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Abstract
The partially observable generalized linear model
(POGLM) is a powerful tool for understanding
neural connectivity under the assumption of ex-
isting hidden neurons. With spike trains only
recorded from visible neurons, existing works use
variational inference to learn POGLM meanwhile
presenting the difficulty of learning this latent vari-
able model. There are two main issues: (1) the
sampled Poisson hidden spike count hinders the
use of the pathwise gradient estimator in VI; and
(2) the existing design of the variational model is
neither expressive nor time-efficient, which fur-
ther affects the performance. For (1), we pro-
pose a new differentiable POGLM, which enables
the pathwise gradient estimator, better than the
score function gradient estimator used in existing
works. For (2), we propose the forward-backward
message passing sampling scheme for the varia-
tional model. Comprehensive experiments show
that our differentiable POGLMs with our forward-
backward message passing produce a better per-
formance on one synthetic and two real-world
datasets. Furthermore, our new method yields
more interpretable parameters, underscoring its
significance in neuroscience. Code: https:
//github.com/JerrySoybean/poglm.

1. Introduction
Understanding neural connectivity is a critical research ques-
tion in neuroscience. The generalized linear model (GLM)
(Pillow et al., 2008) with its variants (Linderman et al., 2016;
Roudi et al., 2015; Li et al., 2024a) form a mainstream set
of tools for inferring connectivity from neural populations.
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However, a nonnegligible problem in neural recording is
that the recorded neurons are only a small part of the en-
tire population in a certain target region of our interests.
A GLM for such an incomplete problem is referred to as
a partially observable GLM (POGLM) (Pillow & Latham,
2007; Jimenez Rezende & Gerstner, 2014; Linderman et al.,
2017), which considers both visible and hidden neurons.

The general goal of POGLM is to learn the model parameter
set θ given only the spike trains X from visible neurons,
especially the connectivity between neurons (including both
visible and hidden neurons). The spike trains from hidden
neurons Z is the latent variable in POGLM. Variational
inference (VI) (Blei et al., 2017) is the most commonly used
method for solving such a latent variable model. In VI, the
target is to maximize the observable data’s evidence lower
bound

ELBO(X; θ, ϕ)

=Eq(Z|X;ϕ) [ln p(X,Z; θ)− ln q(Z|X;ϕ)]

= ln p(X; θ)−KL(q(Z|X;ϕ)∥p(Z|X; θ))

⩽ ln p(X; θ)

(1)

w.r.t. θ and ϕ, where p(X,Z; θ) is the generative model
and q(Z|X;ϕ) is the variational model parameterized by ϕ
approximating the posterior p(Z|X; θ). Maximizing Eq. 1
requires sampling hidden spike train Z from q(Z|X;ϕ)
and computing the gradient estimator of ELBO(X; θ, ϕ)
w.r.t. θ and ϕ.

However, results from existing works demonstrated the dif-
ficulties of solving such a complicated model. Particularly,
two issues have caught our attention:
(1) A good way of deriving ∂ ELBO(X;θ,ϕ)

∂ϕ is via the path-
wise gradient estimator (Kingma & Welling, 2013), which
will be hindered with a discrete Z. The only alternative
is the score function gradient estimator which usually has
higher variance than the pathwise gradient estimator (Pais-
ley et al., 2012; Bengio et al., 2013; Schulman et al., 2015).
(2) The sampling scheme of the variational model Z ∼
q(Z|X;ϕ) in most of the existing works is a GLM on hid-
den neurons (Jimenez Rezende & Gerstner, 2014; Kajino,
2021; Li et al., 2024b), which is only conditioned on his-
tory visible and sampled history hidden spikes. This design
makes the sampling and inference procedure slow and omits
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the influence of hidden spikes on future visible spikes.

Given these issues, our paper aims to solve these two limita-
tions in the existing works and study the POGLM more com-
prehensively. In Sec. 2, we will propose a new differentiable
POGLM that enables the pathwise gradient estimator for
VI. We will also introduce different variational distribution
families for sampling hidden spikes, especially our newly
proposed forward-backward message passing. In Sec. 3,
we will conduct extensive comparisons between combina-
tions of different inference methods (including the original
POGLM, our newly proposed differentiable POGLM, and
other intermediate models) × different variational sampling
schemes on a synthetic dataset and two real-world neural
datasets. The results will demonstrate the superiorities of
our differentiable POGLM and our forward-backward mes-
sage passing sampling scheme.

2. Models
2.1. Background: POGLM

Generative model. We start from the partially observ-
able generalized linear model (POGLM) (Pillow & Latham,
2007; Jimenez Rezende & Gerstner, 2014; Linderman et al.,
2017) that studies the mutual interactions between neurons
underlying the corresponding neural spike trains. Assume
V of N neurons are visible and the remaining H = N − V
neurons are hidden. We denoteX ∈ NT×V as the observed
spike train recorded from V visible neurons across T time
bins, and xt,v as the spike count generated by the v-th visible
neuron in the t-th time bin. Z ∈ NT×H as the latent spike
train recorded from H hidden neurons across T time bins,
and zt,h as the spike count generated by the h-th hidden
neuron in the t-th time bin. The complete generative model
p(X,Z; θ) is depicted in Fig. 1(a) (Pillow et al., 2008). For
a visible neuron v, its firing rate at time t is

ft,v =σ

(
bv +

V∑
v′=1

wv←v′ ·

(
L∑

l=1

xt−l,v′ ψl

)

+

H∑
h′=1

wv←h′ ·

(
L∑

l=1

zt−l,h′ ψl

))
,

(2)

and its spike count is generated by

xt,v ∼ Poisson(ft,v). (3)

σ(·) is a non-linear function (e.g., Softplus); bV =
[b1, b2, . . . , bV ]

T ∈ RV is the background intensity vec-
tor of the V visible neurons; WV←V = [wv←v′ ]V×V ∈
RV×V is the weight matrix representing the weights
from visible neurons to visible neurons; WV←H =
[wv←h′ ]V×H ∈ RV×H is the weight matrix represent-
ing the weights from hidden neurons to visible neurons;

z1 z2 z3

x1 x2 x3

(a) (b)

(c) (d)

Figure 1. (a): The generative model of the complete POGLM
p(X,Z; θ). (b), (c), (d): The forward-self, forward, and forward-
backward sampling scheme of the variational model q(Z|X;ϕ).

