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Abstract
How would randomly shuffling feature vectors
among nodes from the same class affect graph
neural networks (GNNs)? The feature shuf-
fle, intuitively, perturbs the dependence between
graph topology and features (A-X dependence)
for GNNs to learn from. Surprisingly, we observe
a consistent and significant improvement in GNN
performance following the feature shuffle. Hav-
ing overlooked the impact of A-X dependence
on GNNs, the prior literature does not provide
a satisfactory understanding of the phenomenon.
Thus, we raise two research questions. First, how
should A-X dependence be measured, while con-
trolling for potential confounds? Second, how
does A-X dependence affect GNNs? In response,
we (i) propose a principled measure for A-X de-
pendence, (ii) design a random graph model that
controls A-X dependence, (iii) establish a theory
on how A-X dependence relates to graph convo-
lution, and (iv) present empirical analysis on real-
world graphs that align with the theory. We con-
clude that A-X dependence mediates the effect of
graph convolution, such that smaller dependence
improves GNN-based node classification.

1. Introduction
Graph neural networks (GNNs) are functions of graph topol-
ogy and features. Understanding the conditions in which
GNNs become powerful is the key to their improvement
and effective applications. As such, many prior works have
investigated the conditions that affect GNN effectiveness,
especially from the node representation learning perspec-
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(a) Visualization of the feature shuffle. Features of the same class
nodes are shuffled. The shuffled node ratio is 0.6 in the example.
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(b) Accuracy gaps between the original and shuffled graphs.

Figure 1: An Intriguing Phenomenon. GCN performance
increases significantly over the feature shuffle, while those
of MLP and label propagation remain stationary.

tive (Oono & Suzuki, 2020; Abboud et al., 2021; You et al.,
2021; Wang & Zhang, 2022; Wei et al., 2022; Wu et al.,
2023; Baranwal et al., 2021; 2023).

However, in this work, we report an intriguing phenomenon
not well accounted for by the prior studies. How would
randomly shuffling feature vectors among nodes from the
same class affect GNNs? The feature shuffle, intuitively,
disrupts the dependence between graph topology and node
features (A-X dependence). Rather surprisingly, increasing
the shuffled node ratio consistently improves GCN (Kipf &
Welling, 2017) performance (Fig. 1). The performances of
MLP and label propagation (LP), however, remain the same
(for experiment details, refer to Sec. 5.1).

The prior studies on GNN theory do not provide a satisfac-
tory understanding of the phenomenon. One line of studies
indicates how class distribution on graph topology, such as
class-homophily, can be critical for effective GNNs (Luan
et al., 2022; 2023; Ma et al., 2022; Mao et al., 2023; Platonov
et al., 2023a). The feature shuffle, however, does not inter-
vene with label distribution because the class labels are not
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shuffled, causing the LP performance to be unchanged.

Some studies point out feature informativeness for node
class as another crucial factor for effective GNNs (Baranwal
et al., 2021; 2023; Wei et al., 2022; Wu et al., 2023). These
do not explain the reported phenomenon, either, since the
feature shuffle is done only among nodes from the same
class. Namely, feature informativeness for node class re-
mains the same, leaving the MLP performance unaffected.

Others stress GNN’s efficacy as a node signal denoiser (NT
& Maehara, 2019; Ma et al., 2021). From such perspective,
whether the signals are well denoised after graph convolu-
tion is important for effective node classification (Luan et al.,
2023). However, they do not discuss conditions in which the
convoluted features are well-denoised. The reason, thus, is
vague for why the feature shuffle affects GNN performance.

The limitation of the prior works in understanding the ob-
served phenomenon stems from overlooking the impact A-X
dependence on GNNs. Thus, we advance the findings from
prior works by investigating how A-X dependence affects
GNNs. We raise two research questions (RQs).

• RQ1. How should A-X dependence be measured, while
controlling for potential confounds?

• RQ2. How does A-X dependence affect GNNs?

In response, we propose a principled measure for A-X de-
pendence, class-controlled feature homophily (CFH), that
mitigates potential confounding by node class. We propose
a random graph model, CSBM-X, to control CFH. With the
measure, graph model, and feature shuffle, we establish a
theory that CFH mediates the effect of graph convolution.
Specifically, CFH moderates its force to pull each node fea-
ture toward the feature mean of the respective node class,
with smaller CFH increasing the force.

2. Preliminaries

Graphs. A graph G = (V,E) is defined by a node set V =
V (G) and an edge set E = E(G) ⊆ (V

2
). We denote an

edge between two nodes u and v as (u, v) ∈ E, and (u, v) =
(v, u) holds unless otherwise stated.

Let n = n(G) denote the number of nodes in G with V =
{vi∶ i ∈ [n]}. Let X = X(G) ∈ Rn×k denote node feature
matrix, where the i-th row corresponds to the feature vector
Xi ∈ Rk of node vi ∈ V , where k = k(G) is the feature
dimension. For each node vi ∈ V , its class is Yi ∈ [c], where
c is the number of node classes. Its neighbor set is Ni =
{vj ∈ V ∶ (vi, vj) ∈ E}. Its degree is di = ∣Ni∣, and its same-
and different-class degrees are d+i = ∣{vj ∈ Ni∶Yj = Yi}∣ and
d−i = ∣{vj ∈ Ni∶Yj ≠ Yi}∣, respectively, with di = d+i + d−i .

We define V ′i = V \{vi} as the set of nodes excluding vi.

Also, for each class ℓ ∈ [c], we use C+ℓ = {vi ∈ V ∶Yi = ℓ} to
denote node set of class ℓ, and C−ℓ = V \C+ℓ denotes the rest.

Feature distance (FD). For measuring feature distance
between classes, we adopt a simplified version of Bhat-
tacharyya distance (Kailath, 1967). Specifically, given two
data classes C0 and C1 with feature means µi ∈ Rk and
covariance matrices Σi ∈ Rk×k with i = 0 or 1 respectively,
we define the feature distance FD between C0 and C1 as:

FD(C0,C1) ∶=
√
(µ0 − µ1)⊺ (

Σ0 +Σ1

2
)
−1

(µ0 − µ1). (1)

A higher feature distance FD indicates a larger (normal-
ized) distance between the two classes, i.e., the two classes
are more distinct. If both classes follow a Gaussian distri-
bution, roughly speaking, the difficulty in classifying C0

and C1 decreases as feature distance FD(C0,C1) ∈ [0,∞)
increases (Kailath, 1967).

Homophily. From a network perspective, homophily (love
of the same) refers to the positive dependence between node
similarity and connection (McPherson et al., 2001). Het-
erophily (love of the different) is considered as the oppo-
site, describing the negative dependence in that dissimilar
nodes tend to connect (Rogers et al., 2014). Importantly, we
distinguish impartiality from both for networks having no
dependence between node similarity and their connection.

The vast majority of works on GNN-homophily connection
focus specifically on class-homophily. We use hc to denote
the class-homophily defined by Lim et al. (2021):

hc =
1

c
∑
ℓ∈[c]

max(
∑vi∈C+ℓ d

+
i

∑vi∈C+ℓ di

− ∣C
+
ℓ ∣
∣V ∣

, 0) (2)

Contextual stochastic block models (CSBMs). Stochas-
tic block models (SBMs) are widely used graph models
for network analysis (Holland et al., 1983), with distinct
communities, or blocks, consisting of same-class nodes.
CSBMs (Deshpande et al., 2018) supplement SBMs by con-
sidering node features. Recently, many researchers have
used CSBMs and developed their variants for GNN analy-
sis (Wei et al., 2022; Palowitch et al., 2022; Wu et al., 2023;
Baranwal et al., 2021; 2023; Luan et al., 2023), where they
directly control dependence between (i) topology and class
(i.e., class-homophily hc) and (ii) features and class (i.e.,
feature distance FD). It is, however, non-trivial to control
dependence between topology and features with the prior
CSBMs, while holding the other two dependence (i.e., hc

and FD) constant.

3. Measure and Patterns
In this section, we address the first research question (RQ1)
on the measure of A-X dependence (i.e., dependence be-
tween graph topology and features).
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3.1. Design Goals and Intuition

We target two central goals in designing A-X dependence
measure h̃(⋅). First, the measure h̃(⋅) should distinguish
positive, negative, and no dependence. Second, if a third
variable is available (i.e., node class Y ), the measure h̃(⋅)
should control its potential effects on A-X dependence.

Their intuition is as follows. Let us first illustrate the ex-
amples of positive and negative dependence. Consider a
friendship network (FN) of adults in the ages of 20-50s. Peo-
ple with similar political inclinations (PI) tend to become
friends, so FN positively depends on PI. People with care
need (CN) tend to seek friends without CN to receive their
support, making FN negatively dependent on CN.

Now, we further illustrate no dependence and class-control.
Consider the number of wrinkles (WK). People generally do
not make friends based on their WK, but WK still positively
depends on FN. This is because the age group (AG; i.e.,
node class) confounds the dependence between WK and FN.
Controlling for the effect of AG on WK, the dependence
between WK and FN should no longer exist.

3.2. Measure Design

To achieve the design goals, we propose Class-controlled
Feature Homophily (CFH) measure h̃(⋅).

Class-controlled features. Assuming a linear relation be-
tween classes and features, we mitigate their association to
define class-controlled features X ∣Y .

Xi∣Y =Xi −
⎛
⎝

1

∣C+Yi
∣ ∑vj∈C+Yi

Xj

⎞
⎠
. (3)

For intuition, consider the former example. Let AG be the
class and WK be the feature. Since AG affects WK, WK
distributions are different for each AG. However, the AG-
controlled WK, obtained with Eq. (3), would have similar
distributions across AGs. Namely, Eq. (3) mitigates the asso-
ciation between AG and WK. Eq. (3) is analogous to the vari-
able control method of partial and part correlation (Stevens,
2012). We discuss their connection in Appendix B.2.

Measuring CFH. We measure CFH h̃(⋅) with class-
controlled features X ∣Y . Let us define a distance function.

D1) Distance function d ∶ (V × 2V )↦ R≥0:

d(vi, V ′) ∶=
1

∣V ′∣ ∑vj∈V ′

∥(Xi ∣ Y ) − (Xj ∣ Y )∥2. (4)

Recall that V ′i = V \{vi}. Given the distance function
d(⋅), we define homophily baseline b(vi) = d(vi, V ′i ). Ho-
mophily baseline b(vi) can be interpreted as node vi’s ex-
pected (i.e., average) distance to random nodes or to its
neighbors Ni when no A-X dependence is assumed.

Based on the distance functions, we define node pair-level,
node-level, and graph-level CFHs as follows:

H1) Node pair-level CFH h(p)ij :

h(p)ij = h((vi, vj)∣X,Y,E) ∶= b(vi)−d(vi,{vj}). (5)

H2) Node-level CFH h(v)i :

h(v)i = h(vi ∣ X,Y,E) ∶= 1

∣Ni∣
∑

vj∈Ni

h(p)ij . (6)

H3) Graph-level CFH h(G):

h(G) = h(G ∣ X,Y,E) ∶= 1

∣V ∣ ∑vj∈V
h(v)j . (7)

Simply put, CFH h(⋅) measures neighbor distance relative
to homophily baseline b(⋅), and it meets the two design
goals discussed in Sec. 3.1. With the homophily baseline
b(⋅), h(⋅) distinguishes homophily (positive dependence),
heterophily (negative dependence), and impartiality (no de-
pendence). At the same time, by measuring the distance
with class-controlled features X ∣Y (see Eq. (4)), CFH h(⋅)
mitigates potential confounding by node class.

Finally, we normalize h(⋅) for good mathematical properties
(Lemma 3.1- 3.3), which allows for its intuitive interpreta-
tion (discussed in Sec. 3.3). 1

N1) Node-level normalization:

h̃(v)i =
h(v)i

max(b(vi),d(vi,Ni))
. (8)

N2) Graph-level normalization:

h̃(G) = h(G)

1

∣V ∣ max(∑vi∈V b(vi),∑vi∈V d(vi,Ni))
. (9)

Lemma 3.1. (Boundedness) h̃(G), h̃(v)i ∈ [−1,1], and the
bound is tight, i.e., infG h̃(G) = −1 and supG h̃(G) = 1.

Lemma 3.2. (Scale-Invariance) h̃(vi∣ X, ⋅) = h̃(vi∣ cX, ⋅)
and h̃(G∣ X, ⋅) = h̃(G∣ cX, ⋅), ∀c ∈ R\{0}.

Lemma 3.3. (Monotonicity) Fix features of vj ∈ V \Ni,
h̃(v)i is a monotonically decreasing function of d(vi,Ni).

All the proofs are in Appendix A.

