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Abstract

The few-shot fine-tuning of Latent Diffusion Mod-
els (LDMs) has enabled them to grasp new con-
cepts from a limited number of images. However,
given the vast amount of personal images accessi-
ble online, this capability raises critical concerns
about civil privacy. While several previous de-
fense methods have been developed to prevent
such misuse of LDMs, they typically assume that
the textual prompts used by data protectors ex-
actly match those employed by data exploiters. In
this paper, we first empirically demonstrate that
breaking this assumption, i.e., in cases where dis-
crepancies exist between the textual conditions
used by protectors and exploiters, could substan-
tially reduces the effectiveness of these defenses.
Furthermore, considering the visual encoder’s
independence from textual prompts, we delve
into the visual encoder and thoroughly investigate
how manipulating the visual encoder affects the
few-shot fine-tuning process of LDMs. Drawing
on these insights, we propose a simple yet ef-
fective method called Prompt-Independent De-
fense (PID) to safeguard privacy against LDMs.
We show that PID can act as a strong privacy
shield on its own while requiring significantly
less computational power. We believe our studies,
along with the comprehensive understanding and
new defense method, provide a notable advance
toward reliable data protection against LDMs.
Our code is available at https://github.com/PKU-
ML/Diffusion-PID-Protection
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1. Introduction
The advent of Latent Diffusion Models (LDMs) has ushered
in an era where images of unprecedented quality are syn-
thesized, blurring the lines between artificial creations and
authentic human-generated content, including portraits, pho-
tographic arts, and drawings (Song & Ermon, 2019; Song
et al., 2020; Rombach et al., 2022; Ramesh et al., 2022;
Holz, 2022; Podell et al., 2024). A particularly intriguing as-
pect of LDMs is the capability of few-shot fine-tuning, a.k.a.
personalization of the generative model, which teaches the
models a brand new concept, such as human faces or paint-
ing styles, with as few as 4∼5 images in a matter of minutes
(Hu et al., 2021; Ruiz et al., 2023; Gal et al., 2023; Clark
et al., 2024). However, the ease with which targeted sets
of images can be curated with either manual downloading
or web crawling on social media renders this capability a
double-edged sword. Several selfies casually posted online
could mean an array of counterfeit images produced by the
LDM fine-tuned by malicious users with the photos, show-
ing exactly the same person clothless or in places he/she has
never been to. Civilians are concerned by lawsuits and news
related to the unregulated exploitation of such techniques
(Juefei-Xu et al., 2022). Thus, developing reliable data
protection algorithms that prevent the malicious misuse of
LDMs on unauthorized images is vital for both the research
community and society.

Fortunately, notable efforts have been made to protect im-
ages containing sensitive information like human faces or
unique art styles against such exploitations by generative
models (Yeh et al., 2020; Ruiz et al., 2020; Huang et al.,
2021a;b; Wang et al., 2022a; Yang et al., 2021; Li et al.,
2023b). Salman et al. (2023) protect images from malicious
image editing. Liang et al. (2023) adopt the adversarial
attack (Goodfellow et al., 2014; Wang et al., 2019; 2022b;
Mo et al., 2022; Li et al., 2023a) against LDMs to hinder
the models from learning features from the protected data.
Van Le et al. (2023) propose to generate protective perturba-
tions by attacking a fully trained surrogate model or by syn-
chronizedly disrupting the training process. More recently,
Xue et al. (2023) propose Score Distillation Sampling (SDS)
to lighten the computational overhead required by optimiz-
ing the protective perturbations. These works have made
significant steps toward the ultimate goal. However, when
it comes to few-shot fine-tuning, previous works assume
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(a) Prompt-dependent defense.
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(b) Proposed prompt-independent defense.

Figure 1. Influence of the prompt misalignment, i.e., cprot ̸= cexplo, on the performance of the prompt-related protection (Figure 1a)
and the prompt-independent one (Figure 1b). In each sub-figure, the left-most component depicts the data protection stage and whether a
textual prompt is involved. The middle component exhibits the data exploiters collect the protected images and try to fine-tune a latent
diffusion model with matched/mismatched prompts. The right-most component displays some generated images by the generative models
fine-tuned with different prompts. The images are all generated with A high-quality portrait of sks person. The instance is from the
CelebA-HQ dataset (Liu et al., 2015) and the fine-tuned model is Stable Diffusion v1.5 (Rombach et al., 2022).

to a large degree that the data protection stage (where we
add protective perturbations to the images) and the data ex-
ploitation stage (where malicious fine-tuning happens), are
conditioned on the identical textual prompts. Since the data
protectors have no prior knowledge of the exploiters, the
assumption on prompt consistency may not be realistic in
practice.

The visual encoder in LDMs projects high-resolution images
into a condensed latent space where the diffusion process
takes place. Despite its important role, the component has
been an overlooked part of the protection. Previous studies
make arbitrary choices for the visual encoder, like manipu-
lating the mean value of the latent representations (Liang &
Wu, 2023; Salman et al., 2023). Note that the independence
of the visual encoder from the textual prompts allows it
to be unaffected by the assumption of prompt consistency,
intuitively making it the right fit for strengthening the pro-
tections against varied prompts. Therefore, we raise the
following Research Questions (RQs).

• RQ1: Does a mismatch between the prompts used in
the protection and exploitation stages affect the efficacy
of existing defense algorithms?

• RQ2: How do perturbations in pixel space affect the
output of the visual encoders in LDMs and thus affect
the fine-tuning process?

• RQ3: If the answer to RQ1 is yes, can we improve the
robustness of the protection by making better use of
the prompt-independent visual encoders?

In this paper, we first investigate the robustness of current
defense approaches under the prompt-mismatch scenario.

To simulate an adversarial environment where the exploiters
intentionally craft textual prompts to undermine the defense,
we define a set of candidate prompts, denoted as cprot, for
the exploiters to choose when fine-tuning the latent diffusion
models (the full list can be found in Appendix A). We ran-
domly draw an individual from the CelebA-HQ (Liu et al.,
2015) dataset and protect the images of it with a typical al-
gorithm ASPL (Van Le et al., 2023) using its recommended
hyper-parameters. During the protection stage, we fix the
textual prompt to be a photo of sks person (denoted as
cprot). We then separately fine-tune the Stable Diffusion
v1.5 with DreamBooth (Ruiz et al., 2023) conditioned on
each of the malicious candidate prompts (cexplo). Lastly,
we generate images using the fine-tuned models with the
prompt a high-quality portrait of sks person and show some
of the generated images in Figure 1a. For the case where
cprot ̸= cexplo, the displayed images are drawn from the
visually optimal model among the candidate models. We ob-
serve the protective performance of the prompt-dependent
defense is notably weakened by the intentionally varied
prompts. We hypothesize that the degradation is caused by
the entanglement between the perturbations and the textual
condition. Deeply concerned by the above observations, we
delve into the latent space in LDMs and fully investigate the
possibility of utilizing the visual encoder to construct data
protection that is more robust to varied prompts. Based upon
our findings, we propose a new defense family featuring
Prompt-Independent Defense (PID). PID is completely
independent of textual prompts, showing robustness to var-
ied fine-tuning prompts as we show qualitatively in Figure
1b, and quantitively in Section 6. Our main contributions
are summarized as follows:
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• We empirically observe that mismatched prompts be-
tween the protection stage and the exploitation stage
could undermine the effectiveness of current data pro-
tection algorithms.

• We thoroughly explore the possibility of leveraging
the visual encoder within LDMs for more robust data
protection and propose a new algorithm named PID.

• Through extensive validation, we demonstrate the ef-
ficacy of PID against different training algorithms,
datasets, and adaptive attacks.

