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Abstract
Autoencoders have become an indispensable tool
for generative modeling and representation learn-
ing in high dimensions. Imposing structural con-
straints such as conditional independence in or-
der to capture invariance of latent variables to
nuisance information has been attempted through
adding ad hoc penalties to the loss function mostly
in the variational autoencoder (VAE) context, of-
ten based on heuristics. This paper demonstrates
that Wasserstein autoencoders (WAEs) are highly
flexible in embracing such structural constraints.
Well-known extensions of VAEs for this purpose
are gracefully handled within the framework of
WAEs. In particular, given a conditional indepen-
dence structure of the generative model (decoder),
corresponding encoder structure and penalties are
derived from the functional constraints that de-
fine the WAE. These structural uses of WAEs,
termed StrWAEs (“stairways”), open up a princi-
pled way of penalizing autoencoders to impose
structural constraints. Utilizing these advantages,
we present a handful of results on semi-supervised
classification, conditional generation, and invari-
ant representation tasks.

1. Introduction
The ability to learn informative representations of data with
minimal supervision is a key challenge in machine learn-
ing (Tschannen et al., 2018). To address this challenge,
autoencoders have become an indispensable toolkit. An
autoencoder consists of the encoder, which maps the input
to a low-dimensional representation, and the decoder, that
maps a representation back to a reconstruction of the in-
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put. Thus an autoencoder can be considered a nonlinear
factor analysis model as the latent variable provided by the
encoder carries the meaning of “representation” and the
decoder can be used for generative modeling of the input
data distribution. Most autoencoders can be formulated as
minimizing some “distance” between the distribution PX

of input random variable X and the distribution g♯PZ of
the reconstruction G = g(Z), where Z is the latent variable
or representation having distribution PZ , g is either deter-
ministic or probabilistic decoder, and ♯ is the push-forward
operator (in the latter case g is read as the conditional dis-
tribution of G given Z), which is variationally described
in terms of an encoder QZ|X . For instance, the variational
autoencoder (VAE, Kingma & Welling, 2014) minimizes

DVAE(PX , g♯PZ)

= inf
QZ|X∈Q

EPX
[DKL(QZ|X∥PZ)− EQZ|X log g(Z)] (1)

over the set of probabilistic decoders or conditional densi-
ties g of G given Z, where DKL is the Kullback-Leibler
(KL) divergence, and the Wasserstein autoencoder (WAE,
Tolstikhin et al., 2018) minimizes

DWAE(PX , g♯PZ) = inf
QZ|X∈Q

EPX
EQZ|Xdp(X, g(Z)) (2)

over the set of deterministic decoders g, where d is the
metric in the space of input X and p ≥ 1. Set Q restricts
the search space for the encoder. In VAEs, a popular choice
is a class of normal distributions

Q = {QZ|{X=x} = N(µ(x), diag(Σ(x))) | µ,Σ ∈ NN}

where NN is a class of functions parametrized by neural
networks. In WAEs, the choice

Q = {QZ|X | QZ := EPX
QZ|X = PZ} (3)

is considered; QZ is called an aggregate posterior of Z.

Of course, the notion of “informativeness” depends on the
downstream task. The variation in the observations that are
not relevant to the particular task is often called “nuisance”
and is desirable to be suppressed from the representation.
For example, in semi-supervised learning where the goal is
to use labeled as well as unlabeled data to perform learning
tasks such as digit generation (Van Engelen & Hoos, 2020),
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and learning representations separated from class specifi-
cation performs well (Kingma et al., 2014); in obtaining
representations of facial images, those that are invariant to
attributes (such as lighting conditions, poses, or presence
of eyeglasses) are often sought. A popular approach to
this goal is to explicitly separate informative and nuisance
variables in the generative model by factorization. This
approach imposes a structure on the decoder. Additionally
the encoder is further factorized and a penalty promoting
invariance of the encoded representation to the nuisance
variable can be added. A well-known example is the HSIC-
constrained VAE (HCV, Lopez et al., 2018), in which a
decoder with a nuisance variable is factorized in a similar
way to the semi-supervised VAE (Kingma et al., 2014). A
resembling factorization of the encoder (variational poste-
rior) is assumed, and penalties promoting this factorization,
such as the Hilbert-Schmidt Independence Criterion (HSIC,
Gretton et al., 2007) are added to the evidence lower bound
(ELBO). The Characteristic Capturing VAE (CCVAE, Joy
et al., 2021) splits the latent space and only certain elements
of the latent variable are associated with the nuisance vari-
ables. Another example is the Fader Networks (Lample
et al., 2018), in which the deterministic decoder takes an
additional input of the attribute and an adversarial penalty
that hinders the accurate prediction of the attribute by the
deterministic, unfactorized encoder.

These examples illustrate that, while the generative model
(decoder structure) can be chosen suitably for the down-
stream task, there is no principled way of imposing the
corresponding encoder structure. The goal of this paper
is to show that the WAE framework allows us to automati-
cally determine the encoder structure corresponding to the
imposed decoder structure. Specifically, when the deter-
ministic decoder g in (2) is structured to handle the con-
ditional independence relations in the imposed generative
model, then the constraint set (amounting to the Q in (3))
that makes the left-hand side of (2) a proper (power of)
Wasserstein distance determines the factorization of the (de-
terministic) encoder. In practice, the hard constraints in Q
are relaxed and (2) is solved in a penalized form. Another
benefit of the WAE framework is that the cited constraint
set can be systematically translated to penalties. Therefore,
in addition to the theoretical advantage that the penalized
form equals a genuine distributional distance for sufficiently
large penalty parameter while that of (1) remains a lower
bound of the negative log-likelihood of the model, the ad
hoc manner of designing penalties for the assumed encoder
structure prevalent in the VAE literature can be avoided in
the WAE framework. Further, nuisance variables are treated
in a unified fashion and the downstream tasks are not limited
to semi-supervised classification.

After providing necessary background in Section 2, we ex-
plain how the WAE framework leads to structured encoders

given a generative model through examples reflecting down-
stream tasks in Section 3. We would call these structured
uses of WAEs the Structured Wasserstein AutoEncoders,
abbreviated as StrWAEs (pronounced “stairways”). Various
instances of StrWAEs are experimented in Section 4 for
various datasets in tasks such as semi-supervised classifi-
cation, conditional generation, style transfer, attribute ma-
nipulation, and obtaining invariant representations. Several
implications of our framework are discussed in Section 5.

2. Preliminaries
In fitting a given probability distribution PX of a ran-
dom variable X on a measurable space (X ,B(X )), where
X ⊂ RD equipped with metric d, by a generative model dis-
tribution PG of sample G on the same meaurable space, one
may consider minimizing the (p-th power of) p-Wasserstein
distance between the two distributions, i.e.,

min
PG∈M

{
W p

p (PX , PG) := inf
π∈P(PX ,PG)

Eπ d
p(X,G)

}
.

Here, M is the model space of probability distributions,
P(PX , PG) is the coupling or the set of all joint distribu-
tions on (X ×X ,B(X ×X )) having marginals PX and PG.
Often the sample G is generated by transforming a variable
in a latent space. When G

a.s.
= g(Z) for a latent variable Z

in a probability space (Z,B(Z), PZ), Z ⊂ Rl (typically
l≪ D), and measurable function g, then PG is denoted by
g♯PZ . In this setting, as discussed in Section 1, Tolstikhin
et al. (2018) show that W p

p (PX , g♯PZ) = DWAE(PX , g♯PZ)
(see (2)), with the constraint set given in (3). It is further
claimed by Patrini et al. (2020, Theorem A.1) that the set
of probabilistic encoders QZ|X can be reduced to be de-
terministic, i.e., Z a.s.

= f(X) for f measurable. However,
their proof relies on the existence of a right inverse g̃ of g
when the codomain of the latter is restricted to its range.
Unfortunately, it is incorrectly stated that (g̃ ◦ g)♯PZ(A) is
equal to PZ(g̃

−1(g−1(A)), whereas the correct statement is
(g̃ ◦ g)♯PZ(A) = PZ(g

−1(g̃−1(A))). From the latter, the
key equality (g̃ ◦ T )♯PX = PZ , where T is the optimal
transport map, does not hold. To this end, if g̃ is a left in-
verse of g, the desired equality holds. The reason that a right
inverse is needed in Patrini et al. (2020) is to ensure that
g ◦ (g̃ ◦ T ) = T almost surely in PX and treat g̃ ◦ T as the
sought deterministic encoder f . To achieve this goal with a
left inverse, a more involved argument is needed. The proof
of the following result can be found in Appendix A.

Theorem 2.1. If PX is not atomic, a cost function c is
continuous, and the measurable function g : Z → X is
injective, then

Wc(PX , g♯PZ) = inf
f∈Q

EPX
c(X, g(f(X))), (4)

where Q is the set of all measurable functions from X to Z
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such that f♯PX = PZ .

Remark 2.2. Injectivity of decoder g can be imposed by
using convolutional layers with leaky ReLU activation func-
tion; g is injective if the convolution kernels form bases of
the corresponding vector spaces, which occurs almost surely
if they are initialized randomly (Puthawala et al., 2022).

In practice the set Q can be relaxed to F , a class of all mea-
surable functions paremeterized by deep neural networks,
which contains a minimizer of the right-hand side of (4);
the constraint f♯PX = PZ can be met by adding a penalty
λD(f♯PX∥PZ) for sufficiently large multiplier λ > 0 and
a divergence D between two distributions. Thus the genera-
tive modeling problem based on p-Wasserstein distance can
be formulated as

inf
g∈G

inf
f∈F
{EPX

dp(X, g(f(X)))+λD(f♯PX∥PZ)}, (5)

for G a set of injective measurable functions from Z to
X , typically parameterized by deep neural networks. The
function f : X → Z has an interpretation of an encoder
and g : Z → X has an interpretation of a decoder.