1For completeness, if b(⋅) = 0, we let h̃(v)i , h̃(G) = 0.
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Figure 2: Benchmark Graph Statistics. Graph-level
CFH scores h̃(G) (i) are generally positive and small, with
(ii) low correlation to class-homophily hc.

3.3. Measure Interpretation

We first focus on the node-level interpretation of CFH h̃(⋅).
Recall that d(vi,Ni) and b(vi) respectively represent node
vi’s distance to neighbors and random nodes.

Sign. Node-level CFH h̃(v)i > 0 means that the node vi
is closer to its neighbors than to random nodes and, thus,
homophilic. h̃(v)i < 0 means that the node vi is farther to its
neighbors than to random nodes and, thus, heterophilic.

Zero. Node-level CFH h̃(v)i = 0 indicates that the node vi
has the same distance to its neighbors and to random nodes,
suggesting impartiality or no A-X dependence. Several
different cases entail h̃(v)i = 0 (in expectation). For example,
(i) when the neighbors of vi are chosen uniformly at random
from all the other nodes regardless of their features or (ii)
when all the nodes have the same feature, E[h̃(v)i ] = 0.

Magnitude. Increasing a node vi’s distance to its neighbors
reduces node-level CFH h̃(v)i (Lemma 3.3). We rephrase
Eq. (8) as follows:

h̃(v)i =
⎧⎪⎪⎨⎪⎪⎩

1 − d(vi,Ni)
b(vi)

, if d(vi,Ni) ≤ b(vi),
b(vi)

d(vi,Ni)
− 1, if d(vi,Ni) > b(vi).

Intuitively, a node vi is ∣h̃(v)i ∣
1−∣h̃(v)i ∣

times closer (or farther) to its

neighbors than to random nodes, if h̃(v)i > 0 (or < 0).

Summary. In summary, for each node vi, its distance to
random nodes (i.e., b(vi)) serves as an anchor to determine
the sign and magnitude of its CFH h̃(v)i , making it readily
interpretable and comparable across different graphs.

Graph-level interpretation. A graph-level CFH h̃(G) is
an aggregation of node-level CFH h(v)i ’s. Details are in
Appendix B.

3.4. Patterns in Benchmark Datasets

Here, we analyze node classification benchmark datasets
using CFH h̃(⋅). First, we measure graph-level CFH h̃(G)

in 24 datasets (Fig. 2). Most of the graphs (23 out of 24)
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Figure 3: The Effect of Feature Shuffle on CFH. Both
graph- and node-level CFH scores, h̃(G) and h̃(v)i , tend to
approach zero over the feature shuffles.

have h̃(G) scores below 0.13, and 16 graphs have positive
h̃(G) scores. Their mean ∣h̃(G)∣ is 0.06. Recall that the full
reachable range of h̃(G) is [−1,1] (Lemma 3.1).

Observation 1. The real-world graph benchmarks tend to
show small, positive CFH scores.2

We further analyze the relation between CFH h̃(G) and class-
homophily hc (Fig. 2). Surprisingly, their correlation is low
(Pearson’s r = 0.293, Kendall’s τ = 0.196) and not statisti-
cally significant (p value = 0.164 and 0.191, respectively).

Observation 2. In the real-world graph benchmarks, CFH
and class-homophily have a small, positive correlation.

From Observations 1-2, we conclude that CFH h̃(⋅) and
class-homophily hc show distinct patterns in the real-world
benchmark graphs. We, thus, argue that investigating the
impact of CFH h̃(⋅) for GNNs has a unique significance.

Lastly, we examine how the feature shuffle (recall Fig. 1(a))
affects CFH. For graph-level CFH h̃(G), increasing the shuf-
fled node ratio reduces its magnitude ∣h̃(G)∣ (Fig. 3). Also,
the distribution of node-level CFH scores (h̃(v)i ’s) tends to
center around 0 after the feature shuffle. We find similar
results in 19 out of 24 datasets, while the remaining five do
not fully obey the pattern.

Observation 3. CFH scores tend to approach zero after
shuffling the features of nodes from the same class.

In later sections, Observation 3 serves to bridge a GNN
theory and GNN performance in the real-world graphs, ex-
plicating the intriguing phenomenon (Fig. 1).

To further corroborate each Observation, we provide more
in-depth analysis in Appendix C, together with dataset de-
scription and statistics.

2By small CFH scores, we mean the distances from nodes
to their neighbors are highly close to their homophily baselines,
numerically evidenced by the mean ∣h̃(G)∣ of 0.06.
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4. Graph Model and GNN Theory
We first address the second research question (RQ2) theo-
retically with a random graph model.

RQ2.1 [Graph Model and Theory]. How does A-X depen-
dence affect graph convolution in a random graph model?

4.1. Graph Model: CSBM-X

CSBM-X overview. To control class-controlled feature
homophily (CFH) h̃(⋅) with a graph model, we propose
CSBM-X. Compared to the previous CSBMs, CSBM-X is
equipped with a new A-X dependence strength parameter
τ . We provide a verbal description here, and its formal
mathematical expression can be found in Appendix D.

CSBM-X uses (n,µ0, µ1,Σ0,Σ1, d
+, d−, τ) as its parame-

ters. It initializes n (assume even) number of nodes and
equally divides them into two classes. For each node vi,
based on its class Yi, CSBM-X samples its feature Xi from
a Gaussian distribution with a mean vector µYi

and a covari-
ance matrix ΣYi

(i.e., Xi = N (µYi
,ΣYi
)).

Then, directed edges are sampled based on the node features
X and classes Y , where parameter τ influences the sam-
pling weights Pij’s. Specifically, CSBM-X first computes
neighbor sampling weights Pij’s as follows:

Pij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp(τh(p)ij )
∑t∈C+

Yi
\{vi} exp(τh

(p)
it )

, if Yi = Yj ,

exp(τh(p)ij )
∑t∈C−

Yi

exp(τh(p)it )
, if Yi ≠ Yj .

A positive (or negative) τ exaggerates neighbor sampling
weight Pij’s among the node pairs with higher (or lower)
pair-level CFH h(p)ij (Eq. (5)). By the neighbor sampling
weights Pij’s, for each node vi, CSBM-X samples d+

same-class (and d− different-class) neighbors from the
same-class node set C+Yi

\{vi} (and different-class node
set C−Yi

) without replacement. With its sampled nodes,
neighbors, features, and classes, CSBM-X returns its graph
G ∶= G(n,µ0, µ1,Σ0,Σ1, d

+, d−, τ) = (V,E,X,Y ).

CSBM-X properties. The key innovation of CSBM-X in-
volves satisfying good properties in controlling dependence
among classes Y , features X , and graph topology A. First,
the parameters (µ0, µ1,Σ0,Σ1) control feature distance FD
(Eq. (1); X-Y dependence). Second, the parameters (d+, d−)
control hc (Eq. (2); A-Y dependence). Last, the parameter
τ controls CFH h̃(⋅) (Eqs. (8)-(9); A-X dependence).

Existing CSBMs can also control X-Y and A-Y depen-
dence (Deshpande et al., 2018; Abu-El-Haija et al., 2019;
Chien et al., 2021; Palowitch et al., 2022; Baranwal et al.,
2023; Luan et al., 2023; Wang et al., 2024). However, the

proposed CSBM-X further controls A-X dependence (CFH
h̃(⋅)), satisfying two additional good properties. 3

Lemma 4.1 (τ controls CFH h(⋅) precisely). Given 0 <
max(d+, d−) < n

2
and fix the other parameters except for

τ . (i) E[h(G)] strictly increases as τ increases. (ii) When
Σ0 = Σ1 ≠ 0, E[h(G)] = 0 if and only if τ = 0.
Lemma 4.2 (τ controls CFH h(⋅) only). Fix the other pa-
rameters except for τ , the FD and hc of G are constant
regardless of the value of τ .

The proofs are in Appendix A. In concert, the above proper-
ties highlight that CSBM-X flexibly, yet precisely, controls
the dependence among classes Y , features X , and topology
A in the generated graph G’s.

4.2. Graph Convolution in CSBM-X Graphs: Theory

In this section, we theoretically analyze the relationship
between CFH h̃(⋅) and graph convolution.

Analysis setting. For simplicity, we assume that the fea-
tures are (i) 1-dimensional (µ0, µ1,Σ0,Σ1 ∈ R) and (ii)
symmetric with identical variances (µ0 = −µ1 < 0 and
Σ0 = Σ1 = 1). We focus on an asymptotic setting with
(iii) the number of nodes n → ∞. (iv) The same- and
different-class degree parameters respectively are d+ = np+
and d− = np−, with fixed p− ≠ p+ ∈ (0, 1

2
).

Following some prior works on GNN theory (Wu et al.,
2023; Luan et al., 2023), we define graph convolution as
D−1AX , a convolution of feature matrix X on an adjacency
matrix A left-normalized by a (diagonal) degree matrix D.

Given the setting, after a graph convolution, the expected
feature means of the two classes are constant and symmetric
regardless of parameter τ . Specifically, the expected means
are d−−d+

d++d−µ1 for class-0 and d+−d−
d++d−µ1 for class-1. Thus, we

consider a classifier F predicting node classes as follows:

F(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if x ≥ 0,
0 otherwise.

Theoretical analysis. We analyze how parameter τ , con-
trolling for CFH h̃(⋅), affects the Bayes error rate of the clas-
sifier F , given the convoluted node features (i.e., features
after convolution D−1AX). Formally, we denote the ex-
pected Bayes error rate of F for classifying the two classes
in a CSBM-X graph G(⋅, τ) as BF(G(⋅, τ)).

Theorem 4.3. Fix the other parameters except for τ , af-
ter a step of graph convolution, BF(G(⋅, τ)) is minimized
at τ = 0 and strictly increases as ∣τ ∣ increases, i.e.,
argminτ BF(G(⋅, τ)) = 0; BF(G(⋅, τ0)) < BF(G(⋅, τ1))
for any τ0 and τ1 such that ∣τ0∣ < ∣τ1∣ and τ0τ1 > 0.

3In theoretical statements, we focus on unnormalized CFH
h(⋅) for simplicity.
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Figure 4: Visual Intuition of Theorem 4.3. When CFH is low (h̃(G) ≈ 0), the feature distribution of each class shrinks
faster (denoted by the arrows) by graph convolution, resulting in a lower Bayes error rate. Namely, the power to pull node
features towards the feature mean of each class becomes stronger with decreasing ∣h̃(G)∣.
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Figure 5: The Simplified GNN Performance in CSBM-X Graphs. Consistent with Theorem 4.3, for given feature distance
FD > 0 and class homophily hc > 0, the simplified GNN performance increases as graph-level CFH h̃(G) → 0 (i.e., τ → 0).

Proof sketch. WLOG, assume a node vi ∈ V is assigned to
class-1 (i.e., Yi = 1) and has class-controlled feature xi (i.e.,
Xi = µ1 + xi). 4

We obtain closed-form formulae of the distributions of (i)
edge sampling probabilities and, subsequently, (ii) neigh-
bor sampling probabilities. This allows us to calculate the
distribution of class-controlled, convoluted node features.

E[xN] = ∫
∞

−∞
xPr[xN = x]dx

=
τ (erfc ( τ−xi√

2
) − exp (2τxi)erfc ( τ+xi√

2
))

erfc ( τ−xi√
2
) + exp (2τxi)erfc ( τ+xi√

2
)

,

where xN denotes the class-controlled feature of node vi’s
neighbor and erfc denotes the complementary error function
of the Gaussian error function.

Then, we obtain a closed-form formula of BF(G(⋅, τ)).

BF(G(⋅, τ)) = ∫
∞

−∞
Pr[F(xi) = 0]Pr[xi ∣ Yi = 1]dxi

n→∞ÐÐ→ ∫
∞

−∞
1[E[xN] <

d− − d+

d− + d+
µ1]φ[xi]dxi, (10)

where φ is the PDF of the standard Gaussian distribution.
By analyzing the derivatives of the formulae, we show that
BF(G(⋅, τ)) is minimized at τ = 0 and increases as ∣τ ∣
increases in both positive and negative directions. The full
proof is in Appendix A.

4Recall that class-controlled feature xi = (Xi∣Y ) in Eq. (3).

Summary. For each class ℓ’s convoluted feature distri-
bution, degree parameters (d+, d−) and the feature mean
parameters (µ0, µ1) determine its mean, while A-X depen-
dence strength parameter τ determines the distance between
each node and the mean (or the distribution variance; see
Eq. (10) and Fig. 4). Thus, the simplified GNN’s Bayes
error rate BF(G(⋅, τ)) decreases as ∣τ ∣ decreases, reaching
its minimum at τ = 0 (Theorem 4.3). 5 With Lemma 4.1,
we conclude that BF(G(⋅, τ)) is the lowest when CFH h(G)

is zero (i.e., no A-X dependence).

