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Abstract

Learning effective negotiation strategies poses
two key challenges: the exploration-exploitation
dilemma and dealing with large action spaces.
However, there is an absence of learning-based
approaches that effectively address these chal-
lenges in negotiation. This paper introduces a
comprehensive formulation to tackle various ne-
gotiation problems. Our approach leverages con-
textual combinatorial multi-armed bandits, with
the bandits resolving the exploration-exploitation
dilemma, and the combinatorial nature handles
large action spaces. Building upon this formu-
lation, we introduce NegUCB, a novel method
that also handles common issues such as partial
observations and complex reward functions in ne-
gotiation. NegUCB is contextual and tailored
for full-bandit feedback without constraints on
the reward functions. Under mild assumptions,
it ensures a sub-linear regret upper bound. Ex-
periments conducted on three negotiation tasks
demonstrate the superiority of our approach.

1. Introduction
Negotiation serves as a fundamental process that underpins
interaction among diverse agents across a wide spectrum
of domains, ranging from diplomacy (Paquette et al., 2019;
FAIR et al., 2022) and resource allocation (Lewis et al.,
2017; Cao et al., 2018) to trading (Bagga et al., 2020). In
these scenarios, an agent, represented as negotiator a, en-
gages in negotiation with various counterparts g, with its
state evolving. At each time step, negotiator a proposes a
bid and receives feedback indicating whether the counter-
part g accepts or rejects the proposal. Successful acceptance
leads to a deal, while rejection leads to termination or fur-
ther negotiation, possibly with counter-proposals from the

1State Key Laboratory of General Artificial Intelligence, BIGAI,
Beijing, China 2Peking University. Correspondence to: Siyuan Qi
<syqi@bigai.ai>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

counterpart. These negotiations can vary in form, and Fig-
ure 1 illustrates three representative negotiation problems:
trading, resource allocation, and multi-issue negotiation. As
negotiation experiences accumulate, an agent should contin-
uously improve its negotiation ability.

However, effectively exploiting past experiences in subse-
quent negotiations is challenging in the following aspects.
Exploration-exploitation dilemma: As counterparts vary
and the agent’s state evolves, over-exploiting historical data
may result in sub-optimal performance, while excessive
exploration may make the counterpart lose patience. Exist-
ing works on negotiation (Lewis et al., 2017; Liu & Zheng,
2020; Sengupta et al., 2022) tend to neglect exploration,
primarily focusing on exploitation, or simply explore by
UCT (Buron et al., 2019), without considering observable
contexts. Large action spaces: Consider a trading task in
which our negotiator possesses items V1 while the counter-
part holds items V2. The potential bid can be any subset of
the union V = V1 ∪ V2, resulting in 2|V | possible choices.
Some studies (Cao et al., 2018; Bakker et al., 2019; Bagga
et al., 2020) employ reinforcement learning to acquire nego-
tiation strategies, but they primarily focus on tasks involving
action spaces limited to a few hundred discrete actions or
low-dimensional continuous action spaces. Partial obser-
vations: The profiles of counterparts, including their prefer-
ences and desires, cannot be fully observed. Relying solely
on observable contexts for negotiation can be ineffective.
Complicated acceptance functions: Inferring the likeli-
hood of the counterpart accepting a bid remains challenging,
even when their hidden states are known.

In this paper, we formulate negotiation problems using con-
textual combinatorial multi-armed bandits (Li et al., 2010;
Chen et al., 2013; Qin et al., 2014; Wen et al., 2015; Chen
et al., 2018; Agarwal et al., 2021; Nie et al., 2022) to address
the exploration-exploitation dilemma and handle the large
action spaces of combinatorial cardinality. Although nego-
tiation involves a series of actions, unlike in reinforcement
learning, where actions may lead to state transitions, bid
actions in negotiation do not inherently trigger such transi-
tions. Agents accumulate knowledge about their counter-
parts through interactions. Consequently, the bandit-based
formulation is well-suited for negotiation problems.

In our formulation, an arm denotes an item involved in the
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Figure 1. Three typical types of negotiation. Negotiator a is represented with the same icon but in varying colors, indicating the same
agent whose state evolves. Negotiator g is depicted with distinct icons and colors, meaning different counterparts. (a) illustrates a trading
task, where items in Red signify those that negotiator a gives to g, while items in Green indicate those that counterpart g gives to a.
(b) presents a resource allocation task. Items in green are proposed for allocation to negotiator a, while those in red are suggested for
assignment to negotiator g. Lastly, (c) portrays a multi-issue negotiation task involving two distinct issues, each offering several value
choices. Negotiators a and g aim to agree on the values of these two issues.

negotiation, while a super arm signifies a bid composed
of multiple items. The term acceptance is specifically des-
ignated to represent the reward, with a value of 1 assigned
when the counterpart accepts the bid and 0 assigned in the
case of rejection. Consequently, our primary objective is the
systematic selection of super arms to gain a comprehensive
understanding of the expected acceptance of each super arm
while ensuring a substantial cumulative benefit in the long
run. This formulation involves full-bandit feedback, where
information regarding the acceptance of individual items
within the bid remains inaccessible, and only an aggregate
acceptance value for the entire bid is available. Otherwise,
the feedback is referred to as semi-bandit. Presently, most
works (Qin et al., 2014; Wen et al., 2015; Chen et al., 2018;
Hwang et al., 2023) on combinatorial bandits rely on semi-
bandit feedback. Although there are works (Rejwan & Man-
sour, 2020; Agarwal et al., 2021; Nie et al., 2022; Fourati
et al., 2023) that consider full-bandit feedback, they are
non-contextual and often subject to specific constraints.

Building upon the above formulation, we propose a contex-
tual algorithm for full-bandit feedback, named Negotiation
UCB (NegUCB), to learn negotiation strategies and adeptly
address the exploitation-exploration dilemma and the chal-
lenge of large action spaces. Moreover, NegUCB incorpo-
rates hidden states to tackle the issue of partial observations
and handles diverse acceptance functions through kernel
regression (Schulz et al., 2018; Vakili et al., 2023). Un-
der mild assumptions, NegUCB’s regret upper bound is
guaranteed to be sub-linear with respect to the number of
negotiation steps and independent of the bid cardinality, dis-
tinguishing itself from existing works on either semi-bandit

or full-bandit feedback.

In summary, this paper makes three major contributions.
First, we provide a comprehensive formulation for diverse
types of negotiation problems in § 3.1. Second, we pro-
pose NegUCB to learn negotiation strategies, effectively
addressing the prevalent challenges in negotiation in § 3.2.
Lastly, we provide theoretical insights in § 3.3 and conduct
experiments on representative negotiation tasks in § 4, high-
lighting the advantages and effectiveness of our method.

2. Related Work
2.1. Negotiation

Deep reinforcement learning has been applied to learning
negotiation strategies. For instance, Rodriguez-Fernandez et
al. (Rodriguez-Fernandez et al., 2019) adopt a DQN-based
model (Mnih et al., 2015) to solve the contract negotiation
problem characterized by discrete state and action spaces.
Lewis et al. (Lewis et al., 2017) combine supervised learning
with reinforcement learning to acquire negotiation strategies
in a resource allocation task. RLBOA (Bakker et al., 2019)
discretizes continuous action and state spaces and employs
tabular Q-learning to learn bidding strategies, although it
may encounter issues related to the curse of dimensionality.
ANEGMA (Bagga et al., 2020) uses actor-critic (Bhatnagar
et al., 2009) to mitigate the dimensionality challenge. Cao et
al. (Cao et al., 2018) design two communication protocols to
explore the emergence of communication when two agents
negotiate. However, these approaches struggle to handle
large discrete action spaces (Dulac-Arnold et al., 2016) and
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often give minimal consideration to exploration.