ψ = [ψ1, ψ2, . . . , ψL]
T ∈ RL

+ is the pre-defined basis func-
tion summarizing history spikes from t− L to t− 1. Simi-
larly, for a hidden neuron h, its firing rate at time t is

ft,h =σ

(
bh +

V∑
v′=1

wh←v′ ·

(
L∑

l=1

xt−l,v′ ψl

)

+

H∑
h′=1

wh←h′ ·

(
L∑

l=1

zt−l,h′ ψl

))
,

(4)

and its spike count is generated by

zt,h ∼ Poisson(ft,h) (5)

with parameters bH = [b1, b2, . . . , bH ]T ∈ RH ;WH←V =
[wh←v′ ]H×V ∈ RH×V ; WH←H = [wh←h′ ]H×H ∈
RH×H .

Therefore, POGLM is a latent variable model whose learn-
able parameter set is θ = {b,W }, where b andW can be
presented in the form of block (partitioned) matrix/vector:

b =

[
bV
bH

]
∈ RN , W =

[
WV←V WV←H

WH←V WH←H

]
∈ RN×N .

(6)

Variational inference. Since POGLM is a latent variable
model, the goal is to learn the model parameter θ while also
inferring the latent variableZ. Given the complicated nature
of POGLM (Fig. 1(a)), there is no closed form posterior
distribution p(Z|X; θ). Therefore, we need to choose a
good variational model q(Z|X;ϕ) parameterized by ϕ to do
variational inference (VI) (Blei et al., 2017). We will discuss
different choices of the variational models in Sec. 2.3. Now,
we use a simple homogeneous Poisson variational model
for illustration. The firing rate of a hidden neuron at time t
is given by

ft,h = σ(ch), (7)
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and the spike count is zt,h ∼ Poisson(ft,h). The variational
parameter set is ϕ = {cH}, where cH = [c1, . . . , cH ]T.

With a selected variational model q(Z|X;ϕ), VI can be
adopted. We maximize the model’s evidence lower bound
ELBO(X; θ, ϕ) (Eq. 1) w.r.t. θ and ϕ, so that the learned
θ could estimate the model’s true parameter θtrue and the
variational distribution q(Z|X;ϕ) could approximate the
unknown posterior distribution p(Z|X; θ) of the latent vari-
able Z. Given the complicated form of the POGLM model
(Fig. 1(a)), there is still no closed form of ELBO (Eq. 1).
Hence, we need its numerical estimator

ÊLBO(X; θ, ϕ)

=Êq(Z|X;ϕ)[ln p(X,Z; θ)− ln q(Z|X;ϕ)]

=
1

K

K∑
k=1

[
ln p

(
X,Z(k); θ

)
− ln q

(
Z(k)

∣∣∣X;ϕ)
)]
,

(8)

where
{
Z(k)

}K
k=1

are K Monte Carlo samples from
q(Z|X;ϕ). The derivative w.r.t. θ is simple (Ap-
pendix. A.1):

∂ ELBO(X; θ, ϕ)

∂θ
≈ ∂

∂θ
ÊLBO(X; θ, ϕ). (9)

Since Z ∈ NT×H are discrete spike counts from the hid-
den neurons, the derivative w.r.t. ϕ at a particular value
ϕ0 requires the score function gradient estimator (Ap-
pendix. A.1):

∂ ELBO(X; θ, ϕ)

∂ϕ
≈ 1

K

K∑
k=1

{[
ln p

(
X,Z(k); θ

)
− ln q

(
Z(k)

∣∣∣X;ϕ0

)] ∂

∂ϕ
ln q

(
Z(k)

∣∣∣X;ϕ
)}

.

(10)

However, previous literature shows that the score function
gradient estimator for maximizing ELBO w.r.t. ϕ exhibits
high variance (Paisley et al., 2012; Bengio et al., 2013;
Kingma & Welling, 2013; Schulman et al., 2015), and hence
it could be better to seek a reparameterization trick for sam-
pling Z(k) from q(Z|X;ϕ) so that pathwise gradient esti-
mator can be applied. Given there is no reparameterization
trick for Poisson distribution, we have to relax the discrete
latent variable Z into a continuous variable and reformulate
a differentiable POGLM as follows.

2.2. A Differentiable POGLM

Relaxation for differentiability. In this subsection, we
formulate a differentiable POGLM via the Gumbel-Softmax
distribution (Jang et al., 2016; Maddison et al., 2016). We
first set a large enough upper-bound M so that zt,h ∈
{0, 1, . . . ,M − 1}. Practically, M doesn’t need to be very
large since the number of spikes in a short enough time

bin is limited. Usually, we hope the number of spikes in
each time bin to be very small (most of them should be 0 or
1) so that the precision of the spike train can be preserved.
Without loss of generality, we use M = 5 in our following
experiments. Then, a categorical distribution can be used to
approximate the corresponding Poisson distribution:

zt,h ∼ Cat(π(ft,h)), (11)

where

π(f) =

(
1−

M−1∑
m=1

fmef

m!
,
f1ef

1!
, . . . ,

fM−1ef

(M − 1)!

)
(12)

expands the Poisson distribution truncated at M . Then, we
can use Gumbel-Softmax (GS) to relax the discrete zt,h into
a soft one-hot version

z̃t,h = (z̃t,h,0, . . . , z̃t,h,M−1) ∼ GS(π(ft,h); τ), (13)

where z̃t,h is a soft one-hot vector over a simplex ∆M−1 :={
z ∈ [0, 1]

∣∣∣∑M−1
m=0 zm = 1

}
. Specifically,

z̃t,h,m =
exp[(lnπm(ft,h) + gt,h,m)/τ ]∑M−1

m′=0 exp[(lnπm′(ft,h) + gt,h,m′)/τ ]
, (14)

where gt,h,m
i.i.d.∼ Gumbel(0, 1). In practice, we can sam-

ple g by sampling u from Uniform(0, 1) and computing
g = − ln(− ln(u)). τ > 0 is a temperature hyperparameter
forcing z̃t,h to be a soft one-hot representation closing to a
corner of the simplex ∆M−1. When τ → 0, z̃t,h becomes
the hard one-hot representation of the spike count zt,h. It is
common to choose the temperature τ in Gumbel-Softmax
from [0.1, 1]. If τ is too large, the relaxation will be too soft;
if τ is too small, numerical issues could arise. In our model,
τ is used to force the soft one-hot close to one corner of the
simplex, so we tried τ ∈ {0.2, 0.5, 1} and found τ = 0.5
is an optimal choice that gives good and stable categorical
approximation without numerical issue. We fix τ = 0.5
in this differentiable model in our experiments, which is a
common moderate choice. More details about the Gumbel-
Softmax distribution including its likelihood function are in
Jang et al. (2016); Maddison et al. (2016).