3. Learning invariant representations with
StrWAEs

In this section, we illustrate how a WAE is fully specified
by a model of decoder. Consider the graphical models
of Figure 1a, which we call the chain model. As we see
in Remark 3.3 and Section 3, the chain model is flexible
and captures many of the decoder structures considered
in the VAE literature (Kingma et al., 2014; Louizos et al.,
2016; Lopez et al., 2018; Joy et al., 2021; Feng et al., 2021).
Variables Yi ∈ Yi ⊂ Rki for i = 1, . . . , n represent the
observed nuisance variables but Yn ∈ Rkn may be partially
observed. The Zi ∈ Zi ⊂ Rli for i = 1, . . . , n is a latent
variable carrying information of Yi+1, . . . , Yn about G with
which we want to mimic the observable variable X . Here,
Y1, . . . , Yn are assumed to be independent. Notice that all
functions are measurable.

3.1. Formulating the Wasserstein Distance as
Structured Autoencoder

Notation. First, we define some notation for readability.

• A0 : h 7→ (·, h(·))
• A1 : f 7→ ((x, s, y) 7→ (s, y, f(x, s, y))), i.e.,
(A1f)(x, s, y) = (s, y, f(x, s, y)); s can be omitted.

• (f1, f2) : x 7→ (f1(x), f2(x))

• Yi:j = (Yi, . . . , Yj), Yi:j = Πj
k=iYk for i ≤ j

• The joint distribution PXY1:n of X and Y1:n has
marginals PX , PY1 , . . . , PYn

The operators Ai are related to the graph of the function,
and the subscript indicates how many elements to fix when
drawing the graph.

Complete data. For the chain model, we derive sim-
ple autoencoder forms of the Wasserstein distance be-
tween the data distribution and the generative model
following the approach in Theorem 2.1. The chain
model well-defines the joint distribution PGY1:n =
PG|Y1:n

PY1:n
= (g(Y1:n, ·)♯PZn

)PY1:n
where g(y1:n, z) :=

g1(Y1, · · · , gn(Yn, z)). However, since the decoder g de-
pends both on the observable Y1:n and latent variable Zn,
whether an equivalent of Theorem 2.1 holds for the chain
model remains a question. The following theorem answers
this question affirmatively. When all the input variables are
observed, the encoder that takes as inputs the observed la-
bels Y1:n in addition to X and the distributional constraints
are naturally derived during formulation.

Theorem 3.1. If the conditional distributions PX|Y1:n
are

non-atomic and g1, . . . , gn are injective, then

W p
p (PXY1:n

, PGY1:n
)

= inf
f∈F

EPXY1:n
dp(X, g ◦ (A1f)(X,Y1:n)), (6)

where F = {f : X × Y1:n → Zn | (A1f)♯PXY1:n
=

(
⊗n

i=1 PYi)⊗ PZn}.

The proof is given in Appendix A.2. This result states that
the encoder f should satisfy the constraint f(X,Y1:n)

d
=

Zn and f(X,Y1:n) ⊥⊥ Y1:n, where d
= denotes equality in

distribution. The intuition behind Theorem 3.1 is as follows.
In unstructured WAEs, in order to find the optimal transport
between the distribution PX and the decoded one g(Z), the
aggregated posterior f♯PX should match perfectly the prior
distribution PZ . If there is a observed nuisance variable
Y ≡ Y1:n and the decoder takes the form of g(Y,Zn), then
the joint distributions of the pairs (X,Y ) and (g(Y, Zn), Y )
need to be close. Within the WAE framework, proceeding
as above, the encoder should take both X and Y as input
and the distribution of f(X,Y ) should match perfectly that
of the latent variable Zn, i.e., f(X,Y )

d
= Zn. Since Y and

Zn are independent by construction, so should be Y and
f(X,Y ), i.e., f(X,Y ) ⊥⊥ Y . We also emphasize that the
functional form of the encoder mirrors that of the decoder.

Missing observations. If Yn is missing, then only
X,Y1, . . . , Yn−1 are observable hence we can estimate the
Wasserstein distance between PXY1:(n−1)

and PGY1:(n−1)
.

Theorem 3.1 applies directly if we replace PZn
with

PYn
⊗ PZn

:

W p
p (PXY1:(n−1)

, PGY1:(n−1)
)= inf

(h,h̆)∈H
EPXY1:(n−1)

[
dp(X, g ◦ (A1(h, h̆))(X,Y1:(n−1)))

]
, (7)
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G

g1

Y1Z1

...

gn

Zn Yn

(a) Chain model
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(b) M2 model
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(c) M2 + nuisance
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(d) stacked model

Figure 1: Examples of generative models for StrWAEs. Gray nodes (resp. white nodes) represent the observable (resp.
missing) variables. Half-filled nodes indicate that they are partially observable. (b), (c), and (d) are special cases of (a).

where H = {(h, h̆)|h : X × Y1:(n−1) → Yn, h̆ :

X ×Y1:(n−1) → Zn, (h, h̆)♯PXY1:(n−1)
= PYn

⊗ PZn
}.

However, the pair (h, h̆) yields an unintuitive structure
h(X,Y1:(n−1))

d
= Yn, h̆(X,Y1:(n−1))

d
= Zn. The follow-

ing result shows that there is an equivalent pair that mir-
rors the decoder: f(X,Y1:(n−1), Ỹ

h
n )

d
= Zn where Ỹ h

n :=
h(X,Y1:(n−1)) for a function h : X × Y1:(n−1) → Yn.
Corollary 3.2. Under the condition of Theorem 3.1, there
holds

W p
p (PXY1:(n−1)

, PGY1:(n−1)
) = inf

(f,h)∈I
EPXY1:(n−1)

{
dp(X, g ◦ (A1f) ◦ (A0h)(X,Y1:(n−1)))

}
, (8)

where I = {(f, h)|f :X×Y1:n→Zn, h : X×Y1:(n−1) →
Yn, ((A1f) ◦ (A0h))♯PXY1:(n−1)

=(
⊗n

i=1 PYi
)⊗ PZn

}.
Remark 3.3. (i) Corollary 3.2 implies that if Yn is missing,
one can simply write the objective function by replacing Yn

with the Ỹ h
n , which predicts Yn from (X,Y1:(n−1)), in (6)

of the complete data case. The functional constraints are
derived in the same manner.
(ii) From the independence of Y1:n, we can let
h(x, y1:(n−1)) ≡ h(x). We leverage this fact in our ex-
periments.
(iii) Let S = Y1:(n−1) ∈ RK ,K =

∑n−1
i=1 ki, the set of all

observable nuisance variables; S = ∅ if n = 1. The chain
model reduces to the M2 model (Figure 1b) or the stacked
model (Figure 1d), both are from Kingma et al. (2014), since
we use a deterministic decoder.

So far, we have assumed that Yn and S = Y1:(n−1) are
independent. However, there are relevant cases in which Y
and S are correlated, e.g., S is the age of a person and Y is
the indicator of high income in socioeconomic datasets (cf.
Louizos et al., 2016). In this setting, conditional, not joint,
modeling is required and we need to derive the Wasserstein
distance between PXY |S and PGY |S or between PX|S and
PG|S . We summarize these results in the Appendix B.

3.2. Building StrWAEs

Based on the previous theorem and corollary, we derive the
objective function of WAEs for the three decoder models,
depicted in Figures 1b to 1d, allowing for missing data.
Remark 3.3 suggests that the chain model generally reduces
to two cases: the case with only nuisance variables and the
case with nuisance variables and labels. In the latter case,
the goal is to find a representation that is independent of
nuisance variables but has the information in the labels.

3.2.1. M2 MODEL

The M2 model has been considered for semi-supervised
classification. It can be interpreted as the chain model in
case n = 1. Here, variable Y represents the observed nui-
sance variation, and Z encodes the representation invariant
to the unwanted variation in Y .

For the complete data, recall that the constraint defining F
in (6) is equivalent to

f(X,Y )
d
= Z, Y ⊥⊥ f(X,Y ). (9)

IfD is a divergence between the distributions of two random
variables, such as the maximum mean discrepancy (MMD,
Gretton et al., 2012; Rustamov, 2021) or Jensen-Shannon
divergence (Goodfellow et al., 2014) and H is a criterion
for measuring independence of two random variables, such
as the HSIC or mutual information, then the constraints in
(9) can be written as

D(f♯PXY ∥PZ) = 0, H(Y, f(X,Y )) = 0.

Thus a penalized version of (6) is

inf
f
{EPXY

dp(X, g ◦ (A1f)(X,Y ))

+ λ1D(f♯PXY ∥PZ) + µ1H(Y, f(X,Y ))} (10)
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for appropriate λ1, µ1 > 0. The first term in (10) is the
reconstruction error and the second term is the prior match-
ing term, aiming to align the aggregate posterior with the
prior distribution. The third term promotes independence
between the latent variable Z and the label Y to achieve an
invariant representation. In previous studies, this indepen-
dence term was either arbitrarily included or implicit in the
decoder architecture. However, in the WAE framework, it is
naturally incorporated through the imposed constraint (9).

If Y is missing, the constraint set I in (8) is equivalent to
h(X)

d
= Y, f(X,h(X))

d
= Z, h(X) ⊥⊥ f(X,h(X)). Pro-

ceeding as above, we obtain

inf
f,h
{EPX

dp(X, g ◦ (A1f)(X,h(X)))

+ λ1D((f ◦ (A0h))♯PX∥PZ) (11)
+ λ2D(h♯PX∥PY )+µ1H(h(X), f(X,h(X)))}.

for appropriate λ1, λ2, µ1 > 0. The catch here is that
D(h♯PX∥PY ) involves Y and thus cannot be estimated
if the labels are completely missing in the sample. Fortu-
nately, it can be estimated if they are partially observed. In
this semi-supervised setting, PY can be estimated from the
observed response variables, and the distribution h♯PX of
h(X) can be estimated from the whole sample. So we need
to merge (10) and (11), akin to how the loss function in a
semi-supervised model involves a weighted sum of super-
vised and unsupervised losses (Yang et al., 2022). Note that
(8) is valid even if the expectation is taken w.r.t. PXY , i.e.,
as if Y is observed. If we define a random variable Ŷh as
Ŷh = Y if Y is observed and Ŷh = h(X) otherwise, then

EPXŶh
dp(X, g ◦ (A1f)(X, Ŷh))+λ1D(f♯PXŶh

∥PZ)

+λ2D(PŶh
∥PY )+µ1H(Ŷh, f(X, Ŷh)) (12)

is the desired combination of the reconstruction error and
penalties that can be minimized by stochastic optimization.