Some studies investigate alternative approaches to negoti-
ation. For instance, Buron et al. learn bidding strategies
relying on Monte Carlo tree search (Buron et al., 2019).
A decision tree-based negotiation assistant (Liu & Zheng,
2020) is specifically designed to predict prices in a car trad-
ing platform. Sengupta et al. (Sengupta et al., 2022) demon-
strate a transfer learning-based solution to adapt base nego-
tiation strategies to new counterparts rapidly. Cicero (FAIR
et al., 2022) achieves mastery in the game of Diplomacy by
integrating reinforcement learning with a language model.
Nevertheless, these approaches deal with highly specific
problems or issues in negotiation, yet they have not effec-
tively tackled the prevalent challenges discussed above.

2.2. Multi-Armed Bandits

LinUCB (Li et al., 2010) has been introduced to formulate
recommendation as a contextual bandit problem, assuming
linearity in the reward concerning user and item contexts.
It has demonstrated effective performance in recommenda-
tion and guarantees a sub-linear regret bound (Chu et al.,
2011). FactorUCB (Wang et al., 2017) also makes a lin-
earity assumption but considers hidden features alongside
the observable contexts, leading to an improved click rate
in recommendation. To overcome the linearity assump-
tion in contextual bandits, KernelUCB (Valko et al., 2013;
Chowdhury & Gopalan, 2017) transforms contexts into a
high-dimensional space and applies LinUCB in this new
space. Neural-UCB (Zhou et al., 2020) attempts to leverage
deep neural networks to capture the relationship between
contexts and rewards. However, its computational complex-
ity makes it challenging to generalize to real tasks.

CUCB (Chen et al., 2013) establishes a general framework
for combinatorial multi-armed bandits. C2UCB (Qin et al.,
2014) and ComLinUCB (Wen et al., 2015) incorporate con-
texts into combinatorial bandits based on the same linear-
ity assumption as LinUCB. CC-MAB (Chen et al., 2018)
focuses on problems with volatile arms and submodular
reward functions. CN-UCB (Hwang et al., 2023) employs
neural networks to address contextual combinatorial bandit
problems, facing the computational limitation as Neural-
UCB. However, these algorithms operate within semi-bandit
feedback. Another relevant setting is the full-bandit feed-
back, in which rewards for individual arms are inaccessi-
ble. Algorithms designed for full-bandit feedback include
CSAR (Rejwan & Mansour, 2020), DART (Agarwal et al.,
2021), ETCG (Nie et al., 2022), and RGL (Fourati et al.,
2023). However, their reward functions adhere to linearity
or sub-modularity, and none of them consider contexts. In
contrast, NegUCB is contextual, combinatorial, and tailored
for full-bandit feedback without constraints on the reward
functions. A comparative analysis is presented in Table 1.

Table 1. Comparison between NegUCB and representative multi-
armed bandit algorithms. Contextual: consider contexts. Combi-
natorial: consider super arms consisting of multiple basis arms.
Partial: contexts are partially observable. Non-linear: non-linear
reward functions w.r.t. contexts. Full-bandit: rewards of basis
arms are not available. Blank means the attribute does not apply.

Algorithm Contextual Combinatorial Partial Non-Linear Full-bandit

LinUCB ✓ ✗ ✗ ✗
FactorUCB ✓ ✗ ✓ ✗
KernelUCB ✓ ✗ ✗ ✓
Neural-UCB ✓ ✗ ✗ ✓

CUCB ✗ ✓ ✗
C2UCB ✓ ✓ ✗ ✗ ✗
ComLinUCB ✓ ✓ ✗ ✗ ✗
CC-MAB ✓ ✓ ✗ ✓ ✗
CN-UCB ✓ ✓ ✗ ✓ ✗
CSAR ✗ ✓ ✓
DART ✗ ✓ ✓
ETCG ✗ ✓ ✓
RGL ✗ ✓ ✓

NegUCB ✓ ✓ ✓ ✓ ✓

3. Methodology
Unless otherwise specified, uppercase symbols represent
sets, bold uppercase symbols denote matrices, bold low-
ercase symbols represent vectors, and lowercase symbols
denote scalars or functions. Id refers to an identity matrix
with dimensions d× d, and 0d represents a zero vector of
size d× 1. Kronecker product is denoted as ⊗. Frobenius
norm of a matrix and the l2 norm of a vector are respectively
denoted as ∥X∥ and ∥x∥. Mahalanobis norm of a column
vector x based on matrix A is denoted as ∥x∥A =

√
xTAx.

vec(A) is the vectorization operator of matrix A.

3.1. Negotiation Formulation

In this section, we provide a comprehensive formulation
that applies to various types of negotiation problems. First,
we outline the negotiation framework, detailing the strategy
for making proposals when it is our turn to bid and the
criteria for deciding whether to accept or reject a bid from
the counterpart. Next, we formulate the critical component
within this framework.

3.1.1. NEGOTIATION FRAMEWORK

Denote the pool of the counterpart negotiators as U , with
a cardinality of |U | = m. The item pool is represented
as V , where |V | = n. It is essential to acknowledge that
negotiation with a new counterpart may occur at any time,
leading to an increase in m over time. Additionally, new
items may be added to V . Without loss of generality, we
assume these two pools U and V to be constant. At time
step τ , our negotiator has a valid bid set Bτ encompassing
all feasible bids it can propose at this time. For example,
in a trading task, a bid specifies which items our negotia-
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Figure 2. Acceptance function of a resource allocation task. (a) and (b) describe the contexts of the items and the current negotiator pair,
respectively. (c) provides an example illustrating how the bid can be defined and how to extract the bid context. (d) depicts the acceptance
label. The goal is to approximate the acceptance function r̄ : (Y ,x, b) 7→ r using historical negotiation data.

tor proposes to give to the counterpart and which items it
requests in return. The validity of a bid is determined by
whether our negotiator possesses the items it proposes to
give. More designation of bids under various negotiation
scenarios will be elaborated later.

For a valid bid b ∈ Bτ of our negotiator at time τ , the ac-
ceptance function rτ assesses whether the counterpart may
accept or reject the bid, denoted by rτ (b) = 1 or rτ (b) = 0.
This function is unknown and needs to be learned. Addi-
tionally, there exists a benefit function fτ that measures
the potential benefit of the bid to our negotiator, a metric
highly dependent on the specific problem. Consequently,
the optimal bid for our negotiator to propose at time step
τ is determined by Equation 1, aiming to maximize its ex-
pected benefit. During negotiation, if our negotiator intends
to propose a bid, it chooses a valid bid using Equation 1.
Supposing our negotiator receives a bid b from the coun-
terpart, it is evident that rτ (b) = 1; thus, our negotiator
decides whether to accept the bid by evaluating if the bid is
valid and optimal after setting rτ (b) = 1.

b∗τ = argmax rτ (b)× fτ (b) (1)

3.1.2. ACCEPTANCE FUNCTION

As the benefit function fτ is dependent on the specific prob-
lem and crafted manually, it is not the primary focus of
this work. Instead, we focus on learning the acceptance
function rτ using contextual combinatorial multi-armed
bandits (Chen et al., 2013; Qin et al., 2014; Wen et al., 2015;
Chen et al., 2018; Nie et al., 2022), where arms represent
items in V , super arms denote bids, and rewards are the
acceptance labels. Consequently, the objective is to itera-
tively put forth beneficial bids to understand the expected
acceptance of each bid by various counterparts while ensur-
ing a substantial cumulative benefit in the long run. In the
following, we review the details based on Figure 2.

