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Abstract

Continuously learning a variety of audio-video
semantics over time is crucial for audio-related
reasoning tasks in our ever-evolving world. How-
ever, this is a nontrivial problem and poses two
critical challenges: sparse spatio-temporal corre-
lation between audio-video pairs and multimodal
correlation overwriting that forgets audio-video
relations. To tackle this problem, we propose a
new continual audio-video pre-training method
with two novel ideas: (1) Localized Patch Im-
portance Scoring: we introduce a multimodal
encoder to determine the importance score for
each patch, emphasizing semantically intertwined
audio-video patches. (2) Replay-guided Corre-
lation Assessment: to reduce the corruption of
previously learned audiovisual knowledge due to
drift, we propose to assess the correlation of the
current patches on the past steps to identify the
patches exhibiting high correlations with the past
steps. Based on the results from the two ideas, we
perform probabilistic patch selection for effective
continual audio-video pre-training. Experimen-
tal validation on multiple benchmarks shows that
our method achieves a 3.69%p of relative perfor-
mance gain in zero-shot retrieval tasks compared
to strong continual learning baselines, while re-
ducing memory consumption by∼45%. Our code
is available at https://cl-stella.github.io/.

1. Introduction
Multimodal learning is an important problem for various
real-world applications, as many real-world data types are
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Figure 1: Outdated pre-trained audio-video models struggle
with understanding emerging new audio-video semantics.

multimodal, such as text-image (Liao et al., 2022; Lee et al.,
2023), text-video (Villegas et al., 2022; Hu et al., 2022b),
and audio-video (Korbar et al., 2018; Xiao et al., 2020) pairs.
While most vision-language learning (Li et al., 2020; Yan
et al., 2023; Liu et al., 2023) assumes the availability of cu-
rated multimodal data with human-annotated descriptions,
audiovisual domain (Zhou et al., 2019; Gong et al., 2023)
holds a unique and practical advantage, as most videos inher-
ently come with accompanying audios without human an-
notations. Thanks to this property, audiovisual multimodal
learning models can leverage web-scale raw videos (e.g.,
YouTube, TikTok, etc.) for training with minimal human
efforts in data preprocessing, and thus have achieved impres-
sive success in audio-video compositional reasoning (Tang
et al., 2022; Huang et al., 2023; Lin et al., 2023).

However, most existing approaches (Tang et al., 2022;
Huang et al., 2023; Gong et al., 2023) struggle when de-
ployed to real-world scenarios, where the distribution
of training data continuously changes over time with
new audio-video semantics. For example, the audiovisual
model pre-trained before electric vehicles became popu-
lar, would not be able to associate cars with their unique
acoustic cues (e.g., motor sound) (See Fig. 1). One straight-
forward solution to this problem is to periodically train the
model from scratch using audio-video data collected from
the past to the present, but this approach comes with pro-
hibitive computation and memory costs.
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While continual learning is a viable solution for tackling
such scenarios, dealing with dynamically evolving audio-
video semantics is a nontrivial problem due to two critical
challenges. First, the spatio-temporal correlation between
the audio-video data is highly sparse. As represented in
Fig. 2 (b), only a few objects/regions in a video (i.e., sound
sources) are strongly correlated with audio. Secondly, audio-
video pre-training models encounter the issue of forgetting
not only the representations of each modality but also the
correlation between them. As orange circles in Fig. 2 (c)
illustrate, the model which initially learned the accurate
audio-video correlation in a car’s engine video, forgets this
correlation after learning on a series of audio-video tasks. It
instead highlights inaccurate regions in the audio-video data,
as if there were highly fine-grained multimodal alignment.

To overcome these challenges in learning multiple audio-
video tasks sequentially, we propose Spatio-TEmporal
LocaLized Alignment (STELLA), a novel approach that
exploits past and current information via audio-video atten-
tion maps. Specifically, our goal is to continually pre-train
the model by selecting audio and video patches that have a
high correlation for its modality pair and also preserve previ-
ously learned audio-video correlation. Thereby we propose
a probabilistic patch selection framework that enables the
model to learn better audio-video correlations and preserve
past audio-video semantics, based on two key components:
first, we use the averaged cross-attention maps obtained by a
lightweight multimodal encoder to compute an importance
score, estimating how each audio (or video) patch is im-
portant for its modality pair. Further, to preserve the past
correlation during continual audio-video pre-training, we
leverage new cross-attention maps activated by the key and
query embeddings between the current and past steps, re-
spectively. This yields a correlation score that identifies the
patches that exhibit a higher correlation with the current step
than the past steps. We extensively validate our method on
continual audio-video pre-training scenarios, using diverse
benchmark datasets evaluated on various audiovisual down-
stream tasks. Our method outperforms strong baseline on
various tasks with enhanced efficiency by reducing the GPU
memory by∼45% during continual pre-training. We further
provide extensive in-depth analysis with visualizations.

Our paper makes the following key contributions:
• We are the first to address continual audio-video pre-

training, which poses new challenges: sparse spatio-
temporal correlation between audio-video pairs and multi-
modal correlation overwriting that forgets their relations.

• We propose a novel method that leverages cross-attention
maps to capture sparse audio-video relationships and mit-
igate forgetting of previously learned relationships.

• We demonstrate the efficacy of our method on several
audiovisual downstream tasks including retrieval, sound
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Figure 2: Challenges in continual audio-video learning.
(a): A raw data pair describing a car and its engine sound.
(b): Sparse correlations in cross-attention maps. (c): After
training on a series of tasks after (b), DER++ focuses on en-
tirely different areas (orange circle), presenting correlation
forgetting. (d): Our STELLA maintains consistent attention.
More examples are in Fig. 14.

source localization and event localization. In particular,
ours achieves 3.69%p of performance gain in the retrieval
task and reduces the GPU memory consumption by∼45%
during training, compared to the strongest baseline.

2. Related Work
Audiovisual understanding Self-supervised learning on
audiovisual data aims to learn transferable representations
that can be applied to a variety of audio-image/video down-
stream tasks, including action recognition/event classifica-
tion (Nagrani et al., 2021; Lee et al., 2021), sounding object
localization (Hu et al., 2022a; Liu et al., 2022), and mul-
timodal retrieval (Huang et al., 2023; Gong et al., 2023).
Inspired by the success of Masked AutoEncoders (MAE)
in visual pre-training (He et al., 2022), recent audiovisual
representation learning adopts masked modeling for com-
prehending audiovisual semantics (Tang et al., 2022; Gong
et al., 2023). TVLT (Tang et al., 2022) adopts the MAE
structure and audiovisual matching to predict whether audio
and visual data originated from the same video. CAV (Gong
et al., 2023) combines the MAE with audiovisual contrastive
learning, which pulls matching audiovisual pairs closer and
pushes non-matching pairs apart. Their methods assume
a fixed input data distribution that does not shift through-
out training. However, in the real world, a machine/agent
will continuously encounter new (i.e., changing distribu-
tion) audio-video tasks/semantics. If not well managed, the
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methods will suffer severe performance degradation if they
encounter the aforementioned shift in continual learning, a
challenging and realistic scenario for multimodal learning.

Multimodal continual learning Continual learning (Kirk-
patrick et al., 2016; Rebuffi et al., 2017; Ahn et al., 2019)
refers to a learning paradigm in which a model sequentially
learns an unlimited number of tasks/domains. It aims to
continuously adapt to new tasks while preserving previously
learned knowledge/skills, which is crucial for real-world AI
deployment. A number of works have addressed supervised
learning for vision tasks (Zenke et al., 2017; Yoon et al.,
2018; Lee et al., 2020), and very recently, a few approaches
have explored continual learning with self-supervised learn-
ing (Madaan et al., 2022; Cossu et al., 2022; Fini et al., 2022;
Yoon et al., 2023), and multimodal learning (Yan et al., 2022;
Pian et al., 2023; Mo et al., 2023). AV-CIL (Pian et al., 2023)
and CIGN (Mo et al., 2023) tackle the problem of super-
vised continual learning for audio-video tasks. However,
they require dense human annotations, such as text or audio-
visual labels, and task boundary information to know when
new tasks are introduced during continual learning. On the
other hand, our STELLA focuses on continual pre-training
of audio-video models without any human-effort labels or
task boundary information. Moreover, our work extends to
investigating the impact of past data on the current audio and
video attention map activation, while the AV-CIL focuses
on maintaining the past visual attention map.

3. Continual Audio-Video Pre-training
3.1. Problem Statement

In this work, we tackle the problem of continual audio-video
pre-training, under the assumption that the data distribution
continuously changes during pre-training, and the model
does not have direct access to previously seen data and
stores only a small subset in the rehearsal memory (Rolnick
et al., 2019; Buzzega et al., 2020). Furthermore, we assume
a task-free scenario (Aljundi et al., 2019b) where the model
performs the pre-training and inference without the explicit
knowledge of task boundaries, which is challenging yet
realistic as the model does not need any human guidance
on the change of data distributions. Following the setup in
continual learning literature (Madaan et al., 2022; Sarfraz
et al., 2023), we formulate pre-training of the audio-video
learning model over a sequence of T disjoint audio-video
datasets D = {Di}Ti=1. For the i-th task, the model itera-
tively samples B audio-video pairs (Xi

a, X
i
v)∼Di

1. Here,
Xa ∈ RB×M×p×p represents the audio patches, patchfied
from the audio spectrogram with time (t) and frequency (f )
dimensions, where M= |t/p|·|f/p| and p is the patch size.
Similarly, Xv∈RB×N×p×p represents the video patches, ob-

1We omit the task index for brevity, unless otherwise stated.
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Figure 3: Challenge of multimodal correlation overwrit-
ing. Let the model be learned human voice with video frame
inputs (blue). During continual pre-training, the model can
encounter new semantics sharing key visual objects, hu-
mans, making the model overwrite the previously learned
audio information associated with humans to a new one (i.e.,
guitar) (red), resulting in forgetting.

tained from the video clip with channel, frames (T ), height
(h), and width (w) dimensions, where N= |T |·|h/p|·|w/p|.

