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Abstract
Music generation schemes using language model-
ing rely on a vocabulary of audio tokens, gener-
ally provided as codes in a discrete latent space
learnt by an auto-encoder. Multi-stage quantiz-
ers are often employed to produce these tokens,
therefore the decoding strategy used for token
prediction must be adapted to account for multi-
ple codebooks: either it should model the joint
distribution over all codebooks, or fit the prod-
uct of the codebook marginal distributions. Mod-
elling the joint distribution requires a costly in-
crease in the number of auto-regressive steps,
while fitting the product of the marginals yields
an inexact model unless the codebooks are mu-
tually independent. In this work, we introduce
an independence-promoting loss to regularize the
auto-encoder used as the tokenizer in language
models for music generation. The proposed loss
is a proxy for mutual information based on the
maximum mean discrepancy principle, applied in
reproducible kernel Hilbert spaces. Our criterion
is simple to implement and train, and it is gener-
alizable to other multi-stream codecs. We show
that it reduces the statistical dependence between
codebooks during auto-encoding. This leads to
an increase in the generated music quality when
modelling the product of the marginal distribu-
tions, while generating audio much faster than the
joint distribution model.

1. Introduction
Generative models are being increasingly used to produce
multimedia content such as e.g. image (Rombach et al.,
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2022), text (Brown et al., 2020), speech (van den Oord
et al., 2016; Kong et al., 2020; 2021) or audio (Borsos et al.,
2023; Agostinelli et al., 2023; Yang et al., 2023b; Kreuk
et al., 2023). These models rely on artificial neural networks
parameterizing approaches such as generative adversarial
networks (Goodfellow et al., 2014), diffusion models (Ho
et al., 2020; Song & Ermon, 2019) or transformer-based lan-
guage models (Radford et al., 2019; Vaswani et al., 2017).
We focus here on the task of generating music based on
a text prompt. Music signals occupy the full frequency
spectrum (unlike speech) and can be very long sequences
(unlike most images), making the generation task arduous.
Text-to-music language models (Agostinelli et al., 2023;
Kreuk et al., 2023; Copet et al., 2023; Borsos et al., 2023)
try to model the distribution of a vocabulary of discrete
units i.e. tokens. The audio tokens are often generated by a
multi-stage quantizer operating in the latent space learnt by
a neural compression model (Défossez et al., 2023; Zeghi-
dour et al., 2021). As the quantizer uses a distinct codebook
for each stage, the language model decoding strategy must
be adapted to model either the joint distribution over all
codebooks, or the factorization of codebook marginal distri-
butions. On the one hand, modelling the joint distribution
requires either using an impractically large vocabulary size,
or multiplying the number of auto-regressive timesteps by
the number of codebooks. On the other hand, modelling the
factorized distribution significantly facilitates the training of
the language model and speeds inference up, but only pro-
vides an approximation of the true model. Several strategies
for modelling the factorized distribution have been proposed
(Wang et al., 2023; Kharitonov et al., 2022; Kreuk et al.,
2023; Copet et al., 2023) yielding satisfying results. How-
ever, we argue that these solutions do not directly address
the issue, which is that the factorized distribution is equiva-
lent to the full joint distribution only if the codebooks are
mutually independent.

In this work, we propose to introduce an independence
constraint between codebooks, in the form of an auxiliary
objective for training the auto-encoder used as the tokenizer
for the language model. Instead of leveraging adversarial
training as in (Belghazi et al., 2018; Brakel & Bengio, 2017),
we propose to use a proxy for mutual information based
on the maximum mean discrepancy (Gretton et al., 2012),
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which solves a dual formulation of earth mover optimization
in Gaussian reproducible kernel Hilbert spaces. We conduct
experiments on music generation, and run ablations with
respect to our independence-promoting loss configurations.

We make the following contributions:

• We show that the maximum mean discrepancy in repro-
ducible kernel Hilbert spaces is a reasonable proxy for
independence, since optimizing our criterion leads to a
reduction of mutual information between codebooks
during auto-encoding.

• We propose a modified version of our loss that matches
the decoding strategy used for token prediction. When
applied to the “delay” strategy proposed in (Kharitonov
et al., 2022), we obtain the best performance across all
our models.

• We show that objective and subjective music genera-
tion quality scores favour the language model whose
tokenizer was trained with the proposed independence
loss in comparison to other baselines. Our resulting
model has the same amount of parameters and gen-
eration speed as the baseline not using our proposed
criterion. Our approach enables to generate audio at
the same frame rate as the auto-encoder, which is much
faster than the joint distribution model and has similar
generation quality.

Please visit our companion website1 for audio examples,
support with code, etc.

2. Background
2.1. Quantization

Quantization is a discretization method aiming at reducing
the bitrate used to encode information, which is a major
challenge in low-resource communications. Quantization
is also used in machine learning, typically to reduce the
memory and computational footprints of deep neural net-
works (DNNs) on embedded devices. More recently, quan-
tizers were used to produce a vocabulary of discrete units
for language models learning the distribution of originally
continuous signals such as e.g. images or audio. Quantiza-
tion schemes can be categorized in two classes: scalar and
vector quantization. Scalar quantization discretizes each
dimension of the considered signal, rounding the current
value to the closest bin on a quantization grid. Vector quan-
tization (VQ) (Gray, 1984) encodes signals as entries (or
codes) in a multi-dimensional codebook. Concretely, VQ
learns a codebook C with M vectors of dimension N and

1encodec-mmd.github.io

at inference, it performs a nearest neighbour search in the
codebook space to find the right code for the input signal.

Multi-stage vector quantizers (Juang & Gray, 1982; Vasuki
& Vanathi, 2006) use multiple codebooks with reasonable
size, which increases codebook utilization compared to hav-
ing one large codebook. This is one of the keys to the
success of these structured quantizers, which achieve a good
trade-off between computational complexity and coding ef-
ficiency. Residual vector quantization (RVQ) (Zeghidour
et al., 2021) is a multi-stage vector quantization scheme that
introduces K codebooks. At each stage k ∈ {1, . . . ,K},
the residual of the previous stage is quantized with the code-
book C(k) and the residual for the next stage is obtained by
subtracting the resulting code from the previous residual.
The codes exhibit a natural hierarchical, coarse-to-fine struc-
ture, as most of the information is contained in the first few
codebooks.