Items in pool V have contexts denoted as row vectors
{yw|w = 1, 2, ..., n}, collectively forming an item context

matrix Y = [y1;y2; ...;yn], as depicted in Figure 2 (a).
At time step τ , our negotiator and the counterpart form
a negotiator pair, characterized by contexts denoted as a
row vector xτ , as depicted in Figure 2 (b). It is worth
noting that xτ corresponds to one of the m counterparts
in U . In other words, it is a row of the negotiator con-
text matrix X = [x1;x2; ...;xm]. In this work, we use
xτ or xw, w = 1, 2, ...,m, interchangeably to either high-
light the time step or the counterpart index. Address-
ing the partial observation issue, we assume hidden states
U = [u1;u2; ...;um] for the m negotiator pairs. Then the
acceptance function rτ at time step τ is estimated through
Equation 2, where Θ in the first term represents the func-
tion parameters, uτ in the second term signifies the hidden
state of the current negotiator pair. Specifically, the first
term estimates the partial acceptance of the bid based on ob-
served contexts, while the second term evaluates the partial
acceptance of the bid based on hidden states.

r̄τ (bτ ) = ϕ(xτ )Θ ⟨Y , bτ ⟩+ uτ ⟨Y , bτ ⟩ (2)

⟨Y , bτ ⟩ = ϕ ◦ ψ(Y , bτ ) (3)

In the first term of Equation 2, function ϕ transforms context
xτ into a h-dimensional space H where h can be infinite.
⟨Y , bτ ⟩ is expressed in Equation 3, where function ψ ex-
tracts the context of bid bτ from the item context matrix Y .
A possible example of ψ is provided in Figure 2 (c). Follow-
ing this, function ϕ further transforms the bid context into
a high-dimensional representation within space H. Specifi-
cally, function ϕ transforms contexts into high-dimensional
representations, allowing the acceptance function to operate
non-linearly concerning the observed contexts.

Given historical negotiation data from step 1, 2, ..., τ , we
aim to optimize the following objective function to derive
functions ψ and ϕ, parameters Θ and hidden states U , then
use them for the subsequent time step τ + 1. λ1 and λ2 are
hyper-parameters for the regularization terms, rt represents

4



A Contextual Combinatorial Bandit Approach to Negotiation

the actual acceptance at time t, as depicted in Figure 2 (d),
and r̄t denotes the acceptance estimated by Equation 2.

min
ψ,ϕ,Θ,U

L =

τ∑
t=1

|r̄t − rt|2 + λ1 ∥Θ∥2 + λ2 ∥U∥2 (4)

3.2. Negotiation UCB

In this subsection, building upon the above formulation,
we introduce the NegUCB algorithm, a simple yet effective
approach. In this algorithm, bids are represented as indicator
vectors indicating the items involved in each bid. Please
refer to § B.2 for detailed examples.

Since simultaneously deriving the functions ϕ and ψ, as
well as the parameters Θ and U is challenging, we assume
the format of the function ψ in Assumption 3.1. In § 3.2.1,
we provide the closed-form solutions for Θ and U , which
depend on function ϕ. In § 3.2.2, we use kernel regression
(Schulz et al., 2018) to eliminate the dependency on function
ϕ. At last, we summarize the NegUCB algorithm in § 3.2.3.

Assumption 3.1. If the contexts of items are characterized
by their basic features, the extraction function ψ in Equa-
tion 5 can accurately capture the context of bid bτ . In other
words, it encompasses substantial information about the
items included in the bid.

ψ(Y , bτ ) = Y TbTτ (5)

Despite the linearity assumption on ψ, the acceptance func-
tion is non-linear because of the transforming function ϕ.

3.2.1. PARAMETERS

Obviously, the objective function L is not jointly convex
concerning both Θ and U . However, it is convex concern-
ing one parameter if the other one is fixed. Therefore, we
employ an alternative least square optimization approach, it-
erating the calculation of one parameter with a closed-form
solution while keeping the other parameter fixed. Based
on Assumption 3.1, the closed-form solution for Θ is as
Equation 6, while that for U is as Equation 7.

vec(Θ) = (AT
τAτ + λ1Ih2)−1AT

τ (rτ −Dτvec(U)) (6)

vec(U) = (DT
τDτ + λ2Imh)

−1DT
τ (rτ −Aτvec(Θ)) (7)

Rows of matrices Aτ and Dτ are samples as ϕ(btY ) ⊗
ϕ(xt) and ϕ(btY ) ⊗ pt where pt ∈ R1×m is a one-hot
vector representing the counterpart index at time step t =
1, 2, ..., τ . It is evident that the solutions for parameters
Θ and U are contingent on the transformation function ϕ,
which can take various forms, such as polynomial functions,
neural networks, etc., and thus needs to be learned.

3.2.2. TRANSFORMATION FUNCTION

Given the limited amount of negotiation data with various
counterparts, learning ϕ becomes intractable if it involves
many parameters, such as in the case of neural networks.
In NegUCB, we utilize Reproducing Kernel Hilbert Spaces
within kernel functions to avoid the need for learning ϕ,
enhancing efficiency. Moreover, since iterating among three
components, i.e., learning ϕ, U , and Θ, is highly unstable,
NegUCB iterates between learning U and Θ, significantly
improving the learning stability.

Corresponding to matrices Aτ and Dτ dependent on func-
tion ϕ, we define matrices Kτ and Zτ . Each entry (Kτ )t,j
and (Zτ )t,j are the dot product of the t-th and j-th samples
of Aτ and Dτ , respectively. By Assumption 3.2, we can
calculate Kτ and Zτ without knowing ϕ.

Assumption 3.2. Each entry of Kτ and Zτ can be cal-
culated by Equation 8 and Equation 9 respectively, where
t, j = 1, 2, ..., τ , and κ1 and κ2 are two kernel functions.

(Kτ )t,j = κ1(xt,xj)× κ1(btY , bjY ) (8)

(Zτ )t,j =

{
κ2(btY , bjY ) pt = pj
0 pt ̸= pj

(9)

Denoting the above entry values as ktj and ztj , then the
kernel vectors at time step τ are kτ = (k1τ , k2τ , ..., kτ,τ )
and zτ = (z1τ , z2τ , ..., zτ,τ ), and Kτ and Zτ are the kernel
matrices. Based on Assumption 3.2, we have Lemma 3.3 to
approximate the acceptance function.

Lemma 3.3. Instead of learning transformation function
ϕ, parameters Θ and U , and then estimating rτ+1(b) by
Equation 2, it is equivalent to iterate Equation 10 and Equa-
tion 11, then estimate rτ+1(b) using Equation 12. Specifi-
cally, k̄τ+1 = kτ+1[1 : τ ] and z̄τ+1 = zτ+1[1 : τ ], which
are kτ+1 and zτ+1 without their last entries.

Aτvec(Θ) = Kτ (Kτ + λ1Iτ )
−1(rτ −Dτvec(U)) (10)

Dτvec(U) = Zτ (Zτ + λ2Iτ )
−1(rτ −Aτvec(Θ)) (11)

r̄τ+1(b) = k̄τ+1(Kτ + λ1Iτ )
−1(rτ −Dτvec(U)) (12)

+ z̄τ+1(Zτ + λ2Iτ )
−1(rτ −Aτvec(Θ))

Considering the definitions of Aτ and Dτ , it is evident
that Aτvec(Θ) and Dτvec(U) are partial acceptances cor-
responding to the two terms in Equation 2 for historical
time steps t = 1, 2, ..., τ . From the iteration results, the
two terms in Equation 12 estimate the respective terms in
Equation 2 for the subsequent time step τ + 1.
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3.2.3. NEGUCB ALGORITHM

For the subsequent time step τ +1, we can estimate rτ+1(b)
for each bid b ∈ Bτ+1 using Equation 12, then choose a
bid to put forth or decide to accept or reject the bid from
the counterpart by Equation 1. However, this approach re-
lies solely on exploiting historical data, which may lead
to sub-optimal choices. Hence, we explore the estimation
uncertainty based on the Upper Confidence Bound princi-
ple (Li et al., 2010; Valko et al., 2013; Liu et al., 2018).