4.3. Empirical Elaboration on Theory

Here, we empirically validate and elaborate on Theorem 4.3.

Experiment setting. We generate CSBM-X graphs with
various parameter configurations. We fix the number of
nodes n = 10000 and node degree (d+ +d−) = 20, assuming
sparse graph topology. The features in each class are sam-
pled from a Gaussian distribution. The generated graphs
have a wide range of feature distance FD, class-homophily
hc, and CFH h̃(⋅).

• FD: ∣µ0 − µ1∣ ∈ {0, 1/8, 1/4, 1/2, 1}; Σ0 = Σ1 = 1

• hc: d+ ∈ {10,11, . . . ,18,19}; d− = 20 − d+,

• h̃(⋅): τ ∈ {−1.5,−1.4, . . . ,−0.1,0,0.1, . . . ,1.4,1.5}.
5The graph convolution followed by the defined classifier F

can be considered a simplified GNN (Wu et al., 2019).
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On the CSBM-X graphs G’s, we train a simplified GNN
D−1AXW , where W ∈ R is a learnable parameter. We
report the test accuracy averaged over 5 trials, each with a
train/val/test split of 50/25/25.

Finding 1 (Effect of h̃(⋅)). As shown in Fig. 5, given class-
homophily hc > 0 (i.e., degree parameters d+ > d−) and
feature distance FD > 0 (i.e., feature mean parameters µ0 ≠
µ1), the simplified GNN achieves the best accuracy when
graph-level CFH h̃(G) ≈ 0, and the accuracy decreases as
∣h̃(G)∣ increases, in both positive and negative directions.

Finding 2 (Interplay among FD, hc, and h̃(⋅)). Aligned
with our theoretical outcomes (Eq. (10), Fig. 4), class-
homophily hc and feature distance FD moderate the benefi-
cial effect of small h̃(⋅) (Fig. 5). For understanding, recall
that our theoretical findings roughly indicate that FD and
hc affect the mean, whereas h̃(⋅) the variance, of the convo-
luted feature distribution of each class. Intuitively, consider
the two cases below.

If feature distance FD and class homophily hc are moderate-
sized, the convoluted feature means of the two classes would
be somewhat distant. Small h̃(⋅), then, can significantly ben-
efit GNNs, since small variances of the two feature distri-
butions would markedly reduce their overlap. A very small
(or large) FD and hc, on the contrary, would cause the con-
voluted feature distributions to be too close (or too distant).
Then, reducing variances of the convoluted feature distribu-
tions may not significantly improve GNNs, mitigating the
beneficial effect of h̃(⋅).

In conclusion, the empirical outcomes are highly consistent
with Theorem 4.3. In Appendix D, we report consistent
results with (i) two graph convolution layers, (ii) symmetri-
cally normalized graph convolution, (iii) high-dimensional
X , (iv) imbalanced variances Σ0 ≠ Σ1, (v) larger A-X de-
pendence strength ∣τ ∣’s, and (vi) a more complex version of
CSBM-X reflecting a power-law degree distribution.

5. Feature Shuffle in Real-World Graphs
In this section, we finalize our investigation of the second
research question (RQ2) with the feature shuffle.

RQ2.2 [Feature Shuffle]. In real-world graphs, how does
reducing A-X dependence with feature shuffle affect GNNs?

5.1. Experiment Setting

For each class, we randomly choose the nodes to be shuf-
fled by a given shuffled node ratio ∈ {0.00,0.01, ...,1.00}.
For the chosen same-class nodes, their feature vectors are
shuffled randomly. To ensure that the train/val/test split is
not affected, shuffle is done only within the same split.

The feature shuffle can reduce A-X dependence (i.e., CFH

h̃(⋅); Observation 3) without perturbing X-Y and A-Y de-
pendence, providing a suitable experimental setting to an-
swer RQ2. Namely, the feature shuffle serves to generate
synthetic versions of the benchmark graphs.

For each shuffled graph, we initialize, train, and evaluate a
GNN model. We report the mean test accuracy over 5 trials,
with a train/val/test split of 50/25/25. For the GNN model,
we use GCNII (Chen et al., 2020), GPR-GNN (Chien et al.,
2021), and AERO-GNN (Lee et al., 2023). We mainly
use GCNII due to its (i) non-adaptive graph convolution
layer and (ii) empirical strengths in both high and low class-
homophily hc graphs. For more training details, refer to
Appendix G.

5.2. Connecting Theory and Real-World Graphs

High class-homophily graphs. As shown in Fig. 6, in all
12 high class-homophily hc benchmark datasets, GCNII
performance improves consistently over increasing shuf-
fled node ratio (the mean increase of 4%p). The largest
performance gain is 10%p in the Cora-Full dataset.

Low class-homophily graphs. Meanwhile, in low class-
homophily hc benchmark datasets, GCNII shows small to
no performance improvement in 11/12 datasets (the mean
increase of 0.5%p; Fig. 7). As demonstrated with CSBM-
X (Fig. 5), low class-homophily hc reduces the beneficial
effect of small A-X dependence in real-world graphs. Unex-
pectedly, in the Roman-Empire dataset, GCNII suffers from
a steady performance decline over increasing shuffled node
ratio. The reason may relate to its abnormally large diameter
of 6,824. We provide an in-depth analysis in Appendix C.4.

The role of FD. Increasing feature noise generally de-
creases feature distance FD. Specifically, we randomly
chose 50% of all nodes and randomly permuted the fea-
ture vectors irrespective of their classes to add such noise.
Fig. 8 shows that, after adding the noise, the slope of perfor-
mance over the feature shuffles becomes smaller, suggesting
that significantly increasing the feature noise reduces the
beneficial effect of the feature shuffle. The finding echoes
the results from the CSBM-X experiment (Fig. 5), such that
FD moderates the beneficial effect of low A-X dependence.

Other GNN architectures. We use other GNN architec-
tures to test if the effect of the feature shuffle relies on GNN
architecture choice. Specifically, we use GPR-GNN, a de-
coupled GNN with an adaptive graph convolution. For an
attention-based GNN, we use AERO-GNN, capable of stack-
ing deep layers. In the considered models, the trends are
similar to those of GCNII (Fig. 9), suggesting that the other
GNN architectures also leverage small A-X dependence to
improve their prediction. We also found consistent results
with transformer- and neural-ODE-based GNNs (Gravina
et al., 2023; Deng et al., 2024).
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Proximity-based features. GNN node classification per-
formance often degrades when using proximity-based infor-
mation as the only node features (Duong et al., 2019; Cui
et al., 2022; Lee et al., 2024). We find consistent results.
However, we are astonished to find that, after the feature
shuffle, a GNN trained with proximity-based features can be
as competitive as the one trained with the original features
(Fig. 10). The results highlight that, given some feature
distance FD and class-homophily hc, reducing A-X depen-
dence can improve GNN regardless of the feature types.

In summary, the results with the real-world graphs and ad-
vanced GNNs are well-aligned with the theoretical results,
underscoring the validity and generalizability of the pro-
posed theory. In Appendix E, we further report consistent
results with lower train node ratios.

6. Discussion
In this work, we analyze the impact of A-X dependence (i.e.,
dependence between graph topology and node features) on
GNNs with (i) a class-controlled feature homophily (CFH)
measure h̃(⋅), (ii) a random graph model CSBM-X, and (iii)
the feature shuffle. In both CSBM-X and the real-world
graphs, we demonstrate that A-X dependence, measured by
CFH, significantly influences GNN performance.

GNN theory: the prior literature. The early studies
found some failure cases of GNNs. NT & Maehara (2019)
claimed that a graph convolution layer is simply a low-pass
filter for node features. Under noisy features and non-linear
feature spaces, they showed that GNN-based node classi-
fication may readily become ineffective. Oono & Suzuki
(2020) further showed that over-smoothing of node features
in GNNs may inevitably occur at infinite model depth.

The following works analyzed how GNNs behave at shal-
lower model depths, demonstrating that the effect of graph
convolution depends on feature informativeness, class-
homophily, and node degree. Baranwal et al. (2021) fo-
cused on how they let GNNs obtain more linearly separable
features for each class. Wei et al. (2022) studied how the fac-
tors interact with GNNs’ non-linearity, and Wu et al. (2023)
investigated their role in triggering over-smoothing.

Aligned with the theory, low class-homophily (often just
called heterophily) has received significant attention as
GNNs’ ‘nightmare.’ A stream of empirical findings contin-
ued to show that GNN performance drops significantly in
low class-homophily benchmark datasets (Pei et al., 2020;
Zhu et al., 2020; 2021; Chien et al., 2021), and some works

6CML, SQR, RM-Emp, and AMZ-Rts respectively stand for
Chameleon, Squirrel, Roman-Empire, and Amazon-Ratings.

7Out-of-memory occurs when using adjacency matrix as the
node features for Ogbn-ArXiv.

investigated the relationship between low class-homophily
and over-smoothing (Bodnar et al., 2022; Yan et al., 2022).

However, studies began to discover that low class-
homophily, per se, does not deteriorate GNN performance.
Ma et al. (2022) and Platonov et al. (2023a) demonstrated
that as long as the class distribution is informative w.r.t.
node class, GNNs can effectively perform node classifica-
tion even with low class-homophily.

Recently, studies have delved into how mesoscopic pat-
terns of class-homophily affect GNNs. Luan et al. (2023)
(roughly) argued that, for GNNs to well-classify a node
class, its ‘intra-class distance’ should be smaller than the
‘inter-class distance’ after graph convolution. That is, low
class-homophily may trigger the ‘inter-class distance’ to be
smaller to degrade GNN performance. Mao et al. (2023)
investigated mixed patterns of class-homophily and het-
erophily, showing that GNNs better classify the nodes with
the majority pattern in the mixture. Lastly, Wang et al.
(2024) investigated an array of low class-homophily pat-
terns and showed that there exist good, mixed, and bad
patterns for GNNs to learn from.

GNN theory: the present work. Not to mention that the
role of A-X dependence (i.e., CFH h̃(⋅)) has not been ade-
quately addressed by the prior literature, the present work
can also be interpreted as an extension of the works on
homophily-GNN connection to continuous feature domain.
Intuitively, a large homophily slows feature mixing by graph
convolution, and a small homophily accelerates it. From
such a perspective, our conclusion that CFH should ideally
be small, while class-homophily be large, is an intuitive out-
come. To better classify node classes, the mixing between
classes should occur at a slow rate, whereas the mixing
within each class should occur faster.

To conclude, we argue that CFH mediates the effect of
graph convolution by moderating the force to pull each node
feature toward the feature mean of the respective node class.
From the node classification perspective, even with high
class-homophily and informative features, a large CFH can
result in degraded GNN performance (Fig. 5).

The central implications are two-fold. In hindsight, our find-
ings in concert suggest that the recent success of GNNs may
have relied on the generally small CFH of the benchmark
datasets. Looking forward, investigating the role of CFH on
GNNs is a promising research direction.

Limitations and future works. We close with our discus-
sion on limitations and potential research directions. First,
we did not provide new benchmark datasets or GNNs that
address varying levels of CFH. The current benchmark
datasets generally have low and positive CFH (see Observa-
tion 1). According to our findings, the existing GNNs may
significantly underperform in datasets with large CFH. Thus,
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Figure 7: GNN Performance After the Feature Shuffles:
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CSBM-X (Theorem 4.3; Fig. 5; low hc case), the effect of
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Figure 8: GNN Performance After the Feature Shuffles:
Noisy Features. Consistent with the findings from CSBM-X
(Theorem 4.3; Fig. 5; low FD case), the effect of the feature
shuffle is smaller with noisy features.

proposing new datasets with a large and/or negative CFH
and designing methods for such datasets would be valuable
contributions.

Second, we did not explore potential applications of our
findings. Low CFH can significantly contribute to GNN
performance (see Fig. 6). The feature shuffle algorithm in
Sec. 5, however, requires test labels, which are not known,
and CFH values are also not known without test labels. Thus,
a method that estimates and adaptively lowers CFH, while
keeping class-homophily and feature informativeness intact,
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Figure 9: GNN Performance After the Feature Shuffles:
Different Models. The adaptive convolution- and attention-
based GNNs (GPR-GNN and AERO-GNN, respectively)
generally show similar trends with GCNII.
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Figure 10: GNN Performance After the Feature Shuf-
fles: Proximity-Based Features. Regardless of the feature
types, the feature shuffle improves GNN node classification
performance. 7

may substantially improve GNN performance. We explore
a potential application in Appendix F.

