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Abstract

Transformer-based large language models have
displayed impressive in-context learning capabil-
ities, where a pre-trained model can handle new
tasks without fine-tuning by simply augmenting
the query with some input-output examples from
that task. Despite the empirical success, the me-
chanics of how to train a Transformer to achieve
ICL and the corresponding ICL capacity is mostly
elusive due to the technical challenges of ana-
lyzing the nonconvex training problems resulting
from the nonlinear self-attention and nonlinear
activation in Transformers. To the best of our
knowledge, this paper provides the first theoret-
ical analysis of the training dynamics of Trans-
formers with nonlinear self-attention and nonlin-
ear MLP, together with the ICL generalization
capability of the resulting model. Focusing on
a group of binary classification tasks, we train
Transformers using data from a subset of these
tasks and quantify the impact of various factors
on the ICL generalization performance on the re-
maining unseen tasks with and without data distri-
bution shifts. We also analyze how different com-
ponents in the learned Transformers contribute
to the ICL performance. Furthermore, we pro-
vide the first theoretical analysis of how model
pruning affects ICL performance and prove that
proper magnitude-based pruning can have a mini-
mal impact on ICL while reducing inference costs.
These theoretical findings are justified through nu-
merical experiments.

1Department of Electrical, Computer, and System Engineer-
ing, Rensselaer Polytechnic Institute, Troy, NY, USA 2IBM
Thomas J. Watson Research Center, Yorktown Heights, NY,
USA. Correspondence to: Hongkang Li <lih35@rpi.edu>, Meng
Wang <wangm7@rpi.edu>, Songtao Lu <songtao@ibm.com>,
Xiaodong Cui <cuix@us.ibm.com>, Pin-Yu Chen <pin-
yu.chen@ibm.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Transformers now serve as the backbone architecture for
a wide range of modern, large-scale foundation models,
including prominent language models like GPT-3 (Brown
et al., 2020), PaLM (Chowdhery et al., 2022), LLaMa (Tou-
vron et al., 2023), as well as versatile visual and multi-
modal models such as CLIP (Radford et al., 2021), DALL-E
(Ramesh et al., 2021), and GPT-4 (OpenAI, 2023). One
intriguing capability exhibited by certain large language
models (LLMs) is known as “in-context learning” (ICL)
(Brown et al., 2020). Given a pre-trained model F (Ψ),
parameterized by weights Ψ, the conventional approach
fine-tunes Ψ separately for each downstream task using data
from that task. In contrast, ICL allows F (Ψ) to handle mul-
tiple unseen tasks simultaneously without any fine-tuning.
Garg et al. (2022) is the first paper to mathematically formu-
late ICL. Briefly speaking, to predict f(xquery) of a query
input xquery for a new task represented by the label func-
tion f , ICL augments xquery by l example input-output pairs
(xi, f(xi))

l
i=1. The resulting so-called prompt is sent to

the model F (Ψ), and, surprisingly, the model can output
a prediction close to f(xquery). Thus, ICL is an efficient
alternative to the resource-consuming fine-tuning methods.
ICL has shown outstanding performance in multiple tasks
in practice, including question answering (Liu et al., 2022b;
Wu et al., 2023b), natural language inference (Liu et al.,
2022a; Wu et al., 2023b), text generation (Brown et al.,
2020; Lucy & Bamman, 2021), etc.

In parallel, model pruning (Han et al., 2015; Wen et al.,
2016) can reduce the inference cost by removing some
weights after training. It has been extensively evaluated
in various applications. Among various pruning tech-
niques, such as gradient methods (Molchanov et al., 2016)
and reconstruction error minimization (Luo et al., 2017),
magnitude-based pruning (Wen et al., 2016) is the most
popular approach due to its simplicity and demonstrated
promising empirical results. A few recent works (Frantar &
Alistarh, 2023; Ma et al., 2023; Sun et al., 2023; Liu et al.,
2023) also explore the pruning of LLMs to preserve their
ICL capacity while accelerating the inference.

Despite the empirical success of ICL, one fundamental and
theoretical question is less investigated, which is:

How can a Transformer be trained to perform ICL and
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generalize in and out of domain successfully and efficiently?