2. Related Work
2.1. Diffusion Models

Diffusion models are a type of generative models (Sohl-
Dickstein et al., 2015; Ho et al., 2020) that learns the data
distribution via two opposing procedures: a forward pass
and a backward pass. Given an input image x0 ∼ q(x), the
forward pass gradually adds noise to the image following
a noise scheduler {βt : βt ∈ (0, 1)}Tt=1 until the data ap-
proximately becomes Gaussian noise. For each timestep t,
the perturbed image is given by xt =

√
α̃tx0 +

√
1− α̃tε,

where αt = 1 − βt, α̃t = Πt
s=1αs and ε ∼ N (0, I). The

reverse process is to reconstruct x0 from xT via step-by-
step predicting the noise added. Specifically, the noise
ε at timestep t is estimated by a parameterized network
εθ(xt+1, t). The training loss is commonly defined as the
ℓ2 distance between the actual noise and the prediction

Lunc(θ,x0) = Ex0,t,ε∈N (0,I)||ε− εθ(xt+1, t)||22, (1)

where t is uniformly sampled from {1, 2, · · · , T} and unc
stands for unconditional diffusion model.

Text-to-Image Latent Diffusion Models get rid of the mas-
sive computational cost brought by operations in pixel space
via projecting images into the latent space defined by a
pre-trained image encoder (Radford et al., 2021; Kingma
& Welling, 2013), of which the most widely used imple-
mentation is the KL-based VAE (Thomas & Cover, 1991)
as adopted by (Rombach et al., 2022; Podell et al., 2024;
Peebles & Xie, 2023). In this work, we primarily focus
on the KL-based VAE while we note that the idea of us-
ing the visual encoder for prompt-independent defense is
not restricted by the concrete implementation. Denoting
the KL-based VAE as E , the latent distribution of data x is
given by N (µE(x), σ

2
E(x)) := E(x), and the latent repre-

sentation of data x is sampled from the distribution via re-
parametrization, z = µE(x) + σE(x)ε := E(x, ε), where
ε ∈ N (0, I). Furthermore, the textual condition c is in-
volved in utilizing the cross-attention (Vaswani et al., 2017;
Balaji et al., 2022; Nichol et al., 2022; Rombach et al., 2022;
Saharia et al., 2022) between the UNet (Ronneberger et al.,

2015) and an extra text encoder (Radford et al., 2021). With
the condition c and the latent representation z0 = E(x0, ε),
the training process is re-formulated as follows

Lcond(θ, c, z0) = Ez0,t,ε||ε− εθ(zt+1, c, t)||22. (2)

Personalization of LDMs (Hu et al., 2021; Gal et al., 2023;
Ruiz et al., 2023; Clark et al., 2024) enables users to fine-
tune the LDMs with only a handful of images. After fine-
tuning, the LDMs usually exhibit an astonishing grasp of the
concepts contained in the images and can flexibly combine
the new concepts with the original training data, synthesiz-
ing images that never existed before. The technique seems
to be a double-edged sword that raises the potential threat to
civil privacy and artists’ copyrights to a degree that cannot
be ignored anymore.

2.2. Data Protection against LDM

Worried by the malicious use of LDMs, a series of works
have made significant contributions to defend personal im-
ages against LDMs. There are two main threads of current
works: 1) generating adversarial examples with a surrogate
model, specifically AdvDM (Liang et al., 2023), Mist (Liang
& Wu, 2023), photoguard (Salman et al., 2023), and FSGM
(Van Le et al., 2023); and 2) generating unlearnable exam-
ples (Huang et al., 2021a; Ren et al., 2022) with a bilevel
optimization (ASPL (Van Le et al., 2023)). Concretely, the
former type of defense first fine-tunes a surrogate model
θsur with the clean data. Then it adversarially maximizes
the training loss of θsur on the perturbed data:

θsur = argmin
θ

Lcond(θ, c, E(x)), (3)

x∗ = argmax
||x′−x||p≤ε

Lcond(θsur, c, E(x′)), (4)

where x∗ denotes the adversarial examples, i.e., the pro-
tected images, and ε ensures the invisibility of the perturba-
tion. Similar to the idea of classic Unlearnable Examples
(Huang et al., 2021a), the latter form of defense proposes to
generate the protected images alongside the training proce-
dure with a min-max optimization:

x∗ = argmax
||x′−x||p≤ε

argmin
θ

Lcond(θ, c, E(x′)). (5)

It is important to note that both of the above algorithms
require a textual prompt c to protect the images, which
makes the perturbations inherently correlated with the text
condition. Besides, back-propagating through the large
UNet costs enormous GPU VRAM (around 24GB with-
out extra tricks). There also exist protection algorithms
involving the visual encoders, either by manipulating the
mean value of the latent distribution targetedly (Liang &
Wu, 2023; Salman et al., 2023), or by directly making the
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latent representations unrelated to the data (Liang et al.,
2023). However, previous works have not fully explored the
potential of visual encoders, and our empirical studies in
Section 4 render the above-mentioned choices suboptimal.

3. Is Prompt-related Defense Robust to Varied
Prompts?

In this section, we conduct quantitive evaluations on the
robustness of prompt-related defense when confronted with
the changed prompts in a realistic setting.

We begin by introducing our overall experimental setup
while details are listed in Appendix A for brevity.

Data & Model: Our experiments primarily utilize the
CelebA-HQ (Liu et al., 2015) dataset where we randomly se-
lect 10 celebrities and choose 4 images for each. Following
Van Le et al. (2023), we use Stable Diffusion v1.5 (Rom-
bach et al., 2022) as the default model and DreamBooth
(Ruiz et al., 2023) as the default fine-tuning method.

Defense: We consider the method of FSGM and ASPL from
Van Le et al. (2023), whose objectives are entirely correlated
with the textual prompts. The perturbation budget is set to
0.05 and the perturbed images are saved in PNG format in
this paper unless otherwise specified.

Metrics: We use two metrics to measure the similarity
between the generated images and the training images: Face
Detection Score (FDS) (Zhang et al., 2016) and Fréchet
Inception Distance (FID) (Heusel et al., 2017). Additionally,
we use two metrics to assess image quality: Image Quality
Score (IQS) (Radford et al., 2021) and Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE) (Mittal et al.,
2012). We define ↑ (value increasing) and ↓ (value decreas-
ing) to indicate the direction of better protection effect, e.g.,
a larger FID indicates a greater distance between the dis-
tribution of the generated images and the training images,
suggesting that the generated images do not capture the
training data well, thus protecting the privacy of the training
data.

Results: For the selected 4 images of each celebrity, we
adopt the defense method FSGM and ASPL with the protect-
ing prompt cprot to generate the corresponding protected
version. These protected images are then used to fine-tune
the model with the fine-tuning prompt cexplo, resulting in
different fine-tuned models1. For testing, we use arbitrary
prompts to generate a set of images, which are then evalu-
ated using the four metrics mentioned above. The average
results across different fine-tuned models are shown in Fig-
ure 2. We can see that the protection performance is notably
affected when the protecting prompt differs from the fine-

1When cprot ̸= cexplo, we choose the fine-tuned model that
has the highest FDS.
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Figure 2. The quantitative results showing the performance of the
prompt-related defenses when textual prompts between the protec-
tion stage and the exploration stage are matched (cprot = cexplo)
and mismatched (cprot ̸= cexplo).

tuning prompt. For example on the FSGM method, when
the fine-tuning prompts do not match the protecting prompts,
the metric FDS increases over 35% (0.277 → 0.387) and
the metric FID decreases 30% (307.421 → 203.916). The
phenomenon is consistent for other metrics and methods.

Deeply concerned by our observation that breaking the
prompt-consistency assumption made by the data protectors
could enable the exploiters to generate high-quality mimic
images, even when the data is safeguarded to some extent,
we aim to design a prompt-agnostic defense in the following
parts.