Last, generalization of our theoretical findings is limited
since both CFH measure h̃(⋅) and CSBM-X, implicitly and
explicitly, assume that the relation between node features
and class is linear (see Eq. (3)) and that the node-level CFH
distribution is symmetric and unimodal (see Eq. (7)). How-
ever, the patterns in the real-world graphs should be more
complex. Exploring how more realistic patterns interact
with GNNs would be a valuable next step.
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A. Proofs and Additional Theoretical Results
A.1. Proofs for Measure h̃(⋅)

Throughout our proof w.r.t. measure h̃(⋅), let us assume that a graph G has no isolated nodes. Also, recall that if b(⋅) = 0
(i.e., all nodes have the same class-controlled features), we define h̃(v)i and h̃(G) as 0.

Proof of Lemma 3.1 (Boundedness).

Proof. Bound of h̃(v)i . The node-level CFH h̃(v)i is defined as follows:

h̃(v)i =
h(v)i

max(b(vi),d(vi,Ni))
= b(vi) − d(vi,Ni)
max(b(vi),d(vi,Ni))

.

L2 norm is non-negative, and thus, both d(⋅), b(⋅) are non-negative. Since ∣b(vi) − d(vi,Ni)∣ ≤ max(b(vi),d(vi,Ni)),
h̃(v)i ∈ [−1,1] holds, completing the proof of bound for node-level CFH h̃(v)i .

Proof. Bound of h̃(G). The graph-level CFH h̃(G) can be rewritten as:

h̃(G) = h(G)

1

∣V ∣ max(∑vi∈V b(vi),∑vi∈V d(vi,Ni))

=
1

∣V ∣ ∑vi∈V h(v)i

1

∣V ∣ max(∑vi∈V b(vi),∑vi∈V d(vi,Ni))

= ∑vi∈V b(vi) −∑vi∈V d(vi,Ni)
max(∑vi∈V b(vi),∑vi∈V d(vi,Ni))

.

For the same reason as h̃(v)i , h̃(G) ∈ [−1,1], completing the proof of bound for graph-level CFH h̃(G).

Proof. Existence Claim. We show that the upper/lower bound is achievable under a non-asymptotic/asymptotic setting.
First, we show that supG h̃(G) = 1 holds. Consider a disconnected G such that class-controlled features of neighboring
nodes are all equal (i.e., Xi∣Y = Xj ∣Y,∀(vi, vj) ∈ E), while that of disconnected nodes are different (i.e., Xk∣Y ≠ Xℓ∣Y ,
where there does not exist a path between vk and vℓ). In such a case, b(vi) ≠ 0 and d(vi,Ni) = 0 hold ∀vi ∈ V . Thus,
h̃(v)i = 1,∀vi ∈ V also holds, and consequently, maxG h̃(G) = supG h̃(G) = 1 holds.

Second, we show that infG h̃(G) = −1 holds. Consider a case where d(vi,Ni)→∞ and o(b(vi)) < o(d(vi,Ni)),∀vi ∈ V
hold. In such a case, the following holds:

lim
d(vi,Ni)→∞

h̃(v)i =
b(vi) − d(vi,Ni)

d(vi,Ni)
≡ −d(vi,Ni)

d(vi,Ni)
= −1,∀vi ∈ V. (11)

Consequently, infG h̃(G) = −1 hold. Note that the second result is derived under the asymptotic scenario, and thus, the result
does not indicate the exact minimum.

Proof of Lemma 3.2 (Scale-Invariance).

Proof. Scale-Invariance of h̃(v)i . Denote the distance function (Eq. (4)) with node feature X as d′(vi, V ′i ,X). Then, for
any c ∈ R\{0}, the following holds:

d′(vi, V ′i , cX) ∶=
1

∣V ′i ∣
∑

vj∈V ′

i

∥(c ⋅Xi∣Y ) − (c ⋅Xj ∣Y )∥2

= ∣c∣ ⋅
⎛
⎝

1

∣V ′i ∣
∑

vj∈V ′

i

∥(Xi∣Y ) − (Xj ∣Y )∥2
⎞
⎠

= ∣c∣ ⋅ d′(vi, V ′i ,X).
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Likewise, we denote a homophily baseline b(vi) with a node feature X as b′(vi,X). Then, since b(vi, cX) is a special case
of Eq. (4), the following holds: b′(vi, cX) = ∣c∣ b′(vi,X). Lastly, we denote h̃(v)i with a node feature X as h̃(v)i (X). Then,
by showing the below, we finalize the proof for node-level CFH h̃(v)i .

h̃(v)i (cX) =
b′(vi)(cX) − d′(vi,Ni, cX)

max(b′(vi, cX),d′(vi,Ni, cX))

= ∣c∣ ⋅ (b′(vi,X) − d′(vi,Ni,X))
∣c∣ ⋅ (max(b′(vi,X),d′(vi,Ni,X)))

= b′(vi,X) − d′(vi,Ni,X)
max(b′(vi,X),d′(vi,Ni,X))

= h̃(v)i (X).

Proof. Scale-Invariance of h̃(G). We denote h̃(G) with a node feature X as h̃(G)(X). Then, we finalize the proof for
graph-level CFH h̃(G) by extending the above results.

h̃(G)(cX) = ∑vi∈V b(vi, cX) −∑vi∈V d(vi,Ni, cX)
max(∑vi∈V b(vi, cX),∑vi∈V d(vi,Ni, cX))

=
∣c∣ ⋅ (∑vi∈V b(vi,X) −∑vi∈V d(vi,Ni,X))

∣c∣ ⋅ (max(∑vi∈V b(vi,X),∑vi∈V d(vi,Ni,X)))

= ∑vi∈V b′(vi,X) −∑vi∈V d′(vi,Ni,X)
max(∑vi∈V b′(vi,X),∑vi∈V d′(vi,Ni,X))

= h̃(G)(X).

Proof of Lemma 3.3 (Monotonicity).

Proof. First, since node features of vk ∈ V \Ni are fixed, we rewrite homophily baseline b(vi) as b(vi) = ∣Ni ∣
∣V ′

i ∣
d(vi,Ni) +C,

where C is a fixed constant. For simplicity, denote d(vi,Ni) and ∣Ni ∣
∣V ′

i ∣
as K and a, respectively. Thus, the following holds:

b(vi) ∶= aK +C. We break the rest of the proof down into two parts.

Case 1: b(vi) ≥ d(vi,Ni). Node-level CFH h̃(v)i can be rewritten as

h̃(v)i =
b(vi) − d(vi,Ni)

b(vi)
= (a − 1)K +C

aK +C
∂h̃(v)i

∂K
= −1
(aK +C)2

< 0. (12)

Case 2: b(vi) < d(vi,Ni). Node-level CFH h̃(v)i can be rewritten as

h̃(v)i =
b(vi) − d(vi,Ni)

d(vi,Ni)
= (a − 1)K +C

K

∂h̃(v)i

∂K
= a − 2

K2
< 0, ∵a < 1. (13)

By merging the result of Eq (12) and Eq (13), the monotonic decreasing property is guaranteed.

A.2. Proofs for CSBM-X Properties

Proof of Lemma 4.1 (τ controls CFH h(⋅) precisely).

Proof. Regarding claim (i). When the other parameters are fixed, for each X = (Xi)i∈[n] ∈ Rn×k and Y = (Yi)i∈[n] ∈ [c]n.
The joint probability Pr[(X ,Y)] is fixed regardless of the value of τ . Moreover, for each node vi, the numbers of
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same-class and different-class neighbors are fixed. Now, let us fix any X and Y , it suffices to show for each node vi,
E[h(v)i ∣ τ1] < E[h

(v)
i ∣ τ2].

To see this, first, h(v)i = ∑vj∈Ni
(d(vi, V ′i ) −d(vi,{vj})), where d(vi, V ′i ) is fixed when X is fixed. Hence, we only need to

show that
E[ ∑

vj∈Ni

d(vi,{vj})] = ∑
vj∈V ′

i

Pr[vj ∈ Ni]d(vi,{vj})

decreases as τ increases. Indeed, as τ increases, as long as (d(vi,{vj}))’s for vj ∈ Ni are not all identical (since Σ0,Σ1 > 0,
there must be cases satisfying this), there exists a threshold dth such that all the vj’s with (d(vi,{vj})) < dth whose edge
sampling weights (i.e., Pij’s) increase and all the v′j’s with (d(vi,{v′j})) > dth whose edge sampling weights decrease,
which makes the “weighted sum” ∑vj∈V ′

i
Pr[vj ∈ Ni]d(vi,{vj}) smaller.

Regarding claim (ii). Above, we have proved that h(⋅) is a strictly increasing function of τ , which also means that h(⋅) is
an injective function of τ . Hence, it suffices to show that if τ = 0, then E[h(⋅) = 0].

First, since we assume Σ0 = Σ1 ≠ 0, the class controlled feature distributions of class-0 and class-1 are identical (i.e.,
(Xi∣Y ) ∼ N (0,Σ0),∀vi ∈ V ). Thus, the following holds:

E[d(vi,C+Yi
\{vi})] = E[d(vi,C−Yi

)] = E[d(vi, V ′i )],∀vi ∈ V. (14)

Recall that C+ℓ denotes the node set of class ℓ, whereas C−ℓ denotes the set of the rest of the nodes.

Second, if τ = 0, then ϕij = 1,∀(i, j) ∈ V × V . This means that the edge sampling probabilities are identical for all the
same-class node pairs and for all the different-class node pairs, respectively. Then, for each node vi, the same-class neighbor
set N+

i is chosen from C+Yi
\{vi} uniformly at random. Likewise, the different-class neighbor set N−

i is chosen from C−Yi

uniformly at random. Thus,

E[d(vi,N+
i )] = E[d(vi,C+Yi

\{vi})],∀vi ∈ V
E[d(vi,N−

i )] = E[d(vi,C−Yi
)],∀vi ∈ V. (15)

Combining Eqs. (14) and (15), the following holds if τ = 0:

E[d(vi,N+
i )] = E[d(vi,N−

i )] = E[d(vi,Ni)],∀vi ∈ V.

Since E[b(vi)] = E[d(bi, V ′i )] by definition, the following holds if τ = 0:

E[h(v)i ] = E[b(vi)] −E[d(vi,Ni)] = 0,

E[h(G)] = 1

∣V ∣ ∑vj∈V
E[hv

i ] = 0.

Proof of Lemma 4.2 (τ controls CFH h(⋅) only).

Proof. It is straightforward, since the values of FD(G) and hc(G) are directly controlled by the other parameters and are
independent of the value of τ .

A.3. Proofs for Graph Convolution in CSBM-X Graphs

Theorem 4.3. Following the analysis setting, i.e., we assume (i) 1-dimensional node features µℓ,Σℓ,Xi ∈ R, (ii) symmetric
feature means µ0 = −µ1 ≠ 0 with identical variances Σ0 = Σ1 = 1, and we focus on asymptotic setting with (iii) fixed
p− ≠ p+ ∈ (0, 1

2
) and (iv) n → ∞ with d+ = np+ and d− = np−. Use the prior distribution Pr[Yi = 0] = Pr[Yi = 1] = 1/2

and fix the other parameters except for τ , after a step of graph convolution D−1AX , the Bayes error rate (BER) of F ,
denoted by BF(G(⋅, τ)) is minimized at τ = 0 and strictly increases as ∣τ ∣ increases, i.e., argminτ BF(G(⋅, τ)) = 0;
BF(G(⋅, τ0)) < BF(G(⋅, τ1)) for any τ0 and τ1 such that ∣τ0∣ < ∣τ1∣ and τ0τ1 > 0.
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Proof. To provide a high-level idea, after a step of graph convolution, higher ∣τ ∣ makes more nodes have features far from
the mean of its whole class and, thus, results in a higher error in classification.

For the simplicity of presentation, we assume µ0 = −µ1. Also, we illustrate with one-dimension node features Xi ∈ R for
each node vi here, but the reasoning can be extended to high-dimensional features in general.

WLOG, we assume Σ0 = Σ1 = 1, which can be ensured by feature normalization. As n→∞, the sample mean and variance
of the node features in each class approach ±µ and Σ. For a node vi, WLOG (due to the symmetry), we assume Yi = 1, and
let its feature be µ + xi (i.e., its class-controlled feature is xi). Let φ be the PDF of standard normal distribution N (0,1),
then the homophily baseline b(vi) of node vi is

b(vi) = ∫
∞

−∞
φ(x) ∣x − xi∣dx =

1

2
e−

x2
i
2

⎛
⎝
e

x2
i
2 xierf( xi√

2
) − e

x2
i
2 xierfc( xi√

2
) + e

x2
i
2 xi + 2

√
2

π

⎞
⎠
= exp(−x

2
i

2
) + xierf( xi√

2
),

where “erf” is the Gauss error function defined as

erf(z) = 2√
π
∫

z

0
e−t

2

dt

and “erfc” is the complementary error function defined as

erfc(z) = 1 − erf(z).