2.2. Independence of Random Variables

Reliably measuring statistical dependence between random
variables is a wide-spread topic in the machine learning
literature (Higgins et al., 2017; Burgess et al., 2017; Brakel
& Bengio, 2017; Hyvarinen et al., 2023; Belghazi et al.,
2018). Let {Z1, . . . , ZK} be a family of vector random
variables in RN . It is an independent family if and only
if the joint distribution, denoted as PZ , and the product
of the marginal distributions denoted as PZ̄ (or factorized
distribution) coincide. This is equivalent to saying that the
joint probability density function can be factorized into the
product of the marginal probability density functions, i.e.
∀J ≤ K, ∀(k1, . . . kJ) ∈ {1, . . . ,K}J with i 6= j ⇒ ki 6=
kj and ∀(zk1

, . . . zkJ ) ∈ RN×J :

pZk1
,...,ZkJ

(zk1
, . . . , zkJ ) = ΠJ

j=1pZkj
(zkj ). (1)

where pX is the probability density function of the random
variable X . Independence between variables can be exactly
measured via the mutual information I(Z1, . . . ZK), which
equals the Kullback-Leibler divergence between the joint
distribution PZ and the factorized distribution PZ̄ . This
instance of mutual information is called total correlation,
and can also be expressed in terms of entropies:

I(Z1, . . . ZK) = DKL (PZ ||PZ̄) (2)

= H(Z1, . . . , ZK)−
K∑
k=1

H(Zk), (3)

whereH(X) measures the entropy of the random variable
X . While a closed-form computation of the total correlation
is available through (3), this requires either exact knowledge
of the distributions, or approximate knowledge through his-
togram estimation. We will eliminate the first option since
we do not posit distributional assumptions as in e.g. the
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variational auto-encoder (VAE) case (Kingma & Welling,
2014; Higgins et al., 2017). Estimating the histogram of
the marginal variables Zi might be possible most of the
time. However, estimating the histogram of the joint vari-
able (Z1, . . . , ZK) is a tedious operation as it requires an
immense sample size. Another poor property of histograms
is that their computation is not differentiable.

For the reasons listed above, we should resort to proxies to
force the independence of random variables. Several inde-
pendence proxies have already been proposed in the litera-
ture (Belghazi et al., 2018; Brakel & Bengio, 2017; Li et al.,
2023). However, these often rely on adversarial training,
which is known to significantly increase the training diffi-
culty (Goodfellow et al., 2014). For instance (Belghazi et al.,
2018) optimize a dual formulation of the Kullback-Leibler
divergence through adversarial training of neural estimators.
A similar paradigm was already explored for non-linear in-
dependence component analysis (ICA) (Hyvarinen et al.,
2023), where a neural network was trained to discriminate
between samples from the joint distribution and samples
from the factorized distribution (Brakel & Bengio, 2017). A
Jensen-Shannon divergence objective is then formulated and
optimized using the estimated joint-to-factorized probability
ratio (Huszar, 2016).

Aside the Kullback-Leibler and Jensen-Shannon diver-
gences, another convenient distance between probability
distributions is the earth mover distance, defined as:

W2(PZ ||PZ̄) = inf
π∈Π(PZ ,PZ̄)

E(Z,Z̄)∼π
∥∥Z − Z̄∥∥

2
, (4)

where Π(PZ ,PZ̄) denotes the ensemble of all distributions
whose marginals are PZ and PZ̄ . Given the Kantorovic-
Rubinstein duality (Villani, 2009), the earth mover distance
coincides with the maximum mean discrepancy (MMD)
(Gretton et al., 2012) defined as a simpler optimization
problem over real-valued 1-Lipschitz functions:

MMD(PZ ||PZ̄) = W2(PZ ||PZ̄)

= sup
h,‖h‖≤1

EZ∼PZ
[h(Z))]− EZ̄∼PZ̄

[h(Z̄)].

(5)

Since MMD is equivalent to the earth mover distance, if
MMD(PZ ||PZ̄) = 0 then the joint distribution PZ and the
factorized distribution PZ̄ are equal and therefore the family
{Z1, . . . , ZK} is independent.

One could use a neural network to parameterize the function
h and train it with an adversarial loss, which would resemble
the aforementioned works (Belghazi et al., 2018; Brakel &
Bengio, 2017). This was applied in (Arjovsky et al., 2017),
although for density estimation in generative adversarial
networks (GANs) rather than independence optimization.
However, (Gretton et al., 2012) highlight a remarkable prop-

erty of the MMD by taking the set of functions h to be the
unit ball in an reproducible kernel Hilbert space (RKHS) H.

Let X ∈ RN×J : an evaluation operator δX : H→ R asso-
ciates h ∈ R to its evaluation h(X) ∈ R. The Riesz repre-
sentation theorem guarantees that for each continuous evalu-
ation operator δX , there exists a feature mapping φ(X) ∈ H,
such that ∀h ∈ H, δX(h) := h(X) = 〈h, φ(X)〉H. A core
property of RKHSs is that they are equipped with a kernel
function k : RN×J × RN×J → R, such that dot prod-
ucts between features can be conveniently computed as
〈φ(X), φ(Y )〉H = k(X,Y ). It can be then shown that a
lower-bound of the MMD in (5) can be obtained as a com-
bination of kernel computations:

MMDH(PZ ||PZ̄) = EZ1∼PZ
EZ2∼PZ

k(Z1, Z2)

+ EZ̄1∼PZ̄
EZ̄2∼PZ̄

k(Z̄1, Z̄2) (6)

− 2EZ1∼PZ
EZ̄2∼PZ̄

k(Z1, Z̄2)

≤ MMD(PZ ||PZ̄).

The proof is let to appendix A. An important prop-
erty of MMDH is that if H is a universal RKHS, then
MMDH(PZ ||PZ̄) = 0 ⇐⇒ PZ = PZ̄ (Gretton et al.,
2012). This shows that if we achieve optimality for our
lower-bound MMDH using a universal RKHS, we actu-
ally obtain an independent representation. A RKHS H
is said universal if it is dense in the space of functions
h : RN×J 7→ R. In particular, RKHSs with Gaussian
kernels are universal.

Our proposed proxy can easily be computed with batch esti-
mators and does not require adversarial training. Another
kernel-based estimator was presented in (Li et al., 2023; Yu
et al., 2021). However, it requires a singular-value decom-
position of the kernel matrices k(Z1, Z2) which is sensitive
to numerical errors, produces gradients with high variance
and is costly for high-dimensional data.

2.3. Audio Generation with Language Models

Language modelling using auto-regressive Transformer-
style architectures (Vaswani et al., 2017) has been central
in audio generation lately (Dhariwal et al., 2020; Borsos
et al., 2023; Wang et al., 2023; Agostinelli et al., 2023;
Kreuk et al., 2023; Copet et al., 2023). These approaches
typically consist of two modules. The first is a neural audio
compression model such as e.g. (Zeghidour et al., 2021;
Défossez et al., 2023) that takes as input the raw audio
X ∈ RL with L the sequence length. The encoder part of
this codec transforms X into a discrete token sequence with
codebook indexes Q ∈ {1, . . . ,M}T×K and correspond-
ing codes Z ∈ RT×K×N , where T is the reduced time
length obtained via the encoder strides, K is the number
of codebooks, M is the codebook size and N is the code-
book dimension. The second module is an autoregressive
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Transformer-decoder language model operating in the space
of discrete audio tokens. Given a textual conditioning C
provided by a pre-trained text encoder, the language model
fθ predicts the distribution of a sequence of tokens Z auto-
regressively as fθ(Z(t)|C,Z(1), . . . , Z(t−1)). Finally, the
acoustic tokens generated by the language model are pro-
vided to the audio decoder to synthesize the final waveform.