Following (Gong et al., 2023), the model f(·;θ) comprises
audio-video encoders, a multimodal fusion encoder, and
a decoder. For pre-training, we adopt two loss terms: re-
construction loss (ℓr) for masked patches to understand
low-level audio-video features, and masked contrastive loss
(ℓc) for pooled audio-video features to learn semantic rela-
tionships between the two. During each training iteration
for task i, the model updates weights by minimizing the
objective L=ℓr(fθ(Di)) + λℓc(fθ(Di)), with a balancing
term λ. The detailed mathematical expressions of the loss
functions are explicated in Sec. C. Then, we evaluate the
learned representations through various audiovisual down-
stream tasks at the end of the task.

3.2. Challenges in Continual Audio-Video Pre-training

In this section, we delve into two key challenges in continual
audio-video pre-training: 1) sparse spatio-temporal corre-
lation 2) multimodal correlation overwriting. In Fig. 2 (b),
we visualize cross-attention heat maps and observe sparse
spatio-temporal correlation between the audio-video pair.
Capturing highly correlated audio-video patches is crucial
for understanding their semantics, allowing the model to
focus on informative regions and learn complex multimodal
relationships. It becomes more critical in continual audio-
video pre-training methods in view of rehearsal memory.
They contain a small-sized rehearsal memory designed to
store key information for past tasks during continual pre-
training. As rehearsal memory is limited in capacity, it’s
important to store meaningful data/feature audio-video pairs
associated with their semantics.
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Figure 4: Overview of our approach. Our method harnesses cross-modal attention maps from the AVM module to compute
importance scores in order to identify highly correlated patches (Sec. 4.1). Comparing the attention maps created by the
current queries with those generated by past queries, we compute correlation scores of the current patches with the past data
(Sec. 4.2). Finally, we perform a probabilistic patch selection, combining the importance scores and correlation scores to
select patches for continual audio-video pre-training (Sec. 4.3).

We also observe that the model forgets previously learned
audio-video correlations after learning a sequence of tasks
(Fig. 2 (c)). In continual audio-video pre-training, the bi-
ased data distribution poses a risk of overwriting previ-
ous multimodal correlations, driven by the close correla-
tion between current video and past audio data, and vice
versa. For instance, transitioning from a past task involv-
ing human-conversational data to a current task featuring
human-playing-musical-instrument data (Fig. 3) weakens
the audio-video correlations of human visuals and voices
from the past task. Instead, the model potentially associates
human visuals with musical sounds prevalent in the biased
current data distribution, leading to the forgetting of the past
human-voice relationships. This challenge, termed multi-
modal correlation overwriting, underscores the critical need
to identify data regions with high correlation to past steps.

4. Continual Audio-Video Pre-training with
Spatio-Temporal Localized Alignment

To overcome critical challenges in earlier sections, we intro-
duce a novel continual audio-video pre-training approach,
dubbed Spatio-TEmporal LocaLized Alignment (STELLA),
illustrated in Fig. 4. We first propose a lightweight train-
able module that determines importance scores, guiding the
model to focus on spatio-temporally aligned audio-visual
regions (Sec. 4.1). Next, we introduce a unique process of as-
sessing multimodal correlations between current and previ-
ous steps to compute correlation scores, identifying patches
having higher correlations to the past steps (Sec. 4.2). Fi-
nally, we describe the probabilistic patch selection frame-
work, which uses the importance and correlation scores to
select audio and video patches for continual pre-training
(Sec. 4.3). Please see Algo. 2 for a detailed training process.

4.1. Localized Patch Importance Scoring

Inspired by the observation that audio-video data pairs are
only correlated with a sparse spatio-temporal region, we
aim to capture accurate local semantics between audio and
visual cues by computing importance scores for each patch
to identify a few strongly associated audio-video patches.
We achieve this by introducing an Audio-Video Matching
(AVM) module that uses cross-attention to capture core
audio-video patches. Given (Xa, Xv), we first map au-
dio/video patches using the modality encoders and fusion
encoder to output tokens (oa,ov). Then, we fed the tokens
to the AVM module to map them to queries and keys (q,k)
to compute cross-attention maps as follows:

qa=oaWQ
a , ka=oaWK

a , qv=ovWQ
v , kv=ovWK

v ,

Aa=µ(qv,ka)=qvk
⊤
a /β ∗

√
d, (1)

Av=µ(qa,kv)=qak
⊤
v /β ∗

√
d,

where the projectionsWQ
a , WK

a , WQ
v , WK

v ∈RD×H×d are
trainable parameter matrices in the AVM module, H is
the number of heads, D=H ∗ d is the dimension size, β
denotes a temperature coefficient, (qa,ka) ∈ RB×H×M×d,
(qv,kv)∈RB×H×N×d are audio and video keys and queries,
Aa ∈ RB×H×N×M , Av ∈ RB×H×M×N are computed cross-
attention maps. Please see Sec. D for the detailed architec-
ture of the AVM module.

Then, we compute the importance scores Ia∈RB×M , and
Iv∈RB×N by applying Softmax normalization on the last
dimension:

Ia = MeanPool (Softmax (Aa)) ,

Iv = MeanPool (Softmax (Av)) .
(2)

The importance score represents the average correlation be-
tween an audio (or a video) patch and the paired modality
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patches. That is, the higher value in I indicates the higher
importance of the corresponding patch in view of the op-
posite modality (A↔V), thus helping the model to select
locally aligned audio-video patches in Sec. 4.3.

4.2. Replay-guided Correlation Assessment

To tackle the challenge of multimodal correlation overwrit-
ing, the model requires a careful balance between retaining
previous knowledge and adapting new one. Thus, we pro-
pose to compare cross-attention maps activated by current
and past queries to assess relative multimodal correlation
and exclude patches exhibiting higher correlation to the past
steps. Our ultimate goal is to select κa audio and κv video
patches where κa = M · ρa and κv = N · ρv, with ρa and
ρv denoting sampling ratios for audio and video. To this
end, we obtain locally aligned queries q̂a, q̂v∈RB×H×d and
keys k̂a ∈ RB×H×κa×d, k̂v ∈ RB×H×κv×d using the indices
sorted in ascending order based on the importance scores
Sa=argsort(Ia), Sv=argsort(Iv):

q̂n[i, :, j] = qn[i, :,Sn[i, j]], I
s
n[i, j] = In[i,Sn[i, j]],

q̂n ← MeanPool (q̂n,weight=Is
n) , (3)

k̂n[i, :, j] = kn[i, :,Sn[i, j]], i = 1, . . . , B, j = 1, . . . , κn,

where n ∈ (a, v) and MeanPool (·,weight) indicates
weighted mean operation. We utilize the queries and keys to
compute cross-attention maps Âa=µ(q̂v, k̂a)∈RB×H×κa ,
Âv =µ(q̂a, k̂v)∈RB×H×κv . Similarly, we compute cross-
attention maps Âp

a = µ(q̂p
v , k̂a),Âp

v = µ(q̂p
a, k̂v) by using

the past queries q̂p
a, q̂p

v , which were computed during the
past steps and stored in the rehearsal memory. Each Â
shows how the given queries are correlated to the current
patches. To assess the relative correlation between the past
and current steps on the current patches, we stack the audio
(Âa, Â

p
a) and video attention maps (Âv, Â

p
v), resulting in

an extended last dimension, respectively. Subsequently, we
apply Softmax normalization on the extended last dimen-
sion, resulting in correlation scores Ca and Cv as follows:

Ca = MeanPool
(
Softmax

(
[Âa, Â

p
a]
))

,

Cv = MeanPool
(
Softmax

(
[Âv, Â

p
v]
))

.
(4)

Each value in the correlation score moves closer to one when
the corresponding patch exhibits a higher multimodal corre-
lation with the opposite modality data from the past steps
compared to the correlation with its modality pair. Hence,
patches with high C values should more likely be excluded
to preserve previously learned multimodal correlations.

4.3. Multimodal Patch Selection for Continual Learning

Leveraging the importance score Iv and correlation score
Cv, we enhance multimodal alignment and stability of the
continual pre-training by sorting video patch indices. Ini-
tially, a Bernoulli distribution on Cv produces Fv. True
values in Fv indicate that the corresponding patches are
chosen to be excluded. Hence, we zero out elements in
Iv aligned with the True values in Fv to create Ĩv. Subse-
quently, applying a multinomial probability distribution to
Ĩv yields the informative video patch indices S̃v ∈ RB×N :

Ĩv[i, j] =

{
0 if Fv[i, j] i=1, . . . , B

Iv[i, j] otherwise j= 1, . . . , N,

S̃v = Multinomial
(
Ĩv,
)
.

(5)

Similarly, we utilize the importance score Ia and correlation
score Ca to generate the informative audio patch indices.
To preserve the local correlation among audio patches by
temporal continuity, we segment Ia into time chunks. To
this end, we reshape the importance score Ia into a time-
frequency dimension, average along the frequency dimen-
sion, and split the time dimension with time chunk size Lc.
This operation yields Ic

a ∈ RB×|t/p|/|Lc|, which indicates
the importance of audio time chunks. For Ca, we apply
Bernoulli probability distribution to generate Fa.

We select informative time chunks with high Ic
a values while

excluding the indices aligned with True values in Fa to
generate the informative audio patch indices S̃a ∈ RB×M .
The detailed steps of audio patch selection are in Algo. 1.

Finally, based on S̃a, S̃v, we select κa, κv of audio,
video patches to form new input (X̂a, X̂v). Substituting
(Xa, Xv) into (X̂a, X̂v) enables the model to effectively
learn new audio-video relationships while preserving pre-
viously learned ones with enhanced efficiency. The final
patch selection is performed as follows:

X̂n[i, j]=Xn[i, S̃n[i, j]], i=1, . . . , B, j=1, . . . , κn, (6)

where n∈(a, v). With the selected patches, we perform con-
tinual pre-training based on the DER++ framework with the
penalty loss (ℓp), which encourages the model to maintain
the features of the rehearsal memory to mitigate their drifts.
Hence, our final pre-training objective isL = ℓr+λℓc+αℓp,
where α is a hyperparameter for the penalty loss.