Instead of Equation 1, we make decisions by Equation 13,
where eτ+1 measures the estimation variance and is ex-
pressed in Equation 14. Parameters αθ and αu are elabo-
rated in Lemma 3.4. For notation conciseness, we use kτ+1

and zτ+1 to denote kτ+1,τ+1 and zτ+1,τ+1.

b∗τ+1 = argmax {r̄τ+1(b) + eτ+1(b)} × fτ+1(b) (13)

eτ+1(b) =
αθ√
λ1

√
kτ+1 − k̄τ+1(Kτ + λ1Iτ )−1k̄

T
τ+1 (14)

+
αu√
λ2

√
zτ+1 − z̄τ+1(Zτ + λ2Iτ )−1z̄T

τ+1

Integrating exploitation and exploration, NegUCB is imple-
mented online as Algorithm 1, where we use aτ and dτ to
respectively denote Aτvec(Θ) and Dτvec(U) for notation
conciseness. Online means the parameters are incremen-
tally updated each time new negotiation data is generated.
NegUCB essentially iterates between Step 1. Estimating
the second term in Equation 2, then calculating the first
term; Step 2. Estimating the first term in Equation 2, then
calculating the second term.

3.3. Theoretical Analysis to NegUCB

Lemma 3.4. If the true parameters satisfy ∥Θ∗∥ ≤ βθ and
∥U∗∥ ≤ βu, the samples satisfy ∥ϕ(btY )⊗ ϕ(xt)∥ ≤ 1
and ∥ϕ(btY )⊗ pt∥ ≤ 1 for t = 1, 2, ..., τ , then with prob-
ability at least 1−

√
δ, the two terms in Equation 12 have

estimation error bounds αθ and αu as follows. Here h∗ and
m∗ are the effective dimensions of Aτ = AT

τAτ + λ1Ih2

and Dτ = DT
τDτ + λ2Imh, p, q ∈ (0, 1) are constants.

αθ = ∥vec(Θτ )− vec(Θ∗)∥Aτ
(15)

≤λ1βθ +

√
h∗log(1 +

τ

λ1h∗
)− logδ +

2βu√
λ1q

αu = ∥vec(Uτ )− vec(U∗)∥Dτ
(16)

≤λ2βu +

√
m∗log(1 +

τ

λ2m∗
)− logδ +

2βθ√
λ2p

In Lemma 3.4, Aτ and Dτ correspond to the first item of

Algorithm 1 NegUCB Algorithm
Input: λ1, λ2 ∈ (0,+∞), kernel functions κ1, κ2
Output: vectors aN and dN

for τ = 1 to N do
select bid bτ randomly if τ = 1, or according to Equa-
tion 13 if τ > 1, and observe rτ
if τ = 1 then

initialize dτ−1 as an empty vector
initialize kernel matrix Zτ = [zτ ] and set aτ = rτ

else
kernel matrix Zτ = [Zτ−1, z̄

T
τ ; z̄τ , zτ ]

calculate aτ = rτ − z̄τ (Zτ−1 + λ2Iτ−1)
−1dτ−1

end if
if τ = 1 then

initialize kernel matrix Kτ = [kτ ] and aτ = (aτ )
else

kernel matrix Kτ = [Kτ−1, k̄
T
τ ; k̄τ , kτ ]

aτ = (aτ−1; aτ )
end if
calculate dτ = rτ − kτ (Kτ + λ1Iτ )

−1aτ

dτ = (dτ−1; dτ )
end for

Equation 6 and Equation 7, respectively. Effective dimen-
sion (Valko et al., 2013; Vakili et al., 2021) is a commonly
used concept in kernel regression and can be considered
as the number of principal dimensions. They contract the
bounds as h∗ ≪ h2 and m∗ ≪ mh, where h is the dimen-
sion of H. Bounds of each sample ϕ(btY ) ⊗ ϕ(xt) and
ϕ(btY )⊗ pt are set as 1 for description convenience. They
correlate with the number of items in the bid, referred to
as the bid cardinality and denoted as γ ⩽ n ∈ Z+. We
can guarantee the bounds of samples by normalizing the
contexts X and Y . Based on Lemma 3.4, we guarantee the
performance of NegUCB by the following theorem.

Theorem 3.5. Under the same assumptions as Lemma 3.4,
with probability at least 1−

√
δ, the cumulative regret of Al-

gorithm 1 has the following upper bound, where rt(b
∗
t ) and

rt(bt) are respectively the true acceptance of the optimal
bid b∗t and the bid chosen by Algorithm 1 at time step t. αf

is the union bound of the benefit functions, i.e., |ft(b)| ≤ αf

for ∀b ∈ Bt and ∀t ∈ {1, 2, ..., τ}.

τ∑
t=0

rt(b
∗
t )× ft(b

∗
t )− rt(bt)× ft(bt)

≤2αθαf

√
2h∗τ log(1 +

τ

λ1h∗
)

+ 2αuαf

√
2m∗τ log(1 +

τ

λ2m∗
)

(17)

Indeed, the cumulative regret is sub-linear concerning the
number of time steps τ . This implies that as the number
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Figure 3. Negotiation steps needed to reach a deal on each ANAC domain of domain 00 - 49.

of negotiation steps increases, the cumulative regret grows
at a slower rate, indicating improved negotiation capability.
Besides, the bound is independent of the bid cardinality
γ, distinguishing NegUCB from existing works (Qin et al.,
2014; Wen et al., 2015; Chen et al., 2018; Nie et al., 2022;
Fourati et al., 2023). It is a result of the full-bandit feedback
and Assumption 3.1. The effect from bid cardinality to the
cumulative regret bound is further discussed in § A.4.1.

4. Experiments
In this section, we evaluate NegUCB across the three rep-
resentative negotiation tasks depicted in Figure 1, compar-
ing it with five representative baselines: ANAC agent 1,
LinUCB, FactorUCB, KernelUCB, and a reinforcement
learning-based negotiation method (Cao et al., 2018; Bagga
et al., 2020). It is important to note that we extend the
original UCB-based baselines to handle combinatorial ban-
dits and full-bandit feedback effectively. Further analysis
regarding the rationale behind baseline selection is in § B.1.

As mentioned, the benefit function fτ is problem-specific.
In our experiments, we set fτ (bτ ) = 1 if bτ ∈ C ∩ Bτ ,
where C consists of bids satisfying certain beneficial con-
straints, otherwise, fτ (bτ ) = 0. It implies that we encour-
age bids that are advantageous to us. This simple configura-
tion lets us concentrate on the acceptance function rτ rather
than the handcrafted fτ . The subsections of specific tasks
will further define the set C constraining bids.

4.1. Multi-issue Negotiation

ANAC (Automated Negotiating Agents Competition) is an
international tournament that has been held since 2010, pro-
viding 50 negotiation domains. However, compared to the
settings of NegUCB, ANAC tasks are relatively simple. For
instance, negotiators and items lack contexts, and there is

1http://ii.tudelft.nl/nego/node/7

only one negotiator pair for each domain. Consequently,
some components of NegUCB are not necessary for these
tasks. In this subsection, we modify NegUCB for com-
patibility with ANAC tasks, showing the adaptability of
NegUCB to diverse negotiation problems. In ANAC exper-
iment, NegUCB does not consider any context and relies
on inferring hidden states of negotiators and items from
negotiation experiences. Essentially, it degenerates into
traditional combinatorial bandits. In contrast, most of the
ANAC agents submitted by tournament participants, includ-
ing the winners (Aydogan et al., 2023), are rule-based.

Original ANAC tasks impose a strict deadline on negotia-
tion, limiting each negotiation pair to a constant number of
negotiation steps. Negotiators are aware of this deadline
and can strategically utilize it. This setup diverges from our
setting in that a negotiator may lose patience at any time,
and its counterpart may not be aware of it. Therefore, in
this subsection, we redefine the task. First, we eliminate
the deadline and investigate the number of rounds needed to
reach a deal. Second, we define the constraining set C only
contains bids whose utilities are larger than the mean utility
of all possible bids to our negotiator. Agents achieving a
deal in fewer steps are more effective. Based on the insights
of the ANAC agents submitted by tournament participants,
we modify them to be compatible with the redefined task.
Specifically, the ANAC agent we adopt in this experiment
randomly selects a valid bid from those with the highest
utility rankings for our negotiator.