4. Does Perturbing the Visual Encoer Affect
Fine-tuning?

Recall that the latent distribution is modeled by a KL-
based VAE (Kingma & Welling, 2013) as a multinomial
Gaussian Distribution, N (µE(x), σ

2
E(x)), which is prompt-

independent. This property can be leveraged to address
the defense degradation when there is a prompt mismatch.
Before delving into this potential solution, we first investi-
gate how changes in the latent distribution, i.e., in the mean
µE(x) and the variance σ2

E(x), influence fine-tuning.

We define Lmean to maximize the distance between the
mean of the perturbed images and the clean images, while
Lvar to maximize the distance between the variances of the
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Table 1. Evaluation of fine-tuning on the images which maximize
the mean distance Lmean and the variance distance Lvar respec-
tively. Random denotes adding random noise uniformly within
[−ε, ε] to the clean image.

Data FDS (↓) FID (↑) IQS (↓) BRISQUE (↑)
Clean 0.480 144.570 4.310 15.447

Random 0.479 150.788 4.504 12.160
Lmean 0.370 243.292 -5.373 21.655
Lvar 0.329 265.337 -0.926 16.369

(a) 0 steps (b) 300 steps (c) 600 steps (d) 900 steps

(e) 0 steps (f) 300 steps (g) 600 steps (h) 900 steps

Figure 3. Visualizations of the perturbed latent representations. We
decode the latent representations z obtained during the maximiza-
tion of Lmean and Lvar with the visual decoder in the LDM. (a)
to (d) corresponding to the change of mean, while (e) to (h) for the
variance. The images are obtained with the Stable Diffusion v1.5.

two distributions. Formally, Lmean and Lvar are

Lmean(x, δ) = ||µE(x+ δ)− µE(x)||22, (6)

Lvar(x, δ) = ||σE(x+ δ)− σE(x)||22, (7)

where δ denotes the perturbation added. We maximize
the above loss functions with ℓ∞-PGD1000 (Madry et al.,
2018) and δ is constrained by ∥δ∥∞ ≤ ε = 0.05. Then we
conduct fine-tuning on the images obtained by optimizing
the above two targets and evaluate the fine-tuned models
with the same evaluation framework in Section 3.

The results presented in Table 1 demonstrate that signifi-
cantly reshaping the latent distribution indeed has a sub-
stantial influence on fine-tuning. To visually illustrate the
influence of the distorted latent distribution, we decode the
representations z sampled from the distribution during the
optimization process using the visual decoder and display
the decoded images in Figure 32. Combing results in Table
1 and Figure 3, we find that a large mean difference with
the clean images mainly influences the texture of the out-

2Note that, for this specific experiment, we directly input (x+
δ) as float numbers to the encoder without converting to uint-8.
This approach maximally showcases the perturbations’ influence.
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Figure 4. The change of the latent distribution as the perturbations
are added. (a) the change of the ℓ2 distance between the mean of
the clean and the perturbed latent distribution. (b) the change of
the ℓ2 distance between the variance of the clean and the perturbed
latent distribution. The target of each colored line is shown in the
figure legend.

put images, making them appear covered with heavy noise
(low IQS and high BRISQUE). Conversely, a large variance
significantly prohibits the model from grasping the core
concepts of the images (low FDS and high FID).

Lastly, we plot the ℓ2 norm of the mean difference and the
variance difference in Figure 4, which reveals that even
small perturbations added in the pixel space (0.05) can sig-
nificantly alter the latent distribution. The variance changes
so drastically that the gap between the variance of clean
images and that of perturbed images ranges from approx-
imately ∼ 2−15 to ∼ 212. Additionally, we observe that
changes in the mean and changes in the variance are not
entirely correlated. Whatever in Figures 4a or 4b, one under-
goes significant fluctuations while the other does not exhibit
substantial variation, which indicates their distinct impacts
on fine-tuning results.

Overall, by inducing perturbations in the pixel space, we
can manipulate the two statistics of the latent distribution,
thereby significantly affecting different aspects of the fine-
tuning outcome.

5. How Can We Make Better Use of the Visual
Encoder for Data Protection?

As discussed in Section 4, perturbing the latent distribution
significantly impacts the fine-tuning process, and notably,
this latent distribution is prompt-independent. Therefore, in
this section, we aim to utilize the visual encoder to imple-
ment an effective prompt-independent defense mechanism.

5.1. Proposed Prompt-Independent Defense (PID)

From the results in Table 1, we know that influencing the
mean and variance impacts different aspects of the learning
procedure. Observing Figure 4, we know that altering just
one of these statistics is insufficient to simultaneously in-
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duce substantial changes in both. This observation triggers
us to explore the possibility of manipulating the latent distri-
bution more effectively by designing a sophisticated target
that leverages the benefits of influencing both the mean and
the variance.

We first attempt to disrupt the representations z = E(x, ε)
sampled from the latent distribution, leading to the loss func-
tion Lsample, which is also employed by Liang et al. (2023).
To reduce unnecessary randomness in the optimization pro-
cess, we then experiment with excluding ε from Lsample,
resulting in the loss function Ladd. Considering the signifi-
cant disparity in the magnitudes of the mean and variance
(102 vs 10−3) observed in Figure 4, we propose Ladd−log,
which jointly optimizes the logarithm of the variance and
the mean. Additionally, we explore targeted manipulation
of the mean xtarget, as done by Liang & Wu (2023), where
the target is the default image specified in their paper3. We
denote this loss as LT

mean.

Lsample(x, δ) = Eε1,ε2 ||E(x+ δ, ε1)− E(x, ε2)||22,

(8)

Ladd(x, δ) = Lmean + Lvar, (9)

Ladd−log(x, δ) = Lmean + log
σE(x+ δ)2

σE(x)2
, (10)

LT
mean(x, δ) = −||µE(x+ δ)− µE(xtarget)||22, (11)

We proceed by evaluating the influence of the defense targets
proposed above on the latent distributions, as done in Figure
4. Notably, we notice that Ladd−log (the purple line in
Figure 5a and Figure 5b) is the only defense target that shifts
both statistics away from their normal values significantly
with averaged ℓ2 distance of the mean being 3.5 and 0.06
for variance. On the contrary, Lsample and Ladd perform
significantly worse in perturbing variance.

Equipped with a suitable target, we next examine whether
it has a larger influence on fine-tuning than before. The
results presented in Table 2 reveal that the potential of the
encoders in data protection has not been fully explored
before. The loss functions adopted by previous literature,
Lmean, LT

mean, and Ladd, exhibit sub-optimal performance
compared to Ladd−log. We note that the similar behaviors
of Lmean, Lsample, and Ladd can be well explained by
observations in Figure 5a and Figure 5b, as all of them
mostly focus on the mean value.

A carefully designed optimization target, Ladd−log, proves
to combine the advantages of influencing µ and σ. Not only
does it successfully stop the model from learning the hu-
man face (low FDS, high FID), but it also notably affects the
structure and texture of the output images (low IQS and high
BRISQUE). We are surprised to find that Ladd−log even out-

3https://github.com/mist-project/mist/blob/main/resources
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Figure 5. The change of the latent distribution as the perturbations
are added. Ladd−log is the only loss that has a significant impact
on both statistics. (a) and (b) We plot the change of the mean and
the variance of perturbed images as the maximization of each loss
goes respectively. The results are averaged over all elements in the
tensor.

Table 2. Evaluation of fine-tuning on the images maximizing the
losses defined from Equation (8) to (11), together with LT

mean.
The fine-tuned model is Stable Diffusion v1.5.