Generative and variational model. Given the soft one-
hot z̃t,h,m, we next define the equivalent soft hidden spike
count as

zt,h =

M−1∑
m=0

m · z̃t,h,m. (15)

Now we are ready to define the complete differentiable gen-
erative model p

(
X, Z̃; θ

)
. Visible neurons’ spikesX are

generated with Eq. 2 (ft,v) and Eq. 3 (Poisson) where zt,h in
Eq. 2 is now defined by the above Eq. 15. Latent variable Z̃
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are generated from Eq. 4 (ft,h) and Eq. 13 (GS), instead of
Eq. 4 and Eq. 5 (Poisson). Similarly, the sampling process
of Z̃ in the variational model q

(
Z̃
∣∣∣X;ϕ

)
changes from

Eq. 7 (ft,h) and Eq. 5 (Poisson) to Eq. 7 and Eq. 13 (GS).
Now, the complete spike train of this differentiable POGLM
is
{
X, Z̃

}
where Z̃ ∈

(
∆M−1)T×H ⫋ [0, 1]T×H×M .

Pathwise gradient estimator. With both the generative
model and the variational model differentiable, the pathwise
gradient estimator can be used for optimizing ϕ. Particularly,
by the reparameterization trick in Eq. 14 abbreviated as
Z̃|X;ϕ = r(G|X;ϕ) where G ∼ Gumbel(G; 0, 1), we
have the transformation relationship q

(
Z̃
∣∣∣X;ϕ

)
dZ̃ =

Gumbel(G; 0, 1) dG (Schulman et al., 2015). Then, the
pathwise gradient estimator of the derivative of ELBO w.r.t.
ϕ is:

∂ ELBO(X; θ, ϕ)

∂ϕ
≈ ∂

∂ϕ
ÊLBO(X; θ, ϕ), (16)

and

ÊLBO(X; θ, ϕ)

=
1

K

K∑
k=1

[
ln p

(
X, Z̃(k); θ)

)
− ln q

(
Z̃(k)

∣∣∣X;ϕ
)]
,

(17)

where Z̃(k) = r
(
G(k)

∣∣X;ϕ
)

and
{
G(k)

}K
k=1

are K
Monte Carlo samples from Gumbel(G; 0, 1). The detailed
derivation of this is shown in Appendix. A.1.

Relax to general continuous distributions. In fact, the
differentiable POGLM introduced above is already compati-
ble with any continuous distributions that satisfy the follow-
ing two requirements: (1) the distribution is parameterized
by a single mean parameter, since the GLM structure pro-
vides a single firing rate ft,h representing the mean statistic
of the (equivalent soft) spike count zt,h; and (2) a reparame-
terization trick should exist for sampling such a distribution.
For example, in the generative and variational models, we
can assume a soft hidden spike count is from an exponential
distribution

zt,h ∼ Exp(1/ft,h) (18)

with mean ft,h computed from Eq. 4 and 7. The sampling
can be parameterized as

zt,h = −ft,h ln(1− u), u ∼ Unif(0, 1). (19)

Compared with the GS distribution in which the equiv-
alent soft hidden spike count is close to an integer in
{0, 1, . . . ,M − 1}, zt,h from the exponential distribution
can be any value in R⩾0. More details about the possible
choices of the distributions are in Sec. 3 and Fig. 3.

2.3. Sampling scheme of the variational model

So far, we have proposed the differentiable POGLM to re-
solve the first issue mentioned in Sec. 1. Now, we turn
to the second issue—the choice of the variational model.
Specifically, we need to design the formula for ft,h in the
variational model. Clearly, the homogeneous one we intro-
duced in Eq. 7 is oversimplified so that the variational dis-
tribution family of q(Z|X;ϕ) is very far from the posterior
distribution p(Z|X; θ). A good choice of the variational
distribution family that is much closer to the true posterior
distribution is critical to the success of VI. Here, we discuss
five candidates as follows:
• Homogeneous Poisson: ft,h = σ(ch), ∀t ∈ {1, . . . , T},
and the variational parameter set is ϕ = {cH}, where
cH = [c1, . . . , cH ]T. However, this is too simple to serve
as a variational distribution family in practice.
• Inhomogeneous Poisson (mean-field): ft,h = σ(ct,h),
and ϕ =

{
CT×H ∈ RT×H}. Although the mean-field the-

ory is widely applicable to a lot of latent variable models,
it lacks the dependency on the visible spike train X . For
POGLM, this learned ϕ is only bonded to the training spike
train p(Ztrain|Xtrain; θ) ≈ q(Ztrain|Xtrain;ϕ), but unable
to be generalized to the test spike train p(Ztest|Xtest; θ) ̸≈
q(Ztest|Xtest;ϕ). Besides, both homogeneous and inhomo-
geneous Poisson have no message passing between neurons,
and hence are very unhelpful for learning the neural connec-
tion matrixW .
• Forward-self (Jimenez Rezende & Gerstner, 2014; Ka-
jino, 2021): A typical and intuitive way is to assume the true
posterior distribution p(Z|X; θ) can be approximated by
a variational distribution q(Z|X;ϕ) which is also a GLM
w.r.t. Z whereX is fixed (Fig. 1(b)), i.e.,

ft,h =σ

(
ch +

V∑
v′=1

ah←v′ ·

(
L∑

l=1

xt−l,v′ ψl

)

+

H∑
h′=1

ah←h′ ·

(
L∑

l=1

zt−l,h′ ψl

))
,

(20)

and ϕ = {cH ,A}. Particularly,

A =

[
OV←V OV←H

AH←V AH←H

]
∈ RN×N . (21)

The top two blocks OV←V ,OV←H are all zeros since we
don’t need to sample the visible spike train X . AH←V

andAH←H represent the visible-to-hidden and hidden-to-
hidden influences, respectively. To use Eq. 20, we need to
sample from t = 1 to t = T sequentially, since the current
sample zt,h relies on the previous samples Zt−L:t−1,1:H .
• Forward: Due to the low efficiency of the forward-

self sampling process, an easier alternative approach is to
eliminate the hidden-to-hidden block (i.e., the third term in
Eq. 20). Then we get the forward message passing scheme
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Figure 2. An example of comparison among different variational
distributions q(Z|X;ϕ) with the true posterior p(Z|X; θ) (black
dots). There is one visible neuron and one hidden neuron. Two visi-
ble spikes from the visible neuron happen at the dashed lines. Each
dotted curve represents the approximated log-likelihood of one
hidden spike happening at different time bins. Only the forward-
backward recapitulates the true posterior distribution. The forward
and forward-self miss the uprising trends before the two observed
spikes, due to lack of a back-propagated message.