Efficient rehearsal memory usage is crucial especially in
continual audio-video learning scenarios due to the large
video sizes. The effective storage of past data can notably
augment the diversity of data within the memory. To ad-
dress this, we propose STELLA+, an extension of STELLA,
where memory stores the selected patches instead of raw
data (Algo. 3). The introduction of STELLA+ represents a
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Table 1: Audiovisual zero-shot retrieval tasks on Continual-VS and Continual-AS. R@K means top-K recall. The results are
the means of 3 independent runs. The best and the second best results are highlighted in bold and underline, respectively.

Continual-VS Continual-AS
Method R@1 R@5 R@10 Avg R@1 R@5 R@10 Avg

A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓

A
ud

io
-t

o-
V

id
eo

Finetune 0.98 4.16 3.75 11.98 6.17 15.35 3.63 10.50 1.48 2.90 3.84 11.34 5.41 17.83 3.58 10.69
ER 4.09 3.66 11.66 9.17 17.78 10.20 11.18 7.68 4.94 2.97 12.33 7.46 17.60 11.17 11.62 7.20
MIR 4.59 3.14 12.26 8.34 17.51 11.17 11.45 7.55 5.21 2.93 13.16 7.10 18.04 9.14 12.14 6.39
DER++ 4.03 3.62 13.74 6.31 19.79 7.11 12.52 5.68 4.51 3.75 12.15 8.42 16.85 11.86 11.17 8.01
GMED 4.17 2.73 12.01 6.84 18.95 6.33 11.71 5.30 4.71 2.27 12.83 7.45 18.44 9.18 11.99 6.30
CLS-ER 4.61 3.20 14.07 6.77 19.54 8.92 12.74 6.30 4.17 4.50 11.28 11.06 16.85 12.55 10.77 9.37
LUMP 3.56 2.79 11.68 7.65 17.40 8.52 10.88 6.32 3.73 3.03 13.74 5.29 19.50 8.17 12.32 5.50
ESMER 4.51 3.68 14.98 6.22 21.25 7.50 13.58 5.80 5.18 4.92 14.14 9.19 18.69 12.84 12.67 8.98

STELLA (Ours) 5.34 2.04 15.04 5.20 22.10 5.90 14.16 4.38 5.22 2.26 13.09 7.95 18.75 10.65 12.35 6.95
STELLA+ (Ours) 5.39 2.71 16.76 5.15 24.18 5.99 15.44 4.62 5.36 4.24 16.76 5.54 23.65 7.44 15.26 5.74

Multitask 6.45 − 20.19 − 29.01 − 18.55 − 8.28 − 24.14 − 33.74 − 22.05 −

V
id

eo
-t

o-
A

ud
io

Finetune 1.22 4.47 4.17 11.23 6.95 14.67 4.11 10.12 1.50 3.23 4.08 10.04 6.33 14.43 3.97 9.23
ER 3.28 3.94 11.30 8.86 16.40 11.37 10.33 8.06 3.70 4.36 10.76 10.34 15.68 15.06 10.05 9.92
MIR 3.54 3.47 11.82 9.11 16.69 12.90 10.68 8.49 4.26 4.59 11.29 9.87 15.97 13.73 10.51 9.40
DER++ 3.49 3.86 13.22 7.09 19.03 9.04 11.91 6.66 4.23 4.50 11.66 10.10 16.24 13.97 10.71 9.52
GMED 3.71 2.61 11.87 6.46 17.20 9.57 10.93 6.21 3.99 4.42 10.65 10.39 15.41 14.78 10.02 9.86
CLS-ER 4.09 3.11 13.30 6.96 19.43 9.68 12.27 6.58 4.25 4.58 9.78 11.65 13.45 17.65 9.16 11.29
LUMP 3.24 3.30 11.02 7.55 16.91 9.13 10.39 6.66 3.13 3.91 10.60 8.63 16.02 12.26 9.92 8.27
ESMER 4.65 2.74 14.54 6.27 20.80 8.36 13.33 5.79 4.39 4.92 11.55 12.16 16.41 16.41 10.78 11.16

STELLA (Ours) 5.30 2.40 15.43 4.84 21.47 6.70 14.07 4.65 4.49 3.39 12.08 9.00 17.31 12.75 11.29 8.38
STELLA+ (Ours) 5.86 1.56 17.21 4.09 23.53 6.02 15.53 3.89 5.48 4.06 15.65 7.13 22.29 8.92 14.47 6.70

Multitask 6.85 − 21.93 − 30.63 − 19.80 − 8.05 − 25.81 − 35.60 − 23.15 −

distinct and complementary direction to STELLA, demon-
strating the efficacy of efficient memory utilization.

5. Experiments
In this section, we experimentally validate the effective-
ness of our method in task-free continual audio-video pre-
training. We start by outlining our experimental setup
in Sec. 5.1, covering datasets, evaluation methods, eval-
uation metrics, and baseline methods employed for our
experiments. Subsequently, we present the experimental
results and conduct a comprehensive analysis in Sec. 5.2.

5.1. Experimental Setup

Evaluation Protocol We validate our method on contin-
ual audio-video pre-training over VGGSound (Chen et al.,
2020) and AudioSet (Gemmeke et al., 2017) datasets, con-
sisting of 10s videos. We split each dataset into multiple
tasks based on its high-level category information. We name
them as Continual-VS and Continual-AS, respectively. For
evaluation, we conduct various audiovisual downstream
tasks: retrieval, sound source localization, and event local-
ization. Further details, including data split, data statistics,
and downstream tasks, are provided in Sec. B.

Baselines To quantitatively assess our method, we com-
pare its performance with several task-free continual learn-
ing methods: ER (Rolnick et al., 2019), MIR (Aljundi et al.,

2019a), DER++ (Buzzega et al., 2020), GMED (Jin et al.,
2021), CLS-ER (Arani et al., 2022), LUMP (Madaan et al.,
2022), and ESMER (Sarfraz et al., 2023). The details of
the baseline methods are explicated in Sec. A. All methods
employ reservoir sampling (Vitter, 1985) to sample past
instances from the rehearsal memory for 2K (Continual-
VS) and 5K (Continual-AS) instances during continual pre-
training, except for STELLA+, which adjusts instance count
based on sampling ratios (ρa, ρv) to match the memory
size of other methods. We additionally report the result of
Finetune, the model continually pre-trained without addi-
tional methods, and Multitask, the model pre-trained with
the entire datasets. They serve as lower and upper bounds,
respectively, in assessing learned representation.

Evaluation Metrics After each end of pre-training on Dt,
we estimate task-specific performances {acct,i}ti=1, where
acct,i denotes the performance of the downstream task as-
sociated with Di when evaluated with fθ,t, the model pre-
trained up to the t-th task. Here, no task boundary infor-
mation is employed in performance estimation. For the
evaluation, we adopt two conventional metrics in contin-
ual learning: (1) Average accuracy(A) is the mean accu-
racy across all tasks after the completion of pre-training
on DT , and it is formulated as A = 1

T
∑T

i=1 accT ,i. (2)
Average Forgetting(F) measures the average amount of
catastrophic forgetting for each task, quantified as the
difference between its maximum accuracy and accuracy
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at the completion of pre-training on DT , calculated as,
F= 1

T −1

∑T −1
i=1 max

t∈{1,...,T −1}
(acct,i − accT ,i).

5.2. Analysis for Continual Audio-Video Pre-training

STELLA achieves superior Zero-shot Audiovisual Re-
trieval performance compared to strong baselines. We
perform audio-to-video and video-to-audio zero-shot re-
trieval tasks in Continual-VS and Continual-AS to quan-
titatively assess the learned audio-video correlation from
the continual pre-training (Tab. 1). For the Continual-VS,
both STELLA and STELLA+ outperform other baselines,
exhibiting substantial enhancements of 0.58%p, 1.86%p
and 0.74%p, 2.20%p in average audio-to-video and video-
to-audio retrieval scores, respectively. In the Continual-
AS, STELLA+ exhibits prominent performance advantages,
with 2.59%p and 3.69%p improvements in average audio-
to-video and video-to-audio retrieval scores. Notably, our
methods consistently achieve high R@1 scores across all
tasks. These results imply that our approach of continually
pre-training on the selected patches enhances the model’s
ability to comprehend the audio-video relationship by accu-
rately capturing sparse spatio-temporal correlations. For a
thorough investigation, we conduct further experiments with
shuffled task orders in Sec. E. We also explore the influence
of rehearsal memory size on zero-shot task performances,
presenting the results in Fig. 5. Our methods consistently
surpass other baselines, underscoring their effectiveness in
adapting to diverse memory constraints.

STELLA is significantly efficient in terms of GPU Mem-
ory Consumption and Throughput. Pre-training on the
spatio-temporally aligned subset of audio-video patches
also enhances efficiency. In Tab. 2, we compare GPU mem-
ory occupancy and throughput across different methods.
STELLA consumes significantly less GPU memory than
baselines, even surpassing Finetune in efficiency. Compared
to DER++, STELLA+ achieves a 44.59% gain in efficiency,
further enhancing throughput. In order to explore the bene-
fits of reduced GPU memory usage, we conduct experiments
with STELLA+ with an increased batch size. Specifically,
we increase the batch size by 1.66 times and denote this
version of STELLA+ as STELLA++. As shown in Tab. 2,
STELLA++ outperforms all baselines, including STELLA+.
We expect that increasing batch size for contrastive learning-
based models enhances the model’s ability to accurately
distinguish between various inputs and increases stability
during continual pre-training. In the case of rehearsal mem-
ory burden, the extra cost required in STELLA for storing
the queries, importance scores, and correlation scores in
the memory is negligible (+ 0.16 GB), based upon the fact
that the size of the memory itself is 5.47 GB and that CLS-
ER and ESMER maintain additional models, which require
+ 1.42 GB and + 0.71 GB additional memory, respectively.