Data FDS (↓) FID (↑) IQS (↓) BRISQUE (↑)
Clean 0.480 144.570 4.310 15.447

Random 0.479 150.788 4.504 12.160
LT
mean 0.377 271.540 -4.047 28.622

Lsample 0.377 265.588 -5.135 21.119
Ladd 0.377 268.260 -5.500 20.465

Ladd−log 0.329 411.990 -18.296 35.510

performs both FSGM(c = c1) and ASPL(c = c1) under
this fine-tuning configuration. Given that the latter defenses
require much more GPU memory since they involve the
UNet (Ronneberger et al., 2015) model, which is much
heavier than the visual encoder, we thus believe the visual
encoder should play an undiminished role in protecting data
against LDMs. For its superior protection effect and inde-
pendence of textual conditions, we implement the defense
target defined by Ladd−log as the Prompt-Independent
Defense (PID).

5.2. Integrating PID with Existing Defenses

We continue to explore the possibility of improving the
current defenses with PID. To combine the two distinct types
of defense, namely defense with the encoder and defense
with attacking the training loss function, we adopt a joint
optimization approach involving a weighted combination of
both two defense objectives, similar to Liang et al. (2023)
and Liang & Wu (2023). Specifically, given a defense target
T that incorporates the training loss of LDMs and a defense
target aimed at manipulating the latent distribution, L, we
define a tradeoff coefficient λ to balance the two targets.
The combined defense is expressed as follows:

Lcombo(θ, c,x) = T (θ, c,x) + λL(x). (12)
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Here, θ again denotes the model parameter, c represents the
textual condition, and x is the data to protect. T (θ, c,x) can
be the defense methods defined in equation 3 and equation
5.

We let L = Ladd−log the strongest defense target we ob-
served, and T ∈ {ASPL, FSGM}. We empirically identify
λ = 0.05 as the best parameter in our default setting. While
it’s possible to exhaustively search for the optimal λ across
all settings, we consistently adopt λ∗ = 0.05 in the follow-
ing experiments due to the massive computational demands.

6. Experiments
In this part, we first assess the performance of PID as well
as existing algorithms under both the cprot = cexplo and
the cprot ̸= cexplo scenarios. Second, we experiment with
combining PID and existing defenses. Last but not least, we
test the robustness of PID under harsh conditions.

6.1. PID Excels Regardless of the Prompt Consistency
Assumption

Experiment Setup: We compare PID with the three sym-
bolic defense methods, AdvDM (Liang et al., 2023), FSGM,
and ASPL (Van Le et al., 2023) on the CelebA-HQ (Liu
et al., 2015) and VGGFACE (Cao et al., 2018) dataset. We
largely adopt their default configurations when running the
defense algorithms. We generate PID with PGD1000 (Madry
et al., 2018) and the perturbation budget is set to ε∞ = 0.05.
We use the Stable Diffusion v1.5 and Stable Diffusion v2.1
(Rombach et al., 2022) as the base model4. The evaluation
protocol is identical to the one introduced in Section 3 with
the experimental details provided in Appendix A.

Clean Data Data Protected by PID

Clean

Finetune & Generate

Finetune & Generate 
w/ Varied Prompts

�3

�2

�1

Figure 6. Illustration of PID’s defense performance against varied
prompts used by the data exploitors. c1 to c3 correspond to three
different fine-tuning prompts. In the figure, we finetune the SD
v1.5. More visualizations can be found in Appendix F.

4We obtain the Stable Diffusion v1.5 from
https://huggingface.co/runwayml/stable-diffusion-v1-5 and the Sta-
ble Diffusion v2.1 from https://huggingface.co/stabilityai/stable-
diffusion-2-1.

Results: The complete results for CelebA-HQ are listed in
Table 3. Remarkably, despite consuming significantly less
computational resources (approximately 20% GPU memory,
5G v.s. 24G), PID achieves comparable, if not superior, per-
formance compared to the three algorithms incorporating
UNet across all four training configurations. Specifically,
when the text encoder is frozen, i.e., not trained, during fine-
tuning, PID consistently prohibits the LDMs from learning
useful semantical information, resulting in notably poor fa-
cial similarity (0.254 for SD v1.5 and 0.285 for SD v2.1).
Regarding the case where the text encoders are also fine-
tuned, PID induces severely noisy, low-quality images that
have little semantical correlation with the training data, as
evidenced by the degraded FDS (0.303 and 0.288), substan-
tially reduced IQS (-8.979 and -14.764), and high BRISQUE
(28.927 and 50.112). Benefiting from the visual encoders’
independence from the text encoders, PID consistently re-
sults in FID greater than 300 across all settings, rendering
the generated images unrelated to the training data. The re-
sults demonstrate the potential for PID as a strong baseline
method for safeguarding data against LDMs regardless of
the varied prompts. The results for VGGFACE (Cao et al.,
2018) and LoRA finetuning (Hu et al., 2021) are provided
in Appendix C and we showcase images generated by the
LDMs fine-tuned on the protected data in Appendix F.

6.2. Hybriding PID Robustifies Current Algorithms

We then compare the prompt-dependent defenses with their
PID-hybridized variants. Results in Table 4 reveal that
PID is able to enhance the robustness of the current algo-
rithms. we observe that ASPL+PID is much more robust
than ASPL regardless of whether the text encoder is frozen
or not, as supported by the notably lower FDS (0.254 v.s.
0.370, 0.335 v.s. 0.412) and higher FID (352 v.s. 271, 208
v.s. 199). Moreover, FSGM+PID consistently results in
images of worse semantic information than FSGM (lower
FDS). Based on the above results, we argue that PID can be
incorporated into existing defenses for more reliable data
protection against LDMs.

We do not ignore the fact that combining PID with FSGM
fails to do better in image quality, which might be attributed
to a sub-optimal λ∗ choice or the difficulty of joint optimiza-
tion. Though inferior, FSGM+PID still qualifies for a valid
defense for its larger influence on semantic information
(lower FDS).

6.3. Improved Cross-model Transferability

Since the data protectors have no control over what model
the downstream exploiter uses, it is possible that differ-
ent models are adopted in the two stages. We examine
the transferability between different models of PID as well
as existing algorithms under the cprot ̸= cexplo setting.
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Table 3. Evaluation of defense algorithms under a controlled scenario cprot = cexplo and a more realistic scenario where cprot ̸= cexplo

on the CelebA-HQ dataset. The best-performing defense under each metric is marked with bold. Frozen text-encoder means we freeze the
parameters of the text-encoder during fine-tuning, while unfrozen means we simultaneously fine-tune the text-encoder and UNet.

Scenario Data Frozen Text Encoder Unfrozen Text Encoder
FDS(↓) FID(↑) IQS(↓) BRISQUE(↑) FDS(↓) FID(↑) IQS(↓) BRISQUE(↑)

Clean 0.482 144.570 4.397 14.757 0.557 152.870 7.104 18.445

cprot = cexplo

AdvDM 0.344 240.452 -11.310 19.100 0.358 208.859 -8.558 25.472
FSGM 0.342 246.434 -8.710 22.046 0.277 307.421 -12.910 28.594
ASPL 0.330 295.415 -9.558 26.993 0.353 264.585 -11.310 26.931
PID 0.205 411.990 -18.296 49.178 0.257 325.962 -29.693 62.749

cprot ̸= cexplo

AdvDM 0.378 253.501 -8.534 16.692 0.407 216.154 -9.260 21.813
FSGM 0.374 224.460 -5.607 20.678 0.387 203.916 -8.421 18.204
ASPL 0.370 185.074 -3.669 26.993 0.412 199.187 -7.214 18.243
PID 0.254 352.795 -15.273 35.510 0.303 307.760 -8.979 28.927

(a) The fine-tuned model is Stable Diffusion v1.5.