Hence, the CFH between xi and another node vj with class-controlled feature xj (i.e., vj has feature −µ + xj if Yj = 0, and
it has feature µ + xj if Yj = 1) is

h(p)ij = b(vi) − ∣xi − xj ∣ = exp(−
x2
i

2
)
√

2

π
+ xierf( xi√

2
) − ∣xi − xj ∣ ,

which gives

ϕij = exp(τh(p)ij ) = exp
⎛
⎝
τ
⎛
⎝
−∣xi − xj ∣ + xierf( xi√

2
) +
√

2

π
exp(−x

2
i

2
)
⎞
⎠
⎞
⎠

Since n→∞, weighted sampling without replacement approaches weighted sampling with replacement approaches, and the
probability of vj being sampled as one of vi’s neighbors is

Pr[vj ∈ Ni] =
ϕij

∫
∞
−∞ ϕij′φ(xj′)dxj′

=
2 exp(− 1

2
τ(2∣xi − xj ∣ + τ − 2xi))

erfc ( τ−xi√
2
) + exp(2τxi)erfc ( τ+xi√

2
)
,

and in each sampling step, the sampled neighbor has a class-controlled feature equal to xj is

Pr[vj ∈ Ni]φ(xj).

In other words, let xnbr denote the random variable of the class-controlled feature of a sampled neighbor, we have

Pr[xnbr = x∗] =
2 exp(− 1

2
τ(2∣xi − x∗∣ + τ − 2xi))

erfc ( τ−xi√
2
) + exp(2τxi)erfc ( τ+xi√

2
)
φ(x∗) =

√
2

π
exp (− 1

2
τ(2∣xi − x∗∣ + τ − 2xi) − x2

i

2
)

erfc ( τ−xi√
2
) + exp(2τxi)erfc ( τ+xi√

2
)

,∀x∗ ∈ R.

We can compute the closed-form expectation of xnbr, which is

E[xnbr] = ∫
∞

−∞
x∗Pr[xnbr = x∗]dx∗ =

τ (erfc ( τ−xi√
2
) − exp (2τxi)erfc ( τ+xi√

2
))

erfc ( τ−xi√
2
) + exp (2τxi)erfc ( τ+xi√

2
)

,

and its variance Var[xnbr] does not depend on the value of n. After one step of graph convolution, the new node feature of
vi would be

x̂i =
d+µ − d−µ +∑d++d−

t=1 xt

d+ + d−
,
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where each xt i.i.d. follows xnbr. By the central limit theorem, as n → ∞ and, thus, d+ and d− approaches infinity, x̂i

asymptotically follows N ( d
+µ−d−µ
d++d− +E[xnbr],Var[xnbr]/

√
d+ + d−). WLOG, we assume d+ > d− here (when d+ < d−, the

classifier is flipped in a symmetric manner). The classifier would be equivalent to

F(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if x ≥ 0
0 otherwise

,

and the probability thatF misclassifies vi is Pr[x̂i < 0], which would approach a binary function (since Var[xnbr]/
√
d+ + d−

approaches zero) 1[ d
+µ−d−µ
d++d− +E[xnbr] < 0].

Now, we first claim that τ = 0 asymptotically gives the lowest error probability 0. Indeed, when τ = 0, E[xnbr] = 0
regardless of the value of xi, and 1[ d

+µ−d−µ
d++d− +E[xnbr] < 0]→ 1[ d

+µ−d−µ
d++d− < 0] = 0.

Then, we claim that in both directions, the Bayes error rate (BER) of F increases as ∣τ ∣ increases. First, by the symmetric
prior, the BER can be written as

BF(G(⋅, τ)) =
1

2
(Pr[F(xi) = 1 ∣ Yi = 0] +Pr[F(xi) = 0 ∣ Yi = 1])

Again, due to the symmetry, it is equal to

Pr[F(xi) = 0 ∣ Yi = 1] = ∫ Pr[F(xi) = 0]Pr[xi ∣ Yi = 1]dxi.

By the above analysis, after a step of graph convolution, the BER is

∫ Pr[F(xi) = 0]Pr[xi ∣ Yi = 1]dxi = ∫
∞

−∞
Pr[x̂i < 0]φ[xi]dxi

approaching

∫
∞

−∞
1[d

+µ − d−µ
d+ + d−

+E[xnbr] < 0]φ[xi]dxi.

When τ > 0, E[xnbr] has the same sign as xi. In such case, we only need to consider xi < 0, since E[xnbr] > 0 when xi > 0.
We claim that for any fixed xi < 0, E[xnbr] (w.r.t. xi and τ ) is decreasing w.r.t τ > 0, and thus 1[ d

+µ−d−µ
d++d− +E[xnbr] < 0] is

non-decreasing for all xi < 0, which implies the increase in the BER. Indeed,

∂

∂τ
E[xnbr] =

exp (τxi) (2τ exp(τ 2 + x2
i ) (
√

2

π
− 2xi exp( 12(τ + xi)2)erfc ( τ+xi√

2
)) erfc ( τ−xi√

2
) + exp((τ − xi)2 + 1

2
(τ + xi)2)erfc ( τ−xi√

2
)
2

− exp((τ + xi)2)erfc ( τ+xi√
2
) (exp( 1

2
(τ + xi)2)erfc ( τ+xi√

2
) + 2
√

2

π
τ))

(erfc ( τ−xi√
2
) + exp(2τxi)erfc ( τ+xi√

2
))

2 ,

which is negative for all xi < 0 (the denominator is always positive and the numerator is negative when τ > 0 and xi < 0).

Similarly, we claim that for any fixed xi > 0, E[xnbr](xi; τ) is decreasing w.r.t τ < 0. When τ < 0, E[xnbr] has the opposite
sign as xi and we only need to consider xi > 0 since E[xnbr] > 0 when xi < 0. We claim that for any fixed xi > 0, E[xnbr]
is decreases as τ < 0 decreases (i.e., τ moves from 0 to −∞), and thus 1[ d

+µ−d−µ
d++d− +E[xnbr] < 0] is non-decreasing for all xi

values, which implies the increase in the BER. Indeed, the partial derivative is the same as above, where the denominator is
always positive and the numerator is positive when τ < 0 and xi > 0.

When node features have higher dimensions, obtaining elegant closed-form equations as above would be challenging, but
we still have the property that E[xnbr] = 0 if and only if τ = 0. Moreover, xnbr moves further from 0 as ∣τ ∣ increases, which
increases the BER. Specifically, in the above reasoning, one needs to replace x > 0 with µ̃⊺x > 0 with µ̃ = d+µ−d−µ

d+−d− =
p+µ−p−µ
p+−p−

(features that would be classified as the positive class, class-1), and similarly replace x < 0 with µ̃⊺x < 0.
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B. In-Depth Analysis of Measure
B.1. h̃(⋅) Interpretation

In this subsection, we discuss the details of h̃(⋅) interpretation. For high-level ideas, refer to Sec. 3.3.

Magnitude: node-level CFH. We first rephrase node-level CFH h̃(v)i :

h̃(v)i =
h(v)i

max(b(vi) , d(vi,Ni))
= b(vi) − d(vi,Ni)
max(b(vi) , d(vi,Ni))

=
⎧⎪⎪⎨⎪⎪⎩

1 − d(vi,Ni)
b(vi)

, if h̃(v)i ≥ 0
b(vi)

d(vi,Ni)
− 1 , otherwise

For positive (or negative) h̃(v)i , the node vi has ∣h̃(v)i ∣
1−∣h̃(v)i ∣

times smaller (or larger) distance to neighbors d(vi,Ni) than its

homophily baseline b(vi). For example, if d(vi,Ni) = 1 and b(vi) = 10, then h̃(v)i = 0.9, indicating that d(vi,Ni) is 9
times smaller than b(vi).

Magnitude: graph-level CFH. We also rephrase graph-level CFH h̃(G):

h̃(G) = h(G)

1

∣V ∣ max(∑vi∈V b(vi) , ∑vi∈V d(vi,Ni))
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − ∑vi∈V
d(vi,Ni)

∑vi∈V
b(vi)

, if h̃(G) ≥ 0
∑vi∈V

b(vi)
∑vi∈V

d(vi,Ni)
− 1 , otherwise

Like in node-level interpretation, for positive (or negative) h̃(G), the graph G has ∣h̃(G) ∣
1−∣h̃(G) ∣ times smaller (or larger)

mean distance to neighbors 1

∣V ∣ ∑vi∈V d(vi,Ni) than the mean homophily baseline 1

∣V ∣ ∑vi∈V b(vi). For example, if
1

∣V ∣ ∑vi∈V d(vi,Ni) = 1 and 1

∣V ∣ ∑vi∈V b(vi) = 10, then h̃(G) = 0.9, indicating that 1

∣V ∣ ∑vi∈V d(vi,Ni) is 9 times smaller than
1

∣V ∣ ∑vi∈V b(vi).

Zero. If node vi’s feature is identical to all other nodes (i.e., Xi =Xj ,∀vj ∈ V ), h̃(v)i = 0, because its b(vi) = d(vi,Ni) = 0.
8 A fully connected node vi has h̃(v)i = 0, because its b(vi) = d(vi,Ni). For the same reason, a graph G has h̃(G) = 0 if (i) it
is fully connected and/or (ii) has all identical node features.

If a node vi chooses the non-zero number of neighbors by a random probability, E[h̃(v)i ] = 0. For the same reason, a graph
G has E[h̃(G)] = 0 if each node vi ∈ V chooses a non-zero number of neighbors by a random probability.

It is important to note that there are many other conditions in which h̃(v)i and h̃(G) become 0. That is, while h̃(v)i and h̃(G)

being 0 may suggest no A-X dependence, they are not conclusive. In-depth analysis of the microscopic patterns, such as
distributions of h̃(v)i and h̃(p)ij , may better elucidate the levels of A-X dependence.

B.2. On Class Control

Connection to Part and Partial Correlation. The class control mechanism in Eq. (3) is analogous to the variable control
method of part and partial correlation. We focus on part correlation here.

The goal of its variable control is to control the effect of the third variable when analyzing the correlation between two
variables. Let X(P ),A(P ) ∈ RN be two variables of interest and Y (P ) ∈ RN×d be the third variable, where N is the number
of observed samples.

β∗ = argmin
β

∥(X(P ) − Y (P )β)∥22 (16)

X ∣Y =X(P ) − (Y (P )β∗), (17)

where β ∈ Rd is a regression coefficient. Geometric interpretation of this mechanism is the projection of original X(P ) onto
the orthogonal space of Y (P ) with the least approximation L2-error, expecting that the information of X(P ) is maximally
maintained given the removal of Y (P ) intervention. In part correlation, correlation is measured between X ∣Y and A.

Now, we show how Eq. (3) relates to the above equation. Let Y (P ) ∈ {0,1}∣V ∣×c be the one-hot labeled class matrix for each
node (i.e., Y (P )ij = 1 for yi = j,∀vi ∈ V , 0 otherwise). Let X(P ) ∈ R∣V ∣ be the original node feature. Now, in this analysis, we

8Recall that we define h̃
(v)
i and h̃(G) to be 0, if b(⋅) = 0.
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let X(P ) ∶=X and Y (P ) ∶= Y for notational simplicity. We optimize Eq. (16) as below:

β∗ = argmin
β

∥X − Y β∥22 = argmin
β

(X − Y β)T (X − Y β) ∶= argmin
β

L (18)

∂L
∂β
= −2Y TX + 2(Y TY )β = 0 ≡ β∗ = (Y TY )−1Y TX. (19)

As we take a closer look at the form of β∗ in Eq. (19):

• Y TY ∈ Rc×c is a diagonal matrix where each i−th diagonal entry indicates the number of nodes belonging to the class i
(i.e., (Y TY )ii = ∣C+i ∣,∀i ∈ [c]).

• Y TX ∈ Rc is a vector where j−th entry indicates the sum of node features that belong to the class i (i.e., (Y TX)i =
∑vk∈C+i Xk,∀i ∈ [c]).

Thus, β∗ ∈ Rc is a vector where k− entry indicates the mean of node features that belong to the class i. In the given setting,
by applying obtained β∗, Eq. (17) is equivalent to (X ∣Y )i =Xi − 1

∣C+yi ∣
∑vk∈C+yi

Xk, which is equal to Eq. (3). Therefore, we
conclude that Eq. (3) is a special case of the variable control method of part correlation.

B.3. Generalizing h̃(⋅)

CFH h̃(⋅) measures A-X dependence, while controlling for potential confounding by node class. However, with its good
properties, we can generalize it to measure topology-feature and topology-class dependence without confound control.

Generalized distance function. Denote the distance function (Eq. (4)) with a matrix X ∈ Rn×k as

d∗(vi, V ′i ,X) ∶=
1

∣V ′i ∣
∑

vj∈V ′

i

∥Xi −Xj∥2. (20)

Eq. (4) is a special case of Eq. (20), where X =X ∣Y . Likewise, we generalize homophily baseline as b∗(vi) = d∗(vi, V ′i ,X).