Some recent works attempt to answer this question for lin-
ear regression tasks (Li et al., 2023c; Zhang et al., 2023a).
Specifically, Li et al. (2023c) investigate the generalization
gap and stability of ICL. Zhang et al. (2023a) explore the
training and generalization of ICL with Transformers, es-
pecially with distribution shifts during inference. Wu et al.
(2023a) studies the required number of pre-training tasks
for a desirable ICL property. Huang et al. (2023) character-
izes the training dynamics using Transformers with softmax
attention and linear MLP. However, these results are either
built upon simplified Transformer models by ignoring non-
linear self-attention (Zhang et al., 2023a; Wu et al., 2023a)
or nonlinear activation in the multilayer perceptron (MLP)
(Huang et al., 2023; Zhang et al., 2023a; Wu et al., 2023a) or
cannot characterize how to train a model to achieve the de-
sirable ICL capability with distribution-shifted data (Huang
et al., 2023; Li et al., 2023c; Wu et al., 2023a) .

1.1. Major Contributions of This Work

To the best of our knowledge, our work is the first theoretical
analysis of the training dynamics of Transformers with non-
linear self-attention and nonlinear MLP, together with the
ICL generalization capability of the resulting model. More-
over, our paper provides the first theoretical analysis of the
impact of model pruning on ICL performance. Focusing on
a group of binary classification tasks, we show that training
a Transformer using prompts from a subset of these tasks
can return a model with the ICL capability to generalize
to the rest of these tasks. We provide a quantitative analy-
sis of the required number of training data, iterations, the
length of prompts, and the resulting ICL performance. Al-
though our analysis is centered on a simplified single-head
and one-layer Transformer with softmax self-attention and
ReLU MLP, our theoretical insights shed light on practical
architectures. Our major contributions include:

1. A theoretical characterization of how to train Trans-
formers to enhance their ICL capability. We consider a
data model where input data include both relevant patterns
that determine the labels and irrelevant patterns that do not
affect the labels. We quantify how the training and the result-
ing ICL generalization performance are affected by various
factors, such as the magnitude of relevant features and the
fraction of context examples that contain the same relevant
pattern as the new query. In addition to proving the ICL
capability of the learned Transformer to generalize to new
binary tasks based on the relevant patterns that appear in the
training data, we also prove the ICL capability to generalize
to tasks based on patterns that are linear combinations of
the relevant patterns and are unseen in the training data.

2. Expand the theoretical understanding of the mecha-
nism of the ICL capability of Transformers. We prove

that when sending a prompt to a properly trained Trans-
former, the attention weights are concentrated on contexts
that share the same relevant pattern as the query. Then, the
ReLU MLP layer promotes the label embedding of these
examples, thus making the correct prediction for the query.
Similar insights have appeared in (Huang et al., 2023). We
expand the analysis to Transformers with nonlinear MLP
layers and new tasks with a data distribution shift.

3. Theoretical justification of magnitude-based pruning
in preserving ICL. Based on the characterization of the
trained Transformer, our paper also provides the first the-
oretical analysis of the ICL inference performance when
the trained model is pruned by removing neurons in the
MLP layer. We show that pruning a set of neurons with a
small magnitude has little effect on the generalization while
pruning the remaining neurons leads to a large generaliza-
tion error growing with the pruning rate. To the best of
our knowledge, no theoretical analysis exists on how model
pruning affects ICL.

1.2. Related Work

Expressive power of ICL Some existing works study the
expressive power of Transformers to implement algorithms
via ICL. Akyürek et al. (2023); Von Oswald et al. (2023)
demonstrate that Transformers conduct gradient descent dur-
ing the forward pass of Transformers with prompts as inputs.
Ahn et al. (2023); Cheng et al. (2023) extend the conclusion
to preconditioned and functional gradient descent via ICL.
Garg et al. (2022); Bai et al. (2023); Guo et al. (2023) show
the existence of Transformers that can implement a broad
class of machine learning algorithms in context.

The optimization and generalization of Transformers Be-
yond in-context learning, there are several other works about
the optimization and generalization analysis of fine-tuning
or prompt tuning on Transformers. Jelassi et al. (2022); Li
et al. (2023a;b); Luo et al. (2024) study the generalization
of one-layer Transformer by assuming spatial association or
the majority voting of tokens. Li et al. (2023d) delve into
how one-layer Transformers learn semantic structure. Oy-
mak et al. (2023) depict the trajectory of prompt tuning of
attention networks. Tarzanagh et al. (2023b;a) characterize
that the gradient updates of the prompt or weights converge
to a max-margin SVM solution. Tian et al. (2023a;b) probe
the training dynamics of Transformers for the next token
prediction problem given infinitely long sequences.

