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Abstract
This paper studies policy evaluation with multi-
ple data sources, especially in scenarios that in-
volve one experimental dataset with two arms,
complemented by a historical dataset generated
under a single control arm. We propose novel data
integration methods that linearly integrate base
policy value estimators constructed based on the
experimental and historical data, with weights op-
timized to minimize the mean square error (MSE)
of the resulting combined estimator. We further
apply the pessimistic principle to obtain more ro-
bust estimators, and extend these developments to
sequential decision making. Theoretically, we es-
tablish non-asymptotic error bounds for the MSEs
of our proposed estimators, and derive their or-
acle, efficiency and robustness properties across
a broad spectrum of reward shift scenarios. Nu-
merical experiments and real-data-based analyses
from a ridesharing company demonstrate the su-
perior performance of the proposed estimators.

1. Introduction
Motivation. This paper seeks to establish data-driven ap-
proaches for evaluating the effectiveness of a newly target
policy against a conventional control. A basic approach
relies solely on experimental data to formulate the treatment
effect estimator, which we refer to as the experimental-data-
only (EDO) estimator. However, the often limited sample
size of experimental data prompts the need to incorporate
auxiliary external datasets to enhance the precision of the
treatment or policy effect estimator. We provide three illus-
trative examples to demonstrate this concept.

*Equal contribution 1School of Statistics and Management,
Shanghai University of Finance and Economics 2Department of
Statistics, London School of Economics and Political Science
3Yunnan Key Laboratory of Statistical Modeling and Data Analy-
sis, Yunnan University 4Didi Chuxing 5Department of Biostatistics,
The University of North Carolina at Chapel Hill. Correspondence
to: Hongtu Zhu <htzhu@email.unc.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Example 1: A/B testing with historical data. A/B test-
ing is frequently used in modern technology companies
such as Amazon, eBay, Facebook, Google, LinkedIn, Mi-
crosoft, Netflix, Uber and Didi for comparing new prod-
ucts/strategies against existing ones (see Larsen et al., 2023,
for a recent review). A common challenge in A/B test-
ing is the limited experiment duration coupled with weak
treatment effects. For example, in the ridesharing industry,
experiments usually last no more than two weeks, and the
effect sizes often range from 0.5% to 5% (Xu et al., 2018;
Tang et al., 2019; Zhou et al., 2021; Qin et al., 2022). Yet,
prior to these experiments, companies often have access
to a substantial volume of historical data under the current
policy. Leveraging such historical data can significantly
improve the efficiency of A/B testing.

Example 2: Meta analysis. In medicine, data often spans
across multiple healthcare institutions. A notable example
is in the schizophrenia study that examined the efficacy of
cognitive-behavioral therapy in early-stage schizophrenia
patients (Tarrier et al., 2004). This study was a multicen-
ter randomized controlled trial (RCT) executed in three
treatment centers (Manchester, Liverpool, and North Not-
tinghamshire). Given that each center had a relatively small
cohort, with fewer than 100 participants, pooling data from
all sources becomes crucial to enhance causal learning.

Example 3: Combining observational data. RCTs are
widely regarded as the benchmark for learning the causal
impacts of interventions or treatments on specific outcomes
(Imbens & Rubin, 2015). However, RCTs often face prac-
tical challenges such as high costs and time constraints,
resulting in limited participant numbers. Conversely, ob-
servational data, derived from sources such as biobanks or
electronic health records, boast larger sample sizes. Inte-
grating both data presents a unique opportunity to improve
the statistical learning efficiency (Colnet et al., 2020).

Challenge. The challenge of merging multiple data sources
often lies in the distributional shifts that occur between
them. In the domain of ridesharing and healthcare, datasets
from different time frames frequently display temporal non-
stationarity (Wan et al., 2021; Li et al., 2022; Wang et al.,
2023b). In the schizophrenia study, variations across various
treatment centers and ethnic groups introduce heterogeneity,
leading to distributional shifts (Dunn & Bentall, 2007; Shi
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Table 1.Summary of the properties of MSEs of our estimators.

Reward shiftNon-pessimistic estimatorPessimistic estimator
Zero Close to ef�ciency boundSame order to oracle MSE
Small Close to oracle MSE Same order to oracle MSE
Moderate May suffer a large MSE Oracle property
Large Oracle property Oracle property

Theoracle MSE denotes MSE of the oracle estimator that use the
bestweight to combine historical and experimental data whereas
the ef�ciency bound is the smallest achievable MSE among a
broad class of regular estimators (Tsiatis, 2006).

et al., 2018). Furthermore, the integration of RCTs with
observational data introduces the potential for unmeasured
confounding within the observational data (Pearl, 2009).
Neglecting these distributional shifts would produce biased
estimations of treatment effects.