Table 2: Efficiency analysis. GPU memory occupancy
(GPU M.) is measured in GB. Throughput (T.P.) is measured
in sample/sec. Both are estimated in single V100 with a
batch size of 15 for STELLA++ and 9 for other methods.

Method A→V V→A GPU M.↓ T.P.↑
A ↑ F ↓ A ↑ F ↓

Finetune 3.63 10.50 4.11 10.12 18.34 29.46
ER 11.18 7.68 10.33 8.06 30.95 17.70
MIR 11.45 7.55 10.68 8.49 31.17 5.73
DER++ 12.52 5.68 11.91 6.66 30.95 17.79
GMED 11.71 5.30 10.93 6.21 32.03 5.63
CLS-ER 12.74 6.30 12.27 6.58 32.50 15.24
LUMP 10.88 6.32 10.39 6.66 18.36 26.67
ESMER 13.58 5.80 13.33 5.79 31.45 14.88

STELLA (Ours) 14.16 4.38 14.07 4.65 17.45 17.29
STELLA+ (Ours) 15.44 4.62 15.53 3.89 17.15 18.11
STELLA++ (Ours) 17.01 3.20 16.62 3.27 24.69 -

Table 3: Sampling methods. Experiments with various
sampling methods. LPIS: Localized Patch Importance Scor-
ing in Sec. 4.1, RCA: Replay-guided Correlation Assess-
ment in Sec. 4.2.

Method LPIS RCA A→V V→A GPU M.↓
A ↑ F ↓ A ↑ F ↓

Random − − 12.64 6.46 12.55 6.58 16.63
MATS − − 12.91 6.55 12.70 6.80 21.30

STELLA (Ours)

− − 12.52 5.68 11.91 6.66 30.95
✓ − 13.44 5.50 13.27 5.94 17.48
− ✓ 13.40 5.30 12.94 5.44 17.48
✓ ✓ 14.16 4.38 14.07 4.65 17.45

Core components in STELLA contribute to improv-
ing evaluation performance. To validate our patch se-
lection method, we compare our two core components with
MATS (Hwang et al., 2022), an adaptive patch selection
method aiming to discard redundant patches during video
pre-training, and with a simple random patch selection
method, denoted as Random. We decompose STELLA into
Localized Patch Importance Scoring (LPIS) and Replay-
guided Correlation Assessment (RCA). All the above meth-
ods follow the default sampling ratio and were built upon
DER++. In Continual-VS zero-shot retrieval tasks, LPIS
and RCA show competitive results against baselines in-
cluding MATS and Random (Tab. 3). LPIS enhances the
model’s audio-video semantics comprehension. Conversely,
RCA demonstrates more robustness in forgetting but with
a lower average retrieval score, indicating a need for im-
proved guidance in understanding audio-video semantics.
Combining both components, STELLA achieves improved
performances, emphasizing the importance of considering
both the sparse correlation and forgetting in continual audio-
video pre-training.
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Table 4: Audiovisual downstream tasks. We finetune models continually pre-trained on Continual-VS tasks. (a): Finetuning
with the MSR-VTT (Xu et al., 2016) train dataset, we measure audiovisual retrieval performance. (b): We randomly
initialize and finetune a MLP classifier, attached on the top of the models, using the entire Continual-VS dataset. (c): We
finetune a randomly initialized decoder with the AVSBench (Zhou et al., 2022) training dataset. MIoU (Mean Intersection
over Union) measures the average overlap between predicted segments and ground truth segments. The best and the second
best results are highlighted in bold and underline, respectively.

(a) MSR-VTT audiovisual retrieval

Method A→V V→A
R@1 R@5 R@10 R@1 R@5 R@10

Finetune 1.00 4.15 6.44 1.33 3.19 6.15
ER 2.26 7.89 13.38 2.26 8.78 13.42
MIR 2.48 7.59 11.89 1.85 7.37 11.81
DER++ 1.93 8.23 13.75 2.52 8.30 13.42
GMED 1.67 6.81 11.81 1.44 6.04 11.59
CLS-ER 2.15 8.45 12.93 2.15 7.63 12.82
LUMP 1.78 7.70 12.07 1.59 7.04 11.81
ESMER 2.33 8.37 13.78 2.30 8.48 13.93

STELLA (Ours) 2.70 8.70 13.96 2.67 8.81 14.30
STELLA+ (Ours) 2.37 9.11 15.07 2.44 10.14 15.62

(b) Audiovisual classification

Method Accuracy

Finetune 57.04
ER 57.09
MIR 56.82
DER++ 57.23
GMED 57.34
CLS-ER 57.23
LUMP 57.70
ESMER 57.72

STELLA (Ours) 58.20
STELLA+ (Ours) 58.54

Multitask 59.94

(c) Audiovisual segmentation

Method MIoU

Finetune 54.77
ER 54.64
MIR 54.69
DER++ 55.42
GMED 55.92
CLS-ER 55.89
LUMP 55.34
ESMER 55.84

STELLA (Ours) 56.59
STELLA+ (Ours) 57.26

Multitask 58.51

STELLA excels in various audiovisual downstream
tasks. To evaluate the acquired transferable knowledge
through continual audio-video pre-training, we perform di-
verse audiovisual downstream tasks. Compared to the earlier
zero-shot retrieval tasks, we use the models that have been
continually pre-trained up to the final task of Continaul-VS,
and then evaluate them on different audiovisual datasets.
First, we conduct audiovisual retrieval experiments on the
MSR-VTT (Xu et al., 2016) dataset. We train the pre-trained
models on the MSR-VTT training dataset according to the
training objective in Sec. 3.1 and evaluate them on the MSR-
VTT test dataset. As shown in Tab. 4 (a), our methods
consistently outperform the baselines, demonstrating that
our methods excel at understanding relationships in audio-
video pairs. Second, we perform audiovisual classification
experiments on the entire Continual-VS datasets with class
labels. Specifically, we finetune a randomly initialized MLP
classifier, which is attached to the top of the continually pre-
trained models, using the datasets. Then, we test the mod-
els’ classification performance using the evaluation datasets
of Continual-VS. This setup ensures that the classification
results reflect the quality of audio-video representations
learned throughout the continual audio-video pre-training
process. Experimental results in Tab. 4 (b) demonstrate
that our methods yield superior audio-video representations,
leading to enhanced classification performance over base-
line methods. This improvement is due to our approach’s
ability to identify patches with high audio-video correlation,
thereby enhancing the model’s comprehension of audio-
video data during continual pre-training. Furthermore, we
conduct audiovisual segmentation experiments. Following
the experiments in (Lin et al., 2023), we finetune a randomly
initialized decoder, attached on top of the continually pre-

trained models, for the audiovisual segmentation task with
the training dataset of the AVSBench (Zhou et al., 2022),
and test the performance on the AVSBench test dataset. The
results, shown in Tab. 4 (c), indicate that our methods sur-
pass the baselines. This suggests that our pre-trained models
have a superior multimodal ability to spatially localize sound
sources given corresponding audio, demonstrating the ef-
ficacy of our continual pre-training approach. Finally, we
perform a sound source localization task on the AVE (Tian
et al., 2020) dataset to assess the model’s ability to detect
sound sources within visual scenes. As shown in Fig. 7,
given audio containing a barking dog, all methods struggle
to precisely locate the sound source, concentrating on the
uncorrelated object (green bottle) in the visual scene. In con-
trast, the AVM module in STELLA stands out by precisely
identifying the correct sound source, proving its efficacy
in aligning multimodal data even in continual pre-training
scenarios. This qualitative result further strengthens our
quantitative evaluation of the audiovisual segmentation task
in Tab. 4 (c). More examples of the sound source local-
ization task are illustrated in Fig. 13. Additional results
for other audiovisual downstream tasks, including event
localization and retrieval tasks, are available in Sec. E.

STELLA can preserve the modality gap between audio
and video embeddings even after continual learning. Re-
cent research in multimodal learning (Liang et al., 2022)
reveals that embeddings cluster by modality in represen-
tation space. Such modality-dependent clustering behav-
ior introduces the concept of modality gap, which refers
to the distance between these clusters (Fig. 6 (Right)). A
larger modality gap is generally considered favorable un-
der well-separated modality clusters since it indicates that
the model can distinguish between different modalities ef-

8



STELLA: Continual Audio-Video Pre-training with Spatio-Temporal Localized Alignment

1000 2000500
Rehearsal memory size

7

9

11

13

15

Av
er

ag
e 

ac
cu

ra
cy

Audio -> Video Avg Retrieval
ER
MIR
DER++

GMED
CLS-ER
LUMP

ESMER
STELLA
STELLA+

1000 2000500
Rehearsal memory size

7

9

11

13

15

Av
er

ag
e 

ac
cu

ra
cy

Video -> Audio Avg Retrieval
ER
MIR
DER++

GMED
CLS-ER
LUMP

ESMER
STELLA
STELLA+

Figure 5: Downstream performance on various rehearsal
memory sizes. We evaluate downstream task performances on
the pre-trained models with various rehearsal memory sizes on
the Continual-VS.
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Figure 6: Modality gap estimation. (Left): Estimation of
modality gap after the completion of each task. (Continual-VS)
(Right): Visualizations of modality gap corresponding to the
music task with the model pre-trained up to the last task in
the Continual-VS dataset with ESMER (top) and our method
(bottom).
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(a) Raw data

(b) Audiovisual attention (CLS-ER)

(c) Audiovisual attention (ESMER)

(d) Audiovisual attention (STELLA)

Figure 7: Sound source localization (a) A raw data
describing a dog barking. (b)~(c): We visualize cross-
attention maps using cosine similarity between each
video patch and averaged audio embedding of the corre-
sponding audio. (d): We use the AVM module in STELLA
to visualize cross-attention maps.

fectively. Hence, in the context of continual audio-video
pre-training, maintaining a large modality gap between the
two modalities throughout tasks is desirable, as deviating
from it suggests a departure from the optimal state. Hence,
during continual pre-training, we estimate the modality gap
at the end of each task, utilizing evaluation data of each task.
The estimated modality gaps of baselines are presented
in Fig. 6 (Left). Our methods consistently maintain the high-
est modality gap compared to other approaches. Moreover,
our methods exhibit small modality gap declines, indicating
that the models suffer less from the forgetting of previous
multimodal correlations, which supports the validity of our
approach in preventing modality correlation overwriting
in Sec. 4.2 to address the issue of audio-video relation for-
getting. Sec. G provides more analysis using the modality
gap including Continual-AS and about two key components
of our approach. Besides, some previous works (Udandarao,
2022) observe that reducing modality gaps also has bene-
fits. Based on the modality gap analysis (Udandarao, 2022),
there exists a modality gap that yields the best downstream
task performances. However, we would like to emphasize

that we use the modality to estimate the change in the modal-
ity gap throughout continual pre-training, not to find the best
modality gap of the backbone model.