Theoretical generalization analysis of pruning A few
recent works consider analyzing the generalizations perfor-
mance of model pruning theoretically. For example, Zhang
et al. (2021) study the sample complexity of training a
pruned network with a given sparse ground truth weight.
Yang & Wang (2023) investigate the neural tangent kernel
of the pruned model. Zhang et al. (2023c); Yang et al. (2023)
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Theoretical Works Nonlinear
Attention

Nonlinear
MLP

Training
Analysis

Distribution-
Shifted Data Tasks

Li et al. (2023c) ✓ ✓ linear regression
Zhang et al. (2023a) ✓ ✓ linear regression
Huang et al. (2023) ✓ ✓ linear regression
Wu et al. (2023a) ✓ linear regression

Ours ✓ ✓ ✓ ✓ classification

Table 1. Comparison with existing works about training analysis and generalization guarantee of in-context learning

consider the generalization using magnitude pruning under
a feature learning framework. However, these works are
built on convolutional neural networks, and no theoretical
works are for LLM or Transformer-based models.

2. Problem Formulation
This work studies the optimization and generalization of
binary classification problems for in-context learning. Con-
sider a query xquery and its label z. Define a set of binary
classification tasks T , consisting of multiple task functions.
The label z ∈ {+1,−1} is mapped from xquery ∈ RdX
through a task f that is randomly chosen from T , i.e.,
z = f(xquery) ∈ {+1,−1}, f ∈ T .

2.1. Training to Enhance ICL Capability

Following the framework of training for ICL in (Garg et al.,
2022; Akyürek et al., 2023; Bai et al., 2023), we consider
the problem of training such that the model has the ICL ca-
pability to generalize to new tasks using prompts. The idea
is to update the model during the training process using pairs
of the constructed prompt, embedded as P for the query
xquery , and its label f(xquery). We start by formulating P
and then introduce the learning model in this section.

Following (Von Oswald et al., 2023; Zhang et al., 2023a;
Huang et al., 2023), the prompt embedding P of query
xquery is formulated as:

P =

(
x1 x2 · · · xl xquery
y1 y2 · · · yl 0

)
:=(p1,p2, · · · ,pquery) ∈ R(dX+dY)×(l+1),

(1)

where the last column of P , denoted by pquery, includes
the query xquery with padding zeros, and the first l columns
are the contexts for xquery . We respectively call xi and yi,
i ∈ [l] context inputs and outputs, where l is also known as
the prompt length. Let Embd(·) be the embedding function
of each context output. yi ∈ RdY in (1) is defined as yi =
Embd(f(xi)). Hence, P is a function of f . The first dX
dimensions of pi are referred to as the feature embedding,
while the last dY dimensions are called the label embedding.

The learning model is a single-head, one-layer Transformer
with one self-attention layer and one two-layer perceptron.
Mathematically, it can be written as

F (Ψ;P ) = a⊤Relu(WO

l∑
i=1

WV pi · attn(Ψ;P , i)),

attn(Ψ;P , i) = softmax((WKpi)
⊤WQpquery),

(2)

where WQ,WK ∈ Rma×(dX+dY), WV ∈ Rmb×(dX+dY)

are the embedding matrices for queries, keys, and values, re-
spectively, and WO ∈ Rm×mb and a ∈ Rm are parameters
in the MLP layer. Ψ := {WQ, WK ,WV ,WO,a} denotes
the set of all model weights. Typically, min(ma,mb) >
dX + dY .

The training problem to enhance the ICL capability solves
the empirical risk minimization problem,

min
Ψ

RN (Ψ) :=
1

N

N∑
n=1

ℓ(Ψ;P n, zn), (3)

using N pairs of prompt embedding and label pairs
{P n, zn}Nn=1. For the n-th pair, xnquery and the con-
text input xni are all sampled from an unknown distribu-
tion D, the task fn is sampled from T , and P n is con-
structed following (1). The loss function is a Hinge loss,
i.e., ℓ(Ψ;P n, zn) = max{0, 1 − zn · F (Ψ;P n)}, where
F (Ψ;P n) is defined in (2). Let Ttr =

⋃N
n=1 f

n denote the
set of tasks that appear in the training samples. Note that
Ttr ⊂ T , and (3) is a multi-task learning problem when
|Ttr| > 1.

2.2. Generalization Evaluation

We define two quantities to evaluate the ICL generalization
performance to new tasks as follows.

In-Domain Generalization: If the testing queries are also
drawn from D and all the testing tasks are drawn from T , we
call it in-domain inference, and the in-domain generalization
error is defined as1

E
xquery∼D,f∈T

[ℓ(Ψ;P , z)], (4)

where P is defined in (1). Note that the in-domain perfor-
mance includes the testing performance on unseen tasks in

1In terms of evaluating generalization on unseen tasks, (4) is
almost equivalent to replacing f ∈ T with f ∈ T \Ttr in the
subscript. This is because we later prove that all of our analysis
can hold when training on a small fraction of tasks (Condition
3.2). Therefore, an O(ϵ) generalization error on f ∈ T can indeed
reflect an O(ϵ) generalization error on f ∈ T \Ttr
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T \Ttr that do not appear in the training samples.