Scenario Data Frozen Text Encoder Unfrozen Text Encoder
FDS(↓) FID(↑) IQS(↓) BRISQUE(↑) FDS(↓) FID(↑) IQS(↓) BRISQUE(↑)

Clean 0.494 175.856 9.959 11.654 0.565 140.735 5.641 10.199

cprot = cexplo

AdvDM 0.322 252.407 -2.127 24.382 0.362 229.829 -12.287 31.833
FSGM 0.298 277.588 0.586 30.837 0.312 257.165 -7.456 30.764
ASPL 0.300 282.938 0.012 31.429 0.313 266.097 -5.707 28.832
PID 0.255 350.382 -16.556 50.757 0.288 260.496 -14.764 50.112

cprot ̸= cexplo

AdvDM 0.346 245.780 -5.081 24.293 0.398 231.861 -10.128 31.006
FSGM 0.326 252.407 2.365 30.950 0.347 234.313 -6.279 24.918
ASPL 0.341 236.257 -1.872 30.717 0.388 203.413 -1.541 23.357
PID 0.285 336.617 -12.634 43.746 0.288 366.596 -14.764 50.112

(b) The fine-tuned model is Stable Diffusion v2.1.

Specifically, we consider the transferability between the
Stable Diffusion v1.5 and Stable Diffusion v2.1.

Results: PID enjoys great transferability between the two
model versions as shown in Table 5, which might be due to
the similarity in the condensed representations of images.
Also, we notice that the transferability of existing algorithms
from SD v2.1 to SD v1.5 is relatively weaker than the other
way around.

6.4. Resilliance to Adaptive Attacks

We continue studying the robustness of PID when faced
with adaptive attacks with our quantitative results reported
in Table 6.

Adaptive Attack: Since our proposed PID focuses on ma-
nipulating the mean and the variance of the latent distri-
bution, there could be adaptive attacks trying to break the
conditions for our defense to be effective. We propose three
possible adaptive attacks and test the robustness of our pro-
posed defenses against them.

(1) Zero σ: As it is shown in Figure 5b, PID causes the
variance of the latent distribution to increase dramatically.
Therefore, the attack might fix the standard value of the

latent distribution σE(x) of the perturbed images to be 0 to
mitigate such effect. However, a zero standard value will
make the finetuning process easier to overfit and lead to
inferior generation results. Our results also reveal that PID
works very well in such training settings with FDS= 0.253
and IQS= −9.313.

(2) Clipped σ & (3) Fixed σ: A smarter attacker might try
clipping or fixing the standard value σE(x) to a relatively
normal value, e.g. 10−7, rather than directly fixing it to be 0.
Adopting the attack, we observe PID’s influence on image
quality is weakened, with the improved IQS and decreased
FID shown in Table 6. However, the FDS is still very low (¡
0.3), rendering the attack ineffective.

In all, PID is believed to be tolerant of the adaptive attacks
we proposed above and exhibit convincing robustness.

6.5. Robustness against Data Corruptions

After releasing the protected data, the protectors have no
control over what data exploiters will do to the images.
Here we consider four common data corruptions that may
influence the effect of the protective perturbations, namely
randomly resizing and cropping, smoothing with uni-
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Table 4. Evaluation of PID-hybridized defense algorithms under an uncontrolled scenario where cprot ̸= cexplo. The default training
prompt A photo of sks person is adopted as cprot. The backbone model is Stable Diffusion v1.5 and λ∗ = 0.05. The superior one
between FSGM/ASPL and FSGM+PID/ASPL + PID under each metric is marked with bold.

Data Frozen Text Encoder Unfrozen Text Encoder
FDS (↓) FID (↑) IQS (↓) BRISQUE (↑) FDS (↓) FID (↑) IQS (↓) BRISQUE (↑)

FSGM 0.374 224.460 -5.607 20.678 0.387 203.916 -8.421 18.204
FSGM + λ∗PID 0.276 185.704 -3.669 21.096 0.303 185.074 -3.665 19.096

ASPL 0.370 271.893 -5.786 22.724 0.412 199.187 -7.214 18.243
ASPL + λ∗PID 0.254 352.795 -15.723 35.510 0.335 208.859 -3.443 20.659

Table 5. The transferability of different data protection algorithms.
The images are protected with the Source models and are exploited
by the Target models. v1.5 and v2.1 denote Stable Diffusion v1.5
and Stable Diffusion v2.1 repectively. The text encoders are frozen
when fine-tuning the models in this table.

Src.→Dst. Data FDS (↓) FID (↑) IQS (↓) BRISQUE (↑)

v2.1 → v1.5

AdvDM 0.371 223.914 -2.083 30.010
FSGM 0.364 208.278 -2.339 37.563
ASPL 0.311 252.740 -2.510 37.706
PID 0.268 350.069 -14.802 46.204

v1.5 → v2.1

AdvDM 0.407 231.139 -4.660 17.108
FSGM 0.372 241.951 -7.724 23.091
ASPL 0.397 239.222 -6.606 23.950
PID 0.265 251.253 -15.087 24.365

Table 6. Robustness of PID against three adaptive attacks we pro-
posed. All evaluations are done via fine-tuning a Stable Diffusion
v1.5. The best-performing attack is marked as bold.

Freeze-TE Data FDS (↓) FID (↑) IQS (↓) BRISQUE (↑)

✓

Clean 0.480 144.570 4.130 14.757
Zero σ 0.253 201.951 -9.313 22.686

Clipped σ 0.249 207.611 -12.968 33.156
Fixed σ 0.239 207.611 -6.238 22.685

✗

Clean 0.557 128.870 7.104 18.445
Zero σ 0.257 228.788 -7.793 36.637

Clipped σ 0.279 367.174 -16.602 37.565
Fixed σ 0.249 207.260 -13.215 30.168

form noise, image denoising 5 and JPEG compression.
The model we used for this part is SD v1.5 and we freeze the
text-encoder during fine-tuning. The reported experiments
are done with cprot = cexplo.

Result: Based on Table 7 we can observe that PID, the sim-
plest defense among the four algorithms, withstands all four
corruptions as evidenced by consistently low FDS and high
FID. PID shows comparable performance to the AdvDM
and FSGM even in its worst case, the JPEG compression.
However, the huge performance drop when compressed still
signals the need to design more robust protection algorithms
against image compression.

5We adopt the Gaussian image denoiser from the Aydin library,
https://github.com/royerlab/aydin

Table 7. The robustness of the defensive algorithms against four
commonly seen data corruptions. The model finetuned is SD v1.5
and the text-encoder is frozen. We assume cprot = cexplo for
this specific experiment.

Corruption Data FDS (↓) FID (↑) IQS (↓) BRISQUE (↑)

Cropping

AdvDM 0.379 258.085 -1.460 22.655
FSGM 0.376 255.739 -0.573 18.926
ASPL 0.369 268.892 -1.850 22.319
PID 0.246 275.468 -6.290 24.183

Smoothing

AdvDM 0.388 211.059 -3.351 18.013
FSGM 0.388 229.721 1.391 16.403
ASPL 0.377 223.193 -2.210 17.212
PID 0.213 184.483 0.108 47.121

Denoising

AdvDM 0.391 230.016 -1.656 20.457
FSGM 0.396 230.049 2.108 17.639
ASPL 0.372 248.910 0.326 21.292
PID 0.213 184.483 0.108 42.440

Compression

AdvDM 0.386 229.973 -5.768 25.340
FSGM 0.390 225.208 -3.547 24.042
ASPL 0.354 267.039 -6.644 27.983
PID 0.345 221.601 0.287 20.510

7. Conclusion
In this paper, we delve into the reliability of current data
protection algorithms against LDMs without the prompt-
consistency assumption. Our investigation reveals that the
prompt-related defenses could suffer notable performance
decreases when the data exploiters intentionally craft fine-
tuning prompts. Motivated by the visual encoder’s indepen-
dence from the textual prompts, we thoroughly analyze how
perturbing the visual encoder impacts the fine-tuning pro-
cess and propose a prompt-independent defense algorithm
named PID. With the empirically validated effectiveness
of PID and its ability to enhance existing algorithms, we
believe that our proposed prompt-independent algorithm
marks an important step toward reliable protection of data
from exploitation by LDMs.
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A. Experimental Details
A.1. Metric Definition