6. Conclusion
In this paper, we investigate the critical challenges in con-
tinual audio-video pre-training under the task-free scenario,
where the model continuously learns a course of audio-video
multimodal tasks sequentially and cannot access previous
tasks and task oracle both on pre-training and fine-tuning.
We empirically observe that the audio-video models suf-
fer from the issue of sparse spatiotemporal correlation and
representational forgetting of audio-video relationships. To
overcome these limitations, we propose a novel continual
audio-video multimodal pre-training method for the first
time that adaptively captures sparse audio-video attention
to learn accurate audio-video relationships while mitigat-
ing forgetting from previously learned relationships without
requiring task identification.
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Impact Statement
In this work, we suggest STELLA and compare it with other
recent baselines in continual audio-video pre-training sce-
narios. Both methods use rehearsal memories to store the
subset of pre-train data from the sequence of tasks. Since the
sampling process is random, all methods cannot effectively
alleviate the problem of privacy issues when storing videos
in the rehearsal memory. One potential way to alleviate the
problem is to save the subset of audio and video patches as
in STELLA+. We sincerely hope that more effective ways
to solve privacy issues in rehearsal memory will be inves-
tigated while maintaining the benefits of rehearsal-based
continual learning methods.
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Appendix

Organization The supplementary file is organized as follows: First, we explain the implementation details for our
experiments in Sec. A. Then, we outline the evaluation protocol of our experiments in Sec. B. In Sec. C, we elaborate on the
audio-video self-supervised objectives used for pre-training the model. Additionally, Sec. D presents a detailed account of
the training procedure for the AVM module. We provide additional experimental results in Sec. E. Sec. F showcases the
outcomes of our hyperparameter tuning process. Furthermore, in Sec. G, we conduct more analysis on our experimental
results using the modality gap. We present PyTorch-like pseudo code for audio patch selection in Sec. H. We provide
STELLA and STELLA+ algorithms in Sec. I. In Sec. J we provide more examples of visualization that show challenges in
audio-video lifelong pre-training. Finally, Sec. K outlines the limitations of our study.

A. Implementation Details
Hyperparameter configurations. We referred to the original papers for initial settings of hyperparameters of continual
learning methods. Based on the initial settings, we tune the hyperparameters for our continual audio-video representation
learning. Searched hyperparameters are listed in Tab. 5. In our method, α denotes a multiplier for the penalty loss to
minimize the distance between obtained logits from the buffer instances and their logits stored at the past timestep. We also
listed our pre-training and fine-tuning hyperparameters in Tab. 6.

Table 5: Continual learning method hyperparameters.

METHOD Continual-VS Continual-AS

ER - -
MIR C : 5 C : 5
DER++ α : 0.5 α : 1.0
GMED α : 0.1 β : 0.05 γ : 1.0 α : 0.1 β : 0.01 γ : 1.0
CLS-ER λ : 0.1 αS : 0.999 αP : 0.999 rS : 0.6 rP : 0.8 λ : 0.1 αS : 0.999 αP : 0.999 rS : 0.6 rP : 0.8
LUMP λ : 0.1 λ : 0.05
ESMER αl : 0.99 β : 1.0 γ : 0.15 α : 0.999 r : 0.2 αl : 0.99 β : 1.0 γ : 0.2 α : 0.999 r : 0.2
STELLA (Ours) α : 0.5 β : 0.4 ρa : 0.5 ρv : 0.5 α : 0.5 β : 0.1 ρa : 0.5 ρv : 0.5

Baselines. ER (Rolnick et al., 2019) employs rehearsal memory and learns the past data in the memory during training on
the current task to mitigate forgetting. All the baselines below employ the rehearsal memory to store the subset of past data.
MIR (Aljundi et al., 2019a) introduces a strategy that retrieves data the model is likely to forget during the current task and
trains the model with the retrieved data. To retrieve the data, it pseudo-updates the model with the data in the current step
and finds the mini-batch of past data that gives the highest training loss. DER++ (Buzzega et al., 2020) matches stored logits
in the rehearsal memory from past tasks with the current ones, ensuring a smoother transition and preventing abrupt changes
in the logits during training. In our setting, we store both audio and video logits in the rehearsal memory and apply the
method independently. GMED (Jin et al., 2021) tackles forgetting by using gradient information to update past data in the
rehearsal memory. The data is updated to maximize interference of the current task to help the model retain past knowledge.
Hence, it virtually updates the model with data from the current step and calculates the relative gradient by the past data to
update the past data. CLS-ER (Arani et al., 2022) draws inspiration from the complementary learning system theory and
maintains two models to retain short-term memories and long-term memories; one quickly adapts to new tasks and the other
is slowly updated to retrain past knowledge. The slowly updated model transfers retained knowledge to the adaptable one,
ensuring the retention of past information. LUMP (Madaan et al., 2022) integrates past and current data by mixing the two
data, rather than replaying the past data together with data from the current task to handle the forgetting issue. In our setting,
we integrate the past and current video and audio respectively with the same ratio. Lastly, ESMER (Sarfraz et al., 2023)
employs a semantic memory model that has the same structure as the pre-trained model to slowly integrate the knowledge
encoded in the weights. It refers to the memory model to alleviate the effect of the data from the current batch that induces
abrupt drift in the learned representations in order to reduce forgetting. The suggested method effectively handles the abrupt
representation changes when the data distribution shifts.
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Table 6: Audio-Video pre-training and fine-tuning hyperparameters.

Pretrain Finetune

Dataset Continual-VS Continual-AS MSR-VTT AVC AVS AVE

Optimizer Adam AdamW
Optimizer momentum β1, β2 = 0.95, 0.999

Learning rate 1e-4 1e-4 5e-4 1e-3
Weight decay 5e-7 5e-6
Learning rate schedule - CosineScheduler
Warmup epochs - 3 2
Epoch 10 15 15 10 20 15
Batch size 48 36 48 12
GPUs 4 A100 or 4 V100 4 Titan X Pascal
Audio Random Time Shifting yes no
Audio Random Noise yes no
Audio Norm Mean -5.081
Audio Norm STD 4.485
Video MultiScaleCrop yes
Video Norm Mean [0.485, 0.456, 0.406]
Video Norm STD [0.229, 0.224, 0.225]

B. Continual pre-training evaluation protocol
Audiovisual Dataset Configuration In this section, we specify how we design our continual audio-video pre-training
experiments using two benchmark datasets: VGGSound and AudioSet. To mimic the data distribution shift due to the new
audio-video semantics described in Sec. 1, we split the dataset according to the high-level categories. For the VGGSound
dataset, we split the dataset into eight tasks based on the category labels (Chen et al., 2020). Each task dataset consists of
6k-8k video clips from 20 different classes. We name it as Continual-VS. Then, we construct another pre-training dataset
by combining the unused training dataset in VGGSound with the AudioSet-20k (Gemmeke et al., 2017), resulting in a
total of 104k video clips. We took care to exclude the unused VGGSound video samples whose class labels are present
in the Continual-VS. Using the merged dataset, we pre-train the backbone weights before continual pre-training. This
ensures that the model does not underperform at the initial continual pre-training stages while the model does not acquire
any task-specific knowledge at the beginning. For the Continual-VS continual pre-training, we follow the task sequence:
sports→music→vehicle→people→animals→home&nature→others part1(tools&others)→others part2(remaining others).

Similarly, we divided the AudioSet dataset into seven tasks, following class hierarchy information (Gemmeke et al., 2017).
We name it as Continual-AS. Compared to Continual-VS, it exhibits imbalanced dataset size among tasks and contains
much larger clips. To ensure proper pre-training for the Continual-AS experiments, we pre-train the model with the entire
VGGSound dataset to avoid any potential performance issues during the initial stages of continual pre-training. We randomly
shuffle the pre-train order and follow the task sequence: human→vehicle→nature→animal→others→home→music.

For downstream tasks, we use two audiovisual datasets: MSR-VTT (Xu et al., 2016) and AVE (Tian et al., 2020). MRS-VTT
consists of 10,000 video clips from 20 different categories. We collect video clips that contain audio modality on both the
training dataset and the test dataset. This yields ∼ 6k and ∼ 0.9k video clips, respectively. We finetune the continually
pre-trained models on the MSR-VTT training dataset and evaluate on the test dataset to perform audiovisual bi-directional
retrieval tasks. In the case of the AVE dataset, it contains ∼ 4k videos with 28 different event categories. Since the dataset
is a subset of AudioSet, we conduct experiments on the pre-trained models on Continaul-VS only. With this dataset, we
perform two downstream tasks: sound source localization, which requires the models to locate the sounding objects in
the visual scene, and audiovisual event localization, which asks the model to classify audiovisual events for each time
step. Given that all the downstream task datasets represent unseen data for the pre-trained models, they allow us to gauge
the extent to which the model has acquired general knowledge of audio-video correlations during continual audio-video
pre-training.
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Figure 8: Overview of AVM module: The AVM (Audio-Visual Matching) module is self-supervised with the audio-video
matching objective. It classifies if the given audio-video pair is positive(audio and video are from the same video) or
negative(audio and video are from different videos).