Contributions. This paper focuses on the application of
A/B testing with historical data. However, the methodolo-
gies and theoretical frameworks we develop are equally
applicable to the other two examples discussed earlier. Our
contributions are summarized as follows:

Methodologically, we propose several weighted estimators
for data integration, including both pessimistic and non-
pessimistic estimators, covering both non-dynamic settings
(also referred to as contextual bandits in the OPE literature)
and sequential decision making. We demonstrate the su-
perior empirical performance of these estimators through
simulations and real-data-based analyses1.

Theoretically, we derive various statistical properties (e.g.,
ef�ciency, robustness and oracle property) of the proposed
estimators across a wide range of scenarios, accommodating
varying degrees of reward shift between the experimental
data and the historical data in mean – from zero to small (the
shift's order is much smaller thann� 1=2 ), moderate (the
shift's order falls betweenn� 1=2 andn� 1=2

p
log(n)), and

large (the shift is substantially larger thann� 1=2
p

log(n)),
wheren represents the effective sample size; see Table 1
for a summary. To the contrary, existing works impose
more restrictive conditions. They either require the mean
shift to be zero, or suf�ciently large for clear detection (see
e.g., Cheng & Cai, 2021; Han et al., 2021; Dahabreh et al.,
2023; Li et al., 2023). In summary, our �ndings suggest
that the non-pessimistic estimator tends to be effective in
scenarios where the reward shift is minimal or substantial.
In contrast, the pessimistic estimator demonstrates greater
robustness, particularly in situations with moderately large
reward shifts.

1R code implementing the proposed weighted estimators
is available athttps://github.com/tingstat/Data_
Combination .

2. Related Work

Data integration in causal inference.There is a growing
literature on combining randomized data with other sources
of datasets; see Degtiar & Rose (2023) and Shi et al. (2023c)
for reviews. These methods can be broadly classi�ed into
three categories, as outlined in the introduction:

1. The �rst category leverages historical datasets collected
under the control (see e.g., Pocock, 1976; Cuffe, 2011;
Viele et al., 2014; van Rosmalen et al., 2018; Schmidli
et al., 2020; Cheng et al., 2023; Liu et al., 2023; Scott &
Lewin, 2024). In particular, assuming no reward shift,
Li et al. (2023) developed a semi-parametric ef�cient
estimator whose MSE achieves the ef�ciency bound.
In contrast, our methods are more �exible, allowing
the reward shift to exist.

2. The second category is meta analysis where the ex-
ternal data is collected from different trials (Schmidli
et al., 2014; DerSimonian & Laird, 2015; Hasegawa
et al., 2017; Zhang et al., 2019; Steele et al., 2020; Lian
et al., 2023; Rott et al., 2024). This category includes
a notable subset of methods that apply`1-type penalty
functions for selecting external data (Dahabreh et al.,
2020; Han et al., 2021; 2023). However, their perfor-
mance is sensitive to the choice of the tuning parameter,
as shown in our numerical study (see Figure A2).

3. The last category incorporates observational data to
enhance causal learning (see e.g., Hartman et al., 2015;
Peysakhovich & Lada, 2016; Kallus et al., 2018; Athey
et al., 2020; Gui, 2020; Yang et al., 2020a;b; Wu &
Yang, 2022; Lee et al., 2023).

Remark1. The �rst category of research is closely related
to our work, while the focus of the last two categories dif-
fers from ours. Additionally, all aforementioned studies
concentrate on the non-dynamic setting framework. Our re-
search, however, broadens this perspective by investigating
sequential decision making where treatments are assigned
sequentially over time – a typical scenario studied in rein-
forcement learning (RL, Sutton & Barto, 2018).

Of�ine policy learning. The proposed pessimistic estimator
is inspired by recent advancements in of�ine policy learning,
which aims to learn an optimal policy from a pre-collected
of�ine dataset without active exploration of the environment.
Existing methods typically adopt the “pessimistic principle”
to mitigate the discrepancy between the behavior policy that
generates the of�ine data and the optimal policy. In contrast
to the optimistic principle widely used in contextual ban-
dits and online RL, the pessimistic principle favors actions
whose values are less uncertain.

In non-dynamic settings, pessimistic algorithms can gener-
ally be categorized into value-based and policy-based meth-
ods. Value-based methods learn a conservative reward func-
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tion to prevent overestimation and compute the greedy pol-
icy with respect to this estimated reward function (Buckman
et al., 2020; Jin et al., 2021; Rashidinejad et al., 2021; Zhou
et al., 2023). Conversely, policy-based methods directly
search the optimal policy by either restricting the policy
class to stay close to the behavior policy or optimizing the
policy that maximizes an estimated lower bound of the re-
ward function (Swaminathan & Joachims, 2015a;b; Wu &
Wang, 2018; Kennedy, 2019; Aminian et al., 2022; Jin et al.,
2022; Zhao et al., 2023).

Furthermore, the pessimistic principle has been extensively
adopted in of�ine RL, accommodating more complex se-
quential settings (Kumar et al., 2019; 2020; Yu et al., 2020;
Uehara & Sun, 2021; Xie et al., 2021; Bai et al., 2022; Rigter
et al., 2022; Shi et al., 2022b; Yin et al., 2022; Zhou, 2023).