Comparison with VAEs. In semi-supervised VAEs
(Kingma et al., 2014), the variational posterior is assumed
to be factorized as qϕ(y, z|x) = qϕ(y|x)qϕ(z|y, x) and is
not genuine posterior induced by the Bayes theorem. The
first and second factors correspond to h(x) and f(x, y) in I
from Corollary 3.2. While the former factorization is rather
arbitrary, the constraints in the encoder set I are derived
from the first principle.

Connection to adversarial autoencoders. If D is chosen
as the Jensen-Shannon divergence, µ = 0, and Ŷh ≡ h(X),
then (12) recovers the reconstruction and regularization
phases of the semi-supervised version of the adversarial
autoencoder (AAE, Makhzani et al., 2016), provided that
PY is replaced with an equiprobable multinomial distribu-
tion and optimization is carried out for each term. Since the
classification phase of the AAE can be implemented by op-
timizing the third term DKL(h♯PX∥PY ) over the complete

data, (12) provides a theoretical justification of the semi-
supervised AAE; matching the distribution of Ŷh directly
to PY by minimizing the cited functional appears more nat-
ural than fitting to an equiprobable model. Note that both
models possess an equivalent number of parameters; the
AAE has the learning rates of the optimizer for each of the
three phases, while the StrWAE has the penalty coefficients
associated with its three penalties.1

3.2.2. EXTENDED M2 MODEL WITH POSSIBLY MISSING
NUISANCE VARIABLES

The M2 model can be extended with two additional indepen-
dent nuisance variables that can be missing. In Figure 1c,
Y may represent a person’s identity in her portrait, which
may be missing, and S partially observed attributes in the
VGGFace2 dataset (Cao et al., 2018). In this model, we
assume that the number of identities may not be known a
priori, which means the test data may contain portraits of
new individuals that were not in the training data. In this
setup we want to obtain a representation Z that is invariant
to the two nuisance variables. Theorem 3.1 and 3.2 apply
directly by replacing Y with (S, Y ) and Y with S × Y . We
then minimize

EPXŜh1
Ŷh2

dp(X, g ◦ (A1f)(X, Ŝh1
, Ŷh2

))

+λ1D(f♯PXŜh1
Ŷh2
∥PZ)+λ2D(PŜh1

Ŷh2
∥PSY )

+µ1H((Ŝh1
, Ŷh2

), f(X, Ŝh1
, Ŷh2

))

(13)

over f, g, h1, h2 where Ŝh1
= S if S is observed and

Ŝh1
= h1(X) otherwise, and Ŷh2

= Y if Y is observed and
Ŷh2

= h2(X) otherwise. We underscore that the number
of identities may be infinite. Accordingly, it is necessary to
embed Y into a Euclidean space.

3.2.3. STACKED GENERATIVE MODEL WITH POSSIBLY
MISSING NUISANCE VARIABLES

The graphical model of Figure 1d is employed as the decoder
in Louizos et al. (2016); Lopez et al. (2018) for learning
invariant representations given nuisance variables. It can
be posed as a chain model with n = 2. The response
variable Y may represent the identity of a person, and the
nuisance parameter S may represent the light condition of
a picture X . In addition, it is required that Z1 and S are
independent in order to impose invariance of representation
to the nuisance variable. That is, we want two different
portraits of a person to have similar values of Z1, and those
of two different people to have quite distinct values of Z1,
even if the encoder does not know whose portraits they are,

1Makhzani et al. (2016) suggest to train AAE in several phases.
This is equivalent to cyclically minimize the individual terms in
(12); the number of penalty coefficients is equivalent to that of the
learning rates for those phases.
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and we also want Z1 to represent something immune to the
light condition S.

Note that the independence of Y and S enables us to
carry out a joint modeling. As in Section 3.2.1 con-
sidering the additional independence constraint Z1 =
g2(Ŷh, f(X,S, Ŷh)) ⊥⊥ S, the semi-supervised loss is de-
rived as

EPXSŶh
dp(X, g ◦ (A1f)(X,S, Ŷh))

+ λ1D(f♯PXSŶh
∥PZ) + λ2D(PŶh

∥PY )

+ µ1H(S, Ŷh, f(X,S, Ŷh))

+ µ2H(S, g2(Ŷh, f(X,S, Ŷh)))

(14)

for λ1, λ2, µ1, µ2 > 0, where the fourth term is aiming for
the independence of the three terms, so one can utilize the
dHSIC (Lopez et al., 2018).

Algorithm 1 describes the training procedure of StrWAEs.
The hat notation denotes the empirical distribution or sample
estimate.

Algorithm 1 Traning StrWAEs in Sections 3.2.1 to 3.2.3

Require: f : encoder, g: decoder, h: Y -embedder, Y : par-
tially observed labels, S: observed labels (can be ∅),
λ1, λ2, µ1, µ2: hyperparameters
Initialize f, g, h; Ll ← 0, Lu ← 0
repeat

Sample (xl, sl, y) ∼ PXSY , (xu, su) ∼ PXS

Sample z ∼ PZ

Compute

{
Gl = g ◦ (A1f)(xl, sl, y),

Gu = g ◦ (A1f) ◦ (A0h)(xu, su)

Ll ← dp(Xl, Gl) + λ1D̂(f♯P̂XSY ∥P̂Z)

+ λ2D̂(h♯P̂
l
X∥P̂Y ) + µ1Ĥ(sl,y,f(xl, sl, y))

+ µ2Ĥ(sl, g2(y,f(xl, sl, y)))

Lu ← dp(Xu, Gu) + λ1D̂((f ◦(A0h))♯P̂XS∥P̂Z)

+ λ2D̂(h♯P̂
u
X∥P̂Y )

+ µ1Ĥ(su, h(xu), f(xu, su, h(xu)))

+ µ2Ĥ(su, g2(h(xu),f(xu, su, h(xu))))
Take a gradient descent step a on Ll + Lu

until f, g, h converge

aEach term can be optimized separately; see footnote in §3.2.1.

4. Experiments
We experimented StrWAEs with various real-world
datasets.2 The generative model in Section 3.2.1 is applied
for semi-supervised learning and conditional generation on

2Code available at https://github.com/comp-stat/
StrWAE

the MNIST and SVHN (Netzer et al., 2011) datasets. The
models in Sections 3.2.2 and 3.2.3 are used for learning con-
ditional generation on the VGGFace2 datasets (Cao et al.,
2018) and invariant representation on the Extended Yale
B dataset (Georghiades et al., 2001; Lee et al., 2005). We
compared StrWAEs with semi-supervised VAE models that
are capable of conditional generation. The metric d was
chosen to be the Euclidean distance and p = 2 was used for
the power, so that the reconstruction error equals the mean
squared error. For the independence criterionH, dHSIC was
employed as in Lopez et al. (2018). For the distributional
divergence D, we used the Jensen-Shannon divergence (im-
plemented with GAN) to match the encoded and prior dis-
tributions. In light of Remark 2.2, we used Leaky ReLU
activations for the decoder to assure injectivity.

4.1. Semi-supervised Learning

We performed semi-supervised classification tasks on the
MNIST dataset with 100 labeled observations and the
SVHN dataset with 1000 labeled observations. All dig-
its were sampled evenly. The class label Y was embedded
in the 10-dimensional probability simplex. The latent distri-
bution PZ was chosen as a standard normal. The divergence
D(PŶh

∥PY ) in (12) was chosen as the sum of the cross en-
tropy (if Y is observed, 0 otherwise) and the MMD between
two random variables. To train this term using mini-batch
gradient descent, labeled observations in a batch were sam-
pled with maintaining the proportion in the overall observed
labels. Note that this model was trained end-to-end. The
classification accuracy of the trained StrWAE was compared
with the Gaussian mixture VAE (GMVAE, Dilokthanakul
et al., 2016), semi-supervised VAE (M1+M2, Kingma et al.,
2014), AAE (Makhzani et al., 2016), CCVAE (Joy et al.,
2021), and the M2 model with the Smooth-ELBO objec-
tive (Feng et al., 2021). In addition, conditional generation
was conducted by sampling a latent variable Z from PZ

and setting Y as the one-hot encoding of the digit from the
test dataset. Then the image was generated by computing
the decoder output g(Y,Z). To assess the quality of this
conditional generation procedure, the classification accu-
racy of the generated images on a separate, pretrained digit
classifier were computed. The pretrained classifiers had
99.32% (MNIST) and 96.46% (SVHN) of accuracy. To
further assess the ability of class-preserving generation, we
also examined the accuracy of generated images with the
embedding Ŷ = h(X) as input to the decoder instead of Y .

The result is summarized in Table 1. The StrWAE achieved
the highest classification accuracy on the MNIST dataset,
and the second-highest accuracy on the SVHN dataset. Fur-
thermore, StrWAE showed a substantially better perfor-
mance in conditional generation, surpassing other models
by a large margin and generation performance did not differ
significantly whether an actual label or a predicted label
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Table 1: Semi-supervised classification and generation performance. The classification accuracy for the M1+M2 model is
excerpted from Kingma et al. (2014), as the reported level of accuracy was not reproducible. † In the SVHN dataset, clusters
were generated based on background rather than the labels, resulting in low accuracies.