Audiovisual downstream task configuration When constructing audiovisual zero-shot retrieval tasks for model perfor-
mance evaluation, we refer to the CAV (Gong et al., 2023) for both the Continual-VS and Continual-AS experiments. We
employ the zero-shot retrieval task in CAV, but exclude evaluation samples that belong to the classes that are not included
in any of the tasks. In the audiovisual event localization task, we follow experimental setups in (Lin et al., 2023). In
the fine-tuning stage of the retrieval and event localization task, we freeze the backbone model, connect it to a randomly
initialized trainable linear classifier, and train the classifier with the training dataset to evaluate the acquired representation.

C. Audio-Video Self-supervised Objectives
Given audio-video data (Xa, Xv), we obtain D-dimensional embedding patches a and v as follows:

a = Conv2d (Xa,wa) , v = Conv2d (Xv,wv) , (7)

where wa,wv denote the weights of convolutional layers, a ∈ RB×M×D, and v ∈ RB×N×D.

The backbone Transformer consists of an audio encoder (Ea(·)), a video encoder (Ev(·)), a multimodal fusion encoder
(Ef (·)), and a decoder (D(·)). Then we pre-train the model by minimizing the mask reconstruction loss ℓr:

ã, ṽ = Ef (Ea (ma ⊗ a) , Ev (mv ⊗ v)) ,

ℓr = ℓra + ℓrv =
1

B

B∑
i=1

[
(D (ãi)−ma,i ⊗Xa,i)

2

|ma,i|
+

(D (ṽi)−mv,i ⊗Xv,i)
2

|mv,i|

]
.

(8)

where ⊗ denotes vector-matrix multiplication while preserving the input’s dimensionality. Random audio ma and video
mask mv are drawn by a binary distribution. In this paper, we set a probability of 0.8 for masking, consistent with (Huang
et al., 2023). Using the unmasked patches, we aim to learn the model to reconstruct the masked audio and video patches.

In addition, we also minimize masked contrastive loss to learn the semantic relationship between audio and video represen-
tation pairs by pulling those that share the same semantics while pushing the others. Following by (Gong et al., 2023), we
pass the masked input patches to audio and video encoders, and subsequently map obtained features (i.e., outputs) to the
fusion encoder with modality-specific layer normalization for the masked contrastive learning:

ca = MeanPool (Ef (Ea (ma ⊗ a) , LNa)) , cv = MeanPool (Ef (Ev (mv ⊗ v) , LNv)) ,

ℓc = − 1

B

B∑
i=1

[
log

(
exp(c⊤a,icv,i/τ)∑B
j=1 exp(c

⊤
a,icv,j/τ)

)
+ log

(
exp(c⊤v,ica,i/τ)∑B
j=1 exp(c

⊤
v,ica,j/τ)

)]
,

(9)

where τ is temperature hyperparameter, and LNa and LNv indicate modality-specific layer normalization for audio and
video each.
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(a) Time chunk sizes

Method A→V V→A
A ↑ F ↓ A ↑ F ↓

Frequency 13.42 5.51 12.76 6.40
No constraint 12.67 6.55 12.78 6.61
Time 14.16 4.38 14.07 4.65

(b) Audio selection methods

Figure 9: Variation of audio patch selection. (a): Average retrieval task performance on various time chunk sizes. (b):
Average retrieval task performance on various audio selection methods.

D. Training of Audio-Video Matching Module
AVM training procedure. In the following section, we describe the training process of the AVM module, as illustrated
in Fig. 8. Given audio-video patch pairs (a,v) with the batch size of B, we propagate patch inputs to the frozen encoder
for each modality and obtain audio-video representation pairs. In order to update the module to capture the multimodal
correlation between audio and its video pair, we randomly split them into positive and negative pairs, where we construct
negative pairs by randomly shuffling the audio patches to pair with unmatched video patches. Next, we project the obtained
positive and negative pairs into fusion space (oa, ov)=Ef (Ea(a), Ev(v)) through the fusion encoder. Subsequently, the
input pairs are fed into the AVM module. They are projected to keys, queries, and values for the cross-attention operation,
by passing through trainable projection layers. The above process can be summarized as follows:

qa=oaWQ
a , ka=oaWK

a , va=oaWV
a , qv=ovWQ

v , kv=ovWK
v , vv=ovWV

v ,

Va=Softmax (µ(qv,ka, β=1)) · va, Vv=Softmax (µ(qa,kv, β=1)) · vv,
(10)

where the projections WQ
a , WK

a , WV
a , WQ

v , WK
v , WV

v ∈RD×H×d are trainable parameter matrices; D =H ∗ d. Va ∈
RB×H×N×d, Vv∈RB×H×M×d are values highlighted by the cross-attention maps.

Next, we average the values head-wise and patch-wise, and concatenate the resulting two values into va∈RB×2D in order
to merge the multimodal information. Then it is passed to fully connected (FC) layers, which serve as the classification head.
These FC layers take va as input, generating a vector ŷ∈RB that predicts whether each input pair corresponds to a negative
of positive pair. For training the AVM module, we employ the binary cross-entropy loss to classify audio-video pairs, i.e.,

V̂av = Concat (MeanPool (Va) ,MeanPool (Vv)) ,

ŷ = Sigmoid
(
FC(V̂av)

)
, Lavm = −y (log(ŷ)) ,

(11)

Here, y={0, 1}B represents ground truth labels, with yi taking the value 0 when the ith input audio-video pair is a negative
pair and 1 otherwise. We pre-train the AVM module along with the backbone model. During the weight update process in
the AVM module, the gradient computed from the audio-video matching objective does not propagate through the backbone
encoder. This design choice ensures exploiting the AVM at a low cost. Moreover, the AVM only increases 3.18% of the total
backbone model size (707.8 MB), which is efficient compared to methods like CLS-ER or ESMER which require additional
backbones during training.

E. Additional Experimental Results
Audio patch selection strategy. When executing the selection of audio patches guided by the audio importance score Ia,
our approach involves selecting patches in time-wise segments, following the procedure detailed in Algo. 1. As spectrogram
patches exhibit local correlation driven by their temporal continuity (Huang et al., 2022), the strategy for audio patch
selection becomes pivotal in maintaining these intrinsic properties. The challenge lies in striking a balance between retaining
time continuity and eliminating redundant information within the spectrogram.

In pursuit of this balance, we conduct various experiments on the audio patch selection approach. The width of the time
chunk assumes significance; a chunk that is too narrow could disrupt time continuity, while one that is excessively wide
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Table 7: Results of audiovisual zero-shot retrieval task on Continual-VS and Continual-AS. We randomly shuffle the task
sequences for continual pre-training. For the Continual-VS, we follow the task order: music→ others part1→ home&nature
→ sports→ others part2→ vehicle→ animals→ people. For the Continual-AS, we follow the task order: nature→ human
→ home→ vehicle→ music→ animal→ others. R@K means top-K recall. The results are the means of 3 independent
runs. The best and the second best results are highlighted in bold and underline, respectively.

Continual-VS Continual-AS
Method R@1 R@5 R@10 Avg R@1 R@5 R@10 Avg

A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓

A
ud

io
-t

o-
V

id
eo

Finetune 0.80 4.15 2.96 12.23 5.05 16.91 2.94 11.10 1.50 4.72 5.49 10.41 9.80 11.91 5.60 9.01
ER 3.89 3.06 12.10 6.55 18.30 7.74 11.43 5.78 4.52 3.16 12.72 6.93 18.83 8.00 12.02 6.03
MIR 4.02 2.97 12.54 6.16 17.99 8.09 11.52 5.74 4.69 2.95 13.22 6.50 18.98 8.81 12.30 6.09
DER++ 4.23 3.35 12.92 7.31 18.62 9.45 11.92 6.70 4.32 4.27 12.29 8.46 18.74 10.18 11.78 7.64
GMED 3.90 2.94 11.51 7.41 17.65 8.87 11.02 6.41 4.70 2.48 12.56 4.55 18.62 5.05 11.96 4.03
CLS-ER 3.94 3.35 12.96 7.19 18.09 10.66 11.66 7.07 5.16 2.97 14.33 6.88 20.24 8.74 13.24 6.20
LUMP 4.06 2.18 13.21 4.66 19.34 5.58 12.20 4.14 4.45 3.40 13.05 6.25 19.45 7.28 12.32 5.64
ESMER 4.38 3.36 13.31 8.28 19.39 9.20 12.36 6.95 5.43 3.85 15.81 6.20 21.40 8.81 14.21 6.29

STELLA (Ours) 4.72 2.89 14.17 5.74 19.94 5.74 12.94 4.79 4.97 3.47 13.91 5.59 20.30 6.70 13.06 5.25
STELLA+ (Ours) 4.90 3.19 16.42 4.72 23.49 5.89 14.94 4.60 5.77 3.90 17.51 4.49 23.72 7.07 15.67 5.15

Multitask 6.45 − 20.19 − 29.01 − 18.55 − 8.28 − 24.14 − 33.74 − 22.05 −

V
id

eo
-t

o-
A

ud
io

Finetune 0.78 3.77 3.00 11.68 5.21 15.86 3.00 10.44 1.42 5.11 6.54 10.30 10.43 13.48 6.13 9.63
ER 3.57 2.76 11.66 7.67 16.75 10.76 10.66 7.06 4.01 4.31 12.47 7.27 19.32 9.26 11.93 6.95
MIR 3.35 3.15 11.37 7.74 16.62 10.11 10.45 7.00 4.25 3.43 12.92 6.93 19.43 9.78 12.20 6.71
DER++ 4.08 3.10 12.78 9.02 18.77 11.30 11.88 7.81 4.31 4.35 12.60 9.59 18.93 12.27 11.95 8.74
GMED 3.42 3.80 11.45 7.76 17.06 9.94 10.64 7.17 4.20 1.87 12.97 6.04 19.98 8.11 12.38 5.34
CLS-ER 3.49 3.85 12.28 8.05 17.75 11.31 11.17 7.74 4.85 5.48 13.37 9.17 19.69 11.36 12.64 8.67
LUMP 3.98 1.67 12.44 5.17 18.11 7.27 11.51 4.70 4.23 4.06 13.53 6.09 19.27 9.53 12.34 6.56
ESMER 4.44 3.35 13.32 8.69 19.47 10.27 12.41 7.44 5.12 5.48 14.73 8.79 20.35 12.41 13.40 8.89

STELLA (Ours) 4.18 2.54 13.81 6.56 19.90 8.88 12.63 5.99 4.86 2.92 14.20 6.41 20.00 9.82 13.02 6.38
STELLA+ (Ours) 5.28 1.81 15.35 6.33 21.97 8.01 14.20 5.38 5.57 3.80 16.67 6.96 23.91 9.28 15.38 6.68

Multitask 6.85 − 21.93 − 30.63 − 19.80 − 8.05 − 25.81 − 35.60 − 23.15 −

might not concisely capture core information. To validate our approach and assess the efficacy of time-wise chunk selection,
we conduct two distinct sets of experiments.