Off-policy evaluation (OPE). Finally, our work is closely
related to OPE in contextual bandits and RL, which aims
to estimate the mean outcome of a new target policy using
data collected by a different policy (see Dud�́k et al., 2014;
Uehara et al., 2022, for reviews). It has been recently em-
ployed to conduct A/B testing in sequential decision making
(Bojinov & Shephard, 2019; Farias et al., 2022; Tang et al.,
2022; Shi et al., 2023a;b; Li et al., 2024; Wen et al., 2024).
Existing approaches in this �eld can generally be classi�ed
into three main groups:

1. Direct methods: these methods learn a reward or value
function from of�ine data to estimate the policy value
(Bradtke & Barto, 1996; Le et al., 2019; Feng et al.,
2020; Luckett et al., 2020; Hao et al., 2021; Liao et al.,
2021; Chen & Qi, 2022; Shi et al., 2022a; Bian et al.,
2023; Uehara et al., 2024).

2. Importance sampling (IS) methods: this group em-
ploys the IS ratio to adjust the observed rewards, ac-
counting for the discrepancy between the target policy
and the behavior policy (Heckman et al., 1998; Hirano
et al., 2003; Thomas et al., 2015; Liu et al., 2018; Dai
et al., 2020; Wang et al., 2023a; Hu & Wager, 2023).

3. Doubly robust (DR) methods: these strategies in-
tegrate the principles of direct methods and IS (Tan,
2010; Dud́�k et al., 2011; van der Laan et al., 2011;
Zhang et al., 2012; Jiang & Li, 2016; Thomas & Brun-
skill, 2016; Chernozhukov et al., 2018; Farajtabar et al.,
2018; Oprescu et al., 2019; Shi et al., 2020; Uehara
et al., 2020; Kallus & Uehara, 2022; Liao et al., 2022).
Their validity relies on the consistency of either the
direct method or IS, but not necessarily both. We refer
to such a property as the double robustness property.

We note that none of the aforementioned work studied data
integration, which is the central theme of this paper.

3. Estimators in Non-dynamic Setting

Summary. In this section, we present our newly devel-
oped non-pessimistic and pessimistic estimators, tailored
for non-dynamic settings. These estimators differ in their
approach to weighting historical and experimental data. The
non-pessimistic estimator determines its weight by minimiz-
ing an estimated MSE, whereas the pessimistic estimator
optimizes its weight to minimize a “pessimistic” version of
the estimated MSE. We will discuss adaptations of these
estimators for sequential decision making later.

Data. The of�ine data comprises an experimental dataset
De and a historical datasetDh . In the experimental setting,
the decision maker observes certain contextual information
at each time point, denoted bySe, and makes a choice, rep-
resented byAe, between a baseline control policyAe = 0
and a target policyAe = 1 , resulting in an immediate re-
ward,Re. Thus, the experimental data contains a set of i.i.d.
context-action-reward triplets. In contrast, the historical
data consists of i.i.d. context-reward pairsOh = ( Sh ; Rh )
generated solely under the control policy.

Objective. Our objective is to estimate the difference be-
tween the mean outcome under the target policy and that
under the control in the experimental data. This estimand is
commonly referred to as the average treatment effect (ATE).
Since no unmeasured confounders exists during the exper-
iment, the ATE can be represented by� e = E[r �

e(1; Se) �
r �

e(0; Se)], wherer �
e(a; s) = E(RejAe = a; Se = s).

Two base estimators. We next introduce two base estima-
tors for ATE. The �rst estimator is the EDO estimatorb� e,
which exclusively usesDe to learn ATE. The second esti-
matorb� h , on the other hand, incorporatesDh into the ATE
estimation. Speci�cally, it usesDe to estimate the target
policy's value andDh to estimate the control policy's value.

Mathematically, letOe be a shorthand for the triplet
(Se; Ae; Re) in the experimental data. We de�ne an esti-
mation function e(� ) for Oe as follows

1X

a=0

(� 1)a� 1
n

r e(a; Se) + � a(AejSe)[Re � r e(Ae; Se)]
o

;

wherer e represents our posit model for the reward function
r �

e . Moreover,� a denotes the model for the IS ratioI (Ae =
a)=P(Ae = ajSe), whereI (� ) is the indicator function and
the denominator is the behavior policy (or the propensity
score) that generatesDe. The following de�nition gives the
EDO estimator.

De�nition 1 (Experimental-data-only Estimator). The
doubly robust estimator based on the experimental data
alone is de�ned as

b� e =
1

jDej

X

Oe 2D e

 e(Oe): (1)
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Remark2. b� e covers a range of estimators including the
direct method estimator, the IS estimator, and the DR esti-
mator. In its general form, without any speci�c restrictions,
b� e functions as the doubly robust estimator. It can be easily
veri�ed that b� e is consistent to ATE when either the reward
function or the IS ratio is correctly speci�ed. Meanwhile,b� e

can be simpli�ed to the direct method estimator by setting
� 0 = � 1 = 0 , and to the IS estimator whenr e is set to0.