Because VQ-based audio codecs typically use multiple code-
books for optimal compression, the usual single-stream de-
coding strategy of language models needs to be adapted.
The token sequence can be for instance flattened, and the
transformer then predicts the codebooks sequentially. The-
oretically, this leads to modelling the joint distribution of
codebooks PZ (Copet et al., 2023). However, this approach
yields high computational complexity as the frame rate is
multiplied by the number of codebooks K compared to the
auto-encoder.

Another solution is to decode the distributions of each
codebook independently and thus modelling the factor-
ized distribution PZ̄ conditionally to the past tokens
{Z(1), . . . , Z(t−1)}. However, this approach is only equiv-
alent to the exact model of the joint distribution PZ if the
codes of each codebook are mutually independent, condi-
tionally to the past codes. Using the concepts introduced
in 2.2, this means the family {Z(t)

1 , . . . Z
(t)
K } should be in-

dependent, conditionally to {Z(1), . . . , Z(t−1)}. As t in-
creases, errors due to statistical dependence between codes
may compound and cause the model to diverge from the
true distribution. However, this method preserves the origi-
nal codec frame rate, significantly accelerating training and
inference.

Several alternative decoding strategies have been introduced:
(Wang et al., 2023) propose to fully model the distribution
of the first codebook, then to learn the factorized distribution
over the remaining codebooks, while (Borsos et al., 2023;
Agostinelli et al., 2023) model the first four codebooks with
a first decoder, then the remaining eight codebooks with a
second decoder. (Kharitonov et al., 2022) introduce a delay
between codebooks for multi-stream language modeling, as
an alternative to simply modelling all codebooks in parallel.
This was used for audio and music generation in (Kreuk
et al., 2023) and (Copet et al., 2023), respectively.

We propose instead to address the issue of statistical depen-
dence between codes, so that we can reduce the modelling
error but keep the inference time low when modelling the
factorized distribution. This is the objective of the next
section, where we present our independence promoting loss.

3. Method
We introduce here our proposed objective loss for promot-
ing independence between codebooks. Using the maximum

mean discrepancy framework presented in Section 2.2, we
choose a reproducible kernel Hilbert space H equipped with
a kernel k(·, ·). We do not operate in a variational frame-
work, and consequently do not posit assumptions as to how
the codes are distributed in the latent space. Therefore, we
need to work with empirical estimators. An unbiased empir-
ical estimator for the MMD lower-bound between samples
{Zi}Bi=1 and {Z̄i}Bi=1 is obtained from (6):

MMDH(PZ ||PZ̄) =
1

B(B − 1)

B∑
i=1

∑
j 6=i

k(Zi, Zj)

+
1

B(B − 1)

B∑
j=1

∑
j 6=i

k(Z̄i, Z̄j)

− 2

B2

B∑
i=1

B∑
j=1

k(Zi, Z̄j), (7)

where B is the sample size and i, j are indexes of samples
in the batch.

Given a batch of samples {Zi}Bi=1 of the joint distribution
PZ obtained via encoding and quantization, we use the
same batch shuffling strategy as (Brakel & Bengio, 2017)
to obtain samples {Z̄i}Bi=1 of the factorized distribution PZ̄ .
For each codebook, we randomly shuffle the corresponding
codes along the batch dimension, which was shown to effec-
tively approximate samples of the factorized distribution PZ̄
for sufficiently large sample sizes B. As explained further
in the experiments section, we choose the sample size to
be as large as possible to reduce both the variance of the
empirical MMDH estimator and the reshuffling algorithm.
The independence loss Linde is then obtained by computing
the empirical MMDH estimator between samples from the
joint and approximate factorized distributions, as summa-
rized in Algorithm 1. Note that by promoting independence
between codeboks through optimization of MMDH, we
actually achieve more than the weaker conditional indepen-
dence required by our decoding strategies to obtain exact
modeling. Designing a conditional independence objective
is not explored here.

This version of the proposed auxiliary loss promotes in-
dependence between the codes corresponding to encoded
frames with similar frame index. This is optimal when
adopting a parallel decoding strategy, effectively modelling
the factorized distribution PZ̄ . We propose to extend our
independence-promoting by applying the “delay” strategy
proposed in (Kharitonov et al., 2022) to the codes before
computing the MMDH estimator, effectively promoting in-
dependence between time-delayed codes {Z(.−k+1)

k }Kk=1,
as this will be our token decoding strategy for language mod-
elling. The same could be done for other decoding strategies
such as e.g. Vall-E (Wang et al., 2023). A diagram of the
whole framework is displayed in Figure 1.
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Figure 1. MusicGen framework. The EnCodec audio auto-encoder (top) encodes the waveform and audio tokens (middle) are obtained by
discretizing the encoded audio with the RVQ multi-stage quantizer. The resulting audio tokens are then passed along text embeddings
(bottom-left) to a Transformer-style language model with L layers (bottom-right). The language model auto-regressively estimates the
next token (right) according to the ”delay” decoding strategy (Kharitonov et al., 2022). At the time step t = 7, our proposed method
MusicGen-MMD regularizes the EnCodec bottleneck with the loss Linde, thereby promoting independence between the delayed codes
{Z7

1 , Z
6
2 , Z

5
3 , Z

4
4} produced by RVQ.