Model
MNIST(100) SVHN(1000)

Classification Conditional Generation Classification Conditional Generation

Y Ŷ Y Ŷ

M1+M2 96.67 - - 63.98 - -
GMVAE† 86.40(±1.80) 87.44 (±1.45) 83.00 (±2.90) 17.45 (±2.20) 13.57 (±1.19) 17.54 (±0.49)

AAE 98.10 (±0.35) 36.69 (±1.74) 35.75 (±2.10) 82.97 (±1.25) 82.99 (±3.17) 69.65 (±3.54)
CCVAE 93.18 (±0.45) 16.03 (±0.57) 67.42 (±5.71) 90.02 (±0.07) 14.92 (±0.89) 17.55 (±1.89)

Smooth-ELBO 95.97 (±1.95) 27.27 (±1.42) 11.75 (±1.34) 84.51 (±0.11) 81.85 (±0.09) 52.99 (±1.98)
StrWAE 98.69 (±0.04) 96.06 (±0.57) 94.74 (±0.55) 85.59 (±0.22) 98.80 (±0.44) 82.69 (±0.32)

Dataset SVHN EYaleB VGGFace2
Model StrWAE Smooth-ELBO StrWAE HCV StrWAE

GT

Reconstruction

Generation

Figure 2: Class-preserving generation examples

were given as input. Compared to AAE, all the terms in (12)
use the full data, and additionally, an independence penalty
appears naturally. These differences are attributed to the
relatively good conditional generation and class-preserving
generation performance of StrWAE. We hypothesize that
CCVAE has the highest classification accuracy on the SVHN
dataset because CCVAE is intended for multi-label settings
rather than assigning a single label to an input, and the
images in the SVHN dataset contain extra digits in the back-
ground in addition to the labels. The generation quality
of Smooth-ELBO was poor while its classification accu-
racy was high. It is likely due to that the gap between the
likelihood and the smooth-ELBO still exists even after the
smooth-ELBO incorporates the ELBO and the classifica-
tion loss. StrWAE does not suffer this kind of difficulties
as it directly targets the Wasserstein distance between the
source and target distributions. In the MNIST dataset, latent
vectors of GMVAE clustered on different digits. Conse-
quently GMVAE outperformed the other semi-supervised
VAE models in conditional generation. However, this was
not the case for predicting digits. This suggests that in the
VAE framework, clustering latent vectors is desirable for
conditional generation and semi-supervised learning is bet-
ter for predicting missing labels. On the contrary, the WAE
framework performed well on both tasks.

Figure 2 provides a qualitative comparison of class-
preserving generation performance on the SVHN dataset.
The second row was generated by putting the encoder out-
put as input to the decoder. The last four rows contains the
class-preserving generation results. Images generated by
the StrWAE all retained the digit class of the input, a phe-
nomenon not observed in Smooth-ELBO. Figure 3 shows
the style transfer results, where the class label was predicted
by h(X) from the source image X and from the target im-
age X ′ its “style of handwriting” (representation invariant
to digit variation) f(X ′, h(X ′)) was estimated. The out-
put was generated by computing g(h(X), f(X ′, h(X ′))).
Images generated from the StrWAE successfully inherited
information from different target and source images. For
more results, see Appendix F.

4.2. Conditional Generation Using Embedded Variables

Image data. We further investigated the conditional gener-
ation capability of StrWAEs using the VGGFace2 dataset
(Cao et al., 2018). This dataset comprises 3.14 million
training images, featuring faces from a total of 8,631 sub-
jects, and 169,000 test images from 500 subjects. Binary
attributes such as gender, presence of sunglasses, and mouth
state (open or closed) are partially observed and documented
for a subset of 30,000 images. Here, we let Y be the identity
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Figure 3: Style transfer examples of StrWAEs. Left most
column: source style. Top most row: target class.

of the person in the image and S be the vector of attributes.
The generative model for this dataset is the same as Sec-
tion 3.2.2. In order to embed Y and S to the Euclidean
space RB where B does not necessarily depend on the num-
ber of categories, we employed the entity embedding net-
work (Guo & Berkhahn, 2016) for the observed labels. The
trained embedding network naturally becomes pretrained
encoders h1 and h2 in (13), which are held fixed when train-
ing the rest of the network. A by-product of this embedding
is that it is even possible to impute a person’s identity not
present in training data.

The class-preserving generation and style transfer tasks were
conducted in the same manner as MNIST. In Figure 2, al-
though images of persons who were not in the training data
were used, the StrWAE was able to successfully generate
images retaining the identity with varying identity-invariant
features, e.g., camera angle, lighting condition. In the style
transfer task (Figure 3), the generated images possess the
styles from the source data and tend to preserve the specified
attribute of the target data. For example, the generated im-
ages tend to have open mouth if the target image has mouth
wide open. In addition, we also tried generating samples
with manipulated attributes. Since the “attribute encoder”
h2 embeds S in the Euclidean space, we could extrapolate
input S to decoder g beyond 0 and 1. For this attribute ma-
nipulation task, we compared results with Fader Networks
(Lample et al., 2018) trained with a similar architecture.
In the attribute manipulation task, we could successfully
generate images with the desired attributes changed. In
Figure 4, letting the “Beard” attribute positive produced
images having shaggy beard; making it negative produced
images without beard. For the Fader Networks, we extrap-
olated the attribute scores to a large magnitude as far as
±400, but it only distorted the original image. When we
manipulated the “beard” attribute, we observed that both
the mouth state (open or closed) and gender attributes were
affected alongside the beard attribute in Fader Networks.
This suggests that the latter model was not successful in
obtaining representations invariant to nuisance attributes.
On the other hand, StrWAE was relatively immune to the
nuisance information.

 

 

 

     

Beard +-

Beard +

Test data

Beard -

Fader
etworksN

StrWAE

Figure 4: Attribute manipulation and interpolation examples
on the VGGFace2 dataset.

4.3. Invariant representations

The same structure as Section 3.2.3 was used to test the
ability of StrWAEs to learn invariant representations of con-
trolled photographs, where the control variable is the light
direction. The cropped Extended Yale B dataset (Georghi-
ades et al., 2001; Lee et al., 2005) comprises of facial images
of 38 human subjects in various lighting conditions. For
each subject, the pictures of the person are split into train-
ing and test data with a fixed ratio, resulting in 1,664 and
750 images for the training and test respectively. We set
the identity of the image as Y and the lighting condition
(elevation and azimuth of the light direction normalized into
[−1, 1] × [−1, 1]) as S. In the training stage, we first pre-
trained the h in (14) to estimate Y and fixed h for the rest
of the training procedure. In consequence, we were able
to encode and decode the test data without the information
about Y by replacing it with h(X).

Table 2 and Figure 5 collect the results for predicting
identity and lighting direction (grouped in five and con-
tinuous), and image generation, following Lopez et al.
(2018). Recall that the goal is to learn latent representations
Z1 = g2(h(X), f(X,S, h(X))) that are invariant to the
light direction while retaining the identity information. The
Z1 encoded by StrWAE shows better performance in pre-
dicting Y and worse in predicting S on the test dataset than
others, suggesting better invariant representation; training
without the HSIC penalty led to performance degradation.
The t-SNE visualization of Z1 (Figure 5) accords with this
result, showing noticeable separation with respect to person
(Y ), but not with respect to lighting (S). Sample images
were generated by using the representation of the test im-
ages but setting S = (±0.3,±0.3); see Figure 2. StrWAE
produced reconstructions closer to the input than HCV and
perturbing S only kept the identity of the input in the gen-
erated images. The sharpness (Tolstikhin et al., 2018) and
the Fréchet inception distance (FID) scores (Heusel et al.,
2017) show that StrWAE produced sharper images than
HCV, confirming the visual inspection. Since the sample
generation was conducted by varying the variable S, the
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Table 2: Invariant representation of Extended Yale B. RF=random forest, Logistic=logistic regression, Linear=linear
regression. Classification accuracy for discrete and mean squared error for continuous variables.

Model ID accu-
racy

Lighting group (Acc.) Lighting direction (MSE) Generation

RF Logistic RF Linear FID Sharpness

VAE 0.71 0.73 0.74 0.03 0.07 222 7.67e-5
HCV 0.72 0.51 0.46 0.18 0.21 232 8.27e-5

StrWAE 0.98 0.23 0.24 0.25 0.24 55.7 3.94e-4

generated samples should be different from the test data
with scarce images and thus the FID scores should be taken
with caution, though. Overall, that StrWAE uses determinis-
tic encoder and decoder unlike the VAE-based model likely
contributed to achieving the desired representation and good
conditional generation performance at the same time.

Speech Data. To investigate the versatility of StrWAEs ex-
tends beyond facial images, we conducted semi-supervised
classification and conditional generation experiments on the
Mini Speech Recognition dataset3 comprising eight short
words, which were used as labels. Each word consists of
1,000 pronunciations, and we employed 9:1 train-test split
on the dataset. Notably, we trained our model with only
20% of the data containing labels. All audio samples were
transformed into mel-spectrograms. The inclusion of speech
recognition tasks within VAE frameworks is limited by the
inherent complexity of audio data. Our experimental re-
sults with AAE highlight this challenge. While the latent
variables in AAE fail to capture crucial audio information,
StrWAE demonstrates its capability to effectively encode
intricate audio data and facilitate conditional generation.

Table 3: Speech recognition results.

Model Classification Conditional Generation

Y Ŷ

StrWAE 60.88 57.63 37.50
AAE 24.03 13.9 13.9

Tabular data. We also explored StrWAEs’ possibility in
fair representation learning using tabular data. Due to the
lack of space, the details are provided in Appendix G.

We conclude this section by emphasizing that these vari-
ous flavors of invariant representation learning are possible
within the single framework of WAEs.

5. Discussion
We have shown that the WAE framework is rich enough to
handle various conditional independence structures, leading
to solid formulations of invariant learning problems, in the
setting that the decoder is structured and nuisance informa-

3https://www.tensorflow.org/tutorials/
audio/simple_audio

Figure 5: t-SNE map of Z1 colored by identities in Extended
Yale B. Each person formed a cluster within which various
lighting conditions were collected. Similarly-looking faces
appear to locate closely.

tion is (partially) available. Coining penalties to promote
the assumed factorization of the variational posterior (en-
coder), often mimicking the factorization, or conditional in-
dependence structure, of the decoder, is a commonly found
approach in the vast literature on VAEs, whether nuisance
information is present (Kingma et al., 2014; Louizos et al.,
2016; Lopez et al., 2018; Liu et al., 2022) or not (Higgins
et al., 2017; Kim & Mnih, 2018; Chen et al., 2018). The
sheer number of proposed penalties indicates the difficulty
and lack of principles in determining the encoder structure
matching that of the decoder. The WAE framework dis-
cussed in this paper can overcome these pitfalls.