De�ne r �
h (� ) = E(Rh jSh = � ) as the reward function in

the historical data and let� � (� ) denote the density ratio
of the probability mass/density function ofSe over that of
Sh . The historical data distribution might differ from the
experimental data distribution in the following two aspects:

1. Reward shift: the reward functionr �
h (� ) might differ

from r �
e(0; � ) conditional on the control.

2. Covariate shift: the distribution ofSe might differ
from that ofSh , i.e.,� � 6= 1 .

Let r h and� denote the posit models forr �
h and� � . We

next give the de�nition of historical-data-based estimatorb� h

De�nition 2 (Historical-data-based Estimator). The dou-
bly robust estimator that uses the historical data to estimate
the control policy's value is de�ned as

b� h =
1

jDej

X

Oe 2D e

 h; 1(Oe) �
1

jDh j

X

Oh 2D h

 h; 2(Oh );

where  h; 1(Oe) = r e(1; Se) + � 1(AejSe)[Re �
r e(Ae; Se)] � r h (Se) and h; 2(Oh ) = � (Sh )[Rh � r h (Sh )].

Remark3. By addition and subtraction,b� h is unbiased to
the difference between h; 1(Oe) + r h (Se) andr h (Se) +
 h; 2(Oh ). To elaborateb� h , it is crucial to understand these
two estimating functions. The �rst function uses the exper-
imental data to construct the doubly robust estimator for
the value of the target policy, while the second function in-
corporates the historical data to construct the doubly robust
estimator for the average outcome under the control policy.
These two terms are unbiased estimators forE[r e(1; Se)]
andE[r h (Se)], respectively, provided that either the density
ratio or the reward function is correctly speci�ed.

Additionally, the use ofr h (Se) +  h; 2(Oh ) partially ad-
dresses the distributional shift between the experimental
and historical data. Speci�cally, by usingSe instead ofSh

in r h (Se) and using the density ratio� in  h; 2, it addresses
the covariate shift, leading to an unbiased estimator toward
E[r h (Se)] instead ofE[r h (Sh )]. However, it introduces a
potential bias equal to

bh = E[r e(0; Se)] � E[r h (Se)]: (2)

This parameter represents the mean reward shift between the
experimental and historical data, serving as a pivotal metric

for quantifying discrepancies between the two datasets. It is
also equal to the bias of the ATE estimatorb� h which incor-
porates the historical data to estimate the control policy's
outcome. A small value ofbh implies a relatively safe use
of historical data to enhance the precision of the ATE esti-
mator. Conversely, a largebh suggests caution against using
historical data due to the signi�cant bias it introduces.

The proposed estimators. Both the proposed non-
pessimistic and pessimistic estimators are formulated as
linear combinations of the two base estimatorsb� e andb� h .

De�nition 3 (Weighted Estimator). The weighted estima-
tor is de�ned as

b� w = wb� e + (1 � w)b� h

for some properly chosen weightw 2 [0; 1]

The weight is selected to minimize the MSE of the resulting
estimator. Speci�cally, for a givenw, according to the bias-
variance decomposition, we obtain

MSE(b� w ) = Bias2(b� w ) + Var(b� w ); (3)

where the bias is proportional to(1 � w), given by
� (1 � w)bh according to(2) and the variance term equals
w2Var(b� e)+(1 � w)2Var(b� h )+2 w(1� w)Cov(b� e; b� h ). This
yields a close-form expression for (3).

We aim to estimate the oracle weightw� that minimizes
(3). We �rst note that the variance/covariance terms can be
consistently estimated using the sampling variance formula2.
It remains to estimate the reward shift biasbh .

The non-pessimistic estimator employs the unbiased esti-
matorbbh = b� e � b� h for estimatingbh . Through certain
derivations, this approach yields the subsequent estimator
for w� :

bw =
bb2

h + cVar(b� h ) � dCov(b� e; b� h )
cVar(b� e) + bb2

h + cVar(b� h ) � 2dCov(b� e; b� h )
; (4)

where the precise expressions for the estimated variance and
covariance terms are detailed in Appendix D.

We next discuss the limitations of the non-pessimistic esti-
mator. We draw a parallel with the “of�ine bandit” problem
where each weightw represents an arm in the bandit frame-
work. Here, the MSE ofb� w is analogous to the cost of
selecting an arm, with the aim being to identify the optimal
arm (weight) that minimizes this cost.