We investigate the number of negotiation steps required to
achieve a deal by each algorithm across 50 ANAC domains,
specifically from domain 00 to domain 49. For domain 3,
domain 4, domain 7, domain 28, domain 37, and domain
38, both algorithms failed to reach a deal in 50 rounds,
thus for the sake of conciseness, we show the results on
the remaining 44 domains in Figure 3. NegUCB consis-
tently achieves beneficial deals much earlier across almost

7
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(a) × 1000: Cumulative theoretical regret (b) × 100: Cumulative theoretical regret (c) × 100: Cumulative acceptance regret

Figure 4. Experiment results of resource allocation task. Theoretical regret represents the difference between the estimated r̄ and the
simulated r. Acceptance regret refers to the difference between the estimated and simulated acceptance.

Figure 5. Acceptance rate on resource allocation task, which is
defined as the percentage of the proposed bids being accepted.

all ANAC domains. Considering the effectiveness of the
simplified NegUCB used in this subsection, it is adopted in
place of the ANAC agent in the following experiments for a
more appropriate comparison.

Additionally, we analyze the action spaces. Considering
domain 13 for example, it has 4 issues, each of which has
6, 12, 5, 26 possible values to choose from, then the bid set
contains at most 6×12×5×26 = 9360 choices. Similarly,
other domains exhibit comparable action space sizes.

4.2. Resource Allocation

Motivated by experiments of existing works (Cao et al.,
2018), we design a resource allocation task.

Assume there are three categories of items, and the number
of items in each category does not exceed 5. Each item cat-
egory has a randomly generated context vector denoted as

yj , j = 1, 2, 3. A context vector xw and a hidden state vec-
tor uw are randomly generated for each of the 30 negotiator
pairs. For simplicity, we assume that xw, yj , and uw are
all 2-dimensional, with each entry in the range [0, 1]. The
acceptance function is simulated using Equation 2, where
the transformation function is as Equation 18. Besides, we
draw the parameter matrix Θ of size 6× 6 from a Gaussian
distribution N (0, 1). The counterpart accepts the bid if the
simulated acceptance r satisfies r > 0.

ϕ(x) = (
1√
2
, x1, x2,

1√
2
x21, x1x2,

1√
2
x22) (18)

Specifically, the transformation function is the basis func-
tion of polynomial kernel κ(xw,xj) = 1

2 (xwx
T
j + 1)2.

Furthermore, we define the set C contains bids that allow
our negotiator to acquire more items than the counterpart.

Figure 4(a) shows the cumulative theoretical regret for
each algorithm under various exploration parameters, i.e.,
αθ = αu = α1, α2, ..., α6 summarized in § B.3. It is evi-
dent that the cumulative theoretical regret for each algorithm
decreases initially and then increases, illustrating the advan-
tages of exploration and the drawbacks of over-exploration.
Figure 4(b) and Figure 4(c) display the cumulative theoret-
ical regret and cumulative acceptance regret of each algo-
rithm at each time step under their corresponding optimal
exploration parameter, respectively. Figure 5 illustrates the
acceptance rate of each algorithm under their corresponding
optimal exploration parameter. Given the random nature
of exploration in reinforcement learning, i.e., ϵ-greedy, we
extend the training duration of the reinforcement learning
method to 20000 steps to ensure the results accurately reflect
its true capabilities. Its final result reaches an acceptance
rate lower than 0.6. Refer to § B.3 for a detailed insight into
its convergence process. From these results, we can observe
clear advantages of NegUCB.

8
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In this experiment, the action space comprises at most
6 × 6 × 6 = 216 actions, which aligns with that in the
existing work (Cao et al., 2018) to confirm the effective-
ness of NegUCB for established problems. We add another
experiment with a larger action space in Appendix B.3.

4.3. Trading

CivRealm (Qi et al., 2024) is an interactive environment
designed for the open-source strategy game Freeciv. In this
environment, multiple players engage in their civilizations’
simultaneous development and competition. Alongside ele-
ments such as land, population, and economy, each player
possesses a technology tree, allowing them to research and
acquire the 87 technologies progressively.

Figure 6. Acceptance rate at each episode on trading task

One crucial feature of CivRealm is its Diplomacy compo-
nent, enabling players to engage in technology trades. For
instance, if our negotiator possesses the technology Chivalry
and seeks the technology Astronomy, besides researching it
by itself, our negotiator can also acquire it through trading
with other players who already possess Astronomy. A nego-
tiation window of CivRealm is as Figure 7 2. A negotiator
can counter-propose or cancel the meeting if they reject the
bid. On the other hand, the negotiator can accept the bid
by accepting the treaty. In this experiment, bτ ∈ C if the
total cost of the given technologies is no more than that
of the required ones. For practical reasons, we set the bid
cardinality as γ = 4, with details explained in § B.4.

In this experiment, we systematically explore SE kernels
with diverse hyper-parameters σ to fine-tune the most suit-
able kernel function for the technology trading task in
CivRealm. Based on the results, we conclude that the SE
kernel with σ = 1 emerges as the most suitable choice for
this task. Besides, we tune the exploration rate ranging

2It is from a running Freeciv game and may contain politically
sensitive names of nations, which are purely hypothetical.

from 0 to 1 and choose 0.1 as the optimal exploration rate
for NegUCB. Please refer to § B.4 for more details. Sur-
prisingly, apart from the baselines LinUCB, KernelUCB,
and our proposed method NegUCB, other baselines fail
to demonstrate improvements with increased exploration.
We attribute this observation to the complexity of the task,
where inaccurate formulations result in misguided explo-
ration strategies. Figure 6 illustrates the acceptance rates
of each algorithm under their corresponding optimal explo-
ration parameters, i.e., 0.1, 0, 0, 0.1, 0.1, affirming the clear
advantages of NegUCB. The reinforcement learning method
is not utilized in this experiment due to the challenge as-
sociated with handling such a large action space, whose
cardinality is at most

∑γ
j=1

(
87
j

)
.

Case Study. A negotiation case on CivRealm is depicted
in Figure 7. Thailand proposed to give Chivalry and seek
Astronomy and Seafaring from Portugal with costs of 270,
185, and 112, respectively. The net income for Portugal
would be 270 − 185 − 112 = −27. However, according
to the running game, Portugal accepted the bid. It suggests
the presence of hidden states that we did not observe, influ-
encing Portugal’s decision to accept the bid. Without the
hidden state component in NegUCB, we might overlook
such bids, substantiating that hidden states play a crucial
role in estimating the counterpart’s decisions.

Figure 7. A case of negotiation in CivRealm. Thailand is our nego-
tiator, while Portugal is our counterpart.

5. Conclusion
This paper introduces a comprehensive formulation for nego-
tiation, grounded in contextual combinatorial multi-armed
bandits, capable of encompassing a broad spectrum of real-
world negotiation tasks. Building upon this formulation, we
propose the NegUCB algorithm as a solution to address the
four prevalent challenges in negotiation: the exploitation-
exploration dilemma, handling large action spaces, partial
observations, and complex acceptance functions. Under
mild assumptions, NegUCB ensures a regret upper bound
that is sub-linear with respect to the negotiation steps and in-
dependent of the bid cardinality. A series of experiments on
diverse negotiation tasks validate NegUCB’s effectiveness
and advantages in learning negotiation strategies.
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A. Proofs
In this section, we first provide a derivation of the closed-form solutions in Appendix A.1, then we provide the proofs of
Lemma 3.3, Lemma 3.4 and Theorem 3.5 in Appendix A.2, Appendix A.3, and Appendix A.4, respectively.