Algorithm 1 MMD Optimization
Input: Training macro-batch X %B,L
Encode Xe = Eθ(X) %B,T,D
Quantize Z = Q(Xe) %B,K,T,N

Optional: Apply “delay” Z(t)
.,k = Z

(t−k+1)
.,k

Group time with batch axes Z.,k ← Z.,k,. %B*T,K,N
for codebook index k ∈ {1, . . . ,K} do

Sample permutation π ∼ U(SBT )
Shuffle batch axis {Z̄i,k}BTi=1 = {Zπ(i),k}BTi=1

end for
Compute independence loss (7) Linde= MMD(PZ ||PZ̄)

4. Experiments
4.1. Models and Hyperparameters

Auto-encoder: We use the 32kHz configuration of EnCodec
(Défossez et al., 2023) as our audio tokenizer. EnCodec is
a convolutional encoder-decoder model producing embed-

dings at 50 Hz for input waveforms sampled at 32 kHz.
Each embedding is modeled by a RVQ scheme using 4
codebooks with 211 = 2048 entries each, which leads to
an effective bitrate of 2.2kB.s−1. The model is trained
with a reconstruction loss (Lrec) using a combination of
L1 and L2 losses on the mel-spectrogram using multiple
time resolutions (MSSpec), and a L1 loss on the time signal.
A multi-scale STFT discriminator is used to increase the
reconstruction quality through adversarial training (Ladv),
and a feature matching loss is added for the training of the
generator (Kumar et al., 2019). The quantizer is trained
with the codebook loss (Lcodebook), and the encoder is addi-
tionally trained with a commitment loss pulling the encoder
outputs closer to the learnt embeddings (Lcommit). Mod-
els are trained for 600k steps on 8 V100 GPUs with the
Adam optimizer, using β1 = 0.5, β2 = 0.9, a learning rate
of 3 · 10−4, a batch size of 64 and segments of 1 second
cropped at random in audio sequences.
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Figure 2. MMD, total correlation of EnCodec codes and MSSpec loss computed on our internal set. MSSpec is the combination of L1
and L2 losses on the multi-resolution mel-spectrogram, used for reconstruction in EnCodec. The horizontal axis shows the weighting
factor used for the MMD loss Linde. The total correlation I is computed on the whole 250k-samples training set for minimal bias in the
histogram approximation. It is computed between two codebooks taken at random, averaged over five codebook couples, and expressed as
a ratio to the entropy of the joint distribution (in %).

Language Model: We train the same Transformer model
as MusicGen-small (Copet et al., 2023), consisting of sev-
eral Transformer-style layers for a total number of 300M
parameters. Each layer comprises a causal self-attention
module, a module computing cross-attention between the
current signal and the conditioning text representation, a
fully-connected block with ReLU, and a residual connection
skipping from the layer’s input. Sinusoidal positional encod-
ing is used to embed the current time step (Vaswani et al.,
2017). The decoding strategy for all models is the ”delay”
pattern (Kharitonov et al., 2022). The model is trained on
cross-entropy (LCE) for 1M steps on 32 V100 GPUs with
the AdamW optimizer, using β1 = 0.9, β2 = 0.95, a batch
size of 192, and audio sequences of 30 seconds. We use
a cosine learning rate schedule with a 4000-steps warmup.
Exponential moving average with a decay of 0.99 is used
to recursively smooth model weights. Top-250 sampling is
used with a temperature of 1 during inference (Fan et al.,
2018). The EnCodec audio codec and the text encoder are
frozen during the training of the language model.

Text Conditioning: We use the T5 Transformed-based text
encoder (Raffel et al., 2023). Metadata such as key, tempo
or instrumentation are concatenated to the text description.
We implement classifier-free guidance when sampling from
the model’s logits, as in (Kreuk et al., 2023). Therefore, we
drop the conditioning signal with a probability of 0.2 during
training, and at inference we use a guidance strength of 3.0.

Independence Loss: We use a weight of 103 for the in-
dependence loss Linde, computed in a separate backward.
All the other losses are optimized as in (Défossez et al.,
2023). We choose this value empirically by selecting
the largest weighting factor that did not degrade the tra-
ditional EnCodec loss, as detailed in the ablation study
in Section 5.1. The RKHS H is equipped with the multi-
scale Gaussian kernel k(x, y) =

∑
σi
e−||x−y||

2/2σ2
i with

radii σi ∈ {0.1, 1, 5, 10, 20, 50}. Therefore, it satisfies
MMDH(PZ ||PZ̄) = 0 ⇐⇒ PZ = PZ̄ (see Section 2.2).
We let the kernel functions fixed throughout training, al-
though optimizing the standard deviations σ could lead to a
better lower-bound of the true MMD in (6). This is because
the distributions PZ and PZ̄ are being learnt as we compute
the MMDH estimator, therefore measuring the optimality of
the chosen kernel k(·, ·) (or equivalently RKHS H) is intrin-
sically hard. Furthermore, this would require a significant
amount of energy spent in extensive grid searches, which
we believe was not the focus of this study. We further justify
the choice of the multi-scale Gaussian kernel in Section 5.4.

Unless mentioned otherwise, we use the decoding strategy
adaptation proposed in Section 3 for the ”delay” pattern
(Kharitonov et al., 2022). We noticed in our experiments
that although the estimator (7) is unbiased, a high batch
size is required to reduce the variance of the estimator and
properly optimize the objective Linde. We maximize the
macro-batch size B by accumulating 32 batches, which
results in B = batches × batchsize × T̃ /gpus = 1280
samples per GPU). We make these samples fit on a V100
GPU by using gradient checkpointing during encoding to
compute the independence loss in a separate computational
graph, which significantly reduces the amount of GPU mem-
ory used, at a minor increase in training time.

4.2. Datasets

We use 20K hours of licensed music to train both EnCodec
and the language model. The training dataset is composed
of an internal dataset of 10K high-quality music tracks, and
the ShutterStock and Pond5 music data collections2, respec-
tively consisting of 25K and 365K music tracks. All datasets
comprise full-length music samples recorded at 32 kHz, ac-

2www.shutterstock.com/music www.pond5.com
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companied by metadata including a textual description and
supplementary details such as genre, key, tempo, etc. For
comparison of the proposed method to the baselines, we em-
ploy the MusicCaps benchmark (Agostinelli et al., 2023) as
our primary evaluation dataset. MusicCaps comprises 5.5K
samples, each lasting ten seconds and curated by expert mu-
sicians. We resample all samples to 16kHz for fairness. For
ablation studies, we rely on a held-out internal evaluation
set featuring 528 music tracks.

4.3. Evaluation Metrics

We conduct a comprehensive evaluation using both objec-
tive and subjective metrics. Objective functions include
the Fréchet Audio Distance (FAD) (Kilgour et al., 2019)
computed as the distance between Gaussian distributions fit-
ted on DNN-obtained embeddings of the real and generated
samples. As highlighted in (Gui et al., 2024), using FAD can
lead to wrong interpretations if using irrelevant embeddings.
We therefore use various embeddings such as CLAP-Laion
(contrastive learning audio pretraining), MERT-4 (acoustic
music understanding) and VGGish (audio feature classifi-
cation)3. To complement this, akin to (Yang et al., 2023b),
we calculate the KL-Divergence between the outputs of
the Patch-Out-Transformer4 audio classifier (Koutini et al.,
2022), utilizing the original and generated audio as inputs.
These metrics deliver insights into complementary aspects
of the generated audio, namely quality, fidelity and high-
level semantics.

