋆, C, a). Then Q̄∗(⋆, C, right) = Q̄∗(⋆, C, down) + 2Rstep. This is because stepping to the right does not
fall on an optimal path and thus the value function is encoding the steps depicted by the red arrows that step away and back
onto the optimal path. Depending on the region layout, this can lead to chattering under PS semantics. For the remainder of
this section, we focus on conjunctions in NNF because this is how chattering arises.

Assumption 4.1 proposed two options for circumventing this challenge:

1. only a single negated policy is used in composition at a time during deployment [note this policy can be more complex
than a single task (e.g., learn ¬p1 ∧ ¬p2), but it must be learned ahead of time]; or,

2. any PS path in the environment of interest will only have to pass through a known, finite number, k, of non-satisfying
regions in G and we train an extended value function that maintains more corresponding paths.

Option 1 can still represent any Boolean formula, but any safety constraints that may be requested at deployment must be
known and trained in advance. This option makes sense in scenarios where potential safety constraints are clear at training
time and they can be pre-trained. Note that any safety constraint that must be followed in all cases can trivially be included
in the training procedure for every task. Thus, we are concerned with safety constraints that need to be enabled or disabled
at deployment time based on user input. Furthermore, because they are composable with reachability policies, this is still a
much more efficient re-use of learned policies than explicitly learning every combination.

Option 2 can be composed arbitrarily at deployment but requires learning additional Q-table entries, each of which has a lower
penalty for passing through different subsets of G. Let a safety extended value function Q̄(s, g,Gok, a) : S×G×2G×A → R
be an extended Q-value function that behaves identically to an extended Q-value function except that it provides a lighter
penalty for passing through any gok ∈ Gok. This is accomplished by shifting rewards as needed via the η multiplier.

A safety extended value function maintains additional optimal paths for scenarios in which passing through certain goal
regions is allowed. Thus, it maintains more paths. The rewards are structured to still prefer pure paths. The assumption in
Option 2 states that all required members of Gok are known at training time. This depends on domain knowledge about the
environment. It might be that the environment regions are not closely packed and there are only a few scenarios in which
passing through a different goal region for PS is required. Those goal regions can be added to Gok to maintain paths that are
allowed to pass through those regions at a smaller penalty. With these additional paths, Boolean composition works the
same way. Paths that satisfy all the composed tasks have the highest value because they agree. If there is no pure path, then
one of the paths passing through an allowed label region may be the best path. Negated tasks will dominate saved paths that
pass through violating regions with a very negative value, keeping them from being chosen as the optimal action.

This approach increases the number of required Q-table entries by a factor of k and if k = 2|G| then it can handle any
possible prioritized MV path for any placement of G regions. This option is a good choice if k << 2|G|. The value of k is
based on domain knowledge of the environment of interest. In our experiments, we use Option 1 or relax the assumption to
show that it often works in practice without it.

F.1. Semantics Comparison Example

We performed additional experiments in a grid world using value iteration to obtain optimal policies. The results are shown
in Fig. 7. All depicted policies are compositions performing A ∧B ∧ ¬C ∧ ¬D. There are two very similar environments.
The only difference is whether there are one or two states labeled “E." In the former case, there is a pure path from any state
to an {A,B} goal state. In the latter, there are some states with no pure path to the goal state. We compare three different
semantics on these two environments:

1. MV semantics

2. PS semantics used naively

3. PS semantics using Option 1 to learn a single policy for (¬C ∧ ¬D)

In the pure environment, we expect all policies to be identical. Note, the actions could differ at a particular state if there are
multiple shortest pure paths. By contrast, in the non-pure environment, we expect a difference between the policies.

17

Run-Time Task Composition with Safety Semantics

For MV, it only tries to minimize the number of produced symbols that do not satisfy the specification. Thus it will go
through the “D" region even though “D" is negated.

For PS applied naively, with the safety constraint formed by composing a policy learned for ¬C with a policy learned for
¬D, we see chattering. This is because the two negated policies do not compose properly on this particular environment,
which was handpicked to induce chattering. See states (3, 3) and (3, 2).

Finally, to address this issue we show PS using the approach described in Option 1 above. Here we know ahead of time that
we might need ¬C ∧ ¬D at deployment and train a dedicated policy for that combination. When we compose this with the
reachability policies learned for “A’ and “B", we get the expected behavior. In this case, that is to prioritize avoiding both
“C" and “D" which results in taking a path through “E" to get to the final desired state.

Note that in many cases naive compositions of negated PS policies will behave perfectly fine in an environment. However, it
is possible to construct difficult environments that induce chattering, thus we cannot formally guarantee correct composition
without Assumption 4.1.

18