A.1. Derivation of Closed-form Solutions

Under Assumption 3.1, the approximated acceptance function and objective function are respectively:

r̄τ (bτ ) = ϕ(xτ )Θϕ(Y
TbTτ ) + pτUϕ(Y

TbTτ )

L =

τ∑
t=1

∣∣∣ϕ(xt)Θϕ(Y
TbTt ) + ptUϕ(Y

TbTt )− rt

∣∣∣2 + λ1 ∥Θ∥2 + λ2 ∥U∥2

Based on basic linear algebra, we can derive the closed-form solutions of Θ and U easily (Li et al., 2010; Wang et al., 2017).
The core method we employ in the derivation relies on the conclusion that aBcT = (c⊗ a)vec(B), where a and c denote
any two row-vectors, and B denotes any matrix, provided that their sizes match.

A.2. Proof of Lemma 3.3

Proof in this subsection directly uses the closed-form solutions in Equation 6 and Equation 7.

Proof. According to the closed-form solution in Equation 6, we have the following equation.

(AT
τAτ + λ1Ih2)vec(Θ) = AT

τ (rτ −Dτvec(U))

⇒vec(Θ) =
1

λ1
(AT

τ (rτ −Dτvec(U))−AT
τAτvec(Θ))

=
1

λ1
AT

τ (rτ −Dτvec(U)−Aτvec(Θ))

Denote α = 1
λ1
(rτ −Dτvec(U)−Aτvec(Θ)), thus there is vec(Θ) = AT

τα. Integrating these two equations:

⇒α =
1

λ1
(rτ −Dτvec(U)−AτA

T
τα)

⇒α = (AτA
T
τ + λ1Iτ )

−1(rτ −Dτvec(U))

⇒vec(Θ) = AT
τα = AT

τ (AτA
T
τ + λ1Iτ )

−1(rτ −Dτvec(U))

From the definition of rows of matrix Aτ , we have:

(AτA
T
τ )tj =(ϕ(btY )⊗ ϕ(xt))(ϕ(bjY )⊗ ϕ(xj))

T

=(ϕ(btY )ϕ(bjY )T)× (ϕ(xt)ϕ(xj)
T)

=κ1(btY , bjY )× κ1(xt,xj) = (Kτ )tj

The second equality above is from the fact that any row vectors v1, v2, ν1, ν2 satisfy (v1⊗ν1)(v2⊗ν2)
T = (v1v

T
2 )(ν1ν

T
2 ).

As a result, we can derive Aτvec(Θ) as follows.

Aτvec(Θ) =AτA
T
τ (AτA

T
τ + λ1Iτ )

−1(rτ −Dτvec(U))

=Kτ (Kτ + λ1Iτ )
−1(rτ −Dτvec(U))
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For the next time step τ + 1, there is:

ϕ(xτ+1)Θϕ(Y
TbTτ+1) =(ϕ(bτ+1Y )⊗ ϕ(xτ+1))vec(Θ)

=k̄τ+1(Kτ + λ1Iτ )
−1(rτ −Dτvec(U))

Derivation of Dτvec(U) is similar, thus we omit it.

A.3. Proof of Lemma 3.4

Denote Aτ = AT
τAτ + λ1Ih2 and Dτ = DT

τDτ + λ2Imh. Θ∗ is the true parameter while Θτ is the parameter estimated
at time step τ . ϕ(btY )⊗ ϕ(xt) is the sample at time step t = 1, 2, ..., τ .

Proof. The error of the estimated partial acceptance based on contexts corresponding to ϕ(bt+1Y )⊗ ϕ(xt+1) is as follows.

∣∣k̄τ+1(Kτ + λ1Iτ )
−1(rτ −Dτvec(U))− (ϕ(bt+1Y )⊗ ϕ(xt+1))vec(Θ∗)

∣∣
≤∥ϕ(bt+1Y )⊗ ϕ(xt+1)∥ ∥vec(Θτ )− vec(Θ∗)∥Aτ

≤∥vec(Θτ )− vec(Θ∗)∥Aτ

= ∥Aτ (vec(Θτ )− vec(Θ∗))∥A−1
τ

=
∥∥∥AT

τ (rτ −Dτvec(U τ−1))− (AT
τAτ + λ1Ih2)vec(Θ∗)

∥∥∥
A−1

τ

=
∥∥∥AT

τ (rτ −Dτvec(U τ−1)−Aτvec(Θ∗))− λ1vec(Θ∗)
∥∥∥
A−1

τ

=
∥∥∥AT

τDτvec(U∗)−AT
τDτvec(U τ−1) +AT

τ ϵτ − λ1vec(Θ∗)
∥∥∥
A−1

τ

≤
∥∥∥AT

τDτ (vec(U∗)− vec(U τ−1))
∥∥∥
A−1

τ

+
∥∥∥AT

τ ϵτ

∥∥∥
A−1

τ

+ λ1 ∥Θ∗∥A−1
τ

The first inequality holds when the minimum eigenvalue of Aτ is at least 1. The term ϵτ accounts for sub-Gaussian noise to
the acceptance function. Now, consider the first term above:

∥∥∥AT
τDτ (vec(U∗)− vec(U τ−1))

∥∥∥
A−1

τ

≤ 1√
λ1

∥Dτ (vec(U∗)− vec(U τ−1))∥

≤ 1√
λ1

τ∑
t=1

∥(ϕ(btY )⊗ pt)(vec(U∗)− vec(U t−1))∥

≤ 1√
λ1

τ∑
t=1

∥vec(U∗)− vec(U t−1)∥

≤ 1√
λ1

τ∑
t=1

∥vec(U∗)− vec(U0)∥ × qt−1

≤ 2βu√
λ1

× 1− qτ

1− q

≤ 2βu√
λ1(1− q)

The second inequality holds because Algorithm 1 updates parameters online. The fourth inequality is based on Uschmajew’s
work (Uschmajew, 2012; Wang et al., 2017), that the estimation of U is local q-linearly convergent to the optimizer.
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Specifically, in the above inequations, parameter q satisfies 0 < q < 1. For conciseness, we denote (1 − q) ∈ (0, 1)

as q ∈ (0, 1) in Lemma 3.4. Some works (Liu et al., 2018) simply assume
∥∥∥AT

τDτ (vec(U∗)− vec(U τ−1))
∥∥∥
A−1

τ

= 0

considering U t−1 → U∗ when t→ ∞.

For the second term, we leverage the properties of self-normalized vector valued martingales (Yadkori et al., 2011).
Assuming ϵτ belongs to a 1-sub-Gaussian process, then with probability at least 1−

√
δ, there is the following inequality:

∥∥∥AT
τ ϵτ

∥∥∥
A−1

τ

≤

√
log

det(Aτ )

det(λ1Ih2)
− logδ

Because of the Determinant-trace inequality, we have:

det(Aτ ) ≤
(

trace(Aτ )

h∗

)h∗

≤
(
λ1 +

τ

h∗

)h∗

Consequently, the second term has the following bound:∥∥∥AT
τ ϵτ

∥∥∥
A−1

τ

≤

√
log

det(Aτ )

λh∗
1

− logδ ≤
√
h∗log(1 +

τ

λ1h∗
)− logδ

According to the assumptions in Lemma 3.4, we have:

λ1 ∥Θ∗∥A−1
τ

≤ λ1 ∥Θ∗∥ ≤ λ1βθ

By integrating the above three terms, we complete the proof of the bound for αθ in Lemma 3.4. The proof for the bound of
αu follows a similar approach and is therefore omitted.