(Fig. 1(c)):

ft,h = σ

(
ch +

V∑
v′=1

ah←v′ ·

(
L∑

l=1

xt−l,v′ ψl

))
, (22)

and ϕ = {cH ,A}. Now,

A =

[
OV←V OV←H

AH←V OH←H

]
∈ RN×N . (23)

The forward variational distribution can be sampled in a
parallel style, since zt,h are no longer conditioned on each
other. Note that eliminating the hidden-to-hidden block
could omit the factor of hidden-to-hidden influences theoret-
ically. But in fact, it is very challenging to learn the actual
hidden-to-hidden influencesWH←H practically given the
long sequential sampling procedure. Furthermore, although
most of the neurons are actually unrecorded in practice, peo-
ple usually assume only a few hidden neurons (V > H) in
POGLM, hoping these hidden neurons can serve as repre-
sentatives. In fact, it is unrealistic to learn a lot of hidden
neurons due to the complicated nature of the POGLM prob-
lem itself. If there are a lot of hidden neurons, the problem
will be super cumbersome and no method can succeed. Un-
der the condition of V > H , therefore, omitting theWH←H

block might not be very harmful.
• Forward-backward: Both of the previous two sam-
pling schemes omit to mimic an important relationship—
the hidden-to-visible influencesWV←H in the generating
process p(X,Z; θ). Therefore, we introduce the forward-
backward message passing scheme (Fig. 1(d)),

ft,h =σ

(
cn +

V∑
v′=1

ah←v′ ·

(
L∑

l=1

xt−l,v′ ψl

)

+

V∑
v′=1

av′←h ·

(
L∑

l=1

xt+l,v′ ψl

))
,

(24)
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Figure 3. A visualization of different choices of the (soft) hidden
spike count distribution, under firing rate f = 0.5 and f = 1.0.
Most of z from GS approximating the original Poisson distribution
are close to integer points, but the three continuous distributions
(Exp, Ray, and HN) are not.

and ϕ = {cH ,A}. Now,

A =

[
OV←V AV←H

AH←V OH←H

]
∈ RN×N , (25)

where the AV←H block mimics the hidden-to-visible in-
fluences WV←H in the generating process p(X,Z; θ),
via including the contribution from future visible spikes
Xt+1:t+L,1:V into sampling the current zt,h (i.e., the third
term in Eq. 24).

Fig. 2 visually compares different variational distribu-
tions, helping us understand the superiority of the forward-
backward sampling, which excels in approximating the true
posterior distribution.

3. Experiments
For a comprehensive analysis and comparison, we consider
the method combinations of different inference methods
× different variational sampling schemes.

Inference methods. We consider seven inference meth-
ods. Each of them is identified by the distribution of the
hidden spike given firing rate P[z; f ] (see Tab. 1) and the
gradient estimator used in VI.
• Poisson (Pois): This is the original POGLM (Eq. 2, 3, 4,
5, 7). This is named after the Poisson distribution of the
hidden spike train Z of the original POGLM. Since this
is a discrete distribution, only the score function gradient
estimator can be adopted in VI.
• Categorical (Cat): This is the first intermediate model be-
tween the original POGLM and the differentiable POGLM,
where we don’t use Gumbel-Softmax in Eq. 13 to approxi-
mate but keep the categorical distribution (Eq. 11). Same as
Poisson, only the score function gradient estimator can be
adopted in VI.
• Gumbel-Softmax-score (GS-s): This is the differentiable
POGLM with GS (Eq. 13) as the soft hidden spike count
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Table 1. Different distributions of hidden spike given firing rate P[z; f ], used in the generative model and the variational model. For
simplicity, we omit the subscript of z, z̃ = (z̃0, . . . , z̃M−1), and f indexing the hidden neuron and time bin.

distribution sample likelihood can use pathwise

Poisson (Pois) z ∼ Poisson(f) P[z; f ] = fze−z

z! ✗
categorical (Cat) z ∼ Cat(π(f)) P[z; f ] = π(f)z ✗
Gumbel-Softmax (GS) z̃t,h ∼ GS(π(ft,h); τ) Eq. 36 ✓

exponential (Exp) z ∼ Exp
(

1
f

)
P[z; f ] = 1

f exp (−fz) ✓

Rayleigh (Ray) z ∼ Ray
(√

2
π
f
)

P[z; f ] = πz
2f2 exp

(
− πz2

4f2

)
✓

Half-normal (HN) z ∼ HN
(√

π

2f
)

P[z; f ] = 2
πf exp

(
− z2

πf2

)
✓

distributions, but we still use the score function gradient
estimator (Eq. 10) when updating ϕ although this model is
already differentiable.
• Gumbel-Softmax-pathwise (GS-p): This is the differen-
tiable POGLM with GS (Eq. 13) as the soft hidden spike
count distributions, where we use the pathwise gradient es-
timator (Eq. 16) when updating ϕ. This is the inference
method we expect to perform better than the previous three.
To experiment with the generalization from GS to other
single-parameter continuous distributions, we try the follow-
ing three and use the pathwise gradient estimator.
• Exponential (Exp).
• Rayleigh (Ray).
• Half-normal (HN).
The aim of including the two intermediate models (Cat
and GS-s) is to change the model step-by-step from the
original POGLM with Poisson as the hidden spike count
distribution and the score function gradient estimator to the
differentiable POGLM with GS as the hidden spike count
distribution and the pathwise gradient estimator. Through
this controlled variable design, we can have a better under-
standing of the final differentiable POGLM with continuous
soft hidden spike count distributions. Since we have no
prior knowledge about which single-parameter distribution
is better, we try the three common ones: Exp, Ray, and HN.
A visualization of these distributions is shown in Fig. 3.