For each arm, the estimated cost,[MSE(b� w ), is calculated
by incorporatingbbh and the estimated variance/covariance
values into(3). The non-pessimistic estimator employs

2For an i.i.d. average�X =
P n

i =1 X i =n, its variance can be
consistently estimated by

P n
i =1 (X i � �X )2=n(n � 1).
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Figure 1.Distributions of estimated costs for optimal and sub-
optimal arms. A key challenge arises when the estimated cost
of a sub-optimal arm is inaccurately high, leading to failure of the
greedy action selection method. To address this issue, we apply
the pessimistic principle which takes into account the uncertainties
inherent in these estimations. The estimates of the cost under the
two arms are given by[Costk (k = 1 ; 2) with their pessimistic
versions[Costk;U (k = 1 ; 2). By comparing the upper bounds of
the estimated costs, we effectively identify the optimal arm.

a greedy action selection method, selecting the arm with
the lowest estimated cost. The reliability of this estimator
is largely dependent on a uniform consistency condition,
which requires that the estimated costs uniformly converge
to the actual costs across all arms. However, this condition
is likely to be violated, if the estimated cost for any sub-
optimal arm is inconsistent, as depicted in Figure 1.

In our framework, underestimating the absolute value ofbh

leads to lower estimated MSEs for smaller weights. As a
result, the weightbw chosen by the non-pessimistic estimator
tends to be smaller than the ideal (oracle) value, resulting in
a signi�cant bias inb� bw . This reveals the limitations of the
non-pessimistic estimator, particularly whenbh is moder-
ately large, as detailed in Table 1 and further elaborated in
Section 5.1.

The pessimistic estimator addresses this limitation by in-
corporating the uncertainty of cost estimation. Instead of
selecting the greedy arm with the lowest estimated cost, it se-
lects the arm based on a more pessimistic cost estimate that
upper bounds the oracle cost with a high probability. This
method relaxes the stringent uniform consistency condition,
as illustrated in Figure 1. Importantly, the consistency of
the resulting estimator relies on the accurate estimation of
the optimal arm's cost only.

In our setup, we compute an uncertainty quanti�erU for the
estimation errorbbh � bh . It satis�es the following condition,

P(jbbh � bh j � U) � 1 � �; (5)

for a given signi�cance level� > 0. In practice,U can be
constructed using concentration inequalities or asymptotic
normal approximation (Casella & Berger, 2021). We next
use(jbbh j + U)2 as a pessimistic estimator forb2

h and plug-in
this estimator into the right-hand-side of(4) to determine
the weightbwU . Under the event de�ned in(5), (jbbh j + U)2

serves as a valid upper bound forb2
h . This leads to the

pessimistic estimatorb� bwU . We show in Section 5.2 that this
estimator is more robust than the non-pessimistic estimator,
particularly whenbh is moderately large.

Con�dence Interval. Under certain regularity conditions,
each weighted estimator is asymptotically normal such that

(b� bw � � e)=
p

V ar(b� bw ) d! N (0; 1): This motivates us to
consider the following Wald-type con�dence interval for
ATE

[b� bw � � � 1(1� � )
q

dV ar(b� bw ); b� bw +� � 1(1� � )
q

dV ar(b� bw )];

where� � 1 is the inverse cumulative distribution function
of a standard random variable, and the variance ofb� bw is
estimated based on the sampling variance formula.

4. Extension to Sequential Decision Making

We next brie�y outline the extension of our methods to
sequential decision making. To save space, more details
are given in Appendix C. This extension aligns closely with
our ridesharing example, where policy decisions are made
sequentially over time, and past policies can in�uence future
outcomes (Bojinov et al., 2023; Shi et al., 2023b). In this
setting, the ATE is de�ned as the difference in expected
cumulative rewards between the control and target policies.

The online experiment spans multiple days, with daily data
summarized as sequences of state-action-reward triplets.
Actions are binary, denoting either a baseline control or an
experimental target policy. To account for day-to-day varia-
tions, we model the experiment as a time-varying Markov
decision process. For ATE estimation, we employ the dou-
ble RL estimator (Kallus & Uehara, 2020), leading to the
development of the EDO estimator. The historical data com-
prises state-reward pair sequences from previous days under
the control policy, forming the basis for our second estimator.
This estimator, also doubly robust, is used to estimate the
cumulative reward under the control policy, thereby facili-
tating ATE calculation. Building on the approaches outlined
in Section 3, we apply both pessimistic and non-pessimistic
strategies to integrate these base estimators.

5. Theoretical Properties

To simplify our theoretical analysis, this section examines
a sample-split version of the proposed estimator in non-
dynamic settings. Further extensions of our analysis to
sequential decision making are detailed in Appendix C.

Our analysis compares three key estimators: a conceptual
oracle estimatorb� w � , which utilizes the idealw� value, the
EDO estimator detailed in(1), and the semi-parametrically
ef�cient (SPE) estimator (Li et al., 2023) developed on
the assumption of no reward shift. The EDO and SPE
estimators represent two polar views of reward shift: the
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EDO anticipates a notable divergence betweenr e(0; � ) and
r h (� ), while the SPE assumes no difference.

Summary. Before delving into the technical details, we
offer a concise summary of our theories:

• Small bh : in scenarios where the reward shift is much
smaller than the standard deviations of the doubly ro-
bust estimators, the SPE estimator achieves the best
performance. However, our analysis shows that the
MSEs of the proposed estimators closely approximate
those of both the oracle and the SPE estimator.