A.4. Proof of Theorem 3.5

In this subsection, for description conciseness, the subscripts of functions are omitted when there is no risk of confusion.
For example, we denote rτ+1(bτ+1) simply as r(bτ+1). Besides, we denote the acceptance estimated by r̄τ+1(·) + eτ+1(·)
as s(·), and the samples as µτ+1 = ϕ(bτ+1Y )⊗ ϕ(xτ+1) and vτ+1 = ϕ(bτ+1Y )⊗ pτ+1. Additionally, the optimal bid
at time step τ + 1 is denoted as b∗τ+1, thus r(b∗τ+1) and r(bτ+1) are the true acceptance of the optimal bid b∗τ+1 and the
chosen bid bτ+1 at τ + 1, respectively.

Proof. Firstly, we analyze Equation 14.

Aτ (ϕ(bτ+1Y )⊗ ϕ(xτ+1))
T = (AT

τAτ + λ1Ih2)µT
τ+1 = AT

τ k̄
T
τ+1 + λ1µ

T
τ+1

Rearranging the above equation, there is:

µT
τ+1 =A−1

τ (AT
τ k̄

T
τ+1 + λ1µ

T
τ+1)

=AT
τ (Kτ + λ1Iτ )

−1k̄
T
τ+1 + λ1A−1

τ µT
τ+1

The last equality above is based on the study of Haasdonk et al. (Haasdonk & Pekalska, 2010). As the kernel value at time
step τ + 1 is denoted as kτ+1 = µτ+1µ

T
τ+1, there is:

µτ+1µ
T
τ+1 = k̄τ+1(Kτ + λ1Iτ )

−1k̄
T
τ+1 + λ1µτ+1A−1

τ µT
τ+1

⇒µτ+1A−1
τ µT

τ+1 =
1

λ1
(kτ+1 − k̄τ+1(Kτ + λ1Iτ )

−1k̄
T
τ+1)
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Derivation for vτ+1D−1
τ vT

τ+1 is similar. From the above results, Equation 14 is equivalent to the following format,
consistent with existing UCB-based approaches. The remaining proof is based on this result.

eτ+1 =αθ

√
µτ+1A−1

τ µT
τ+1 + αu

√
vτ+1D−1

τ vT
τ+1

Secondly, we prove that s(b∗τ+1) ≥ r(b∗τ+1).

s(b∗τ+1)− r(b∗τ+1)

=µ∗
τ+1(vec(Θτ )− vec(Θ∗)) + v∗

τ+1(vec(U τ )− vec(U∗)) + αθ

∥∥µ∗
τ+1

∥∥
A−1

τ
+ αu

∥∥v∗
τ+1

∥∥
D−1

τ

≥− ∥vec(Θτ )− vec(Θ∗)∥Aτ

∥∥µ∗
τ+1

∥∥
A−1

τ
− ∥vec(U τ )− vec(U∗)∥Dτ

∥∥v∗
τ+1

∥∥
D−1

τ

+ αθ

∥∥µ∗
τ+1

∥∥
A−1

τ
+ αu

∥∥v∗
τ+1

∥∥
D−1

τ

≥− αθ

∥∥µ∗
τ+1

∥∥
A−1

τ
− αu

∥∥v∗
τ+1

∥∥
D−1

τ
+ αθ

∥∥µ∗
τ+1

∥∥
A−1

τ
+ αu

∥∥v∗
τ+1

∥∥
D−1

τ
= 0

Thirdly, we bound r(b∗τ+1)× f(b∗τ+1)− r(bτ+1)× f(bτ+1). As bτ+1 is the bid chosen by the NegUCB algorithm at time
step τ + 1, we have:

r(b∗τ+1)× f(b∗τ+1) ≤ s(b∗τ+1)× f(b∗τ+1) ≤ s(bτ+1)× f(bτ+1)

⇒r(b∗τ+1)× f(b∗τ+1)− r(bτ+1)× f(bτ+1)

≤
{
µτ+1vec(Θτ ) + vτ+1vec(U τ ) + αθ

∥∥µτ+1

∥∥
A−1

τ
+ αu ∥vτ+1∥D−1

τ
− µτ+1vec(Θ∗)− vτ+1vec(U∗)

}
× f(bτ+1)

=
{
µτ+1(vec(Θτ )− vec(Θ∗)) + vτ+1(vec(U τ )− vec(U∗)) + αθ

∥∥µτ+1

∥∥
A−1

τ
+ αu ∥vτ+1∥D−1

τ

}
× f(bτ+1)

≤
{
2αθ

∥∥µτ+1

∥∥
A−1

τ
+ 2αu ∥vτ+1∥D−1

τ

}
× f(bτ+1)

The first inequality above is from the conclusion of the second proof step. Lastly, we prove the bound of the cumulative
regret. For the benefit function ft at time step t, we assume an union bound αf such that |ft| ≤ αf for ∀b ∈ Bt and
∀t ∈ {1, 2, ..., τ}.

τ∑
t=0

r(b∗t+1)× f(b∗τ+1)− r(bt+1)× f(bτ+1)

≤2αθαf

τ∑
t=0

∥ϕ(bt+1Y )⊗ ϕ(xt+1)∥A−1
τ

+ 2αuαf

τ∑
t=0

∥∥ϕ(bt+1Y )⊗ pt+1

∥∥
D−1

τ

≤2αθαf

√√√√τ

τ∑
t=0

∥ϕ(bt+1Y )⊗ ϕ(xt+1)∥2A−1
t

+ 2αuαf

√√√√τ

τ∑
t=0

∥∥ϕ(bt+1Y )⊗ pt+1

∥∥2
D−1

t

≤2αθαf

√
2τ log

det(Aτ )

det(λ1Ih2)
+ 2αuαf

√
2τ log

det(Dτ )

det(λ2Imh)

≤2αθαf

√
2τh∗log(1 +

τ

λ1h∗
) + 2αuαf

√
2τm∗log(1 +

τ

λ2m∗
)

The third inequality is based on Lemma 11 of Abbasi-Yadkori’s study (Yadkori et al., 2011), and the last inequality is based
on Determinant-trace inequality to both Aτ and Dτ . It is important to note that we do not explicitly emphasize the valid bid
set Bt in the above proof. However, if incorporating Bt, the proof process remains the same.
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A.4.1. CUMULATIVE REGRET ANALYSIS

The cumulative regret upper bound of NegUCB remains independent of the cardinality of bids, a notable distinction from
existing algorithms like C2UCB (Qin et al., 2014), ComLinUCB (Wen et al., 2015), CC-MAB (Chen et al., 2018), etc.,
which exhibit upper bounds that are sub-linear concerning the cardinality of super arms. This behavior is attributed to the
full-bandit feedback of negotiation problems and the Assumption 3.1. For instance, ComLinUCB estimates the reward of
each arm, from which the general rewards of super arms are calculated, leading to error propagation. In contrast, NegUCB
directly estimates the general rewards of super arms, eliminating error propagation. Assumption 3.1 requires that item
contexts are defined by their basic features. Neglecting this principle may result in inaccuracies when capturing bid contexts.
However, similar assumptions are commonly used in various applications, such as recommendation and crowdsourcing.
Addressing this limitation in future research is encouraged.

For full-bandit feedback, existing works such as DART (Agarwal et al., 2021), ETCG (Nie et al., 2022), RGL (Fourati et al.,
2023), etc., have been developed. However, their regret upper bounds are contingent on the cardinality of super arms, as
they lack consideration of contexts.

B. Experiment
B.1. Baseline Selection

Algorithms designed for contextual combinatorial bandits include C2UCB (Qin et al., 2014), ComLinUCB (Wen et al.,
2015), CC-MAB (Chen et al., 2018), CN-UCB (Hwang et al., 2023), and others. However, these algorithms are tailored for
semi-bandit feedback and cannot be directly applied to our specific problems. Our experiments adapt LinUCB (Li et al.,
2010) to combinatorial bandits with full-bandit feedback. Specifically, we extend LinUCB by incorporating Assumption 3.1,
which treats bids as the basic arms of the original algorithm. The algorithms DART (Agarwal et al., 2021), ETCG (Nie
et al., 2022), and RGL (Fourati et al., 2023) are specifically tailored for full-bandit feedback. However, they do not consider
contextual information, rendering them unsuitable for addressing our particular problems.