For subjective evaluation, we conducted a MUSHRA-style
mean opinion score (MOS) test, where 11 annotators were
each asked to rate 12 samples each with a single number
between 0 and 100 representing the overall music quality,
including audio quality as well as consistency and likeli-
hood of the harmonic, melodic and rhythmic structure. The
ground-truth reference was given (and hidden among the
samples for rating) as an anchor representing a music track
with maximum music quality. The files rated by the anno-
tators were randomly drawn from the MusicCaps dataset,
normalized at -14dB LUFS(ITU-R, 2017). The text descrip-
tion was not shown during the test. See Appendix F for more
details. We also run a second subjective evaluation with an-
notators recruited via Amazon Mechanical Turk: results and
methodology are reported in Appendix G.

4.4. Baselines

We compare our proposed method trained for music gen-
eration to the original MusicGen model without indepen-
dence loss (Copet et al., 2023), as well as other state-of-
the-art latent diffusion baselines such as the text-to-music

3We compute all these scores using the official repository
https://github.com/microsoft/fadtk associated to (Gui et al., 2024).

4https://github.com/kkoutini/PaSST

version of AudioLDM2 (Liu et al., 2023b)5 (denoted as
AudioLDM2-Music in the following) , its predecessor Au-
dioLDM (Liu et al., 2023a)6, and Mustango (Melechovsky
et al., 2023)7. For completeness we also include other lan-
guage modelling baselines such as MusicLM (Agostinelli
et al., 2023), Noise2Music (Huang et al., 2023) and the re-
cent audio fondational model UniAudio (Yang et al., 2023a).
For these however, we were not able to evaluate these base-
lines as the public implementation was not made available
for the given text-to-music generation task, and therefore
reported results from the original papers directly.

5. Results
We introduce our results section by running an analysis of
the proposed independence-proxy loss with respect to the
weighting factor used for optimization, and investigate its
correlation with total correlation of the codes. We follow
by reporting objective and subjective metrics for music gen-
eration on the standard MusicCaps benchmark. Then, we
proceed with an ablation study to show the efficiency of in-
tegrating the decoding strategy for MMD loss optimization.
We also test the generalizibility of our method by applying
it to a different state-of-the-art audio codec, namely RVQ-
GAN (Kumar et al., 2024), and we analyse the resulting
performance in appendix B. Finally, we conduct ablation
studies with respect to other quantization schemes: results
are reported in appendices B,C and D.

5.1. MMD as an Independence-promoting Loss

We show in Figure 2 the MMD, total correlation and
MSSpec loss values for EnCodec codes (which are later
used as tokens in our language model). We show our grid
search with respect to the scaling factor for the MMD loss.
We use our whole 250k-samples internal set for minimal
bias in histogram approximation. The total correlation I is
computed between two codebooks taken at random, aver-
aged over five codebook couples, and expressed as a ratio
to the entropy of the joint distribution (in %). We first ob-
serve that MMD overall correlates with the total correlation,
which shows that our proposed loss is a reasonable indepen-
dence proxy. Except for the large weighting factor of 104,
the MMD loss and total correlation diminish monotonously
with respect to the weighting factor used for optimization,
which qualifies the proposed criterion as a valid objective
loss. The MSSpec reconstruction loss remains unaffected
except when using a very large scaling factor of 104, for
which the training seems perturbed, and where the total
correlation does not seem to correlate with MMD anymore.
We choose a factor of 103 as it allows a maximal total corre-

5https://github.com/haoheliu/AudioLDM2
6https://github.com/haoheliu/AudioLDM
7https://github.com/AMAAI-Lab/mustango
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Table 1. Text-to-music generation on MusicCaps. Asterisks∗ mean that we report figures from the related papers as the public imple-
mentation was not available for the given text-to-music generation task. Mustango was trained on an augmented version of MusicCaps,
therefore we put it aside the other baselines. For the subjective metric (OVRL), mean and 95 % confidence intervals are showed.
The samples presented were 10 second long sampled at 16kHz, which matches the training conditions of Mustango, AudioLDM and
AudioLDM2-Music. In comparison MusicGen and MusicGen-MMD were trained on 30 second-long segments sampled at 32kHz.

Model # params FADclap−laion ↓ FADMERT−4 ↓ FADvgg ↓ KL ↓ CLAP (%) ↑ OVRL. ↑
Ground-Truth - - - - 38 97.95 ± 1.13
Mustango 1.4 B 0.07 1.65 1.56 0.71 37 49.26 ± 4.21
MusicLM∗ 860 M - - 4.0 - - -
Noise2Music∗ 1.3 B - - 2.1 - - -
UniAudio∗ 1 B - - 3.65 1.87 - -
AudioLDM 416 M 0.18 4.18 3.52 1.42 35 56.29 ± 4.35
AudioLDM2-Music 347 M 0.25 4.30 4.71 1.31 31 69.43 ± 3.42
MusicGen 300 M 0.16 1.57 3.60 1.22 31 62.54 ± 3.68
MusicGen-MMD (ours) 300 M 0.14 1.45 2.98 1.18 32 74.75 ± 3.68

Table 2. Text-to-music generation results on held-out test set. All
models have 300M parameters.

MusicGen Configuration FADvgg ↓ KL ↓ CLAP (%) ↑
Ground-truth - - 38
Delay (Copet et al., 2023) 0.95 0.45 37
Delay w/ MMD-Parallel 0.90 0.45 37
Delay w/ MMD (proposed) 0.59 0.46 37
Flatten 0.69 0.46 39

Table 3. MMD, total correlation and reconstruction losses of
EnCodec-MMD with various kernels evaluated on our internal
dataset. We used a weight of 1000 for the MMD loss, and adapted
the weighting factors of the MMD loss so that the magnitudes of
the losses stayed approximately consistent across kernels. The
total correlation I is computed on the whole 250k-samples train-
ing set for minimal bias in the histogram approximation. It is
calculated between two codebooks taken at random, averaged over
five codebook couples, and expressed as a ratio to the entropy of
the joint distribution (in %).

Method I (%) ↓ MSMelSpec ↓
Multi-Scale Gaussian 4.8 ·10−2 0.107
Squared Inverse 4.1 ·10−2 0.127
Linear 5.0 ·10−2 0.114
Quadratic 4.9 ·10−2 0.118

lation reduction without hurting the reconstruction loss.

We show in Appendix B that our method is generalizable to
other codecs, by applying MMD optimization to the latent
space of RVQGAN (Kumar et al., 2024), which is a state-of-
the-art audio codec based on EnCodec. Our results support
that MMD optimization can also be used to promote the
independence of RVQGAN codes, in a similar fashion to
what have demonstrated here for EnCodec codes.