Variational sampling schemes. We consider three sam-
pling schemes.
• Forward (F): The sampling scheme illustrated in Eq. 20
and Fig. 1(c).
• Forward-self (FS): The sampling scheme illustrated in
Eq. 22 and Fig. 1(b).
• Forward-backward (FB): The sampling scheme illus-
trated in Eq. 24 and Fig. 1(d).
The homogeneous and inhomogeneous Poisson will be
ignored in the following experiments due to their over-
simplicity or incompatibility with the test set, as illustrated
in Sec. 2.3.

The original approach to solving POGLM can be viewed
as the combination of Poisson × FS (Pillow & Latham,
2007; Jimenez Rezende & Gerstner, 2014; Linderman et al.,
2017). Our newly proposed differentiable POGLM with
GS and other continuous distributions combined with the
FB message passing scheme should be the optimal combi-
nations we expect. For clarity, Appendix. A.2 provides a
comprehensive summary of these method combinations.

Evaluation. Although we have different inference meth-
ods, when evaluating log-likelihood (LL) on the test dataset,
all inference methods are set back to the original POGLM
form, where Poisson log-likelihood (Eq. 3 and Eq. 5) is
adopted for a fair comparison. The LL metric can be used
on both synthetic and real-world datasets. Furthermore,
since we are also very concerned about the parameter re-
covery, as we illustrated in Sec. 1 that naively apply VI to
solve the POGLM directly cannot obtain an ideal parameter
recovery result due to the difficulty of the POGLM problem
itself, we will compare the average absolute error of the
estimated parameter on the synthetic dataset.

3.1. Synthetic Dataset

The synthetic dataset aims to compare different method
combinations comprehensively. With the known true param-
eters, we can validate that better performance corresponds
to smaller parameter errors. We can also check the benefit
of applying the pathwise gradient estimator.

Dataset. We randomly create 10 sets of parameters
for generating the synthetic datasets, wherein each set
wn←n′

i.i.d.∼ Unif(−2, 2) and bn
i.i.d∼ Unif(−0.5, 0.5).

Each set corresponds to a trial, resulting in a total of 10
trials. The model consists of 5 neurons, with the first 3
being visible and the remaining 2 being hidden. For each
trial, we generate 40 spike trains for training and 20 spike
trains for testing. Each spike train has 100 time bins.
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bias
vis to hid

vis to vis hid to vis

hid to hid

epoch

(a)

(b) (c)

Figure 4. (a): The test log-likelihood (LL), the weight error, the bias error, and the running time of different method combinations. (b):
An example of the learned weight matrix and bias vector compared with the true of selected method combinations. Visualization of all
method combinations is in Fig. 8 in Appendix. A.3. (c): The learning curves of different method combinations.

Experimental setup. The initial values for the linear
weights and biases of the model used for learning are also
randomly initialized as above. We utilize the Adam opti-
mizer (Kingma & Ba, 2014) with a learning rate of 0.05.
The optimization process runs for 20 epochs, and within
each epoch, optimization is performed using 4 batches, each
of size 10. The entire process is repeated 10 times with
different random seeds for each trial, and the performance
and the error bar are reported based on these repetitions.

Results. In Fig. 4(a), we can see that for each sampling
scheme, the test LL drops when we use categorical and
then GS to approximate the discrete Poisson distribution.
However, when we change the gradient estimator from the
score function to the pathwise, the LL increases significantly
for GS and exceeds the original Poisson. The LL keeps
increasing when we change the distribution from GS to Exp,
Ray, or HN. This implies that although the hidden spikes
are generated from the Poisson distribution, the posterior
distribution might not be Poisson, but a discrete distribution
that is closer to a continuous distribution like the exponential
in shape. From the view of different sampling schemes, FB
becomes better than F and FS when a good inference method
is used, e.g., GS-p or Exp. Without a good inference method,
the forward sampling scheme (F) performs better due to its
simplicity. In summary, a differentiable POGLM using
pathwise gradient estimator × the FB sampling scheme
promises a better performance.

The weight error and bias error in Fig. 4(a) quantitatively
validate that a better LL corresponds to a smaller parameter
error. Consistent with the LL bar plot, the weight error
and bias error bar plots indicate that Exp, Ray, and HN
are better than GS-p and better than the remaining. With a
continuous distribution and the pathwise gradient estimator
as the inference method, FB is the optimal sampling scheme.

Fig. 4(b) visualizes the recovered weight matrix and bias
vector of some selected method combinations versus the
true one used for generating the dataset. The differences
between these recovered weights and biases are mainly from
the hidden related weight blocks and hidden biases.

In addition to the performance, we also compare the running
time of different method combinations in Fig. 4(a). Due
to the sequential dependency of the FS, the running time
is significantly longer than F and FB. This implies the ben-
efit of excluding the complicated “self” message passing
component in the variational model. Besides, converting a
discrete Poisson distribution to its hard (Cat) and soft (GS)
approximating distribution takes some extra time.

Fig. 4(c) plots the loss curves of different inference methods
using different sampling schemes. The loss curves of those
differentiable inference methods (GS-p, Exp, Ray, and HN)
are smoother than the others. The small error bars of these
differentiable inference methods imply the smaller variance
of the pathwise gradient estimator when updating the vari-
ational model parameter ϕ than that of the score function
gradient estimator.

3.2. Retinal Ganglion Cell (RGC) Dataset

This dataset aims to understand the performances of differ-
ent method combinations on a real-world dataset, and the
interpretability of the estimated model parameters.

Dataset. Next, we apply various method combinations to
analyze a real neural spike train recorded from 27 retinal
ganglion neurons while a mouse is engaged in a visual
task for approximately 20 minutes (Pillow & Scott, 2012).
Specifically, neurons 1–16 are OFF cells, while neurons
17–27 are ON cells.
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Figure 5. The test log-likelihood (LL) of different method combinations under H ∈ {1, 2, 3} hidden neurons. The dashed black line
represents the test LL of the fully observed GLM as the baseline.

Experimental setup. We partition the spike train into
training and test sets, using the first 2/3 segment for training
and the remaining 1/3 segment for testing. The raw spike
train is binned into spike count via 50 ms time bins. To
facilitate the application of the stochastic gradient descent
algorithm, we divide the entire sequence into 14400 pieces
in total, each consisting of 100 time bins. Since we do not
have prior knowledge of how many hidden neurons should
be assumed, we initially train a fully observed GLM as a
baseline. Subsequently, we assume the presence of H ∈
{1, 2, 3} hidden representative neurons and train the model
using different method combinations. The optimization is
performed using the Adam optimizer with a learning rate
of 0.02. Each training procedure undergoes 20 epochs,
employing a batch size of 32. We repeat the training and
test process 10 times with different random seeds and report
the performance and error bar.