The first experiment involves evaluating the model’s performance across varying time chunk widths. A noteworthy
observation from Fig. 9 (a): adopting a size of 2 results in a noticeable performance decline. This potentially signifies the
criticality of upholding the local correlation inherent in audio patches. Moving on to the second experiment, we explore
various selection methods, inspired by the spectrogram masking techniques detailed in (Huang et al., 2022). We test
two variants of audio patch selection: Frequency indicates an approach of choosing audio patches frequency-wise, while
No-constraint indicates selecting audio patches without any constraints; applying the same patch selection procedure as in
the video patch selection. As shown in Fig. 9 (b), time-wise selection exhibits superior performance compared to alternative
audio selection methodologies, meaning that preserving audio information in time-chunk minimizes loss of audio properties.

Shuffle task orders. In addition to the main experiment results presented in Tab. 1, we conduct supplementary in-
vestigations with the intention of enhancing the reliability of our findings. Specifically, we carry out experiments on
shuffled task sequences. For the Continual-VS, we randomize the original pre-train task sequence, leading to modi-
fied order: music→others part1→home&nature→sports→others part2→vehicle→animals→people. Likewise, in the
case of the Continual-AS experiment, we apply a similar task sequence shuffling, resulting in the following order:
nature→human→home→vehicle→music→animal→others. Note that the Continual-VS experiment is conducted on
36 batch size, unlike the main Continual-VS experiment which is conducted on 48 batch size. We present the corresponding
audiovisual zero-shot retrieval task results in Tab. 7. Our method shows competitive or better performance compared to
other baselines, which coincides with the results in Tab. 1. This indicates that our method is robust under varying conditions,
thereby enhancing the credibility of our analysis.

MSR-VTT retrieval task. We provide additional experiment results on the MSR-VTT retrieval task in Tab. 8 (a). In
this experiment, we use the models continually pre-trained up to the last task of Continual-AS. We follow the training
configurations in Tab. 6. The experiment results show that our methods consistently show competitive results, which supports
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Table 8: Downstream tasks (a): MSR-VTT audiovisual retrieval. MSR-VTT audiovisual retrieval task performances. We
use the models continually pre-trained until completion of the last task of Continual-AS. (b): We randomly initialize and
finetune a MLP classifier with AVE dataset (Tian et al., 2018). The best and the second best results are highlighted in bold
and underline, respectively.

(a) MSR-VTT audiovisual retrieval

Method A→V V→A
R@1 R@5 R@10 R@1 R@5 R@10

Finetune 0.52 2.81 4.82 0.67 2.82 5.08
ER 1.48 6.70 11.48 1.74 7.19 12.07
MIR 1.56 5.97 10.23 1.85 6.93 11.89
DER++ 2.74 9.08 14.49 2.45 9.49 14.60
GMED 2.07 8.04 13.11 2.70 8.44 12.89
CLS-ER 2.78 9.40 14.43 2.89 8.73 14.54
LUMP 2.33 8.15 12.75 2.04 7.93 12.45
ESMER 2.89 9.70 15.56 2.70 10.22 16.04

STELLA (Ours) 2.74 9.26 15.37 2.85 9.48 15.56
STELLA+ (Ours) 2.93 10.22 16.33 3.67 10.22 16.26

(b) Audiovisual event
localization

Method Acc

AV
E

Finetune 52.56
ER 54.98
MIR 56.13
DER++ 55.81
GMED 55.98
CLS-ER 56.39
LUMP 55.06
ESMER 55.60

STELLA (Ours) 56.68
STELLA+ (Ours) 56.68

Multitask 57.73

that our methods obtain general audio-video correlations that are transferable to retrieval tasks.

Audiovisual event localization. We conduct an audiovisual event localization (AVE) task to showcase the effectiveness
of our method in precisely aligning audio and video streams. Following the experimental setup outlined in (Lin et al.,
2023), we utilize the AVE dataset (Tian et al., 2018) for the experiment. To assess whether continually pre-trained models
can adapt to the downstream task involving the unseen dataset, we use the model pre-trained on all tasks in the sequence
within the Continual-VS experiment. The training process adheres to the hyperparameters described in Tab. 6, wherein
the backbone model remains frozen while training the linear classifier. We present the summarized result in Tab. 8 (b).
This result demonstrates that our method surpasses other baseline methods. This underscores the strength of our method in
adapting the downstream task that necessitates a sophisticated grasp of audio-video alignment at a high level.

Sound source localization. We provide more visualization results of the sound source localization in Fig. 13. Our method
consistently shows superior ability in locating potential sound sources in the visual scenes.

F. Hyperparamter Tuning Results

Table 9: Retrieval result by sampling ratios.

Ratio(%) A→V V→A
A ↑ F ↓ A ↑ F ↓

ρa

37.5 13.76 4.77 13.52 5.53
50 14.16 4.38 14.07 4.65

62.5 13.77 5.04 13.46 5.06

ρv

37.5 13.35 5.57 13.39 5.93
50 14.16 4.38 14.07 4.65

62.5 13.82 4.50 13.53 5.27

Patch sampling ratio. Central to our approach is the identification of
patches that exhibit a high localized alignment with their corresponding
modality pairs while being robust to catastrophic forgetting of learned repre-
sentation, enabling the retention of meaningful information. Achieving the
right balance in the sampling ratio is critical: an excessively low sampling
ratio hinders the model from accessing essential data, while an overly high
ratio hampers the model’s ability to disregard redundant or forget-inducing
information.

For the audio sampling ratio, we systematically assess three options —37.5%,
50%, and 62.5%— while maintaining the video sampling ratio ρv at
50%. Tab. 9 shows that sampling 50% of audio patches ensures high per-
formance compared to the other sampling ratios. It is noteworthy that the
other sampling ratios still yield competitive performance compared to the
baselines. As we transition to optimizing the sampling ratio for video patches, we conduct experiments using three sampling
ratios -37.5%, 50%, and 62.5%- alongside the audio sampling ratio ρa at 50%. As demonstrated in Tab. 9, employing a 50%
video sampling ratio ensures high performance.
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Figure 10: Modality gap estimation. (a): Average modality gap decline between the modality gap estimated at the
completion of the last task and the modality gap estimated at the completion of each task. (b): Estimation of modality gap
after the completion of each task (Continual-AS).

Table 10: Retrieval result by temperature
values.

β A→V V→A
A ↑ F ↓ A ↑ F ↓

0.1 13.91 5.42 14.23 4.97
0.4 14.16 4.38 14.07 4.65
0.5 13.37 5.27 13.50 5.84

Inference temperature in AVM module. In our approach, we actively
harness cross-attention maps from the AVM module computed in Equation 1.
During inference, we set the temperature hyperparameter β to 0.4 for the
Continual-VS experiments. To examine the significance of β, we explore
a range of the hyperparameter values, specifically 0.1, 0.4, and 0.5. The
results, as summarized in Tab. 10, indicate that the optimal temperature
values typically reside within the range of approximately 0.1 to 0.4. This
suggests the need for heightened emphasis on discriminative audio and
video patches in order that those patches are more frequently selected in our
selection framework in Equation 5 and in Algo. 1.

G. Additional Analysis of Modality Gap
Comprehensive analysis In the main paper, we examine the performance improvements of our approach in the context of
continual audio-video pre-training with respect to the modality gap. In this section, we conduct a more detailed analysis;
covering differences in the modality gap (Fig. 10 (a)), exploring the modality gap within the Continual-AS (Fig. 10 (b)), and
providing additional visualizations of the modality gap to support the effectiveness of our approach (Fig. 10 (c)).

In Fig. 10 (a), our approach stands out with the smallest average modality gap difference. However, our approach does not
exhibit high resistance to modality gap fluctuations within the Continual-AS experiment. An interesting observation emerges
when comparing the average modality gap difference with the average forgetting in Tab. 1; a smaller average modality gap
difference seems to correspond to lower average forgetting in the zero-shot retrieval tasks. This aligns with the relatively
high average forgetting of our approach in the Continual-AS experiment, suggesting that the modality gap difference holds
potential as a metric for assessing the extent of forgetting in audio-video correlation. Meanwhile, our approach consistently
maintains the highest modality gap in all pre-train tasks (Fig. 10 (b)), which explains the high average accuracy of our
approach in the Continual-AS retrieval tasks.

We take our analysis a step further by visually representing the modality gap. In Fig. 11 (a), we visualize evaluation
audio-video data pairs from the sports task in the Continual-VS experiments. Similarly, in Fig. 11 (b), we visualize data from
the human task in the Continual-AS experiments. In both visualizations, we use the models that completed the continual
pre-training phase. Remarkably, our approach consistently yields a larger gap in both cases. This suggests that the modality
gap established from the initial task (sports, human) is effectively maintained, enabling the models to distinguish between
different modalities, ultimately leading to enhanced performance.