Neural network-based algorithms, e.g., Neural-UCB, CN-UCB, or variants, are not chosen as the baselines in our experiments.
Although neural networks have powerful representation capabilities, the networks in neural bandits cannot be large, as
the computational complexity is cubic concerning the number of network parameters, limiting their capabilities. Neural-
LinUCB (Xu et al., 2022) solely explores the output layer to expedite the neural-bandit algorithms. Nevertheless, it
encounters instability issues in the iteration process among three components: learning the parameters Θ, U , and learning
the neural network ϕ. According to exiting works (Liu et al., 2018), prior knowledge or additional constraints are required
to govern learning under these scenarios.

In addition to bandit-based algorithms, alternative methods for negotiation have been proposed (Cao et al., 2018; Buron
et al., 2019; Bagga et al., 2020). However, as discussed earlier, these approaches often struggle to address the exploitation-
exploration dilemma and handle large action spaces effectively. Consequently, they are anticipated to exhibit inferior
performance compared to NegUCB. In our experiments, we adopt a variant of ANEGMA (Bagga et al., 2020). The notable
difference is the absence of the pre-training component, caused by the unavailability of historical negotiation data for various
negotiation tasks. To compensate for this omission, we extend the training duration of ANEGMA, ensuring that the results
accurately reflect its true capabilities.

B.2. Bid Design

In this subsection, we illustrate the design of bid vectors for each task through illustrative examples. These bids are structured
based on the NegUCB algorithm and tailored to specific negotiation problems. However, it’s advisable to flexibly adjust bid
formats to accommodate diverse problems and algorithms.

B.2.1. MULTI-ISSUE NEGOTIATION

Consider a negotiation scenario with four issues, each having 4, 2, 2, 3 possible values, respectively. The bid vector,
representing the potential outcomes for these issues, is of size 4 + 2 + 2 + 3 = 11. For instance, a bid expressing
value 3 for issue A, value 1 for issue B, value 2 for issue C, and value 2 for issue D is denoted by the bid vector
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Table 2. Exploration parameter settings for each algorithm.

Algorithm α1 α2 α3 α4 α5 α6

LinUCB 0 1 4 8 16 32
ANAC agent 0 1 2 3 4 5

FactorUCB # items is 5 0 0.4 0.8 1.2 1.6 2
# items is 20 0 0.1 0.4 0.6 0.8 1

KernelUCB 0 1 2 4 6 8
NegUCB 0 0.1 0.4 0.6 0.8 1

(a) Acceptance by reinforcement learning (b) × 100: Cumulative acceptance regret (c) ×100: Cumulative acceptance regret

Figure 8. More experiment results on resource allocation task.

b = (0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0). It signifies the selection of values for each issue.

B.2.2. RESOURCE ALLOCATION

Figure 2 provides a simple example of how a bid can be designed in a resource allocation task, where each negotiator
takes distinct categories of items. However, both negotiators may want some items in the same category. For example,
both of them want some apples. Consequently, the bids for this task in our experiment are designed in a more general way.
Let’s assume three types of items are available: 4 strawberries, 2 peppers, and 5 apples. A bid representing a request for 1
strawberry, 1 pepper, and 2 apples, while the counterpart negotiator retains the remaining 3 strawberries, 1 pepper, and 3
apples, can be denoted by the bid vector b = (1, 1, 2,−3,−1,−3). The first three entries represent the items requested by
our negotiator, while the remaining three represent those for the counterpart. Under this setting, the item context matrix is:

Y =



2 1
1 3
5 4

− − − − − −
2 1
1 3
5 4


(19)

B.2.3. TRADING

For a trading scenario involving three types of items—strawberries, peppers, and apples—a bid indicating that our negotiator
offers 1 pepper and 1 strawberry to the counterpart while seeking 2 apples in return can be represented by the bid vector
b = (1, 1, 0, 0, 0,−2). The first three entries signify the items provided by our negotiator, whereas the remaining three
entries denote the items sought from the counterpart. The item context matrix is similar to that in Equation 19.

B.3. More Experiment Results and Analysis to Resource Allocation

Because the exploitation scales of algorithms vary, their exploration scales also vary largely. We conduct a search and
summarize the six representative exploration rates corresponding to Figure 4(a) in Table 2, where the rates in bold are the
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(a) Acceptance by reinforcement learning (b) Deal rate w.r.t. exploration rate (c) Acceptance rate

Figure 9. More experiment results on resource allocation and trading tasks. Deal rate is a metric defined by CivRealm, quantifying the
percentage of episodes that result in a deal, while the acceptance rate is the percentage of the proposed bids being accepted..

optimal ones of each algorithm. Figure 8(a) presents the outcomes of the reinforcement learning method. Due to the random
nature of exploration in reinforcement learning, employing ϵ-greedy exploration, we extend the training duration to 20000
steps to ensure the results accurately depict the algorithm’s true capabilities. As depicted in Figure 8(a), the acceptance rate
exhibits an initial increase but soon plateaus, facing challenges in surpassing an acceptance rate of 0.6.

In Figure 5, the acceptance rates exhibit initial fluctuations due to the limited negotiation steps, resulting in sharp increases
when deals occur, primarily caused by randomness. It is important to note that these initial spikes do not necessarily imply
high negotiation capabilities. Other studies have documented similar observations, such as TCB (Liu et al., 2018) and
FactorUCB (Wang et al., 2017).

Additionally, we add one more experiment with a larger action space. Assuming there are three categories of items and the
number of items in each category does not exceed 20, the action space comprises at most 21× 21× 21 = 9261 actions.
Experiment results under this setting are shown in Figure 8(b), Figure 8(c), and Figure 9(a), demonstrating the advantages of
NegUCB compared to the baselines. It is worth noting that the complexity of the task is not solely determined by the size of
the action space but also by other variables, such as the item contexts and the attitudes of the counterparts, which may be the
reason why the acceptance rates of the added experiment are higher than those in the main content.

B.4. More Experiment Results and Analysis to Trading

In the CivRealm experiment, we have chosen a bid cardinality of γ = 4 for the sake of experiment efficiency. Setting γ too
large would require additional search algorithms to find the optimal bid in Equation 1, which falls beyond the scope of this
work and introduces errors unrelated to our algorithm. Moreover, bids in trading often consist of only a few items. However,
this is not contradictory to the large action space issue, as the action space has a cardinality of

∑γ
j=1

(
n
j

)
, which can still be

large even for a small γ.

The contexts of negotiator pairs encompass the technologies our negotiator and the counterpart possess. Contexts of
technologies include metrics such as cost, research reqs count, and num reqs, which are provided by CivRealm (Qi et al.,
2024) and describe fundamental features of technologies.

In this experiment, we employ the SE kernel given by κ(xw,xj) = exp(− 1
2σ2 ∥xw − xj∥2). We systematically explore SE

kernels with diverse hyper-parameters σ, specifically σ = 0.5, 1, 2, and 5, to fine-tune the most suitable kernel function for
the trading task discussed in this subsection. The results, illustrated in Figure 9(b), display the final deal rates after 200
episodes using different kernel functions. According to the experiment results from CivRealm (Qi et al., 2024), their deal
rates are less than 0.4, notably inferior to those of NegUCB. Based on Figure 9(b), we conclude that the SE kernel with
σ = 1 emerges as the most suitable choice for the trading task on CivRealm. Additionally, Figure 9(c) further illustrates
the acceptance rates of NegUCB with various SE kernels under their corresponding optimal exploration rates, specifically
αθ = αu = 0, 0.1, 0.4, 0.1 for σ = 0.5, 1, 2, 5, respectively.
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