Results. Similar to the synthetic dataset, we plot the test
LL of different method combinations under 1, 2, and 3 hid-
den neurons in Fig. 5. Besides, a fully observed GLM is
also included in Fig. 5 as the baseline. First of all, with the
assumption of containing hidden neurons, the performances
of all method combinations become better than the baseline,
except for the Ray × FB. Second, differentiable inference
methods are better than non-differentiable inference meth-
ods in general. Particularly, Exp × FB is significantly better
than all other method combinations. Third, for most of
the method combinations, increasing the number of hidden
neurons improves the LL, especially for GS-p and Exp.

In addition to knowing that the differentiable inference meth-
ods × FB are better than others, we are also curious about
the interpretation of the learned model parameters. Take 1
hidden neuron as an example, Fig. 6 shows that, the learned
one hidden representative by Exp × FB serves as a negative
feedback regulating unit. Specifically, the weights from this
hidden representative to all OFF cells are negative, and to
all ON cells are positive; the weights from nearly all OFF
cells to this hidden representative are positive, and from
all ON cells are negative. That is, the signs of the weights
from this hidden representative to visible neurons provide
clear indications of the type of visible neurons. Similar
but weaker results can also be obtained by GS-p but not by

Exp × FB

OFF ON

OFF

ON

from

to

1 hidden representative

Figure 6. The learned weight matrix of selected method combi-
nations. Visualization of all method combinations is in Fig. 9 in
Appendix. A.3.

Poisson.

Fig. 9 in Appendix A.3 also supports the interpretability for
more hidden neurons. For example, with 3 hidden repre-
sentative neurons learned in the RGC dataset, the hidden to
visible weights learned from Exp × FB form a particular
non-random pattern. This pattern represents a more com-
plex and diverse interaction between hidden representative
neurons and visible neurons.

3.3. The PVC-5 Dataset

This dataset aims to investigate the performance variation of
different method combinations w.r.t. the numbers of hidden
neurons.

Dataset. Finally, we apply different method combinations
to a dataset obtained from the primary visual cortex (PVC-5)
(Chu et al., 2014)1. This dataset consists of recordings from
the primary visual cortex (V1) of a macaque monkey over a
15-minute duration without the presentation of any stimuli.
Three adjacent neurons were recorded through contact with
an electrode.

Experimental setup. Similarly to the RGC dataset, we
train the model on the initial 7.5 minutes of data and evaluate

1https://crcns.org/data-sets/pvc/pvc-5

8

https://crcns.org/data-sets/pvc/pvc-5


A Differentiable POGLM with Forward-Backward Message Passing

Figure 7. The curves of the test log-likelihood (LL) v.s. the number of hidden neurons H , for different method combinations.

the test log-likelihood on the subsequent 7.5 minutes. The
raw spike train is binned into spike count via 20 ms time
bins. The training set is divided into 225 pieces equally and
the batch size for training is 25. Since there are only three
visible neurons, we can try more numbers of hidden neurons
H ∈ {1, . . . , 9} and understand the change of performance
w.r.t. the number of hidden neurons, especially when H ≫
V . The optimization is performed using the Adam optimizer
for 20 epochs with a learning rate of 0.1. We repeat the
training and test process 10 times with different random
seeds and report the performance and error bar.

Results. Fig. 7 shows the performance of different method
combinations w.r.t. number of hidden neurons. No matter
what method combination we choose, the optimal number
of hidden neurons is no more than 3. This means assuming
more hidden neurons might not guarantee an improvement
of the performance but is likely to introduce redundancy
and result in a dropped performance. With more hidden neu-
rons, the performance of those non-differentiable inference
methods becomes even worse than a fully observed GLM.

Among all method combinations, Exp × FB with less than
3 hidden neurons seems to be the best. GS-p (with all
three sampling schemes) is more robust to different num-
bers of hidden neurons than other inference methods. Fur-
thermore, the variance of the test LL of those differentiable
inference methods is much smaller than that of those non-
differentiable inference methods, due to the benefit from
using the pathwise gradient estimator.

4. Related Works
Some previous works consider the POGLM in its point pro-
cess form, i.e., a generalized multivariate partially observ-
able Hawkes process, in which spike trains are not binned
into spike count but keep their raw form of spiking event
timestamps. For example, Zhou & Sun (2021); Shelton et al.
(2018); Mei et al. (2019) treated the problem as missing
data (missing all the spiking data from hidden neurons); Ka-
jino (2021) proposed a differentiable point process model
to enable the use of the pathwise gradient estimator.

Through the point process, however, the data structure that
stores the spike timestamps is usually not ideal (Xu, 2018).

The detailed reasons are illustrated in Appendix. A.4. In
this paper, we only focus on POGLM, i.e., pre-binned spike
count trains. More detailed discussions regarding the re-
lationship between the (discrete) GLM and the (continu-
ous) generalized Hawkes process can also be found in Ap-
pendix. A.4.

5. Discussion
In this paper, we propose a differentiable version of the
partially observable generalized linear model (POGLM),
in which the pathwise gradient estimator becomes appli-
cable when doing variational inference (VI). Due to the
inexpressivity and low sampling efficiency of the existing
forward-self sampling scheme, we propose the new forward-
backward message passing sampling scheme, introduce the
message passing from hidden neurons to visible neurons,
and result in a better variational model for VI. Comprehen-
sive comparisons between different method combinations
on one synthetic and two real-world datasets show that a
differentiable inference method with the forward-backward
sampling scheme could produce a higher likelihood on the
test set and better parameter recovery.

Note that the relaxation from the Gumbel-Softmax distribu-
tion to general continuous distributions loses the meaning
of Z as representing spike counts, but can produce better
performance. It is interesting but challenging to investigate
whether a general continuous distribution is closer to the
true posterior distribution than the discrete Poisson distri-
bution. This limitation is a big topic that could be a future
direction.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Appendix
A.1. Gradient estimators of ELBO

Here we provide detailed derivations for the gradient estimators w.r.t. θ and ϕ of ELBO(X; θ, ϕ). The derivative w.r.t. θ is:

∂ ELBO(X; θ, ϕ)

∂θ
=

1

|NT×H |
∑

Z∈NT×H

q(Z|X;ϕ)
∂

∂θ
[ln p(X,Z; θ)− ln q(Z|X;ϕ)]

≈ 1

K

K∑
k=1

∂

∂θ

[
ln p

(
X,Z(k); θ

)
− ln q

(
Z(k)

∣∣∣X;ϕ
)]

=
∂

∂θ
ÊLBO(X; θ, ϕ).