Throughout our paper we evaluate the fine-tuning results using four matrics, covering different properties of generated
images. We define the Face Detection Score (FDS) as the average cosine similarity between the embeddings of training
images and the embeddings of generated images, where the embedding are given by a MTCNN (Zhang et al., 2016)
pre-trained on a large-scale facial dataset VGGFace2 (Cao et al., 2018). FDS mainly captures the semantic similarity
between the images and evaluates whether the facial information is learned. Fréchet Inception Distance (FID) (Heusel
et al., 2017) is a metric evaluating the distance between the distribution of the generated images and the distribution of
training images, evaluating the model’s master of the image from another perspective. The Image Quality Score (IQS) is
defined to assess the quality of the generated images with the powerful visual-language model CLIP (Radford et al., 2021).
Concretely, we compute the cosine similarity between the clip embedding of the generated images and two sentences, {A
high-quality photo, A low-quality photo} respectively. We report a 103 scale of the average differences between the two
cosine similarities. Finally, we also adopt Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) (Mittal et al.,
2012), a no-reference image quality assessment metric, to evaluate the image quality. For each LDM, we generate 20 images
with the 3 prompts respectively {A photo of sks person, A selfie of sks person, A DSLR portrait of sks person} and report
averaged results over the 60 generated images. When generating data from the diffusion models, we use 50-step DDPM
sampling and set the negative prompt to be noisy, low quality, artifacts, poorly drawn face.

The intuition behind us selecting the cexplo resulting in the highest FDS to represent the performance in the prompt mismatch
case is that higher FDS means the generated images have higher facial similarity with the training data, which is usually a
sign for good fine-tuning result.

A.2. Data

We mainly adopt the CelebA-HQ (Liu et al., 2015) dataset in our experiments. The dataset consists of thousands of
celebrities, with approximately 10 photos each, and the image size is 512x512. We randomly draw 10 celebrities from the
dataset and choose 4 images out of every set of images. Normally, 4 ∼ 5 images are sufficient for the LDMs to grasp the
core concept in the images (Ruiz et al., 2023; Gal et al., 2023). For experiments on VGGFACE (Cao et al., 2018), we also
randomly draw 10 instances from the dataset and choose 4 images out of every set of images.

A.3. Fine-tuning Hyper-parameter

We fine-tune the Stable Diffusion (Rombach et al., 2022) models with DreamBooth (Ruiz et al., 2023) and LoRA. In Table
8, we list the specific fine-tuning details.

A.4. Defense Hyper-parameter

We mainly consider three defense algorithms in this paper AdvDM (Liang et al., 2023), FSGM, and ASPL (Van Le et al.,
2023). For AdvDM (Liang et al., 2023), we implement the protection loss as Lsemantic + λLtextural with λ = 0.05, where
the Lsemantic is defined as the training loss of the Stable Diffusion and the textural loss is defined as the ℓ2 distance between
the mean value of the latent distributions. We run the algorithm for 100 steps (the default number of steps is 40 in the
paper) with step size equaling ε/10. For FSGM, we run the defense for 100 iterations, with step size being ε/10 and 1-step
gradient accumulation. For ASPL, we run the defense for 50 iterations, for each iteration, the surrogate model is updated
for 3 steps and the perturbations are updated for 6 steps. The step size is also set to be ε/10. We set the reference images
for training the surrogate models of ASPL and FSGM the same as the images to be protected. Note that we by no means
intentionally run the algorithms for fewer steps to boost our proposed defense. The steps are recommended by the original
as the default setting and running more steps will not improve their performance significantly. In all, for fair comparison and
time consideration, we adopt their default configurations when it comes to the iterations to run.

A.5. Fine-tuning Prompts when cprot ̸= cexplo

The cprot is fixed to be A photo of sks person. We consider 3 cexplo when cprot ̸= cexplo and we encourage future
works to try on more diverse prompts or even using soft prompts that are optimized for specific goals for fine-tuning. The
exhaustive list of which is
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Table 8. Fine-tuning hyper-parameters.
Version Freeze-TE LR Steps Batch Size Grad. Accu. Output Res.

1.5 Yes 2e-6 1000 1 1 512x512
1.5 No 2e-6 500 1 1 512x512
2.1 Yes 1e-5 1000 1 1 728x728
2.1 No 2e-6 500 1 1 728x728

(a) Fine-tuning hyper-parameters for Dreambooth on CelebA-HQ.

Version Freeze-TE LR Steps Batch Size Grad. Accu. Output Res.

1.5 Yes 2e-6 1200 1 1 512x512
1.5 No 2e-6 1000 1 1 512x512
2.1 Yes 1e-5 1200 1 1 728x728
2.1 No 2e-6 1000 1 1 728x728

(b) Fine-tuning hyper-parameters for Dreambooth on VGGFACE.

Version Rank LR Steps Batch Size Grad. Accu. Output Res.

1.5 16 1e-4 800 2 1 512x512
2.1 32 1e-4 1600 2 1 728x728

(c) Fine-tuning hyper-parameters for LoRA on CelebA-HQ. We apply the low-rank adapters to both the UNet and the text-encoder.

• A photo of sks person.

• A photo of sks face.

• A DSLR portrait of sks person.

B. More Results for The Prompt-Mismatch Scnenario
B.1. Qualitive Results

To better illustrate the performance degradation of the current defense algorithm under the prompt-mismatch scenario, i.e.
cprot ̸= cexplo, we randomly select an instance from the CelebA-HQ(Liu et al., 2015) dataset and protect the images with
three symbolic defense algorithms, AdvDM (Liang et al., 2023), FSGM (Van Le et al., 2023) and ASPL (Van Le et al.,
2023). For each defense, we display 5 images generated by the Stable Diffusion v1.5 (SD v1.5) model fine-tuned on the data
protected by it. We display the case where the text-encoder is frozen and unfrozen during fine-tuning in Figure 7a and 7b
respectively.

B.2. Discussion on the Prompt-dependent Effect

The intuition behind the prompt dependency lies in the training loss of the LDM, which requires a textual condition cprot as
one of its parameters. Existing attacks all involve the training loss as part of the defense objective to optimize, which makes
the resulting perturbations inevitably related to the condition cprot.

A very straightforward way to break the correlation between the conditions and the perturbations is to aggregate across
several prompts during optimization. However, aggregating through k prompts increases the computational cost by k times
and makes the objective even harder to solve. In Table 10, we show that a naive ensembling of prompts to generate the
perturbations won’t fundamentally resolve the issue.

From Figure 8 to Figure 9, we provide more detailed results to discuss the effect of fine-tuning prompts on single instances.

B.3. JPEG Results

JPEG compression has long been known to have an undiminishable effect on the perturbations added to images (Aydemir
et al., 2018). We show quantitative and qualitative results for the cases where the protected images are saved in JPEG format
in Table 10, Figure 10a, and Figure 10b respectively.
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Table 9. Solving the prompt dependency with aggregation through several prompts during optimization. Here ASPL-k means we aggregate
through k prompts. The fine-tuned model is Stable Diffusion v1.5 with text-encoder frozen and the dataset is CelebA-HQ. It can be
seen that aggregation through more prompts doesn’t bring significant improvement for the prompt-mismatch case. Since the exploiters
theoretically have an infinite number of prompts to choose from, we cannot rely on such a method to achieve prompt-independent
protection.