Generalized homophily measure. Based on d∗(⋅), we propose a generalized homophily measure H̃(⋅).

G1) Generalized node pair-level homophily H(p)
ij :

H(p)
ij (X) =H((vi, vj) ∣ E,X) ∶= b∗(vi) − d∗(vi,{vj},X) (21)

G2) Generalized node-level homophily H(v)
i :

H(v)
i (X) =H(vi ∣ E,X) ∶= 1

∣Ni∣
∑

vj∈Ni

H(p)
ij (22)

G3) Generalized graph-level homophily H(G):

H(G)(X) =H(G ∣ E,X) ∶= 1

∣V ∣ ∑vj∈V
H(v)

j (23)

G4) Generalized node-level normalization:

H̃(v)
i (X) =

H(v)
i

max(b∗(vi),d∗(vi,Ni,X))
. (24)

G5) Generalized graph-level normalization: 9

H̃(G)(X) = H(G)

1

∣V ∣ max(∑vi∈V b∗(vi),∑vi∈V d∗(vi,Ni,X))
. (25)

CFH measure h̃(⋅) is a special case of the proposed generalized homophily measure H̃(⋅). With the generalized homophily
measure, we can measure feature homophily H̃(G)(X) and class homophily H̃(G)(Y ), where Y ∈ Rn×c is a node class
matrix.

9For completeness, if b∗(⋅) = 0, we let H̃(v)i (⋅), H̃
(G)(⋅) = 0.
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Table 1: Comparison of Graph-Level CFH Scores with Different Features

Dataset Cora CiteSeer PubMed Cora-ML Cora-Full DBLP Wiki-CS CS Physics Photo Computers Ogbn-ArXiv

X(orig) 0.0562 0.0802 0.1072 0.0390 0.0388 0.0786 0.2182 -0.0042 0.0760 -0.0150 -0.0207 0.0755
X(rand) 0.0204 0.0151 -0.0061 0.0036 0.0053 0.0031 -0.0018 0.0128 0.0031 0.0131 0.0067 0.0036

X(conv)(1) 0.4612 0.5706 0.4399 0.4217 0.3991 0.4605 0.4442 0.3991 0.4603 0.3421 0.3278 0.3855
X(conv)(2) 0.6238 0.7177 0.6095 0.5956 0.5621 0.6227 0.4956 0.5326 0.5835 0.5214 0.4878 0.4768
X(conv)(4) 0.7221 0.8003 0.7181 0.7017 0.6513 0.7271 0.5120 0.5848 0.6479 0.6515 0.5995 0.5242

Dataset Chameleon Squirrel Actor Texas Cornell Wisconsin RM-Emp AMZ-Rts Tolokers Penn94 Flickr ArXiv-Year

X(orig) -0.0714 -0.0538 -0.0199 -0.0803 0.0041 -0.0324 0.0199 0.1266 0.1296 0.0870 0.0018 0.1206
X(rand) -0.0368 0.0136 0.0060 -0.0398 0.0390 0.0165 0.0020 -0.0003 -0.0131 -0.0013 -0.0023 0.0037

X(conv)(1) 0.3835 0.3529 0.2745 0.2279 0.2121 0.2590 0.4165 0.5893 0.5162 O.O.M. 0.2052 0.4709
X(conv)(2) 0.5299 0.5316 0.3983 0.3111 0.3017 0.3584 0.5899 0.7667 0.6524 O.O.M. 0.2097 0.5784
X(conv)(4) 0.6404 0.6227 0.4974 0.3704 0.3476 0.4237 0.6852 0.8563 0.6881 O.O.M. 0.3185 0.6386

(∗) X(orig) denotes the original node features. RM-Emp stands for Roman-Empire, and AMZ-Rts stands for Amazon-Ratings. O.O.M.
denotes out-of-memory.

C. In-Depth Analysis of the Benchmark Datasets
We further analyze the benchmark datasets. Specifically, we buttress Observations 1-3 with additional results. We also briefly
discuss the Roman-Empire dataset, delving into why GNN performance degrades consistently over the feature shuffles.

C.1. Observation 1: The Full Results

We focus on the lowness of CFH h̃(⋅) in the benchmark graphs. Specifically, we further support Observation 1 with (i)
comparison of CFH scores with different features and (ii) node-level analysis.

Comparison to different features. First, we investigate how low the CFH h̃(⋅) scores are for the benchmark graphs,
compared to different features. Recall that their mean ∣h̃(G)∣ = 0.06. For comparison, we consider two other node features.

• Random Baseline: Random node features X(rand)
i ∼ N (0,1),∀vi ∈ V.

• Homophilic Baseline: Convoluted node features X(conv)(l) = ((D + I)−1(A + I))lX,

where I ∈ Rn×n is an identity matrix and l ∈ {1,2,4}.

In Table 1, we report the h̃(G) for each feature type and dataset. Averaging the scores for all 24 datasets, X(conv)(4) has the
mean h̃(G) score of 0.61, while X(rand) has the mean near 0. The mean h̃(G) of the original node feature X(orig) is much
closer to that of the random features X(rand), further supporting Observation 1.

Node-level analysis. Second, we report that node-level CFH h̃(v)i scores also tend to be positive and low. As shown in
Fig. 12(a), most nodes in most graphs have ∣h(v)i ∣ < 0.3. As observed at the graph level, each node’s distance to the neighbors
is close to its homophily baseline.

Conclusion. From the analyses, we conclude again that CFH h̃(⋅) are generally positive and low in the benchmark datasets.

C.2. Observation 2: The Full Results

We further demonstrate that CFH and class-homophily have a small, positive correlation with two additional evidence. We (i)
measure correlations between CFH and the other class-homophily measures and (ii) conduct node-level correlation analysis.

Other class-homophily measures. First, we complement Observation 2 by measuring correlations between CFH and
different measures of class-homophily, defined by Pei et al. (2020) and Zhu et al. (2020). Class-homophily defined by Zhu
et al. (2020) and CFH have correlation coefficients of 0.403 (Pearson’s r) and 0.196 (Kendall’s τ ). Class-homophily
defined by Pei et al. (2020) and CFH have correlation coefficients of 0.401 (Pearson’s r) and 0.225 (Kendall’s τ ). While
we find slightly stronger correlations between CFH and the other measures, the correlations are not consistently strong,
such that there exist non-negligible gaps between Pearson’s r and Kendall’s τ . We, thus, do not find counter-evidence for
Observation 2.

Node-level analysis. Now, we complement Observation 2 with node-level analysis. Specifically, we analyze the correlation
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(a) Graph-level CFH score h̃(G)’s over the class-wise feature shuffles.
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(b) Graph-level CFH score h̃(G)’s over the non-class-wise feature shuffles.

Figure 11: Graph-Level CFH Statistics in Real-World Graphs and their Relationship to the Feature Shuffle.

between node-level CFH h̃(v)i and node-level class-homophily H̃(v)
i (Y ) (Eq. (24)). 10 We find that the Pearson correlations

in most of the 24 graphs are very low, such that the absolute values of their Pearson’s r scores are below 0.2 in 22/24 graphs
(Table 2). Also, 19/24 have positive Pearson correlations.

Conclusion. From the analyses, we conclude again that CFH h̃(⋅) has a small, positive correlation with class homophily.

C.3. Observation 3: The Full Results

Here, we report how the feature shuffle affects CFH in all 24 benchmark datasets (Figs. 11-12). While most datasets follow
the pattern reported in Observation 3, few of them (Chameleon, Squirrel, Texas, Wisconsin, and Cornell) do not fully obey
it. Specifically, their graph-level CFH h̃(G) score moves away from 0 over increasing shuffled node ratio. We reason their
deviation by answering two questions: (i) Why do the h̃(G) scores become larger after the feature shuffle?; (ii) Why do the
h̃(G) scores not approach 0 after the feature shuffle?

Answer to question (i). Node-level CFH h̃(v)i distributions before and after the feature shuffle (Fig. 12) reveals that the mean
∣h̃(v)i ∣ decreases after the feature shuffle in all five datasets. The finding indicates that the magnitude in which the distance to
neighbors (i.e., d(vi,Ni)) deviates from the homophily baseline (i.e., b(vi)) becomes smaller after the feature shuffle. In
short, the finding demonstrates (i) that A-X dependence is perturbed after the feature shuffle and (ii) an in-depth analysis of
h̃(⋅) is necessary to reveal the pattern. The graph-level CFH h̃(G) does not fully capture the subtlety as it mean-aggregates
the positive and negative h̃(v)i scores.

Answer to question (ii). The h̃(G) scores may not approach 0 due to the imperfect class-control. We evidence our claim with
non-class-wise feature shuffle, which means that the feature vectors of all nodes, irrespective of their class membership,
are shuffled together. After non-class-wise feature shuffle, we find that the graph-level CFH h̃(G)’s approach 0 in 23/24
datasets (Fig. 11(b)). The finding suggests that feature distribution difference between node classes hinders CFH h̃(G) from
approaching 0. An advanced class-control method may mitigate such a problem, and we leave it up to future studies.

Conclusion. The series of analyses underscore the complexity of quantifying A-X dependence. We claim that while the
feature shuffle effectively perturbs A-X dependence, h̃(G) may not approach 0 due to (i) node-level discrepancies and (ii)
the complex nature of feature distribution. Therefore, we further argue that a few datasets’ deviations from Observation 3 do
not undermine the integrity of our conclusion that A-X dependence mediates the effect of graph convolution.

10We use H̃
(v)
i (Y ) as the node-level class-homophily measure because hc has not been defined at node-level.
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i ’s before the feature shuffle.

−0.5 0 0.5
0
2.0
4.0
6.0
8.0

−0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5

−0.5 0 0.5
0
2.0
4.0
6.0
8.0

−0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5

Cora CiteSeer PubMed Cora-ML Cora-Full DBLP Wiki-CS Photo Computers CS Physics Ogbn-ArXiv

CML SQL Actor Texas Cornell Wisconsin RM-Emp AMZ-Rts Tolokers Penn94 Flickr ArXiv-Year

Node-Level CFH �̃�𝐡𝒊𝒊
𝒗𝒗 (After the Feature Shuffle)

N
od

e 
Ra

tio

(b) Histogram of node-level CFH score h̃
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i ’s after the feature shuffle.
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(c) The mean node-level CFH magnitude ∣h(v)i ∣’s over the feature shuffles.

Figure 12: Node-Level CFH Statistics in Real-World Graphs and Their Relationship to the Feature Shuffle.

C.4. The Roman-Empire Dataset

The Roman-Empire dataset has an unusual, chain-like graph topology. Its number of nodes is 22,662, with a diameter of
6,824. In short, there is no small world effect observed, making the effect of the feature shuffle different from the rest of the
datasets. A node-level analysis reveals its unique patterns of CFH h̃(⋅) over the feature shuffle. In Fig. 12(a,b), we uniquely
observe that its histograms of h̃(v)i before and after the feature shuffle are highly similar. In Fig. 12(c), we further uniquely
observe that its mean ∣h̃(v)i ∣ increase significantly (2%p) after the feature shuffle. The qualitative and quantitative uniqueness
of the Roman-Empire dataset may have contributed to the degrading GNN performance over the feature shuffles.

C.5. Dataset Description

We provide a comprehensive description of the benchmark datasets, with their statistics in Table 2.

• The Cora, CiteSeer, PubMed, Cora-ML, Cora-Full, DBLP, and Ogbn-ArXiv (Yang et al., 2016; Bojchevski &
Günnemann, 2018; Hu et al., 2020) datasets are citation networks. Each node represents a document, and two nodes
are adjacent if a citation exists between the two corresponding articles. For each node, the features are the text features
of the corresponding article, and the node class is the category of the research/subject domain of the document.

• The Wiki-CS dataset is a webpage network of Wikipedia (Mernyei & Cangea, 2020). Each node represents a Wikipedia
webpage, and two nodes are adjacent if a hyperlink exists between the two webpages. For each node, the features are
the GloVe word embeddings of the webpage, and the node class represents the article category of the webpage.