Analysis on STELLA components We estimate the modality gap of two key components within our proposed method:
ELPP (Efficient Localized Patch Pooling Sec. 4.1) and RCA (Replay-guided Correlation Assessment Sec. 4.2). The ELPP
consistently exhibits the highest modality gap across the tasks, as depicted in Fig. 12 (a). This underscores the effectiveness
of the proposed method in Sec. 4.1 in identifying patches that demonstrate high localized alignment with their modality pairs.
Consequently, the ELPP achieves better audio and video clustering within the multimodal representation space, resulting in
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Figure 11: Modality gap visualization. (a): Visualizations of the modality gap corresponding to the sports task with the
model pre-trained up to the last task in the Continual-VS experiment. (b): Visualization of the modality gap corresponding
to the human task with the model pre-trained up to the last task in the Continual-AS experiment.

1 2 3 4 5 6 7 8
Pre-train task

0.44

0.48

0.52

D
is

ta
nc

e

VGGSound Modality Gap
STELLA
LPIS
RCA
ESMER

14.16 / 4.38
14.07 / 4.65

13.44 / 5.50
13.27 / 5.94

13.40 / 5.30
12.94 / 5.44

13.58 / 5.80
13.33 / 5.79

A → V (Avg / Fgt)
V → A (Avg / Fgt)

(a) Modality gap after each task (b) Modality gap average decline

Figure 12: Modality gap estimation for each component of our proposed method. (a): Estimation of modality gap after
completing each task. (b): Average decline in modality gap between the completion of the last task and the completion of
each task.

enhanced average accuracy in Tab. 3. This observation strongly supports our claim that the method outlined in Sec. 4.1
adeptly selects informative multimodal patches from raw data.

The RCA illustrates a relatively minor modality gap difference, as indicated in Fig. 12 (b). During the continual pre-training,
the modality gap between the audio and video exhibits robustness to the effect of changing distribution. Hence, the model
maintains learned audio-video alignment. This explains the small average forgetting exhibited by the RCA in Tab. 3. It
affirms our claim that the method introduced in Sec. 4.2 proficiently selects forget-robust patches.
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H. Audio Patch Selection Pseudo Code

Algorithm 1 Audio time chunk selection in a PyTorch-like Style.

# I_a: audio patch importance score
# P_a: audio pruning probability matrix
# L_c: audio time chunk size
# kappa_a: target number of audio tokens
# num_time: the number of tokens in time dimension
# num_freq: the number of tokens in frequency dimension
def audio_time_chunk_selection(I_a,P_a):

F_a=bernoulli(P_a)
F_a=F_a.reshape(num_time, num_freq)
F_a_t=F_a.sum(dim=1) # # of pruned patches
I_a_t=I_a.reshape(num_time, num_freq)
I_a_t=I_a_time.sum(dim=1) # Time-wise importance
I_a_c=avg_pool(I_a_t, kernel_size=L_c) # Chunk-wise importance
num_chunk=len(I_a_c)
t_select=multinomial(I_a_c, num_samples=num_chunk)
num_tokens=0
for j in range(num_chunk):

t=t_select[j]
num_prune=F_a_t[t*L_c:(t+1)*L_c].sum() # # of pruned patches
num_tokens+=(L_c*num_freq - num_prune) # Count # of patches
if num_tokens > kappa_a:

F_last=F_a[t*L_c:(t+1)*L_c].view(-1)
F_last_accum=cumsum(flip(∼F_last))
prune_tail_idx= F_last_accum == num_tokens-kappa_a
F_last[-(prune_tail_idx+1):]=True # Prune tail of last chunk
F_a[t*L_c:(t+1)*L_c]=F_last.reshape(num_time,num_freq)
for k in range(j+1, num_chunk):

t_prune=t_select[k]
F_a[t_prune*L_c:(t_prune+1)*L_c]=True

break
F_a=F_a.view(-1).float()
S_tilde_a=argsort(F_a) # Forget-robust audio sorted indices
return S_tilde_a

I. Algorithms of STELLA (Spatio-Temoporal Localized Alignment) and STELLA +

Algorithm 2 Continual Pre-training of STELLA

input Dataset Di, model fθ,i−1, AVM module hΘ,i−1, rehearsal
memoryM.

1: for batch (Xa, Xv) ∼ Di do
2: ka, qa,Aa, kv, qv,Av ← AVM(Xa, Xv) ▷ Eq. 1
3: Ia, Iv ← IMPORTANCE(Aa, Av) ▷ Eq. 2
4: k̂a, q̂a, k̂v, q̂v ← SORT(ka, qa, Ia,kv, qv, Iv) ▷ Eq. 3
5: Xp

a , X
p
v , q̂

p
a, q̂

p
v , I

p
a , I

p
v , C

p
a ,C

p
v ←M

6: Ca, Cv ← COMPARE(k̂a, q̂v, q̂
p
v , k̂v, q̂a, q̂

p
a) ▷ Eq. 4

7: X̂a, X̂
p
a ← PICK([Xa, X

p
a ], [Ia, I

p
a ], [Ca,C

p
a ])

8: X̂v, X̂
p
v ← PICK([Xv, X

p
v ], [Iv, I

p
v ], [Cv,C

p
v ]) ▷ Eq. 6

9: M←M∪ (Xa, Xv, q̂a, q̂v, Ia, Iv, Ca,Cv)

10: Θ← Θ− η∇hΘ,i−1 (Xa, Xv)

11: θ ← θ − η∇fθ,i−1

(
[X̂a, X̂

p
a ], [X̂v, X̂

p
v ]
)

12: end for

Algorithm 3 Continual Pre-training of STELLA+

input Dataset Di, model fθ,i−1, AVM module hΘ,i−1, rehearsal
memoryM.

1: for batch (Xa, Xv) ∼ Di do
2: ka, qa,Aa, kv, qv,Av ← AVM(Xa, Xv) ▷ Eq. 1
3: Ia, Iv ← IMPORTANCE(Aa, Av) ▷ Eq. 2
4: k̂a, q̂a, k̂v, q̂v ← SORT(ka, qa, Ia, kv, qv, Iv) ▷ Eq. 3
5: X̂p

a , X̂
p
v , q̂

p
a, q̂

p
v ←M

6: Ca, Cv ← COMPARE(k̂a, q̂v, q̂
p
v , k̂v, q̂a, q̂

p
a) ▷ Eq. 4

7: X̂a ← PICK(Xa, Ia,Ca, )

8: X̂v ← PICK(Xv, Iv,Cv) ▷ Eq. 6

9: M←M∪
(
X̂a, X̂v, q̂a, q̂v

)
10: Θ← Θ− η∇hΘ,i−1 (Xa, Xv)

11: θ ← θ − η∇fθ,i−1

(
[X̂a, X̂

p
a ], [X̂v, X̂

p
v ]
)

12: end for
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J. Visualization of Fading Audio-Visual Attention
As shown in Fig. 2 of the main paper, we tackle the problem of forgetting the past audio-video correlation by visualizing the
attention maps. In Fig. 14, we provide additional examples that vividly illustrate the challenge of forgetting past correlation
as the model undergoes pre-training on sequential tasks.

In the top-left example of Fig. 14, we observe a video example where a person is engaged in rope skipping. The initial
attention map concentrated on the feet ((b)). However, as the model adapts to new tasks, the attention map is shifted solely
to the person’s face ((c)), implying the gradual erosion of the correlation between the sound of rope skipping and the
corresponding jumping motion. In the top-right example of Fig. 14, the attention map undergoes an intriguing shift towards
an unrelated caption in the first two frames ((c)). Moving on to the middle-left example in Fig. 14, the model initially
demonstrates a keen understanding of the xylophone’s location where the sound originates ((b)). However, subsequent
training on additional tasks weakens auditory attention, and the model fails to locate the sounding region ((c)). This challenge
becomes more pronounced when multiple sounding objects are involved. In the middle-right example in Fig. 14, we explore
a scenario where a child is singing alongside a man playing the guitar. The initial visual attention map correctly identifies
both the guitar and the child’s mouth. Nevertheless, as the model undergoes continuous training, the correlation between
the singing voice and the child’s visual presence diminishes, and the model connects the sound with the guitar only ((c)).
Similarly, in the bottom-left example of Fig. 14, the visual attention map shifts from the horse to the human, accompanied by
the weakening of auditory attention towards the horse’s clip-clop sound ((b)). Lastly, in the bottom-right example of Fig. 14,
despite the presence of only one prominent sounding object, the bird, the visual attention map is activated on the uncorrelated
object. However, our approach successfully mitigates this forgetting problem, as demonstrated in (d) of the example, where
the attention maps remain consistent with the initial attention maps.

K. Limiations
Our approach involves an additional inference step for patch selection, leveraging the AVM module on top of the backbone
model. While this significantly reduces GPU memory consumption, it does incur additional computational overhead,
yielding a relatively small improvement in throughput. To address this challenge, one potential solution is to develop a
student model that integrates the AVM module and utilizes knowledge distillation to transfer audio-video representation
from the backbone model. Recognizing the importance of enhancing efficiency, we acknowledge the need for future research
to explore effective strategies for utilizing the AVM module. This avenue of improvement is a key component of our future
research.
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Figure 13: Sound source localization (a) Examples of raw video frames. (b)~(c): We visualize cross-attention maps using
cosine similarity between each video patch and averaged audio embedding. (d): We use the AVM module in STELLA,
continually pre-trained with the backbone mode, to visualize cross-attention maps. Our method is much more effective in
capturing potential sound sources compared to the ability of the backbone to capture the sources.
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Figure 14: Visualization of cross-attention maps. (a) Examples of raw data pairs. We visualize cross-attention maps of the pairs in (b).
The closer the color is to red, the higher the attention score. While the baseline model using DER++ attends to entirely different parts as
can be seen in (c), our method attends to a similar part even after being trained on two additional tasks as presented in (d). The wrong
attention region is marked in an orange circle.
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