FDS (↓) FID (↑) IQS (↓) BRISQUE (↑)
ASPL-1 0.385 229.973 -3.506 17.987
ASPL-2 0.407 250.954 -3.309 18.231
ASPL-4 0.401 255.728 -4.064 19.596

Table 10. The quantitative results showing the performance of the prompt dependent defenses in cases where textual prompts are matched
(cprot = cexplo) and mismatched (cprot ̸= cexplo) between the protection stage and the exploration stage. Freeze-TE means whether
we Freeze-the-Text-Encoder during fine-tuning. The arrows symbolize the direction of better protection. Perturbed images are saved in
JPEG format in this table.

Freeze-TE Data FDS (↓) FID (↑) IQS (↓) BRISQUE (↑)

✓

Clean 0.480 144.570 4.130 14.757
AdvDM: c = c1 0.386 229.973 -5.768 25.340
AdvDM: c ̸= c1 0.421 157.750 -4.962 20.102
FSGM: c = c1 0.390 225.208 -3.547 24.042
FSGM: c ̸= c1 0.424 211.879 -1.771 16.650
ASPL: c = c1 0.354 267.039 -6.644 27.983
ASPL: c ̸= c1 0.385 229.973 -3.506 17.987

✗

Clean 0.557 128.870 7.104 18.445
AdvDM: c = c1 0.275 199.338 -4.866 25.723
AdvDM: c ̸= c1 0.377 182.473 -4.286 17.857
FSGM: c = c1 0.327 258.643 -8.261 22.822
FSGM: c ̸= c1 0.412 206.979 -3.316 21.238
ASPL: c = c1 0.266 311.892 -9.727 22.019
ASPL: c ̸= c1 0.340 254.840 -7.588 20.326

C. Quantitive Results for Additional Datasets and Training Algorithm
C.1. LoRA Resutls

We report the results of using LoRA (Hu et al., 2021) as the fine-tuning algorithm on the CelebA-HQ (Liu et al., 2015)
dataset in Table 11. We apply the low-rank adapters to both the UNet (Ronneberger et al., 2015) and the CLIP (Radford
et al., 2021) text-encoder.

Table 11. Evaluation of defense algorithms under the cprot = cexplo and cprot ̸= cexplo scenarios when using LoRA (Hu et al., 2021)
for fine-tuning. The best-performing defense under each metric is marked with bold.

Scenario Data Stable Diffusion v1.5 Stable Diffusion v2.1
FDS(↓) FID(↑) IQS(↓) BRISQUE(↑) FDS(↓) FID(↑) IQS(↓) BRISQUE(↑)

Clean 0.465 224.829 7.353 13.116 0.459 222.446 14.581 7.977

cprot = cexplo

AdvDM 0.330 300.942 -10.414 17.591 0.219 354.107 -3.662 35.402
FSGM 0.309 373.485 -9.524 11.053 0.173 423.777 -12.004 41.896
ASPL 0.295 372.883 -8.113 15.165 0.174 376.804 -4.950 40.661
PID 0.231 341.410 -18.782 46.977 0.163 414.323 -17.694 59.272

cprot ̸= cexplo

AdvDM 0.377 283.286 -3.178 14.504 0.239 338.788 -4.998 33.312
FSGM 0.334 362.437 -3.800 10.633 0.240 391.125 -8.771 34.302
ASPL 0.327 381.953 -4.210 13.613 0.225 352.907 -4.033 38.890
PID 0.276 322.451 -11.353 36.335 0.212 396.638 -18.327 50.168

C.2. VGGFACE Resutls

We report the results for the VGGFACE dataset (Cao et al., 2018) in Table 12.
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Table 12. Quantitive evaluation of defense algorithms under the cprot = cexplo and cprot ̸= cexplo scenarios on the VGGFACE
dataset. The best-performing defense under each metric is marked with bold.

Scenario Data Frozen Text Encoder Unfrozen Text Encoder
FDS(↓) FID(↑) IQS(↓) BRISQUE(↑) FDS(↓) FID(↑) IQS(↓) BRISQUE(↑)

Clean 0.442 164.203 16.359 12.290 0.512 134.21 17.63 7.37

cprot = cexplo

AdvDM 0.332 211.935 0.928 13.853 0.244 235.402 -5.694 21.423
FSGM 0.294 282.948 0.064 19.111 0.235 285.889 -10.024 23.694
ASPL 0.312 274.449 -3.710 22.479 0.266 293.886 -6.178 26.454
PID 0.203 278.809 -1.301 26.772 0.223 295.264 -4.730 27.273

cprot ̸= cexplo

AdvDM 0.348 222.290 -0.317 12.416 0.329 214.461 1.853 16.445
FSGM 0.321 259.285 -2.736 17.554 0.329 232.522 -7.382 18.067
ASPL 0.326 279.141 -2.767 21.150 0.350 235.014 -1.329 14.721
PID 0.230 273.189 -1.577 20.622 0.247 300.853 -3.595 24.352

(a) The fine-tuned model is Stable Diffusion v1.5.

Scenario Data Frozen Text Encoder Unfrozen Text Encoder
FDS(↓) FID(↑) IQS(↓) BRISQUE(↑) FDS(↓) FID(↑) IQS(↓) BRISQUE(↑)

Clean 0.455 227.395 15.580 10.413 0.482 200.339 13.935 7.524

cprot = cexplo

AdvDM 0.241 301.904 2.202 22.885 0.321 252.942 -7.852 26.315
FSGM 0.236 275.736 -5.329 34.469 0.253 342.073 -7.091 28.114
ASPL 0.253 280.514 0.827 27.108 0.302 251.864 -6.905 29.900
PID 0.301 282.013 1.749 15.406 0.321 267.520 -1.258 27.993

cprot ̸= cexplo

AdvDM 0.269 284.283 -0.553 17.726 0.364 219.191 -1.257 24.797
FSGM 0.297 269.976 -9.208 32.260 0.351 226.134 1.560 29.667
ASPL 0.296 240.470 1.612 25.668 0.340 234.291 -5.408 27.554
PID 0.338 267.284 3.039 14.360 0.337 252.355 0.066 25.186

(b) The fine-tuned model is Stable Diffusion v2.1.

C.3. 8/255 Resutls

We report the results of applying a tighter constraint on the perturbation budget, i.e. ε∞ = 8/255 when running the defensive
algorithms on the CelebA-HQ (Liu et al., 2015) dataset in Table 13. The fine-tuned model is Stable Diffusion v1.5.

D. Influence on Image Quality
In this section, we assess the influence of PID on the image quality. We adopt three metrics to quantitively measure the
influence. The three metrics are SSIM (Wang et al., 2004), PSNR, and LPIPS (Zhang et al., 2018) 6. We report the quantitive
results in Table 14 and the qualitative comparisons are provided in Figure 11. PID affects the images in a more aggressive
way, which might contribute to its better robustness against image corruption and transferability across models.

E. Disscusion on PID and Image Editing
Zero-shot image editing (Meng et al., 2021; Kawar et al., 2023) is another amazing ability of the LDMs and can also
threaten civil privacy. Following the setting of Salman et al. (2023), we test the performance of PID in the image editing
scenario. We protect the default image provided by Salman et al. (2023) with the simple attack proposed by it, which
targetedly manipulates the mean value and our defense. The model is the Stable Diffusion Inpainting 7 and both the attacks
are obtained via PGD100. The perturbation budget is ε∞ = 0.05.

Observing Figure 12, the PID has a larger influence on the inpainting result than the simple attack, injecting meaningless
noise and disrupting the image’s semantics. However, we find that PID is yet not capable enough to adequately protect the
images in this scenario, with the image still largely plausible. We leave the application of prompt-independent defense in the

6We adopt the implementation from https://github.com/photosynthesis-team/piq
7Downloaded from https://huggingface.co/runwayml/stable-diffusion-inpainting
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Table 13. Evaluation of defense algorithms under the cprot = cexplo and cprot ̸= cexplo scenarios under the constraint that ε∞ =
8/255. The fine-tuned model is SD v1.5. The best-performing defense under each metric is marked with bold.