5.2. Text-to-Music Generation Benchmark

We show objective and subjective evaluation results for
music generation on MusicCaps in Table 1. We observe
that the objective metrics of Mustango are quite strong, as
the model was trained on an augmented version of Mus-
icCaps. Our method MusicGen-MMD improves objective
metrics over our own baseline MusicGen, and obtains bet-
ter objective metrics than AudioLDM, AudioLDM2-Music,
MusicLM and UniAudio. Noise2Music still obtains a better
FAD result, although with a much larger architecture (1.3
B). Furthermore, we could not reproduce the results nor
run other metrics (such as FAD with other embeddings) as
the implementation was not made publicly available. The
subjective metric OVRL. obtained via the MUSHRA-style
test indicates that our model MusicGen-MMD obtains the
best performance, closely followed by AudioLDM2-Music.
Then follow MusicGen, AudioLDM and finally Mustango.

5.3. Decoding Strategy Matching

We present the effect of integrating the language model de-
coding strategy to the MMD loss optimization. We train
three models with the same language modeling configura-
tion and the ”delay” decoding stategy, but distinct EnCodec
configurations: our baseline without MMD optimization
(Delay), our proposed model using the ”delay” decoding
strategy for optimizing the MMD (Delay w/ MMD) and
our proposed model where the MMD optimizes does not
integrate the decoding strategy (Delay w/ MMD-Parallel).
Finally we train a MusicGen model using the ”flatten” de-
coding strategy where the codebooks are flattened such that
a single code is predicted at each time step. This effectively
models the joint distribution PZ instead of the factorized dis-
tribution PZ̄ . Results are computed on our held-out test set
and reported in Table 2. Objective scores show that adapting
the MMD optimization to the language modelling decoding
strategy improves audio quality and fidelity, as our proposed
method obtains a better FADvgg than the one where the
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MMD criterion is not adapted to the language model decod-
ing strategy. Our method even outperforms the MusicGen
with ”flatten” strategy on the FADvgg score, which indicates
that training the language model to predict the joint distri-
bution by flattening the codebooks does not yield optimal
performance, which we posit is due to increased training
difficulty. In addition, the original frame rate of EnCodec
is preserved, whereas MusicGen with ”flatten” decoding
largely increases the inference time, by a factor equal to the
number of codebooks K.

5.4. Kernel Function Ablation

We justify here how the choice of kernel function k(·, ·)
impacts the reconstruction error of EnCodec and the total
correlation of the codes.

First, the Gaussian kernel is a natural candidate as it is
widely used in statistics and machine learning. Furthermore,
we observed experimentally that using several standard de-
viations σi increases the numerical robustness of the MMD
computation, as unadapted values might make the exponen-
tials in the Gaussian kernel collapse to values where the
numerical rounding errors degrade the estimation of the
MMD. Using several σi therefore enables us to avoid this
pitfall, as we can expect at least some values to produce
reliable estimates.

We have conducted experiments with a variety of other ker-
nels and provide the results in Table 3. The squared inverse
kernel is defined here as k(x, y) = (1 + (||x− y||2)/σ2)−1

with σ = 12, the linear kernel as k(x, y) = xT y and the
quadratic kernel as k(x, y) = (xT y)2. We observe that the
multi-scale Gaussian kernel achieves the most interesting
trade-off, by obtaining the second lowest total correlation
while outperforming all other kernel functions on recon-
struction, thereby justifying its choice in our subsequent
experiments.

6. Conclusion
We presented an independence-proxy loss for regularizing
discrete latent representations used as tokens in music gen-
eration language models. We showed that the proposed
method outperforms our baseline and other state-of-the-art
music generation models, without adding parameters nor
increasing the inference time compared to the baseline. We
performed an analysis of the propose criterion, showing its
correlation with total correlation of the codes and investi-
gating the effects of adapting the criterion to the decoding
strategy used in further language modelling. We also demon-
strated that the proposed criterion can be easily plugged into
other multi-stream codecs, and more generally we would
argue that is is a reasonable independence optimization cri-
terion for other applications than music generation.

Impact Statement
Large scale generative models boast high expression capa-
bilities, which raises questions regarding ethics and soci-
etal consequences of their use. In particular, text-to-music
generative models can constitute an unfair competition for
musicians (and artists and creators in general). This is a so-
cietal issue that has not been solved yet and demands serious
regulatory investigation. We try and make our research as
open and accessible as possible, ensuring that the involved
parties, both amateurs and professional, have equal access
to the developed methods. Another potential bias towards
individuals resides in the large proportion of Western music
(and in particular pop instrumental and electronic music)
of the data used to train our model, which resents a lack
of diversity. However, the somewhat reasonable size of
the model presented in this paper and the low number of
auto-regressive steps used for inference should encourage
reproducibility of our method for new data sources.
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A. Proof of Kernel Formulation of MMD
This is the proof to (6) and mostly uses material from (Gret-
ton et al., 2012). First, the notion of feature mapping can be
extended to the mean embedding of a probability distribution
(Gretton et al., 2012). Given a probability distribution PX
we define its mean embedding µPX

:= EX∼PX
[φ(X)] ∈ H

such that:

∀h ∈ H : EX∼PX
[h(X)] = 〈h, µPX

〉H (8)

If h is taken to be in a RKHS H, the obtained MMD estimate
is actually a lower-bound of the true MMD:

MMD(PZ ||PZ̄) = sup
h,‖h‖≤1

EPZ
[h(Z̄)]− EPZ̄

[T (Z̄)]

≥ sup
h∈H,‖h‖≤1

EPZ
[h(Z̄)]− EPZ̄

[T (Z̄)]︸ ︷︷ ︸
MMDH(PZ ||PZ̄)

.

Using (8) in (5) and the properties of H, we can then com-
pute the MMD between PZ and PZ̄ taking the supremum
over the unit ball of H as:

MMDH(PZ ||PZ̄) = sup
h∈H,‖h‖≤1

EPZ
[h(Z̄)]− EPZ̄

[T (Z̄)]

= sup
h∈H,‖h‖≤1

〈h, µPZ
− µPZ̄

〉

=
∥∥µPZ

− µPZ̄

∥∥
H

= 〈µPZ
, µPZ

〉−2〈µPZ
, µPZ̄

〉+〈µPZ̄
, µPZ̄

〉,

where we use the 1-Lipschitz property of h in the third line.
We can then use the definition of the mean embedding to
obtain:

MMDH(PZ ||PZ̄) = EZ1∼PZ
EZ2∼PZ

〈φ(Z1), φ(Z2)〉
+ EZ̄1∼PZ̄

EZ̄2∼PZ̄
〈φ(Z̄1), φ(Z̄2)〉

− 2EZ1∼PZ
EZ̄2∼PZ̄

〈φ(Z1), φ(Z̄2)〉.

Finally, using the kernel definition in H:

MMDH(PZ ||PZ̄) = EZ1∼PZ
EZ2∼PZ

k(Z1, Z2)

+ EZ̄1∼PZ̄
EZ̄2∼PZ̄

k(Z̄1, Z̄2)

− 2EZ1∼PZ
EZ̄2∼PZ̄

k(Z1, Z̄2).