• The Computer and Photo datasets are Amazon co-purchase networks (Shchur et al., 2018). Each node represents a
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Table 2: Statistics of the Benchmark Datasets
Dataset Cora CiteSeer PubMed Cora-ML Cora-Full DBLP Wiki-CS CS Physics Photo Computers Ogbn-ArXiv

# Nodes 2,708 3,327 19,717 2,995 19,793 17,716 11,701 18,333 34,393 7,650 13,752 169,343
# Edges 10,556 9,104 88,648 16,316 126,842 105,734 431,726 163,788 495,924 238,162 491,722 1,166,243

# Features 1,433 3,704 500 2,879 8,710 1,639 300 6,805 8,415 745 767 128
# Class 7 6 3 7 70 4 10 15 5 8 10 40

Class Homophily hc 0.7657 0.6267 0.6641 0.7401 0.4959 0.6522 0.5681 0.7547 0.8474 0.7722 0.7002 0.4445
CFH h̃(G) 0.0562 0.0802 0.1072 0.0390 0.0388 0.0786 0.2182 -0.0042 0.0760 -0.0150 -0.0207 0.0755

Pearson(h̃(v)i , H̃(v)
i (Y )) 0.1158 0.1907 0.0660 0.1602 0.1090 0.1015 0.2993 0.1938 0.1344 0.1332 0.0287 0.2535

Dataset Chameleon Squirrel Actor Texas Cornell Wisconsin RM-Emp AMZ-Rts Tolokers Penn94 Flickr ArXiv-Year

# Nodes 890 2,223 7,600 183 183 251 22,662 24,292 11,758 41,554 89,250 169,343
# Edges 17,708 93,996 30,019 325 298 515 65,854 186,100 1,038,000 2,724,458 899,756 1,166,243

# Features 2,325 2,089 932 1,703 1,703 1,703 300 300 10 4814 500 128
# Class 5 5 5 5 5 5 18 5 2 2 7 5

Class Homophily hc 0.0444 0.0398 0.0061 0.0000 0.1504 0.0839 0.0208 0.1266 0.1801 0.0460 0.0698 0.1910
CFH h̃(G) -0.0714 -0.0538 -0.0199 -0.0803 0.0041 -0.0324 0.0199 0.1266 0.1296 0.0870 0.0018 0.1206

Pearson(h̃(v)i , H̃(v)
i (Y )) 0.1390 -0.0759 -0.0272 0.0178 -0.1718 0.1539 0.1308 -0.0697 -0.0715 0.1523 0.0217 0.1721

(∗) For undirected graphs, their edges are counted as two directed edges.
(∗∗) H̃(v)i (Y ) is a node-level class-homophily measure, defined in Eq. (25) of Appendix B.

product, and two nodes are adjacent if the two products are frequently purchased together. For each node, the features
are the bag-of-words of its customer reviews, and the node class is the product category.

• The CS and Physics datasets are coauthor networks (Shchur et al., 2018). Each node represents an author, and two
nodes are adjacent if the two corresponding authors have coauthored a paper together. For each node, the features are
the author’s paper keywords, and the class is the most active field of the author’s study.

• The Chameleon and Squirrel datasets are webpage networks of Wikipedia (Pei et al., 2020). Each node represents a
webpage on Wikipedia, and two nodes are adjacent if mutual links exist between the two corresponding web pages.
For each node, the features are informative nouns on the corresponding webpage, and the node class represents the
category of the average monthly traffic of the corresponding webpage. We use the version of the datasets provided
by Platonov et al. (2023b), which has filtered the possible duplicate nodes.

• The Actor dataset is the actor-only induced subgraph of a film-director-actor-writer network obtained from Wikipedia
webpages (Tang et al., 2009; Pei et al., 2020). Each node represents an actor, and two nodes are adjacent if the two
actors appear on the same Wikipedia webpage. For each node, the features are derived from the keywords on the
Wikipedia webpage of the corresponding actor, and the node class is determined by the words on the webpage.

• The Texas, Cornell, and Wisconsin datasets are extracted from the WebKB dataset (Pei et al., 2020). Each node
represents a webpage, and two nodes are adjacent if a hyperlink between the two webpages. For each node, the features
are the bag-of-words features of the corresponding webpage, and the node class is the category of the webpage.

• The Roman-Empire dataset is a network of texts in a Wikipedia article (Platonov et al., 2023b). Each node represents
each word in the article, and two nodes are adjacent if the words follow each other in the text or if one word depends on
the other. For each node, the features is word embedding of the text, and the node class is the syntactic role of the text.

• The Amazon-Ratings dataset is a co-purchase network of Amazon products (Platonov et al., 2023b). Each node
represents a product, and two nodes are adjacent if they are frequently purchased together. For each node, the features
are text embedding of the product description, and the node class is its ratings.

• The Tolokers dataset is an online social network of Toloka crowdsourcing platform (Platonov et al., 2023b). Each node
represents a worker, and two nodes are adjacent if they have worked on the same task. For each node, the features
consist of the worker profile and task performance, and the node class is whether or not the worker has been banned.

• The Penn94 dataset is a social network on Facebook (Lim et al., 2021). Each node represents a user, and two nodes are
adjacent if they are friends. For each node, the features are the user profile, and the node class is the reported gender.

• The Flickr dataset is a network of images to Flickr website (Zeng et al., 2020). Each node represents an image, and two
nodes are adjacent if the two share some common properties (e.g. the same geographic location). For each node, the
features are bag-of-word representations of the image, and the class is the image’s tag.

• The ArXiv-Year dataset (Lim et al., 2021) is a version of the Ogbn-ArXiv dataset, where the original node class is
replaced with the article publication year.
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Figure 13: The Simplified GNN Performance in CSBM-X Graphs: Wider τ Range. With τ ∈ {−10,−9.9, . . . ,9.9,10},
the findings are consistent with those from Fig. 5.

D. In-Depth Analysis of CSBM-X
In this section, we provide the full experimental result with CSBM-X, together with its formal description. We use the same
setting as in Sec. 4, unless otherwise specified.

D.1. Full Experiments: Large Range of τ

Fig. 13 shows the experimental results with larger range of τ ∈ {−10,−9.9, . . . ,9.9,10}. That is, the CSBM-X graph G has
extremely large CFH h̃(⋅). Still, the results are consistent with the conclusion of Sec. 4.

D.2. Full Experiments: Feature Parameter Variations

High-dimensional features. Fig. 14 shows the experimental results with feature dimension k ∈ {4,16}. Specifically, we let
µ0 = −µ1, and all elements within each mean vector are identical (i.e., µ0 = [c, c, . . . , c] ∈ Rk and µ1 = [−c,−c, . . . ,−c] ∈ Rk,
where c is a constant). To control FD, we generate CSBM-X graph G’s with (i) 2c ∈ {0, 1/8, 1/4, 1/2, 1} and (ii)
Σ0 = Σ1 = diag(1). The results are consistent with the conclusion of Sec. 4.

Imbalanced feature variances. Fig. 14 shows the experimental results with imbalanced feature variances (i.e., Σ0 ≠ Σ1).
To control FD with imbalanced feature variances, we generate CSBM-X graph G’s with Σ0 = 1 and Σ1 ∈ {0.5,0.25}. The
results are consistent with the conclusion of Sec. 4.

D.3. Full Experiments: Graph Convolution Variations

The number of graph convolution layers. Fig. 15 shows the experimental results with two graph convolution layers.
Specifically, we use (D−1A)2X as the simplified GNN model. We find that with 2 layers, the beneficial effect of small τ is
larger. The finding possibly relates to the sparse topology of the generated CSBM-X graph G’s, 11 such that two convolution
layers do not trigger over-smoothing. Overall, the results are consistent with the conclusion of Sec. 4.

Symmetric normalized graph convolution. Fig. 15 shows the experimental results with symmetrically normalized graph
convolution. Specifically, we use ((D + I)− 1

2 (A + I)(D + I)− 1
2 )X as the simplified GNN model, where I ∈ Rn×n is the

identity matrix. To do so, we conduct two pre-processing for CSBM-X graph G. First, since the symmetric normalization
assumes an undirected graph, we transform all its directed edges into (unweighted) undirected edges. Second, all nodes have
added self-loops. Even with symmetric normalization, the results are consistent with the conclusion of Sec. 4.

The extensive experiments empirically support our conclusion that A-X dependence mediates the effect of graph convolution.

D.4. CSBM-X: Formal Description

Here, we provide a formal mathematical description of CSBM-X. Note that we use slightly different notations from Sec. 4.

Input. We consider a binary class setting (WLOG class 0 and 1). Each input parameter is as: number of nodes n (we
assume that n is even), feature mean vector (µ0, µ1) and feature covariance matrix (Σ0,Σ1), each corresponds to the class ℓ,
same- and different-class degree (d+, d−), respectively, and A-X dependence strength τ . Let I ∶= (n,µ0, µ1,Σ0,Σ1, d

+, d−)
denotes the set of input parameters.

11Recall that the number of nodes is 10,000, whereas the node degree is 20 for all nodes.
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Figure 14: The Simplified GNN Performance in CSBM-X Graphs: Feature Variations. With different feature parameter
configurations, including (i) high-dimensional features (i.e. k > 1) and (ii) imbalanced variances (i.e. Σ0 ≠ Σ1), the findings
are consistent with those from Fig. 5.

Node classes. Given input I = (n,µ0, µ1,Σ0,Σ1, d
+, d−, τ), the node set is (deterministically) V = V (I) = V (n) = [n],

determined by n only. Hence, vi = i,∀i ∈ [n]. We assume that the numbers of nodes in two classes are the same, i.e., n

2
.

The node classes is represented by a vector

• Y ∈ Yn ∶= {{0,1}n∶∑i∈[n] Yi = n

2
},

where Yn is the possible set of node-class vectors. For each Y ∈ Yn,

• Pr[Y ∣I] = Pr[Y ∣n] = 1

∣Yn ∣
= 1

( n
n
2
)
,

where the probability of Y is only decided by n, independent of the other parameters in the input I , and all the possible Y ’s
have the same probability (i.e., follow a uniform distribution on Yn).

Node features. Assume the feature dimension is k ∈ N. Conditioned on the node classes Y , the features X ∈ Rn×k follow
the corresponding Gaussian distributions, where each node feature Xi ∈ Rk is an i.i.d. sample from a Gaussian with mean
µYi

and variance ΣYi
. Specifically,

• Pr[Xi∣Y,I] = Pr[Xi∣Yi, µYi
,ΣYi
] = (2π)−k/2 det(ΣYi

)−1/2 exp (− 1

2
(Xi − µYi

)TΣ−1Yi
(Xi − µYi

)),

which is the PDF of multivariate Gaussian N (µYi
,ΣYi
).
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Figure 15: The Simplified GNN Performance in CSBM-X Graphs: GNN Variations. With two simplified GNN
variations, including graph convolution with (i) two layers and (ii) symmetrically normalized adjacency matrix with self-
loops, the findings are consistent with those from Fig. 5.

Edges. Conditioned on node classes and features, directed edges are sampled by weighted sampling without replacement.
For each node i ∈ [n], we define

• C+i =C+i (Y ) = C+Yi
\{vi} = {C+i,1,C+i,2, . . . ,C+i,∣C+

i
∣} (fix order of the nodes in C+i ),

• C−i =C−i (Y ) = C−Yi
= {C−i,1,C−i,2, . . . ,C−i,∣C−

i
∣},

• Φ+i =Φ+i (C+i ,X) = (exp(τh
(p)
ij ), j =C+i,t∶ t ∈ [∣C+i ∣]) ∈ R∣C

+

i
∣,

• Φ−i =Φ−i (C−i ,X) = (exp(τh
(p)
ij ), j =C−i,t∶ t ∈ [∣C−i ∣]) ∈ R∣C

−

i
∣.

Note that X is used here to compute h(p)ij ’s. Let C+ denote (C+i ∶ i ∈ [n]), and C−, Φ+, and Φ− are similarly defined.

For each node i ∈ [n], let Ni denote its neighbor set, which is a random variable here. Recall that Ni = {j ∈ [n]∶ (i, j) ∈ E}.
The set of all possible Ni’s are

• Bi = Bi(C+i ,C−i , d+, d−) ∶= {N+
i ∪N−

i ∶N+
i ∈ B+i ,N−

i ∈ B−i }, where

• B+i = B+i (C+i , d+) = {N+
i ∶N+

i ⊆C+i , ∣N+
i ∣ = d+},

• B−i = B−i (C−i , d−) = {N−
i ∶N−

i ⊆C−i , ∣N−
i ∣ = d−}.

For each possible N+
i = {N+

i,1,N
+
i,2, . . . ,N

+
i,d+} ∈ B+i ,

• Pr[N+
i ∣C+i ,Φ+i , d+] = ∑π∈Sd+

∏d+

t=1 (Φ+N+

π(i,t)
)/(1 −∑t−1

t′=1Φ
+
N+

π(i,t′)

),

• Pr[N−
i ∣C−i ,Φ−i , d−] = ∑π∈Sd−

∏d−

t=1 (Φ−N−

π(i,t)
)/(1 −∑t−1

t′=1Φ
−
N−

π(i,t′)

),

where Sd+ and Sd− are the sets of all permutations on [d+] and [d−], respectively.