Freeze-TE Data FDS (↓) FID (↑) IQS (↓) BRISQUE (↑)
Clean 0.480 144.570 4.130 14.757

✓

AdvDM 0.375 209.807 -5.405 21.344
FSGM 0.403 214.184 -2.998 24.093
ASPL 0.412 209.987 -4.213 23.020
PID 0.256 248.038 -9.813 33.342

✗

AdvDM 0.410 227.546 -5.572 14.913
FSGM 0.429 200.422 -1.174 22.564
ASPL 0.416 200.152 -3.266 21.091
PID 0.312 221.636 -9.949 27.391

Table 14. The influence of defensive perturbations on image quality with three matrices measuring the difference between the perturbed
images and the clean images.

SSIM PSNR LPIPS

Random Noise 0.82 30.90 0.20

AdvDM 0.85 32.57 0.19
FSGM 0.91 35.76 0.19
ASPL 0.90 35.91 0.19
PID 0.71 30.90 0.20

image inpainting scenario for future work.
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AdvDM FSGM ASPL
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(a) Images generated by SD v1.5 fine-tuned on clean/protected data with the text encoder frozen. The instance is from CelebA-HQ.

����� = ������

Clean
����� ≠ ������

AdvDM FSGM ASPL
����� = ������ ����� ≠ ������ ����� = ������ ����� ≠ ������

(b) Images generated by SD v1.5 fine-tuned on clean/protected data with the text encoder unfrozen. The instance is from CelebA-HQ.

Figure 7. Influence of prompt-mismatch, i.e., cprot ̸= cexplo, on the protective performance.
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(a) A type example of the prompt dependency. In the case where
cexplo = cprot, the protection performance is strong, producing
low FDS and IQS. However, when cexplo is switched to P-2 and P-
3, the fine-tuned model grasps the human face much better, leading
to reasonable FDS and even positive IQS. The instance is from the
VGGFACE dataset and is protected by FSGM.
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(b) A typical example of the prompt dependency. In the case where
cexplo = cprot, the protection performance is fairly good. The
resulting model generates images of very poor quality, evidenced
by very low IQS and high BRISQUE. However, when cexplo is
switched to P-2 and P-3, the fine-tuned model learns the human
face notably better, leading to acceptable FDS and nearly normal
BRISQUE. The instance is from the VGGFACE dataset and is
protected by ASPL.
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(c) An example where the perturbations exhibit medium-level de-
pendency on prompts. The protection is slightly weaker for P-2 and
P-3. The instance is from the VGGFACE dataset and is protected
by ASPL.
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(d) An example where the IQS shows counter-intuitive results,
where the cprot = cexplo case exhibits best fine-tuning results.
Even though, the dependency effect is still valid across the other
three metrics. We by no means claim that cprot ̸= cexplo always
leads to a significant performance drop on every instance protected
by any prompt-dependent defense. As shown in our quantitative
results, our claim should be interpreted as an overall trend rather
than a definite rule. The instance is from the VGGFACE dataset
and is protected by FSGM.

Figure 8. instances selected to illustrate the effect of the mismatch between cprot and cexplo. P-1, P-2, and P-3 denote three cexplo

defined in A and cprot is still A photo of sks person. Note that these sub-figures serve as case studies rather than rigorous evidence for our
claims. The fine-tuned model is SD v1.5 with text-encoder unfrozen.
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(a) Prompt-dependent defense: FSGM (Van Le et al., 2023)
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(b) Prompt-dependent defense: APSL (Van Le et al., 2023)
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(c) Prompt-dependent defense: AdvDM (Liang et al., 2023)
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(d) Prompt-dependent defense: PID

Figure 9. Averaged fine-tuning results across the CelebA-HQ dataset for different cexplo. For ASPL and FSGM, the defense performance
in the cprot = cexplpo case out-performs the cprot ̸= cexplo case, as evidenced by all four evaluation metrics. For AdvDM, which has
a prompt-independent component, Ltextural, as part of its defense target, better resilience against varied prompts is observed, as evident
by P-3 achieving worse fine-tuning results than P-1. Contrary to the prompt-dependent defenses, the performance of PID remains steady
when different fine-tuning prompts are used, which benefits from the perturbations’ independence of the textual condition. The fine-tuned
model is SD v1.5 with text-encoder unfrozen.
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(a) Images generated by SD v1.5 fine-tuned on clean/protected data with the text encoder frozen. The instance is from CelebA-HQ.
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(b) Images generated by SD v1.5 fine-tuned on clean/protected data with the text encoder unfrozen. The instance is from CelebA-HQ.

Figure 10. Influence of prompt-mismatch, i.e., cprot ̸= cexplo, on the protective performance. Protected images are saved in JPEG
format.
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Clean AdvDM FSGM ASPL PID

Figure 11. Comparision between the clean images and images protected by the four defensive algorithms. We use the SD v1.5 to generate
these images. The pertubation budget is ε∞ = 8/255.

(a) Simple attack (b) PID

Figure 12. PID’s performance in the image editing scenario following the setting of Salman et al. (2023). (a) the simple attack in Salman
et al. (2023). (b) PID. The inference prompt is two men in a library.

21



PID: Prompt-Independent Data Protection Against Latent Diffusion Models

F. More Visualization
CAUTION: The images presented below may cause DISCOMFORT.

Clean AdvDM FSGM ASPL PID

Figure 13. Images synthesized by SD v1.5 fine-tuned on an instance from the CelebA-HQ protected by the defensive algorithms. The
text-encoder is frozen during fine-tuning and the algorithm is Dreambooth.
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Clean AdvDM FSGM ASPL PID

Figure 14. Images synthesized by SD v1.5 fine-tuned on an instance from the CelebA-HQ protected by the defensive algorithms. The
text-encoder is trained during fine-tuning and the algorithm is Dreambooth.

Clean AdvDM FSGM ASPL PID

Figure 15. Images synthesized by SD v2.1 fine-tuned on an instance from the CelebA-HQ protected by the defensive algorithms. The
text-encoder is frozen during fine-tuning and the algorithm is Dreambooth.
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Clean AdvDM FSGM ASPL PID

Figure 16. Images synthesized by SD v2.1 fine-tuned on an instance from the CelebA-HQ protected by the defensive algorithms. The
text-encoder is trained during fine-tuning and the algorithm is Dreambooth.

Clean AdvDM FSGM ASPL PID

Figure 17. Images synthesized by SD v1.5 fine-tuned on an instance from the VGGFACE protected by the defensive algorithms. The
text-encoder is frozen during fine-tuning and the algorithm is Dreambooth.
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Clean AdvDM FSGM ASPL PID

Figure 18. Images synthesized by SD v1.5 fine-tuned on an instance from the VGGFACE protected by the defensive algorithms. The
text-encoder is trained during fine-tuning and the algorithm is Dreambooth.

Clean AdvDM FSGM ASPL PID

Figure 19. Images synthesized by SD v2.1 fine-tuned on an instance from the VGGFACE protected by the defensive algorithms. The
text-encoder is frozen during fine-tuning and the algorithm is Dreambooth.
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Clean AdvDM FSGM ASPL PID

Figure 20. Images synthesized by SD v2.1 fine-tuned on an instance from the VGGFACE protected by the defensive algorithms. The
text-encoder is trained during fine-tuning and the algorithm is Dreambooth.

Clean AdvDM FSGM ASPL PID

Figure 21. Images synthesized by SD v1.5 fine-tuned on an instance from the CelebA-HQ protected by the defensive algorithms. The
fine-tuning algorithm is LoRA.
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Clean AdvDM FSGM ASPL PID

Figure 22. Images synthesized by SD v2.1 fine-tuned on an instance from the CelebA-HQ protected by the defensive algorithms. The
fine-tuning algorithm is LoRA.
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