To this end, we provide in Appendix C some ablation studies
and provide a guide on selecting the penalty parameters for
StrWAEs.

Since the penalty parameters are finite in practice, the choice
of the divergence D and independence criterion H may
affect the performance of StrWAEs. In Appendix D, we
compare popular basic divergences. It appears that those
that require adversarial training perform better.

The WAE literature has focused on improving the diver-
gence that matches the prior PZ and the aggregated posterior
QZ in (2), e.g., sliced Wasserstein distance (Kolouri et al.,
2019), Sinkhorn divergence (Patrini et al., 2020; Genevay
et al., 2018), and relational divergences (Xu et al., 2020;
Nguyen et al., 2021). Note that these exotic divergences are
also compatible with our framework. Investigating which di-
vergences will perform effectively in the structured settings
would be an interesting direction.
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A. Proofs
A.1. Proof of Theorem 2.1

Proof. Under the conditions of the theorem statement, the Monge-Kantorovich equivalence holds (Pratelli, 2007, Theorem
B):

W p
p (PX , PG) = inf

T :X→X :T♯PX=PG

EPX
dp(X,T (X)).

Hence it suffices to show that

inf
f :X→Z:f♯PX=PZ

∫
X
dp(x, g(f(x)))dPX(x) = inf

T :X→X :T♯PX=PG

∫
X
dp(x, T (x))dPX(x).

First observe that, for any measurable f : X → Z such that f♯PX = PXf−1 = PZ , we have g ◦ f : X → X measurable
and for any Borel set E ⊂ X

(g ◦ f)♯PX(E) = PX(g ◦ f)−1(E) = PX(f−1(g−1(E)))

= g♯[PXf−1](E) = g♯PZ(E) = PG(E)

or (g ◦ f)♯PX = PG, resulting in

inf
f :X→Z:f♯PX=PZ

∫
X
dp(x, g(f(x)))dPX(x) ≥ inf

T :X→X :T♯PX=PG

∫
X
dp(x, T (x))dPX(x).

For the opposite direction, suppose T : X → X that is measurable and satisfies T♯PX = PG = g♯PZ approximately attains
the infimum, i.e., given ϵ > 0,∫

X
dp(x, T (x))dPX(x) < inf

T ′:X→X :T ′
♯PX=PG

∫
X
dp(x, T ′(x))dPX(x) + ϵ.

Consider any Borel set B ⊂ Z such that Bc is a null set of PZ . From the Lusin-Suslin theorem (Corollary 15.2 of Kechris,
2012), g(B) is Borel measurable because g is an injective Borel measurable function. Then T♯PX = g♯PZ entails that

1 = PZ(B) = PZ(g
−1(g(B))) = g♯PZ(g(B)) = T♯PX(g(B)) = PX(T−1(g(B))). (15)

Since g is injective, for each x ∈ g(Z) there is a unique z such that x = g(z). Let us denote this z by g−1(x). Pick any
z0 ∈ Z and define g† : X → Z as

g†(x) =

{
g−1(x), x ∈ g(Z)
z0, otherwise.

If we let f = g† ◦ T , then for each x ∈ T−1(g(B)),

g ◦ f(x) = g ◦ g† ◦ T (x) = g(g†(T (x))) = g(g−1(T (x)) = T (x)

since T (x) ∈ g(B) ⊂ g(Z). From (15), T = g ◦ f , PX -a.e. Notice that g† is a left inverse of g and it is measurable again
by Corollary 15.2 of Kechris (2012). Thus for any Borel set F ⊂ Z ,

f♯PX(F ) = PX(g† ◦ T )−1(F ) = PX(T−1((g†)−1(F )))

= T♯PX((g†)−1(F ))

= PG((g
†)−1(F ))

= g♯PZ((g
†)−1(F ))

= PZ(g
−1((g†)−1(F )))

= PZ((g
† ◦ g)−1(F )) = PZ(F ),

12
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which shows f♯PX = PZ . Therefore,

inf
f ′:X→Z:f ′

♯PX=PZ

∫
X
dp(x, g(f ′(x)))dPX(x) ≤

∫
X
dp(x, g(f(x)))dPX(x)

=

∫
X
dp(x, T (x))dPX(x)

< inf
T ′:X→X :T ′

♯PX=PG

∫
X
dp(x, T ′(x))dPX(x) + ϵ.

Since ϵ > 0 is arbitrary, we are done.

A.2. Proof of Theorem 3.1

In order to prove the claim, we need the following result. A similar result can be found in (Kim et al., 2023, Theorem 2).
Proposition A.1. Let random variables (X,X ′, Y ) on X × X × Y satisfies (X,Y ) ∼ PXY , (X ′, Y ) ∼ PX′Y , and
Y ∼ PY . In particular the Y -marginals of PXY and PX′Y are both PY . Then,

W p
p (PXY , PX′Y ) = EPY

W p
p (PX|Y , PX′|Y ).

Proof. Recall that

W p
p (PXY , PX′Y ) = inf

γXY X′Y ′∈Π(PXY ,PX′Y )

∫
X×Y×X×Y

d̃p((x, y), (x′, y′))dγXYX′Y ′(x, y, x′, y′)

where Π(PXY , PX′Y ) is the set of joint distributions of (X,Y,X ′, Y ′) with marginals PXY and PX′Y .

For any γXYX′Y ′ ∈ Π(PXY , PX;Y ),∫
X×Y×X×Y

d̃p((x, y), (x′, y′))dγXYX′Y ′(x, y, x′, y′)

≥
∫
X×Y×X×Y

dp(x, x′)dγXYX′Y ′(x, y, x′, y′)

≥
∫
X×Y×X×Y

dp(x, x′)I{y=y′}dγXYX′Y ′(x, y, x′, y′)

=

∫
Y×Y

[∫
X×X

dp(x, x′)dγXX′|Y Y ′(x, x′|y, y′)
]
I{y=y′}dγY Y ′(y, y′)

=

∫
Y

[∫
X×X

dp(x, x′)dγXX′|Y Y ′(x, x′|y, y)
]
dPY (y)

≥
∫
Y
W p

p (PX|y, PX′|y)dPY (y).

The last line holds because γXX′|Y Y ′(·|y, y′)δy ∈ Π(PX|y, PX′|y). Therefore,

W p
p (PXY , PX′Y ) ≥ EPY

W p
p (PX|Y , PX′|Y ).

For the opposite direction, fix ϵ > 0 and let γXX′|y ∈ Π(PX|y, PX′|y) approximately attains W p
p (PX|y, PX′|y), i.e.,∫

X×X
dp(x, x′)dγXX′|y(x, x

′) < W p
p (PX|y, PX′|y) + ϵ.

Taking expectation with respect to PY , we obtain

EPY
W p

p (PX|y, PX′|y) + ϵ >

∫
Y

∫
X×X

dp(x, x′)dγXX′|y(x, x
′)dPY (y)

=

∫
X×Y×X×Y

d̃p((x, y), (x′, y′))δy(y
′)dγXX′|y(x, x

′)dγY Y ′(y, y′)

≥W p
p (PXY , PX′Y )

13
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where γY Y ′ is a joint distribution whose marginals are both PY . The last line holds since the measure π such that
π(B) =

∫
B
δy(y

′)dγXX′|y(x, x
′)dγY Y ′(y, y′) for any Borel set B ∈ X × Y × X × Y satisfies π ∈ Π(PXY , PX′Y ).

Sending ϵ→ 0,
W p

p (PXY , PX′Y ) ≤ EPY
W p

p (PX|Y , PX′|Y ).

Proof of Theorem 3.1. It is sufficient to prove that only if n = 1. The case of n ≥ 2 can be proven similarly by substituting
Y1:n, PY1

⊗· · ·⊗PYn
for Y, PY respectively. Let A ⊂ Y be such that PY (A) = 1. Fix y ∈ A. From Theorem 2.1,

W p
p (PX|y, PG|y) = inf

fy :X→Z,fy♯PX=PZ

EPX|y d
p(X, gy(fy(X))).

Thus for any fy satisfying the constraint,

W p
p (PX|y, PG|y) ≤ EPX|y d

p(X, gy(fy(X)))

Define f : X × Y → Z as (x, y) 7→ fy(x). Then the above inequality holds PY -a.e. and f ∈ F , where

F = {f : X × Y → Z | f(·, y)♯PX|y = PZ , PY -a.e., f is measurable}.

Recall that gy = g(y, ·). Take expectation with respect to PY on both sides and apply Proposition A.1 to have

W p
p (PXY , PGY ) ≤ EPXY

dp(X, g(Y, f(X,Y ))) (16)

for any f ∈ F .

Given ϵ > 0, let f∗
y : X → Z approximately attains W p

p (PX|y, PG|y), i.e., f∗
y♯PX = PZ and

EPX|y d
p(X, gy(f

∗
y (X))) < W p

p (PX|y, PG|y) + ϵ.

Define f∗ : X×Y → Z , (x, y) 7→ f∗
y (x). Taking expectation with respect to PY on both sides and applying Proposition A.1,

EPXY
dp(X, g(Y, f∗(X,Y ))) < W p

p (PXY , PGY ) + ϵ.

Since f∗ ∈ F ,

inf
f∈F

EPXY
dp(X, g(Y, f(X,Y ))) ≤ EPXY

dp(X, g(Y, f∗(X,Y ))) < W p
p (PXY , PGY ) + ϵ.

Sending ϵ→ 0 yields
inf
f∈F

EPXY
dp(X, g(Y, f(X,Y ))) ≤W p

p (PXY , PGY ). (17)

Combining (16) and (17) yields the desired equality.