• Moderate bh : when the reward shift is comparable to
or larger than the standard deviation terms, yet falls
within the high con�dence bounds of the estimation
error, it remains uncertain which estimator (other than
the oracle estimator) outperforms the rest. In these set-
tings, the MSE of our pessimistic estimator is generally
smaller than that of the non-pessimistic estimator.

• Large bh : when the reward shift is much larger than
the estimation error, both the EDO estimator and our
estimators are equivalent to that of the oracle estimator.
We refer to this equivalence as the oracle property.

5.1. Properties of the Non-pessimistic Estimator

We study a sample-split variant of our estimator, where the
dataset is equally divided into two parts. The �rst half, la-
beled asD (1)

e [ D (1)
h , is utilized to deduce the weightbw.

The second half,D (2)
e [ D (2)

h , is then employed to construct
the �nal doubly robust estimatorb� , leveraging the previ-
ously estimated weight. This sample-splitting approach
removes the dependencies between the estimated weight
and the dataset used in formulating the ATE estimator, con-
siderably simplifying our theoretical analysis. It has been
widely used in causal inference and OPE (see e.g., Luedtke
& Van Der Laan, 2016; Chernozhukov et al., 2018; Kallus
& Uehara, 2020; Bibaut et al., 2021; Shi et al., 2021). An
alternative method involves swapping the roles of the data
subsetsD (1)

e [ D (1)
h andD (2)

e [ D (2)
h to generate a second

estimator and then averaging both estimators to attain full ef-
�ciency. Nonetheless, this approach is not explored further
in our paper for the sake of simplicity.

We impose the following assumptions.

Assumption 1(Coverage). Let � � (ajs) = P(Ae = ajSe =
s) be the propensity score. There exists a scalar� > 0 such
that � � (ajs) � � and� � (s) � � � 1 hold for anya ands.

Assumption 2(Boundedness). (i) There exists some con-
stantRmax such thatmax(jRej; jRh j) � Rmax holds al-
most surely. (ii)max(jr ej; jr h j) is upper bounded byRmax .
(iii) � and� are lower bounded by� .

Assumption 3 (Doubly-robust Speci�cation). Either the
reward functions or the density ratios are correctly speci�ed.

Remark4. The coverage condition in Assumption 1 is fre-
quently imposed in the OPE literature (see e.g., Uehara et al.,
2022). It is also referred to as the positivity assumption in
the causal inference literature (Hernán & Robins, 2010).
Remark5. The condition of bounded rewards in Assumption
2(i) is commonly imposed in RL (see e.g., Agarwal et al.,
2019). Given the bounded nature of the reward and the
density ratio/propensity score, it is reasonable to assume that
the user-de�ned nuisance functions are similarly bounded,
as detailed in Assumptions 2(ii) and 2(iii).
Remark6. Assumption 3 re�ects the double robustness
property of the proposed estimator. Alternatively, this as-
sumption can be replaced by requiring these nuisance func-
tions to satisfy certain convergence rate conditions (Cher-
nozhukov et al., 2018; Kallus & Uehara, 2020).

We begin by providing a non-asymptotic upper bound for
MSE of the non-pessimistic estimator. De�nenmin =
minfj Dej; jDh jg as the effective sample size.
Theorem 1(MSE of the non-pessimistic estimator). Under
Assumptions 1 – 3, the excess MSE of the non-pessimistic
estimator compared tob� w � , i.e.,MSE(b� bw ) � MSE(b� w � ) can
be upper bounded by

E[(1 � w� )2 � (1 � bw)2](bb2
h � b2

h ) + O
� R2

max

� 2n3=2
min

�
: (6)

The upper bound can be decomposed into two parts: the
�rst one represents the error for estimating the mean reward
shift bh , whereas the second one upper bounds the errors
for estimating the variance and covariance terms, namely
Var(b� e), Var(b� h ), and Cov(b� e; b� h ).

We next compare this excess MSE againstMSE(b� w � ).
First, we observe that whenMSE(b� w � ) is proportional to
R2

max =(� 2nmin ), the second term in(6) becomes negligible
asnmin grows to in�nity. Hence, it suf�ces to compare the
�rst term in (6) in contrast toMSE(b� w � ). To elaborate the
�rst term, we examine three scenarios previously introduced
in this section, differentiated by the magnitude ofbh .

Small bh . In this scenario, we assumejbh j �
n� 1=2

min Rmax =� and thus, the �rst term is asymptotically
equivalent to

SEE(bbh ) = E[(1 � w� )2 � (1 � bw)2](bbh � bh )2: (7)

We refer to this term as the spurious estimation error (SEE)
of bbh , since it occurs due to the spurious correlation between
bw andbbh . Theoretically, it is of the same order of magni-
tude asMSE(b� w � ). However, our empirical investigation
reveals that it is considerably smaller than the oracle MSE,
as illustrated in Figure 2.