B. MMD Optimization on RVQGAN Codes
We apply here our MMD optimization method on RVQGAN
(Kumar et al., 2024), a state-of-the-art codec based on En-
Codec. RVQGAN improves upon EnCodec by using lower-
dimensional embeddings in the RVQ codebooks, thereby
increasing codebook utilization. The authors also propose a
new multi-scale STFT discriminator and various other tech-
niques to increase the quality at lower-bitrate regimes. Our
aim here is to demonstrate that our independence-promoting

criterion based on MMD optimization is generalizable to
other codecs. We employ the same setup as in our main ex-
periments, and simply use RVQGAN in place of EnCodec,
keeping the number of codebooks and the total bandwidth
identical. We show the MMD loss, mutual information of
RVQGAN codes and reconstruction losses in Figure 3. We
observe the similar trend compared to our method applied
to EnCodec, with an even stronger correlation between the
scale of the MMD loss and the mutual information, which
implies that MMD optimization of the RVQGAN latent
space also correlates with a more independence of the RVQ-
GAN codes.

C. MMD Optimization with Different
Quantization Schemes

Product vector quantization (PVQ) is another multistage
quantization method, where the input vector dimensions
are split across C groups and each group of dimensions
is encoded by a codebook with dimensionality N/C. Al-
though this scheme is typically non-hierarchical, since no
priority is given to any particular codebook, a hierarchy can
be introduced through hierarchical dropout (PVQ-dropout).
This means sampling a natural number k ∼ U({1, . . . ,K})
and using only the first k codebooks for encoding (and
putting the other codes to 0 before decoding). This quantizer
dropout technique is also used in the RVQ-based Sound-
Stream codec (Zeghidour et al., 2021), however with a dif-
ferent intent: it allows the resulting codec to function at
various bitrates without further adaptation at training time.

We employ here a similar setup as in Section 5.1. We show
in Table 4 the MMD and total correlation values for En-
Codec codes (which are later used as tokens in our language
model), with the chosen scale factor of 103. We use our
whole 250k-samples internal set for minimal bias in his-
togram approximation. The total correlation I is computed
between two codebooks taken at random, averaged over five
codebook couples, and expressed as a ratio to the entropy
of the joint distribution (in %). We observe that residual
quantization introduces more dependence between codes
compared to product quantization, although both induce a
hierarchical structure in the codes space, which accounts
for their high coding efficiency. We also observe that our
proposed MMD loss is able to curb both the MMD and total
correlation of the PVQ w/ dropout codes, highlighting its
versitality.

D. Effect of Hierarchy in Quantized Audio
Space

We investigate here the performance of language models as
a function of the quantization scheme used. We use three
different quantizers for EnCodec: RVQ, which is our default
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Figure 3. MMD, Mutual Information of RVQGAN (Kumar et al., 2024) codes and MSSpec loss computed on our internal set. MSSpec is
the combination of L1 and L2 losses on the multi-resolution mel-spectrogram, used for reconstruction in EnCodec. The horizontal axis
shows the weighting factor used for the MMD loss Linde. The total correlation I is computed on the whole 250k-samples training set for
minimal bias in the histogram approximation. It is computed between two codebooks taken at random, averaged over five codebook
couples, and expressed as a ratio to the entropy of the joint distribution (in %). We removed the data point for the MMD weight of 104 as
the experiment diverged.

Table 4. MMD and total correlation of EnCodec codes. Results
computed on complete 250k-samples internal set.

EnCodec Quantizer MMD↓ I (%) ↓
RVQ 9.9 ·10−4 5.1 ·10−2

RVQ w/ MMD 9.9 ·10−5 4.8 ·10−2

PVQ w/ dropout 3.7 ·10−5 3.8 ·10−2

PVQ w/ dropout + MMD 4.5 ·10−7 3.0 ·10−2

quantizer, PVQ and PVQ-dropout. As explained in C, in-
troducing a codebook dropout mechanism in PVQ naturally
induces a hierarchical structure, as EnCodec will more regu-
larly rely on the first few codebooks to reconstruct the audio.
By looking at the contributions of individual codebooks (not
shown here), we can observe a similar hierarchical struc-
ture for PVQ-dropout and RVQ, and no hierarchy in PVQ
codes. We subsequently trained three language models with
their respective EnCodec configurations (RVQ, PVQ, PVQ
w/ dropout) and the same language model configuration.
Objective results on our held-out test set are reported in
Table 5. We observe that the model using PVQ has low
objective scores, while that using PVQ w/ dropout obtains
much better objective scores at language modeling, some-
what close yet still inferior to the RVQ-equipped model,
which seems to be the best strategy here and demonstrates
the high coding efficiency of residual vector quantization.
This seems to indicate that hierarchical structure in the token
space leads to better language modeling performance, which
we posit is due to the language models being able to rely
on its first few codebooks in case its modeling capacity it
too limited. On the other hand, as we indicated in the main
paper, promoting independence between codes for exact
modeling of the codebook distributions is also theoretically
motivated and experimentally demonstrated. This means

there is potentially a trade-off to seek between hierarchy
and independence in the codes space. The first is obtained
via structural properties of the used quantizer e.g. residual
quantization or dropout, and the second can be tuned via
independence optimization as proposed in this paper. We ar-
gue that the complimentary nature of these solutions allows
for a control over this trade-off for optimal audio generation
performance.

Table 5. Text-to-Music generation of MusicGen with various quan-
tization schemes for EnCodec tokenizer. Results are shown on the
held-out test set. All models have 300M parameters.

EnCodec Quantizer FADvgg ↓ KL ↓ CLAP (%) ↑
RVQ 0.97 0.45 37
PVQ w/ dropout 1.26 0.45 36
PVQ 1.66 0.49 36

E. Mutual Information of State-of-the-art
Codecs

We provide here additional insights into various state-of-
the-art speech and music codecs. For all these codecs, we
compute the mutual information between individual code-
books and all the remaining codebooks.

Music Codecs

We include in Figure 4 the mutual information of codes com-
puted on the public music dataset FMA-Pop proposed in
[4], as we found out that MusicCaps did not provide enough
samples for reliable joint density histogram computation.
Our results seem to show that both the original EnCodec
(EnCodec-24kHz, (Défossez et al., 2023)) and the 4-level
MusicGen variant of EnCodec (EnCodec-32kHz, (Copet
et al., 2023)) suffer from relatively high inter-codebook
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Figure 4. Mutual information between individual codebooks (on
the horizontal axis) and all other codebooks, for difference codecs
on FMA-Pop (Gui et al., 2024).
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Figure 5. Mutual information between individual codebooks (on
the horizontal axis) and all other codebooks, for difference codecs
on LibriSpeech.

dependence, and that indeed RVQGAN obtains a large de-
crease of mutual information between codebooks, which
can arguably be attributed to the choice of lower codebook
dimensionality as suggested by the authors (Kumar et al.,
2024). However, this does not mean that there is no room for
improvement on this basis, as the independence- promoting
mechanism for RVQGAN is structural, based on limitation
of the amount of information learnable by a single codebook,
and can also be completed with explicit MMD optimization,
as we have demonstrated in Appendix B.