It remains to show that the F is equal to

{f : X × Y → Z measurable | f̃♯PXY = PY ⊗ PZ , f̃ : X × Y ∋ (x, y) 7→ (y, f(x, y))}.

To see this, observe that if fy♯PX|y = PZ , PY -a.e., then

PY ⊗ PZ(E × F ) =

∫
E

fy♯PX|y(F )dPY (y).

for any measurable rectangle E × F ⊂ Y × Z . On the other hand, if the above equality holds, then∫
Y
PZ(F )dPY (y) = PY ⊗ PZ(Y × F ) =

∫
Y
fy♯PX|y(F )dPY (y)

for any event F ⊂ Z , yielding fy♯PX|y = PZ , PY -a.e. Now observe that∫
E

fy♯PX|y(F )dPY (y) =

∫
E

PX|y(f
−1
y (F ))dPY (y)

=

∫
E

PX|y({x ∈ X | f(x, y) ∈ F})dPY (y)

= PXY ({(x, y) ∈ X × Y | y ∈ E, f(x, y) ∈ F})
= PXY ({(x, y) ∈ X × Y | f̃(x, y) ∈ E × F}) = f̃♯PXY (E × F ).

14
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A.3. Proof of Corollary 3.2

Proof. Let

S = Y1:(n−1) ∈ S := Y1:(n−1), PS =

n−1⊗
i=1

PYi , g(s, yn, zn) = g1(y1, . . . gn−1(yn−1, gn(yn, zn)))

for s = (y1, . . . , yn−1). (7) reduces to

W p
p (PXS , PGS) = inf

(h,h̆)∈H
EPXS

dp
(
X, g ◦ (A(h, h̆))(X,S)

)
where

H = {(h, h̆)|h : X × S → Yn, h̆ : X × S → Zn measurable, (h, h̆)♯PXS = PYn
⊗ PZn

},

and (8) also reduces to

W p
p (PXS , PGS) = inf

(f,h)∈I
EPXS

dp
(
X, g ◦ (A1f) ◦ (A0h)(X,S)

)
where

I = {(f, h)|f : X×S×Yn→Zn, h : X×S→Yn measurable, ((A1f) ◦ (A0h))♯PXS = PS ⊗ PYn
⊗ PZn

}.

Fix (f, h) ∈ I. Define h̆(x, s) := f(x, s, h(x, s)). Then (A1f) ◦ (A0h)(x, s) = (s, h(x, s), f(x, s, h(x, s))) =

(s, h(x, s), h̆(x, s)). ((A1f) ◦ (A0h))♯PXS = PS ⊗ PYn
⊗ PZn

implies (h, h̆)♯PXS = PYn
⊗ PZn

.

For n = 1, the proof is straightforward by omitting S.

B. Stacked Generative Model with Correlated Response and Nuisance Variables
Let S = Y1:(n−1), the set of all nuisance variables, as in Appendix A.3. In this section, Y and S are allowed to be correlated.
Figure 1d actually describes the conditional distribution PX|S of X given S.

In case the data are fully observed, the following result is obtained from Theorem 3.1 by considering G = gs(y, z2) for
gs = g1(s, g2(·, ·)) and W p

p (PXY |s, PGY |s), s ∈ S.

Corollary B.1. If the conditional distributions PXY |S are non-atomic and g1, g2 are injective, then

W p
p (PXY |S , PGY |S) = inf

f∈F
EPXY |S dp(X, g ◦ (A1f)(X,S, Y )), PS-a.e. where (18)

F = {f : X×S×Y→Z2 measurable | fys = f(·, s, y), fys♯PX|ys = PZ2
, PY |s-a.e.}

= {f : X×S×Y→Z2 measurable | f̃s♯PXY |S = PY |S ⊗ PZ2
, f̃s : (x, y) 7→ (y, f(x, s, y))}.

If the response Y is missing, Theorem 2.1 applies directly if we replace Z with (Y,Z2) and condition on S: PG|s =
gs♯(PY |s ⊗ PZ2) and hence

W p
p (PX|S , PG|S) = inf

(h,h̆)∈H
EPX|S dp(X, g ◦ (A1(h, h̆))(X,S)), PS-a.e., where

H =
{
(h, h̆) | h : X × S → Y, h̆ : X × S → Z2 measurable,

(hs, h̆s)♯PX|s = PY |s ⊗ PZ2
, PS-a.e., hs = h(·, s), h̆s = h̆(·, s), s ∈ S

}
.

The following result connects this quantity with Corollary B.1.

Theorem B.2. Under the conditions of Corollary B.1, the following holds for g1 : S × Z1 → X and g2 : Y × Z2 → Z1

that are both measurable and injective.

W p
p (PX|S , PG|S) = inf

(f,h)∈I
EPX|S dp(X, g ◦ (A1f) ◦ (A0h)(X,S)), PS-a.e., where (19)

I = {(f, h) | f : X × Y × S → Z2, h : X × S → Y measurable, (f̃s ◦ h̃s)♯PX|s = PY |s ⊗ PZ2
, PS-a.e.,

f̃s : (x, y) 7→ (y, f(x, s, y)), h̃s : x 7→ (x, h(x, s)), s ∈ S}.
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Proof. Fix (f, h) ∈ I . Define h̆s(x) = f(x, s, h(x, s)) and h̆(x, s) = h̆s(x). Then f̃s ◦ h̃s(x) = (hs(x), h̆s(x)) and hence
(hs, h̆s)♯PX|s = PY |s ⊗ PZ2

. This implies

inf
(h,h̆)∈H

EPX|S dp(X, g1(S, g2(h(X,S), h̆(X,S)))) ≥ inf
(f,h)∈A

EPX|S dp(X, g1(S, g2(h(X,S), f(X,S, h(X,S))))).

For the opposite direction, fix (h, h̆) ∈ H. Define fs : (x, y) 7→ h̆s(x) and f : (x, s, y) 7→ fs(x, y). Also define f̃s(x, y) =

(y, f(x, s, y)) and h̃s(x) = (x, h(x, s)). Then (hs(x), h̆s(x)) = f̃s ◦ h̃s(x) and thus (f̃s ◦ h̃s)♯PX|s = PY |s ⊗ PZ2
and

(f, h) ∈ I.

Building StrWAEs. The constraints defining the encoder set F in Corollary B.1 are equivalent to f(X,Y, S)
d
= Z2 and

Y ⊥⊥ f(X,Y, S) given S. Proceeding as Section 3.2.1 while considering the additional independence constraint Z1 ⊥⊥ S, a
penalized version of (18) is

inf
f

{
EPS

[EPXY |S dp(X, g ◦ (A1f)(X,S, Y )) + λD(fS♯PXY |S∥PZ2
)

+ µ1H({Y |S}, {f(X,Y, S)|S})] + µ2H(S, g2(Y, f(X,Y, S)))
}

for appropriate λ, µ1, µ2 > 0 where fs(x, y) := f(x, s, y). If Y is only partially observed, Theorem B.2 entails a functional

δ(f, h, g1, g2) = EPS
[EPXŶh|S

dp(X, g ◦ (A1f)(X,S, Ŷh)) + λ1D(fS♯PXY |S∥PZ2
)

+ λ2D(PŶh|S∥PY |S) + µ1H({Ŷh|S}, {f(X,S, Ŷh)|S})] + µ2H(S, g2(Ŷh, f(X,S, Ŷh))

to minimize, where Ŷh = Y if Y is observed and Ŷh = h(X,S) otherwise.
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C. Ablation Study
We conducted an ablation study on the semi-supervised classification task to explore the sensitivity of hyperparameters.
Recall that we used the sum of cross entropy (if Y is observed, 0 otherwise) and MMD for D(PŶh

∥PY ) in (12). We
summarised our analysis of the sensitivity of penalty coefficients as follows.

1. λ1 (coefficient of the GAN penalty): the performance was good when the coefficient of the GAN penalty λ1 was
balanced to the scale of the GAN penalty with the reconstruction term. Moreover, for the other parameters, the model
was well trained when we scaled the other terms such as HSIC and cross entropy smaller than the previous two terms.

2. λ2 (coefficient of cross entropy and MMD): When the classification accuracy is based, conditional generation will be
good, so the cross entropy term should be prioritized during the training. In Table 4, there is significant performance
degradation when either the cross entropy or MMD term are missing. Our choice of λ2 was 500 or 1000 to match the
scale of the cross entropy to the reconstruction term after 1 epoch.

3. µ1 (coefficient of HSIC): Table 4 shows that the conditional generation performance becomes worse if the HSIC term is
missing. Note that HSIC is needed to ensure the independence within the encoder constraints, (Ŷh, f(X, Ŷh))

d
= (Y, Z).

A good rule of thumb for this is to first fit the marginal distributions and then ensure independence. Therefore, we set
µ1 to make the HSIC term smaller in scale.

Table 4: Ablation studies over penalty terms on MNIST and SVHN datasets. The bolded row refers to the penalty coefficients
reported in Table 1. MMD: maximum mean discrepancy. CE: cross entropy. A/B: A for the MNIST dataset and B for the
SVHN dataset.

D(PŶh
∥PY ) λ2 µ1

MNIST(100) SVHN(1000)

Classification Conditional Generation Classification Conditional Generation

Y Ŷ Y Ŷ

CE + MMD 500/1000 100/10 98.69 96.06 94.74 85.59 98.80 82.69
CE 500/1000 100/10 88.00 25.59 22.98 83.74 96.67 79.48

MMD 500/1000 100/10 12.85 51.13 34.12 14.16 21.49 11.39
CE + MMD 500/1000 0/0 98.48 92.89 91.42 76.35 95.39 73.29

CE 500/1000 0/0 87.70 32.78 32.74 83.00 94.80 77.46
MMD 100/1000 0/0 22.44 24.03 22.46 13.17 25.11 11.37

- 0/0 500/10 65.48 99.48 43.99 15.43 64.13 12.30
- 0/0 0/0 62.91 99.44 47.55 20.21 73.32 12.60

D. Additional Experiments on the Choice of Divergence
We experimented with the Kullback-Leibler (KL) and Sinkhorn divergences in addition to the GAN penalty in place of
D(f♯PXŶh

∥PZ) in (12). Classification accuracy similar to Table 1 is presented in Table 5. Using Sinkhorn divergence
achieved a similar classification performance, but the conditional generation performance dropped significantly. We used
the normal distribution as the prior, but Patrini et al. (2020) reports that the Sinkhorn divergence for the normal distribution
did not perform well on image data. We found that penalties that require adversarial training performed better empirically.
To compute the KL divergence between the aggregate posterior and the prior distributions, we utilized a variational
representation of KL divergence, named Donsker-Varadhan formula: DKL(P,Q) = supd:Z→R EP [d(X)]− EQ[e

d(X)].