Additionally, under the assumption thatr h (s) = r e(0; s)
for all s — effectively resulting inbh = 0 — the SPE es-
timator achieves the smallest MSE asymptotically, since it

6
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Figure 2.Boxplots of the SEE and the oracle MSE under the set-
ting of Example 6.1 when the biasbh = 0 , andd indicates the
difference of the conditional variance of the reward between the
experimental data and historical data.

is tailored to minimize MSE under this assumption. As-
suming all nuisance functions are correctly speci�ed, and
the proportionality assumption holds such that the ratio
Var(RejAe = 0 ; Se)=[Var(Rh jSe)� (Se)� (0jSe)] remains
constant irrespective ofSe, the SPE estimator is equivalent
to the oracle estimator. Consequently, this suggests that
the MSE of our non-pessimistic estimator asymptotically
equals the ef�ciency bound augmented by a small spurious
estimation error. We summarize these discussions below.

Corollary 1 (MSE with a smallbh ). In the smallbh sce-
nario, if MSE(b� w � ) is proportional toR2

max =(� 2nmin ), then

�
�
�
MSE(b� bw ) � MSE(b� w � )

MSE(b� w � )
�

SEE(bbh )
MSE(b� w � )

�
�
� ! 0;

asnmin ! 1 . Additionally, whenr h (� ) = r e(0; � ), the
proportionality assumption holds, and all nuisance func-
tions are correctly speci�ed,MSE(b� bw ) is asymptotically
equivalent to the sum of the ef�ciency bound plus SEE(bbh ).

Large bh . In this scenario, we requirejbh j �
n� 1=2

min

p
lognmin Rmax =�. Notice that the lower bound is

aligned with the high con�dence bound for the estimation
error ofbbh . Consequently, the reward shift is suf�ciently
large to be “detectable” from the data.

Under this condition, theb2
h term becomes the dominant

factor in the MSE(3), leading to the optimal weightw�

approaching1. Consequently, the EDO estimator is asymp-
totically equivalent to the oracle estimator whereas the SPE
estimator is sub-optimal since it assumes a zerobh .

In the largebh scenario, the weight selected by the non-
pessimistic estimator tends towards one, so that the excess
MSE is of a small order. Hence, the MSE of the non-
pessimistic estimator is asymptotically the same as that
of the oracle estimator, achieving the oracle property.

Corollary 2 (Oracle property with a largebh ). In
the large bh scenario, bothMSE(b� bw )=MSE(b� w � ) and
MSE(b� bw )=MSE(b� e) approach1 asnmin ! 1 .

Moderate bh . In this scenario, the magnitude ofjbh j falls
betweenn� 1=2

min Rmax =� andn� 1=2
min

p
lognmin Rmax =�. This

scenario is the most challenging, as it is not clear whether
the SPE estimator or the EDO estimator will deliver superior
performance.

To illustrate the issues of the non-pessimistic estimator,
let us examine a scenario wherejbh j signi�cantly exceeds
n� 1=2

min Rmax =�, causing the optimal weightw� ! 1. In
this context, even thoughjbh j is considerably large, it re-
mains within the high-con�dence interval of the estimation
error forbbh � bh , which might not makejbh j adequately
distinguishable from the data. Asw� ! 1, the dominant
factor in the �rst part of(6) becomes� E(1 � bw)2(bb2

h � b2
h ).

Nevertheless, there is no guarantee thatbw will converge
to 1 with high con�dence. This uncertainty introduces a
signi�cant excess MSE for the non-pessimistic estimator.
See the numerical results in Section 6.

5.2. Robustness of the Pessimistic Estimator

The pessimistic estimator effectively mitigates the afore-
mentioned limitation of the non-pessimistic estimator by
incorporating the estimation error ofbbh into weight selec-
tion. To elaborate, we �rst provide a non-asymptotic upper
bound for its MSE.

Theorem 2 (MSE of the pessimistic estimator). Under
Assumptions 1 – 3 and(5), MSE(b� bwU ) � MSE(b� w � ) can be
upper bounded by

(1 � w� )2E[(jbbh j + U)2 � b2
h ] + O

� R2
max

� 2n3=2
min

�

+ O(� [b2
h + R2

max =�2nmin ]):

(8)

According to Theorem 2, the excess MSE of the pessimistic
estimator can be decomposed into three parts:

1. Estimation error of bbh : the �rst term quanti�es the
estimation error forbbh . Unlike the non-pessimistic
estimator where this term depends on the estimated
weight, here it relies only onw� . This distinction
enhances the robustness of the estimator, particularly
whenbh is moderately large.

2. Estimation errors of the variance/covariance terms:
similar to the non-pessimistic estimator, the sec-
ond term quanti�es the estimation error for the vari-
ance/covariance terms.

3. Type-I error : the last term is directly proportional to
the type-I error� which upper bounds the probability
that thejbbh � bh j exceedsU. Notice that this term can
be made suf�ciently small by employing concentra-
tion inequalities without substantially increasing the
estimation error associated withbbh .