For each possible Ni = N+
i ∪N−

i ∈ Bi,

• Pr[Ni∣C+i ,Φ+i ,C−,Φ−i , d+, d−] = Pr[N+
i ∣C+i ,Φ+i , d+]Pr[N−

i ∣C−,Φ−i , d−].

The neighbor set of each node is sampled independently, i.e.,
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• Pr[(Ni∶ i ∈ [n])∣C+i ,Φ+i ,C−,Φ−i , d+, d−] =∏i∈[n]Pr[Ni∣C+i ,Φ+i ,C−,Φ−i , d+, d−].

Here, Ni,∀i ∈ [n] fully determine the topology of each generated graph.

D.5. CSMB-X2: a Multi-Community, Degree-Preserving CSBM-X

While the proposed CSBM-X can capture many properties of the real-world graphs, such as sparsity, class-homophily, and
CFH, it does not reflect some of their key properties. Thus, we further propose CSBM-X2 to reflect a multi-community
structure and varying degree distributions.

CSBM-X2 design. Two major differences are noticeable in comparison to CSBM-X. First, the number of classes can be
larger than 2, allowing for a multi-community structure. Second, the vector d ∈ Rn representing node degrees for each node
serves as the degree parameter.

We describe the key differences of the CSBM-X2. Specifically, to allow for a multiple community structure, the nodes are
equally divided into c classes (instead of 2 in CSBM-X). Also, for each node vi ∈ V , CSBM-X2 assigns its node degree
di. By the same-class degree ratio parameter r, the node vi’s degree di is divided into the same-class and different-class
degrees (d+i , d−i ). Then, CSBM-X2 samples same- and different-class neighbors for each node by their sampling weights,
like in CSBM-X.

Experiment setting. We generate CSBM-X2 graphs with various parameter configurations. The setting generally follows
the one in Sec. 4.3. We fix the number of nodes n = 10,000 and number of classes c = 10. We use input node degrees d
sampled from Pareto distribution (a power-law distribution), using Pareto’s α = 1.5. Since the sampled values are bounded
by [0,∞), dmin = 20 is added to the sampled value, and dmax = 1,000 is used to clip it. Thus, the node degree is bounded
di ∈ [dmin, dmax], ∀vi ∈ V .

We set c-dimensional features, such that the feature mean vectors are µℓ ∈ Rc and covariance matrices are Σℓ ∈ Rc×c,∀ℓ ∈ [c].
The generated CSBM-X2 graphs have a wide range of feature distance FD, class homophily hc, and CFH h̃(⋅).

• FD: ∥µℓ0 − µℓ1∥1 ∈ {0, 1/4, 1/2, 1, 2}; Σℓ = I.

• hc: r ∈ {0.50,0.55, ...,0.95}.

• h̃(⋅): τ ∈ {−1.5,−1.4, . . . ,−0.1,0,0.1, . . . ,1.4,1.5}.

Experiment results. Figure 16 shows the experimental results with CSBM-X2. We observe consistent findings from
the experiments with CSBM-X (Figure 5), such that the findings 1 and 2 from Sec. 4.3 are reproduced with CSBM-X2.
Specifically, the simplified GNN performance gradually increases over decreasing CFH magnitude ∣h̃(⋅)∣, and the effect of
CFH h̃(⋅) on GNN performance is moderated by feature distance FD and class homophily hc. Our results highlight the
generalizability of our conclusion that A-X dependence mediates the effect of graph convolution.
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Figure 16: The Simplified GNN Performance in CSBM-X2 Graphs. The degrees follow the power-law distribution, and
the graphs have multi-community structures. Consistent with Theorem 4.3 and Figure 5, for given feature distance FD > 0
and class homophily hc > 0, the simplified GNN performance increases as graph-level CFH h̃(G) → 0 (τ → 0).
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Figure 17: Additional Results on the Feature Shuffle.

E. Additional Experimental Results with Feature Shuffle
In this section, we provide additional experimental results of the feature shuffle with real-world graphs. We use the same
setting as in Sec. 5, unless otherwise specified.

Models. First, Fig. 17(a) shows GCN performance after the feature shuffle in 6 high hc and 6 low hc datasets. While GCN
performance increases over the feature shuffles, GCNII benefits more from the feature shuffle (i.e., larger positive slopes
by GCNII). This outcome may relate to the difference in their number of layers. We claim two complementary pieces of
evidence. For one, CSBM-X experiment in Fig. 15 suggests that a larger number of layers can further improve the beneficial
effect of small τ . Also, one of the main differences between the GCN and GCNII is their capability in stacking deeper
layers. The relationship between GNN depth and A-X dependence, however, is beyond the scope of the present work, and
we leave it up to future studies. Overall, consistent with the conclusion of Sec. 5, we conclude that all GNN models benefit
from the feature shuffle.

Train ratios. Second, Fig. 17(b) shows GCNII performance over the feature shuffle with different splits. We use three
different train/val splits while fixing the test split. Two findings are worth noting. First, model performance increases over
the feature shuffles in all splits, highlighting that our conclusion is consistent with varying train and validation node ratios.
Second, the performance gap between different splits generally reduces over the increasing shuffled node ratio. That is, the
effect of feature shuffle may also interact with the number of train labels, hinting that A-X dependence may influence the
generalization capacity of GNNs. Analysis of GNN generalization, however, is beyond the scope of the present work, and
we leave it up to future studies.

The extensive experiments empirically support our conclusion that A-X dependence mediates the effect of graph convolution.
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Table 3: Node Classification Performance of a GNN Enhanced with Pseudo-label-based Feature Shuffle Algorithm

Method Cora CiteSeer PubMed Cora-ML DBLP Wiki-CS Cora-Full Photo Computers CS Physics Ogbn-ArXiv

Vanila GCNII 79.70 67.26 76.23 82.05 75.42 73.37 60.94 90.44 81.10 91.31 92.97 51.60
Enhanced GCNII 80.83 68.02 76.26 82.77 77.07 73.16 61.58 90.50 81.66 91.27 93.31 50.80
Performance Gap +1.13 +0.76 +0.03 +0.72 +1.65 -0.21 +0.64 +0.06 +0.56 -0.04 +0.34 -0.80

F. Potential Applications
In this section, we explore a potential application of our findings with node feature shuffle. As discussed in Section 5, the
feature shuffle can significantly enhance GNN node classification. However, the algorithm requires test labels, which are not
known. We, thus, propose an algorithm that extends the feature shuffle for practical scenarios where the labels of many
nodes are unknown.

Algorithm. Here, we describe our proposed pseudo-label-based feature shuffle algorithm. The algorithm has three steps:

Step 1) Initial GNN training. Consider we are given a graph G = (V,E), node features X , and node classes of train/val
nodes V (train/val) ⊂ V . We train a node classification GNN, which we denote as GNN ∶ (X,E)↦ Ŷ, where Ŷ ∈ [0,1]n×c
is a node class prediction matrix.

Step 2) Pseudo-labeling. By using the trained GNN, we assign pseudo-labels to unlabeled nodes. First, we choose nodes
to be labeled by using confidence scores of GNN. To this end, we use prediction matrix Ŷ of GNN. We label nodes whose
prediction probability lies within the predefined confidence range. Specifically, we define labeling nodes V (label) as follows:

V (label) = {vk ∈ V ∶ ol ≤max
j∈[c]

Ŷkj ≤ ou} ∪ V (train/val), (26)

where 0 ≤ ol ≤ ou ≤ 1 are hyperparameters. After choosing labeling nodes V (label), we assign pseudo-labels y′k,∀vk ∈
V (label) as follows:

y′k =
⎧⎪⎪⎨⎪⎪⎩

Yk if vk ∈ V (train/val)

argmaxj∈[c] Ŷkj otherwise
,∀vk ∈ V (label). (27)

Step 3) Classwise feature shuffle. Lastly, with obtained pseudo-labels yk,∀vk ∈ V (label), we shuffle node features that
share the same pseudo-label. Specifically, we shuffle the features of all nodes that share the same pseudo-labels, without
considering the train/val/test split. Train/val/test node indices and true node labels are not shuffled. By performing the
shuffle, we obtain new node features X ′.

Step 4) GNN fine-tuning. Finally, we fine-tune the trained GNN with the shuffled node features X ′. Specifically, GNN ∶
(X ′,E)↦ Ŷ. We make the test inference with the fine-tuned GNN and shuffled feature X ′.

Experiment. We test the algorithm on the node classification benchmark datasets. We use 12 high class-homophily graphs.
Similar experimental procedures and hyperparameter settings are used as in Sec. 5.1 and Appendix G. To focus on more
practical scenarios, we use 20 train nodes and 30 validation nodes per class, whereas the rest of the nodes serve as the
test nodes. We use GCNII as the GNN encoder for the pseudo-label-based feature shuffle algorithm. For pseudo-labeling
hyperparameters, we fix ol = 0.7 and ou = 1. We compare the performance of vanilla GCNII versus GCNII enhanced with
pseudo-label-based feature shuffle. We repeat 30 trials and report the mean performance in Table 3. In 9/12 datasets, the
enhanced GCNII outperforms the vanilla GCNII by a small margin.

G. Experiment Settings: Pre-processing, Training, Hyperparameters, and Details
G.1. Dataset Pre-processing

Measurement. No dataset pre-processing is done when measuring class homophily hc and feature distance FD. If the dataset
has self-loops, they are removed when measuring CFH h̃(⋅).

CSBM-X. For experiments with symmetrically normalized graph convolution in Fig. 15, (i) directed edges are converted
into undirected edges (without edge weights) and (ii) self-loops are added. In other experiments, no dataset pre-processing
is done.

The real-world graphs. All the considered GNN models assume undirected graph topology. Thus, directed edges are
converted into undirected edges (without edge weights). Also, self-loops are added.
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G.2. Model Training

All models are trained with Adam (Kingma & Ba, 2015) optimizer. We fix 500 train epochs. The best model is chosen based
on early stopping, with a patience of 100. In feature shuffle experiments (Sec. 5, Appendix E), a new model is initialized
and trained for each shuffled graph.

G.3. Hyperparameters

In CSBM-X experiments (Sec. 4, Appendix D), we do not tune hyperparameters since the coefficient W ∈ R is the only
learnable parameter. In feature shuffle experiments (Sec. 5, Appendix E), we tune the hyperparameters on the original
graphs. That is, the feature-shuffled graphs are unknown to the models during the hyperparameter search.

For all models, we set their hidden feature dimension as 64 and the learning rate as 0.01. Below, we provide the
hyperparameter search space for each considered model.

1. GCN:

• Optimizer weight decay ∈ {5e − 3,1e − 3,5e − 4,1e − 4}
• Dropout ∈ {0.5,0.6,0.7}
• Number of layers ∈ {2,3,4}

2. GCN-II:

• Optimizer weight decay ∈ {1e − 3,5e − 4,1e − 4,5e − 5}
• Dropout ∈ {0.5,0.6,0.7}
• Number of layers ∈ {4,8,16}
• Residual connection weight α ∈ {0.1,0.3,0.5}
• Weight decay λ ∈ {0.5,1.0,1.5}

3. GPR-GNN:

• Optimizer weight decay ∈ {5e − 3,1e − 3,5e − 4,1e − 4}
• Dropout ∈ {0.5,0.6,0.7,0.8}
• Number of layers ∈ {10}
• Return probability α ∈ {0.1,0.3,0.5}

4. AERO-GNN:

• Optimizer weight decay ∈ {5e − 3,1e − 3,5e − 4}
• Dropout ∈ {0.5,0.6,0.7}
• Number of MLP layers ∈ {1,2}
• Number of convolution layers ∈ {4,8,16}
• Weight decay λ ∈ {0.5,1.0,1.5}

G.4. Other Details

Train/val/test split. For each node class, the train/val/test set is split randomly by the ratio of 50/25/25, unless otherwise
specified. In CSBM-X experiments (Sec. 4, Appendix D), for each generated CSBM-X graph G, we obtain 5 different splits.
In feature shuffle experiments (Sec. 5, Appendix E), we use 5 different splits consistent across the shuffled node ratio.

Node2Vec. For Fig. 10, we use Node2Vec (Grover & Leskovec, 2016) as the node features. For each graph, the Node2Vec
vector is 256-dimensional. To obtain the vector, we train the Node2Vec model with a walk length of 20, a context size of 10,
walks per node of 10, and 100 epochs.

Shuffle and CFH h̃(⋅). When measuring CFH after the feature shuffle, we average the outcomes over 5 trials.

Evaluation of WebKB datasets. The WebKB datasets (i.e., Texas, Cornell, and Wisconsin) have very small number of nodes,
ranging from 183 to 251. Thus, the variance of GNN node classification accuracy on the datasets often tend to be very large,
because mis-classifying one test node can drop near 2%p test accuracy. To enhance reliability of the empirical results in
Sec. 5, we report the mean performance over 30 trials only for the WebKB datasets.
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