Table 5: Classification accuracies of different divergences for the prior matching term on MNIST and SVHN datasets.

D(f♯PXŶh
∥PZ)

MNIST(100) SVHN(1000)

Classification Conditional Generation Classification Conditional Generation

Y Ŷ Y Ŷ

Jensen-Shannon (=GAN penalty) 98.69 96.06 94.74 85.59 98.80 82.69
KL 98.65 97.23 95.62 81.50 97.94 78.30

Sinkhorn 98.38 52.65 51.59 78.57 77.65 56.79

17



StrWAEs to Invariant Representations

E. Further implementation details
The prior PZ was set to be a normal distribution N (0, Ik), where k is the dimension of the latent space Z . For the penalty
divergences D between encoded Z and samples from PZ , we used the GAN loss (Goodfellow et al., 2014), which requires
an additional discriminator. Our models were trained using RAdam (Liu et al., 2020) and Adam (Kingma & Ba, 2014)
optimizers.

E.1. Semi-supervised learning

The autoencoder network of StrWAE for the MNIST (resp. SVHN) dataset had 0.9M (resp. 6.8M) parameters, and the
discriminator had 0.018M (resp. 0.035M) parameters; see Table 6 (resp. Table 7). We trained the model end-to-end with
500 and 200 epochs, respectively. For the dimension of Z, we used k = 10 for the MNIST dataset and k = 20 for the
SVHN dataset. We set the hyper-parameters as follows: for the MNIST, λ1 = 100, λ2 = 100, µ1 = 500, and µ2 = 0 for
the SVHN, λ1 = 10, λ2 = 10, µ1 = 1000, and µ2 = 0.

The similar architecture is used for the adversarial autoencoder (AAE, Makhzani et al., 2016) and the characteristic capturing
VAE (CCVAE, Joy et al., 2021). For the AAE, the prior PZ was set to N (0, Ik) and SGD with momentum is used for
optimization. For the Smooth-ELBO (SHOT-VAE, Feng et al., 2021) and Gaussian mixture VAE (GMVAE, Dilokthanakul
et al., 2016), the networks architecture proposed by the authors achieves better performance. To generate images conditional
on specific digits, it is necessary to assign clusters to corresponding digits. For this purpose, we employed the labeled data
used for semi-supervised learning, despite it being unlabeled during GMVAE training. The encoder deduced the cluster to
which a digit image belongs, and the cluster that was most frequently inferred for a particular digit image was designated as
the representative cluster for that digit.

Note that we utilized an extra set consisting of approximately 530K images from the SVHN dataset for training.

E.2. Identity-preserving conditional generation

The face region of images from the VGGFace2 dataset (Cao et al., 2018) were cropped and resized into a size of 128× 128.
The autoencoder architecture of the StrWAE had 88.4M parameters, and the discriminator architecture had 206k parameters
(Table 8). We pre-trained the (Y, S)-encoder with 3K iterations, then optimized the rest of the network for 30K iterations.
The results were compared with Fader Network (Lample et al., 2018) having an encoder-decoder architecture with 70.2M
parameters and a discriminator architecture with 0.48M parameters (Table 9) trained for 20K iterations. In our experiment,
we set λ1 = 100, µ1 = 10000, and λ2 = µ2 = 0.

E.3. Invariant representations

The cropped version of the Extended Yale Face Database B dataset (Georghiades et al., 2001; Lee et al., 2005) were resized
into a size of 128× 128. The autoencoder architecture of the StrWAE had total of 17.4M parameters, and the discriminator
architecture had 881 parameters (Table 10). After pre-training the h(X) in (14) with 2K iterations, we optimized the network
for 5K iterations. The results were compared with the VAE and HSIC-constrained VAE (HCV, Lopez et al., 2018). Here,
VAE denotes HCV without HSIC penalty term. To compare with our model, HCV was trained to minimize a semi-supervised
objective. For the Extended Yale Face Database B dataset, we set λ1 = 100, µ1 = 10, µ2 = 50000000, and λ2 = 0.

Computing infrastructure. We trained the networks with Intel® Xeon® CPU Silver 4114 @ 2.20GHz processors and
Nvidia Titan V GPUs with 12GB memory. For the VGGFace2 experiments, we trained the network using four GPUs; those
for the other experiments were all trained using a single GPU. All the implementations were based on Python 3.11, PyTorch
2.1.1, and CUDA 12.1.

F. Additional Figures
MNIST and SVHN. Figure 6 depicts the class-preserving samples trained with MNIST and SVHN dataset. Note that all
test data were not used in training, and we did not provide information about actual digit class Y of the test data to generate
images. Figure 7 presents the full result of the style transfer task shown in Figure 3.
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Table 6: Network architecture for the MNIST dataset.

Map Layer Operation Filters Kernel Strides Batch norm Activation Linked layer

f 1 Convolution 32 4x4 2x2 Yes LeakyReLU X
2 Convolution 64 4x4 2x2 Yes LeakyReLU 1
3 Convolution 128 4x4 2x2 Yes LeakyReLU 2
4 Linear 4x4x128 - - No LeakyReLU 3
5 Linear 128 - - No LeakyReLU 4
6 Linear 20 - - No LeakyReLU 5
h Softmax 10 - - No - 6
7 Linear 10 - - No - (6,Y ) or (6,h)

g 1 Linear 128 - - No LeakyReLU (Y ,f ) or (h,f )
2 Linear 128 - - No LeakyReLU 1
3 Linear 4x4x128 - - No LeakyReLU 2
4 Transposed Convolution 64 4x4 2x2 Yes LeakyReLU 3
5 Transposed Convolution 32 4x4 2x2 Yes LeakyReLU 4
6 Transposed Convolution 1 4x4 2x2 No Sigmoid 5

Discriminator 1 Linear 128 - - No LeakyReLU f
2 Linear 128 - - No LeakyReLU 1
3 Linear 1 - - No - 2

Table 7: Network architecture for the SVHN dataset.

Map Layer Operation Filters Kernel Strides Batch norm Activation Linked layer

f 1 Convolution 64 4x4 2x2 Yes LeakyReLU X
2 Convolution 128 4x4 2x2 Yes LeakyReLU 1
3 Convolution 256 4x4 2x2 Yes LeakyReLU 2
4 Convolution 512 4x4 2x2 Yes LeakyReLU 3
5 Linear 256 - - Yes LeakyReLU 4
6 Linear 256 - - Yes LeakyReLU 5
7 Linear 256 - - Yes LeakyReLU 6
7 Linear 256 - - Yes LeakyReLU 7
h Softmax 10 - - No - 8
9 Linear 20 - - No - 9

g 1 Linear 256 - - Yes LeakyReLU (Y ,f ) or (h,f )
2 Linear 256 - - Yes LeakyReLU 1
3 Linear 256 - - Yes LeakyReLU 2
4 Linear 2x2x512 - - Yes LeakyReLU 3
5 Transposed Convolution 256 4x4 2x2 Yes LeakyReLU 4
6 Transposed Convolution 128 4x4 2x2 Yes LeakyReLU 5
7 Transposed Convolution 64 4x4 2x2 Yes LeakyReLU 6
8 Transposed Convolution 1 4x4 2x2 No Sigmoid 7

Discriminator 1 Linear 128 - - No LeakyReLU f
2 Linear 128 - - No LeakyReLU 1
3 Linear 128 - - No LeakyReLU 2
5 Linear 1 - - No - 3
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Table 8: StrWAE architecture for the VGGFace2 dataset.

Map Layer Operation Filters Kernel Strides Batch norm Activation Linked layer

(h1, h2) 1 Convolution 128 5x5 2x2 Yes ReLU X
2 Convolution 256 5x5 2x2 Yes ReLU 1
3 Convolution 512 5x5 2x2 Yes ReLU 2
4 Convolution 1024 5x5 2x2 Yes ReLU 3
5 Linear 71 - - - - 4

f 1 Convolution 128 5x5 2x2 Yes ReLU X
2 Convolution 128 5x5 1x1 Yes ReLU 1
3 Convolution 256 5x5 2x2 Yes ReLU 2
4 Convolution 256 5x5 1x1 Yes ReLU 3
5 Convolution 512 5x5 2x2 Yes ReLU 4
6 Convolution 512 3x3 1x1 Yes ReLU 5
7 Convolution 1024 3x3 2x2 Yes ReLU 6
8 Convolution 1024 3x3 1x1 Yes ReLU 7
9 Linear 32 - - - - 8

g 1 Linear 8x8x1024 - - No - h1, h2, f
2 Transposed Convolution 512 5x5 2x2 Yes LeakyReLU 1
3 Residual Block 512 5x5, 1x1 1x1 Yes LeakyReLU 2
4 Transposed Convolution 256 5x5 2x2 Yes LeakyReLU 3
5 Residual Block 256 5x5, 1x1 1x1 Yes LeakyReLU 4
6 Transposed Convolution 128 5x5 2x2 Yes LeakyReLU 5
7 Residual Block 128 3x3, 1x1 1x1 Yes LeakyReLU 6
8 Transposed Convolution 64 5x5 2x2 Yes LeakyReLU 7
9 Residual Block 64 3x3, 1x1 1x1 Yes LeakyReLU 8

10 Convolution 3 3x3 1x1 No Sigmoid 9

Discriminator 1 Linear 256 - - No ReLU f
2 Linear 256 - - No ReLU 1
3 Linear 256 - - No ReLU 2
4 Linear 256 - - No ReLU 3
5 Linear 1 - - No - 4

Table 9: Fader Network architecture for the VGGFace2 dataset.