To further illustrate the advantage of the pessimistic es-
timator, we consider the moderatebh scenario. When

7
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jbh j � n� 1=2
min Rmax =�, bw might not necessarily converge to

1 with high con�dence. Hence, the non-pessimistic estima-
tor can suffer from a large loss, due to the involvement of
bw in (6). On the contrary,(8) depends solely onw� , which
results in a smaller excess loss. Indeed, the following corol-
lary shows that the pessimistic estimator achieves the oracle
property even whenbh is moderately large.

Corollary 3 (Oracle property of the pessimistic esti-
mator). Suppose thatU is proportional to the order
n� 1=2

min

p
lognmin Rmax =� such that� = o(1=nmin ), if fur-

therbh � n� 1=2
min (log nmin )1=6Rmax =�, then the pessimistic

estimator achieves the oracle property.

The conditionbh � n� 1=2
min (log nmin )1=6Rmax =� applies

to both the moderate and largebh scenarios. Hence, even
in cases of moderatebh , as long as it is much larger than
n� 1=2

min (log nmin )1=6Rmax =�, the oracle property is satis�ed.
This formally establishes the robustness of the pessimistic
estimator in comparison to the non-pessimistic estimator.

6. Experiments

In this section, we investigate the �nite sample performance
of the proposed estimators. Comparison is made among the
following ATE estimators:

• NonPessi: the proposed non-pessimistic estimator.

• Pessi: the proposed pessimistic estimator.

• EDO: the doubly robust estimatorb� e constructed based
on the experimental data only (see (1)).

• Lasso: a weighted estimatorb� Lasso = wb� e+(1 � w)b� h

that linearly combines the ATE estimatorb� e based
on experimental data andb� h based on historical data,
where the weightw is chosen to minimize the esti-
mated variance of the �nal ATE estimator with the
Lasso penalty (Cheng & Cai, 2021),

• SPE: the semi-parametrically ef�cient estimator pro-
posed by Li et al. (2023) developed under the assump-
tion of no reward shift between the experimental and
historical data, i.e.,r e(0; s) = r h (s) for anys.

Notice that it remains unclear how to extend SPE in sequen-
tial decision making. Consequently, our implementation of
SPE is con�ned to non-dynamic settings only. We compare
the MSEs of the ATE estimators based on 100 simulation
replications. Details about the data generating process can
be found in Appendix A.
Example6.1 (Non-dynamic simulation). We consider a
non-dynamic setting where the sample size of the experi-
mental data isjDej = 48, and the sample size of the histor-
ical data is set to bejDh j = mjDej with m 2 f 1; 2; 3g. A

deterministic switchback design is adopted to generateDe.
We vary the mean reward shiftbh within the range from 0
to 1.5, incrementing by 0.1 at each step. We also vary the
conditional variance of the reward and used to characterize
this difference (see Appendix A for its detailed de�nition).

Figure 3 visualizes the empirical means of the MSEs for dif-
ferent methods. According to our theory, the effectiveness
of different estimators is determined by the magnitude of
the reward shift. To validate our theory, we further classify
bh into different regimes as follows:

• Small bh regime: jbh j � c1

q
Var(bbh );

• Moderately large bh regime: c1 < j bh jp
Var(bbh )

� c2;

• Large bh regime: jbh j > c 2

q
Var(bbh ).

According to our theoretical analysis, we setc1 = 1 and
c2 =

p
log(nmin ). This ensures that scenarios where vari-

ance dominates the bias are categorized within the small
reward shift region. Conversely, when the bias exceeds the
established high con�dence bound, it is classi�ed under the
large reward shift regime.

We depict the boundaries between different regimes in Fig-
ure 3. It can be seen that in the smallbh regime, the SPE
estimator is the top performer. However, the MSE of our pro-
posed non-pessimistic estimator is close to that of the SPE
estimator. Asbh grows to moderate levels, our pessimistic
estimator achieves smaller or comparable MSEs compared
to other alternatives. Finally, in the largebh regime, our
pessimistic estimator achieves comparable performance to
the EDO estimator, both outperforming other estimators in
terms of MSE. These �ndings establish a concrete link be-
tween our theories and empirical observations. Particularly,
they numerically verify our theoretically identi�ed optimal
method within each respective regime. Additionally, the bot-
tom panel of Figure 3 speci�cally reports the mean MSEs for
methods excluding SPE, offering an in-depth comparison
of the other estimators' performance. Here, Lasso is imple-
mented with a carefully selected tuning parameter, which
has been determined to yield reasonably good performance.
However, as illustrated by additional numerical results in
Figure A2 in the Appendix, this estimator is sensitive to the
choice of the tuning parameter.
Example6.2 (Ridesharing-data based sequential simula-
tion). In this example, we build a simulation environment
based on a real dataset collected from a ridesharing com-
pany. The experimental data lasts forjDej = 30 days and
is generated from a switchback design. We divide each day
into T = 24 time intervals. The state variable consists of
the number of order requests and the driver's total online
time within each one-hour time interval. The reward is de-
�ned as the total income earned by the drivers within each
time interval. To generate the historical data, we assume it
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