(26)

The score function gradient estimator (i.e., Eq. 10) of the derivative of ELBO w.r.t. ϕ at a particular value ϕ0 is:

∂ ELBO(X; θ, ϕ)

∂ϕ
=

1

|NT×H |
∑

Z∈NT×H

∂

∂ϕ
q(Z|X;ϕ) [ln p(X,Z; θ)− ln q(Z|X;ϕ0)]

+ q(Z|X;ϕ0)
∂

∂ϕ
[ln p(X,Z; θ)− ln q(Z|X;ϕ)]

=
1

|NT×H |
∑

Z∈NT×H

[ln p(X,Z; θ)− ln q(Z|X;ϕ0)] q(Z|X;ϕ)
∂

∂ϕ
ln q(Z|X;ϕ)

− 1

|NT×H |
∑

Z∈NT×H

∂

∂ϕ
q(Z|X;ϕ)

≈ 1

K

K∑
k=1

[
ln p

(
X,Z(k); θ

)
− ln q

(
Z(k)

∣∣∣X;ϕ0

)] ∂

∂ϕ
ln q

(
Z(k)

∣∣∣X;ϕ
)
− 0.

(27)

The pathwise gradient estimator (i.e., Eq. 16) of the derivative of ELBO w.r.t. ϕ is:

∂ ELBO(X; θ, ϕ)

∂ϕ
=
∂

∂ϕ

∫
Z̃

q
(
Z̃
∣∣∣X;ϕ

) [
ln p

(
X, Z̃; θ

)
− ln q

(
Z̃
∣∣∣X;ϕ0

)]
dZ̃

=
∂

∂ϕ

∫
G

Gumbel(G; 0, 1) [ln p (X, r(G|X;ϕ); θ)− ln q(r(G|X;ϕ)|X;ϕ)] dG

≈ ∂

∂ϕ

K∑
k=1

[
ln p

(
X, r

(
G(k)

∣∣∣X;ϕ
)
; θ
)
− ln q

(
r
(
G(k)

∣∣∣X;ϕ
)∣∣∣X;ϕ

)]
=
∂

∂ϕ
ÊLBO(X; θ, ϕ).

(28)
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A.2. Method combinations

We summarize different method combinations in this subsection.

A.2.1. GENERATIVE PROCEDURE

For the firing rate ft,v of a visible neuron v and the firing rate ft,h of a hidden neuron h at time t:ft,v = σ
(
bv +

∑V
v′=1 wv←v′ ·

(∑L
l=1 xt−l,v′ ψl

)
+
∑H

h′=1 wv←h′ ·
(∑L

l=1 zt−1,h′ ψl

))
,

ft,h = σ
(
bh +

∑V
v′=1 wh←v′ ·

(∑L
l=1 xt−l,v′ ψl

)
+
∑H

h′=1 wh←h′ ·
(∑L

l=1 zt−1,h′ ψl

))
.

(29)

The parameter set is θ = {b,W }, where b =
[
bV
bH

]
∈ RN andW =

[
WV←V WV←H

WH←V WH←H

]
∈ RN×N . For visible neurons,

xt,n ∼ Poisson(ft,n).

A.2.2. VARIATIONAL SAMPLING SCHEMES

• Homogeneous Poisson
ft,h = σ(ch). (30)

The variational parameter set is ϕ = {cH}.
• Inhomogeneous Poisson

ft,h = σ(ct,h). (31)

The variational parameter set is ϕ = {CT×H}.
• Forward (F)

ft,h = σ

(
ch +

V∑
v′=1

ah←v′ ·

(
L∑

l=1

xt−l,v′ ψl

))
. (32)

The variational parameter set is ϕ = {cH ,A}, whereA =

[
OV←V OV←H

AH←V OH←H

]
∈ RN×N .

• Forward-self (FS)

ft,h = σ

(
ch +

V∑
v′=1

ah←v′ ·

(
L∑

l=1

xt−l,v′ ψl

)
+

H∑
h′=1

ah←h′ ·

(
L∑

l=1

zt−l,h′ ψl

))
. (33)

The variational parameter set is ϕ = {cH ,A}, whereA =

[
OV←V OV←H

AH←V AH←H

]
∈ RN×N .

• Forward-backward (FB)

ft,h = σ

(
cn +

V∑
v′=1

ah←v′ ·

(
L∑

l=1

xt−l,v′ ψl

)
+

V∑
v′=1

av′←h ·

(
L∑

l=1

xt+l,v′ ψl

))
(34)

The variational parameter set is ϕ = {cH ,A}, whereA =

[
OV←V AV←H

AH←V OH←H

]
∈ RN×N .
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A.2.3. HIDDEN SPIKE COUNT DISTRIBUTIONS

Table 2. Different distributions of hidden spike given firing rate P[z; f ], used in the generative model and the variational model. For
simplicity, we omit the subscript of z, z̃ = (z̃0, . . . , z̃M−1), and f indexing the hidden neuron and time bin.

distribution sample likelihood can use pathwise

Poisson (Pois) z ∼ Poisson(f) P[z; f ] = fze−z

z! ✗
categorical (Cat) z ∼ Cat(π(f)) P[z; f ] = π(f)z ✗
Gumbel-Softmax (GS) z̃t,h ∼ GS(π(ft,h); τ) Eq. 36 bellow ✓

exponential (Exp) z ∼ Exp
(

1
f

)
P[z; f ] = 1

f exp (−fz) ✓

Rayleigh (Ray) z ∼ Ray
(√

2
π
f
)

P[z; f ] = πz
2f2 exp

(
− πz2

4f2

)
✓

Half-normal (HN) z ∼ HN
(√

π

2f
)

P[z; f ] = 2
πf exp

(
− z2

πf2

)
✓

In the above table, we used the function π to truncate a Poisson distribution to a categorical distribution,

π(f) =

(
1−

M−1∑
m=1

fmef

m!
,
f1ef

1!
, . . . ,

fM−1ef

(M − 1)!