Map Layer Operation Filters Kernel Strides Batch norm Activation Linked layer

Encoder f 1 Convolution 128 5x5 2x2 Yes ReLU X
2 Convolution 128 5x5 1x1 Yes ReLU 1
3 Convolution 256 5x5 2x2 Yes ReLU 2
4 Convolution 256 5x5 1x1 Yes ReLU 3
5 Convolution 512 5x5 2x2 Yes ReLU 4
6 Convolution 512 3x3 1x1 Yes ReLU 5
7 Convolution 1024 3x3 2x2 Yes ReLU 6
8 Convolution 1024 3x3 1x1 Yes ReLU 7
9 Linear 96 - - - - 8

Decoder g 1 Linear 8x8x1024 - - No - S,Z
2 Transposed Convolution 512 5x5 2x2 Yes LeakyReLU 1
3 Residual Block 512 5x5, 1x1 1x1 Yes LeakyReLU 2
4 Transposed Convolution 256 5x5 2x2 Yes LeakyReLU 3
5 Residual Block 256 5x5, 1x1 1x1 Yes LeakyReLU 4
6 Transposed Convolution 128 5x5 2x2 Yes LeakyReLU 5
7 Residual Block 128 3x3, 1x1 1x1 Yes LeakyReLU 6
8 Transposed Convolution 64 5x5 2x2 Yes LeakyReLU 7
9 Residual Block 64 3x3, 1x1 1x1 Yes LeakyReLU 8

10 Convolution 3 3x3 1x1 No Sigmoid 9

Discriminator 1 Linear 384 - - No ReLU Z
2 Linear 384 - - No ReLU 1
3 Linear 384 - - No ReLU 2
4 Linear 384 - - No ReLU 3
5 Linear 7 - - No - 4
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Table 10: StrWAE architecture for the Extended Yale B dataset.

Map Layer Operation Filters Kernel Strides Batch norm Activation Linked layer

h 1 Convolution 64 5x5 2x2 Yes ReLU X
2 Convolution 128 5x5 2x2 Yes ReLU 1
3 Convolution 256 5x5 2x2 Yes ReLU 2
4 Convolution 512 3x3 2x2 Yes ReLU 3
5 Convolution 1024 3x3 2x2 Yes ReLU 4
6 Linear 8 - - - - 5

f 1 Convolution 32 5x5 2x2 Yes ReLU X
2 Convolution 64 5x5 2x2 Yes ReLU 1
3 Convolution 128 5x5 2x2 Yes ReLU 2
4 Convolution 256 3x3 2x2 Yes ReLU 3
5 Convolution 512 3x3 2x2 Yes ReLU 4
6 Linear 2 - - - - 5

g1 1 Linear 8x8x1024 - - No - g2
2 Transposed Convolution 512 3x3 2x2 Yes LeakyReLU 1
3 Transposed Convolution 256 3x3 2x2 Yes LeakyReLU 2
4 Convolution 256 3x3 1x1 Yes LeakyReLU 3
5 Transposed Convolution 128 5x5 2x2 Yes LeakyReLU 4
6 Transposed Convolution 64 5x5 2x2 Yes LeakyReLU 5
7 Convolution 64 5x5 1x1 Yes LeakyReLU 6
8 Convolution 1 5x5 1x1 No Sigmoid 7

g2 1 Linear 50 - - Yes LeakyReLU h, f

Discriminator 1 Linear 16 - - No ReLU f
2 Linear 16 - - No ReLU 1
3 Linear 16 - - No ReLU 2
4 Linear 16 - - No ReLU 3
5 Linear 1 - - No - 4

Table 11: HCV architecture for the Extended Yale B dataset.

Map Layer Operation Filters Kernel Strides Batch norm Activation Linked layer

QZ1|X,S 1 Convolution 64 5x5 2x2 Yes ReLU X
2 Convolution 128 5x5 2x2 Yes ReLU 1
3 Convolution 256 5x5 2x2 Yes ReLU 2
4 Convolution 512 3x3 2x2 Yes ReLU 3
5 Convolution 1024 3x3 2x2 Yes ReLU 4
µ Linear 10 - - No - 5, S
σ2 Linear 10 - - No - 5, S

Output (Z1|X,S) Sample Z1|X,S - - - - - µ, σ2

QZ2|Z1,Y 1 Linear 20 - - Yes ReLU Z1, Y
µ Linear 10 - - No - 1
σ2 Linear 10 - - No - 1

Output (Z2|Z1, Y ) Sample Z2|Z1, Y - - - - - µ, σ2

QY |Z1
1 Linear 20 - - Yes ReLU Z1

2 Linear 38 - - No - 1

PZ1|Z2,Y 1 Linear 20 - - Yes ReLU Z2, Y
µ Linear 10 - - No - 1
σ2 Linear 10 - - No - 1

Output (Z1|Z2, Y ) Sample Z1|Z2, Y - - - - - µ, σ2

PX|Z1,S 1 Linear 8x8x1024 - - No - Z1, S
2 Transposed Convolution 512 3x3 2x2 Yes ReLU 1
3 Transposed Convolution 256 3x3 2x2 Yes ReLU 2
4 Convolution 256 3x3 1x1 Yes ReLU 3
5 Transposed Convolution 128 5x5 2x2 Yes ReLU 4
6 Transposed Convolution 64 5x5 2x2 Yes ReLU 5
7 Convolution 64 5x5 1x1 Yes ReLU 6
8 Convolution 1 5x5 1x1 No Sigmoid 7
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(a) StrWAE (b) AAE

(c) Smooth-ELBO (d) CCVAE

(e) StrWAE (f) AAE

(g) Smooth-ELBO (h) CCVAE

Figure 6: Class-preserving generation from the MNIST and SVHN dataset. Green box and red box denote reconstruction
images and conditionally generated images respectively.
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(a) StrWAE (b) AAE

(c) Smooth-ELBO (d) CCVAE

Figure 7: Style transfer in the MNIST dataset.

VGGFace2. Figure 8 shows the class-preserving generation results for the VGGFace2 dataset, extending the corresponding
results in Figure 2. Figure 9 shows the extended style transfer results corresponding to Figure 3. Figures 10 and 11 extend
the attribute manipulation results (Figure 4), including gender, sunglasses and mouth open state. Manipulating the gender
attribute changed eyes and lips of the test data so that the images resemble stereotypical male (or female) pictures. Letting
the sunglasses attribute positive produced decoded images having darkened eye area that resembles sunglasses; making it
negative on an image with sunglasses produced one without them. Manipulating mouth open could make the manipulated
images with either mouth wide open or closed.

Extended Yale B. Figure 12 depicts the class-preserving samples generated from StrWAE and HCV, trained with the
Extended Yale B dataset, which enlarges the corresponding results presented in Figure 2. Note that StrWAE has better
generation quality and clearer effects of manipulating the lighting conditions than HCV, while keeping the identity of the
test data.

G. Experiments on a Tabular Dataset
We reproduced the experiment on fair representations in Louizos et al. (2016) using the Adult Income dataset, where the
response variable Y is an indicator of high income and the nuisance variable S is gender. The size of train data and test
data are 30,162 and 15,060, respectively, and all variables are fully-observed. Continuous variables were categorized into 5
categories, and one-hot encoding was used for variables with multiple category. The goal here is that the fair representation
Z1 = g2(Y, f(X,Y, S)) encompasses information of Y while excluding information related to S. Consequently, we expect
this representation to yield high classification accuracy for Y and low classification accuracy for S. Furthermore, the
probability of predicting Y = 1 should be similar regardless of S. To formulate our framework in this setting, modeling of the
conditional distribution of the data on S is required since Y and S are correlated, in which case the formulation in Appendix B
should be applied. Fairness is measured by the demographic parity, ∆DP := |P (Ŷ = 1|S = 1)− P (Ŷ = 1|S = 0)|. We
used the logistic regression to predict Y and S from Z1. StrWAE showed higher accuracy on Y and lower ∆DP compared
to HCV. VAE achieved the highest accuracy on Y and lowest accuracy on S, but with large statistical parity.
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Test data

Reconstruction

Generation

Figure 8: Class-preserving generation from the VGGFace2 dataset.

Table 12: Fair representation results. Accuracy is measured by logistic regression. VAE denotes HCV without HSIC penalty
term.

Model Y -accuracy S-accuracy ∆DP

VAE 0.8249 (±7.818e-4) 0.6638 (±5.458e-4) 0.1586 (±3.311e-3)
HCV 0.8090 (±1.972e-3) 0.6738 (±0.0) 0.0718 (±4.748e-3)

StrWAE 0.8193 (±6.567e-3) 0.6735 (±4.384e-4) 0.05583 (± 0.01200)
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Target data

Source
data

Figure 9: Style transfer in the VGGFace2 dataset.
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Test data

Male -

Male +

(a) Attribute Manipulation - Male

Test data

Sunglasses +

Sunglasses -

(b) Attribute Manipulation - Sunglasses

Test data

Mouth open +

Mouth open -

(c) Attribute Manipulation - Mouth open

Figure 10: Decoded images with attribute score manipulated to either 4.0 (red box, first row) or -3.0 (blue box, third row).
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StrWAE

Fader-
Network

Male-          +

(a) Attribute Interpolation - Male

Fader-
Network

StrWAE

Sunglasses- +

(b) Attribute Interpolation - Sunglasses

Fader-
Network

StrWAE

Mouth open- +

(c) Attribute Interpolation - Mouth open

Figure 11: Decoded images with attribute score interpolated in trained Fader Network and StrWAE

Test data

Reconstruction

Generation

(a) StrWAE (b) HCV

Figure 12: Class-preserving generation from the Extended Yale B dataset.

27