Speech Codecs

We compute the mutual information between the codebooks
of SpeechTokenizer (Zhang et al., 2024) and FACodec (Ju
et al., 2024) on LibriSpeech using 32k 200-second-samples
and show the results on Figure 5. We compared to the results
of the original EnCodec (EnCodec-24kHz, (Défossez et al.,
2023)) which was trained on audio data including speech).

We observe that the mutual information between EnCodec
and SpeechTokenizer codebooks and the other codebooks

decrease monotonously with the codebook index, which
is expected given the residual quantization scheme. For
SpeechTokenizer we observe that the mutual information
between the first codebook and the remaining codebooks is
by far the largest across codebooks. Indeed, although the
information in codebook 1 is specifically distilled from Hu-
Bert, there is actually no mechanism (unlike FACodec) that
specifically prevents the codebooks 2:8 to use information
from codebook 1. Yet, the authors confirm experimentally
that the speaker-specific information is contained in the
codebooks 2:8 and that codebook 1 contains mostly content
information. This poses the question of how mutual infor-
mation is exactly related to such semantics. For FACodec,
the mutual information between the prosody stream and
the content stream is also relatively high, but the mutual
information between all other pairs of streams is very low,
which shows some successful disentanglement. Overall it
seems FACodec boasts the best level of disentanglement
among the considered baselines. However, one must men-
tion that speech semantic are much easier to investigate via
the use of explicit audio properties (F0, phoneme label, ...)
as opposed to music semantics. This enables for instance
FaCodec to use gradient-reversal layers for supervising the
disentanglement of their streams such as e.g. prosody and
timbre. Our independence-promoting method, on the other
hand, is fully unsupervised and domain-agnostic.

F. MUSHRA-style MOS Listening Test
Our subjective benchmark is a MUSHRA-style MOS lis-
tening test produced with the webMUSHRA8 tool with
pymushra9 server management. In total, 12 annotators
are asked to rate on a scale of 0 to 100 the overall quality
of 12 10-second samples, whose descriptions were taken at
random from the MusicCaps test set. All samples are nor-
malized at -14dB LUFS(ITU-R, 2017). All annotators have
a solid background either in audio or music processing. The
instructions given on the training page are as follows: “You
are asked here to rate the different samples provided with
respect to the reference. The rating should reflect the overall
quality, comprising music quality, harmonic, melodic and
rhythmic structure. You are not asked to rate the distance of
the samples with respect to the reference in terms of sound
similarity but along the aforementioned dimensions (qual-
ity, structure, consistency).” The presentation order of the
samples is randomized for each listener differently, and all
12 listeners listened to all of the samples. A snapshot of
the interface for a randomized trial is shown on Figure 6.
Inspired by the CrowdMOS guidelines, we excluded the
annotations where reference track was rated below 85. We
further excluded one annotator that systematically rated all

8https://github.com/audiolabs/webMUSHRA
9https://github.com/nils-werner/pymushra
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generated samples below 50, resulting in the number of 11
annotators reported in the main paper.

Figure 6. The MUSHRA listening test interface. Annotators listen
to each sample and adjust the vertical bar on a continuous scale
between 0 and 100. The reference track is given on the left and
also hidden among the samples for rating.

G. MOS Evaluation with Amazon Mechanical
Turk

We conducted a second subjective evaluation using the same
subjective benchmark as (Copet et al., 2023; Kreuk et al.,
2023), inspired by (Yang et al., 2023b). Human raters are
sollicited via the Amazon Mechanical Turk platform and re-
ceive compensation meeting the American minimum wage.
They assess two primary aspects of the audio signal: (i)
overall quality (OVRL.), rated as the perceptual quality on
a scale of 1 to 100; (ii) relevance to the text input (REL.),
rated as the alignment between the audio and the text prompt
on a scale of 1 to 100. Subjects evaluate 100 randomly se-
lected files from the MusicCaps and AudioCaps test set, for
music generation and general audio generation respectively.
Each sample is assessed by at least 5 raters. The Crowd-
MOS10 package is employed to filter out noisy annotations
and outliers. This involves the exclusion of annotators who
did not listen to the full recordings, those who rated the
reference recordings below 85, and other CrowdMOS guide-
lines (Ribeiro et al., 2011). Results are shown in Table 6,
and show that our method MusicGen-MMD is still ranking
very high among baselines in terms of subjective ratings.
However, the differences between the methods are rather
marginal. The main difference between the methodology of
the two tests resides in the recruitment of subjects (which is
specified by the MUSHRA ITU-R BS.1534-0 recommen-
dation). For the MUSHRA-style MOS experiment reported
in the paper, we recruited confirmed audio listeners, and
made sure that their setup was reliable (quiet environments,
high-quality noise-canceling headphones...). On the other

10http://www.crowdmos.org/download/

hand, we did not have any insight in the setups that subjects
used in the MOS listening test in appendix. It is rather com-
mon than Mechanical Turk raters have low-quality setups,
in potentially noisy environments, are not trained audio ex-
perts, and have little incitement for performance due to the
low monetary retribution. For this reason, we believe the
MUSHRA-style MOS evaluation reported in Table 1 is more
reliable as the one conducted with Mechanical Turk raters,
and therefore reported the first one in the main paper, and
the second one in this appendix out of completeness.

Table 6. Subjective evaluation for text-to-music generation on Mu-
sicCaps. Mustango was trained on an augmented version of Mus-
icCaps, therefore we put it aside the other baselines. Mean and 95
% confidence intervals are showed. The samples presented were
10 second long sampled at 16kHz, which matches the training
conditions of Mustango, AudioLDM and AudioLDM2-Music. In
comparison MusicGen and MusicGen-MMD were trained on 30
second-long segments sampled at 32kHz.

Model # params OVRL. ↑ REL. ↑
Ground-Truth - 92.49 ± 1.65 92.89 ± 1.38
Mustango 1.4 B 81.24 ± 2.43 84.27 ± 1.95
AudioLDM 416 M 84.70 ± 2.25 84.20 ± 3.12
AudioLDM2-Music 347 M 81.93 ± 2.01 84.91 ± 2.55
MusicGen 300 M 84.52 ± 2.19 85.11 ± 1.98
MusicGen-MMD (ours) 300 M 84.18 ± 1.74 87.57 ± 2.16
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