)
. (35)

The GS likelihood is

P[z̃; f ] = Γ(M)τM−1

(
m−1∑
m=0

π(f)m
z̃τm

)
M−1∏
m=0

π(f)m

z̃τ+1
m

(36)
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A.3. Supplementary Figures

A.3.1. SYNTHETIC DATASET

Figure 8. The learned weight matrix and bias vector compared with the true of all method combinations on one trial of the synthetic
dataset.
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A.3.2. RGC DATASET

Figure 9. The learned weight matrix and bias vector of all method combinations under different numbers of hidden neurons on the RGC
dataset.
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A.4. Point Process

A.4.1. THE GENERALIZED HAWKES PROCESS AS THE POINT PROCESS VERSION OF A GLM

A generalized multivariate Hawkes process (GMHP) is a temporal point process (right-continuous) governed by the
conditional intensity function

λ∗n(t) = σ

(
bn +

∑
tn<t

wn←ni
· ψ(t− ti)

)
, (37)

where n indexes for N neurons. (ti, ni) is the arrival time and neuron index of the i-th event in the history (spike) sequences
ordered by arrival time ti, i.e., t1 < t2 < · · · < t. λ∗n(t) is conditioned on the spike sequences before time t: {(tn, dn)tn<t}.
bn ∈ R is the background intensity of the n-th neuron, wn←n′ ∈ R is the connection weight from the n′-th neuron
to the n-th neuron, and ψ(·) is the basis function, which usually integrates to 1. σ is a nonlinear function. Also, note
that λ∗n(t) is a left continuous function. For preserving the causal relationship, we also need ψ(t) = 0, ∀t ⩽ 0. Let
θ = {b,W } =

{
[b1, . . . , bN ]T, [wn←n′ ]N×N )

}
denote the parameter set we estimate. The data likelihood (probability

density function) of a spike train in the format of a continuous timestamps sequence X = {(ti, ni)}Ii=1 within a specific
observation period [0, T ] is

P(X ; θ) =
I∏

i=1

λ∗ni
(ti) · exp

[
−

N∑
n=1

∫ T

0

λ∗n(t) dt

]
. (38)

The relationships between conditional intensity and arrival interval. For any temporal point process (not discretized),
the number of events happening between t and t+∆t follows the Poisson distribution

X ∼ P

(∫ t+∆t

t

λ∗(s) ds

)
= P(Λ(t+ τ)− Λ(t)), (39)

where Λ(t) :=
∫ t

0
λ∗(s) ds is the compensator. If ∆t→ 0,∫ t+∆t

t

λ∗(s) ds ≈ λ∗(t)∆t. (40)

The relationship between the intensity function λ∗(t) and the next (starts from current time t) time interval τ distribution
(PDF) is

f(τ) = λ∗(t+ τ)︸ ︷︷ ︸
an event happens at t+τ, density

(∫ t+τ

t
λ∗(s) ds

)0
e−

∫ t+τ
t

λ∗(s) ds

0!︸ ︷︷ ︸
no event happens in the interval (t,t+τ), probability

=λ∗(t+ τ)e−
∫ t+τ
t

λ∗(s) ds.

(41)

The cumulative distribution function (CDF) is

F (τ) = 1− e−
∫ t+τ
t

λ∗(s) ds. (42)

Therefore, modeling the intensity function is equivalent to modeling the arrival interval.

Sampling/Simulation. We introduce two equivalent sampling algorithms: Ogata’s thinning and the first-come-first-serve
(FCFS). The probability density of the next event happening at time t+ τ of neuron n is

f(τ, n) =

N∏
n′=1

e−
∫ t+τ
t

λ∗
n′ (s) ds λ∗n(t+ τ), (43)

which can be viewed as FCFS. Using Ogata’s thinning method,

f(τ, n) = e−
∫ t+τ
t

∑N
n′=1

λ∗
n′ (s) ds

N∑
n′=1

λ∗n′(t+ τ)
λ∗n(t+ τ)∑N

n′=1 λ
∗
n′(t+ τ)

. (44)
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A.4.2. DISCRETIZATION OF THE CONTINUOUS POINT PROCESS

In general, the integration in the complete-data likelihood does not have an analytical solution. A general solution is Monte
Carlo integration, despite being suboptimal. A better choice is the quadrature rule, such as the Simpson rule. However,
no matter what numerical techniques we use, we lose the continuous property of the process itself. Besides, the data
structure that stores the spike train timestamps is usually not ideal. First, computing the log-likelihood of a point process
requires sequential searching on lists of timestamps, which is more complicated than a direct matrix multiplication used in
binned spike train data. Second, sampling hidden spike timestamps requires sorting, which is extremely time-consuming.
Furthermore, the integration term in the log-likelihood function usually has no closed-form expression and hence still needs
time discretization. Therefore, it is more convenient to discretize the point process data into binned spike count at the very
beginning rather than deal with sequences of continuous timestamps.

Now, we introduce the discretization procedure. Denote X ∈ NS×N as the discretized spike train, where S = T
∆t is the

total number of time bins. Then xs,n represents the number of spikes of neuron n in the time interval ((s − 1)∆t, s∆t).
Now, a GMHP is discretized as a generalized linear model (GLM): xs,n ∼ P(λ∗s,n∆t), and

λ∗s,n = bn +
∑

xs′,n′>0,s′<s

xs′,n′wn←n′ψ((s− s′)∆t) = bn +

N∑
n′=1

wn←n′

L∑
l=1

xs−l,n′ψl, (45)

where λ∗s,d is still parameterized by θ, and ψT = [ψ(∆t), . . . , ψ(L∆t)]. The complete-data likelihood is

P(X; θ) =

N∏
n=1

S∏
s=1

(λ∗s,n∆t)
xs,ne−λ

∗
s,n∆t

xs,n!
. (46)

Now, we show that this likelihood converges to the form in the continuous case when the width of the time bin ∆t → 0.
When taking the limit ∆t→ 0, xs,n can either be 0 or 1. Therefore,

lim
∆t→0

P(X; θ) =
∏

xs,n=1

λ∗s,n∆t e
−λ∗

s,n∆t
∏

xs,n=0

e−λ
∗
s,n∆t

=(∆t)I
I∏

i=1

λ∗ni
(ti; θ) exp

[
−

N∑
n=1

∫ T

0

λ∗n(t; θ) dt

]
.

(47)

Since (∆t)I is a constant, we divide the above equation by (∆t)I and just get the probability density, which is identical to
Eq. 38 in the continuous case. Therefore, solving the discretized problem is equivalent to solving the original continuous
problem, as long as ∆t is small enough. And the solution converges to the continuous solution as ∆t → 0. In fact, the
procedure shown in Eq. 47 is applicable to any point process and its discretized version.

17