Out-of-Domain Generalization: Suppose the testing
queries xquery follow the distribution D′ (D′ ̸= D), and
the binary classification tasks that map the testing queries
to the labels are drawn a set T ′ (T ′ ̸= T ). Then, the out-of-
domain generalization error can be defined as

E
xquery∼D′,f∈T ′

[ℓ(Ψ;P , z)]. (5)

2.3. Training Algorithm

The model is trained using stochastic gradient descent
(SGD) with step size η with batch size B, summarized
in Algorithm 1 in Appendix C. WQ, WK and WV are ini-
tialized such that all diagonal entries of W (0)

V , and the first
dX diagonal entries of W (0)

Q and W
(0)
K are set as δ with

δ ∈ (0, 0.2], and all other entries are 0. Each entry of W (0)
O

is generated from N (0, ξ2), ξ = 1/
√
m and each entry of a

is uniformly sampled from {1/m,−1/m}. Besides, a does
not update during training.

2.4. Model Pruning

We also consider the case that the learned model Ψ is pruned
to reduce the inference computation. Let S ⊂ [m] denote
the index set of neurons in the output layer. Pruning neurons
in S correspond to removing the corresponding rows in WO,
resulting in the reduced matrix size of (m− |S|) ·mb.

3. Theoretical Results
We first summarize the main insights in Section 3.1. Sec-
tion 3.2 formally presents our analysis model. Section 3.3
presents the formal theoretical results on the learning per-
formance and the resulting ICL generalization. Section 3.4
provides the theoretical result that magnitude-based pruning
on the out layer does not hurt ICL performance.

3.1. Main Theoretical Insights

We consider a class of binary classification tasks where the
binary labels in each task are determined by two out of
M1 in-domain-relevant patterns. The training data include
pairs of prompt embedding and labels from a small subset
of these tasks. In-domain generalization evaluates the ICL
capability of the learned model on tasks using all possible
combinations of these M1 patterns. Out-of-domain general-
ization further evaluates the binary classification tasks that
are determined by pairs of out-of-domain-relevant patterns,
which are some linear combinations of these M1 patterns.

P1. Quantitative Learning Analysis With Guaranteed
In- and Out-of-Domain Generalization. We quantitatively
prove the learned model achieves desirable generalization
in both in-domain and out-of-domain tasks. The required
number of training data and iterations are polynomial in β−1

and α−1, where β represents the norm of relevant patterns,
and α denotes the fraction of context inputs with the same
in-domain-relevant pattern as the query. A higher α implies
that the context examples offer more information about the
query, consequently reducing the sample requirements and
expediting the learning process.

P2. Mechanism of Transformers in Implementing ICL.
We elucidate the mechanism where the learned Transformers
make predictions in- and out-of-domain in context. We
quantitatively show that the self-attention layer attends to
context examples with relevant patterns of the query task
and promotes learning of these relevant patterns. Then, the
two-layer perceptron promotes the label embeddings that
correspond to these examples so as to predict the label of
the query accurately.

P3. Magnitude-Based Pruning Preserves ICL. We quan-
tify the ICL generalization if neurons with the smallest
magnitude after training in the MLP layer are removed and
prove that the generalization is almost unaffected even when
a constant fraction of neurons are removed. In contrast, the
generalization error is proved to be at least Ω(R) when R
fraction of neurons with large magnitude are removed.

3.2. The Modeling of Training Data and Tasks

In-Domain Data and Tasks. Consider M1 in-domain-
relevant (IDR) patterns {µj}M1

j=1 and M2 (= O(M1)) in-
domain-irrelevant (IDI) patterns {νk}M2

k=1 (M1+M2 = dX )
in RdX , where these M1 +M2 patterns are pairwise orthog-
onal, and ∥µj∥ = ∥νk∥ = β ≥ 1 (β is a constant) for
j ∈ [M1],k ∈ [M2]. Each in-domain data x drawn from D
is generated by

x = µj + κνk, (6)

where j ∈ [M1] and k ∈ [M2] are arbitrarily selected.
κ follows a uniform distribution U(−K,K), K ≤ 1/2.
Denote IDR(x):= µj as the IDR pattern in data x. Our data
assumption originates from recent feature learning works
on deep learning (Allen-Zhu & Li, 2023; Li et al., 2023a;
Oymak et al., 2023) for language and vision data. To the best
of our knowledge, only (Huang et al., 2023) theoretically
analyzes the performance of ICL with softmax attention,
assuming all x are orthogonal to each other. Our assumption
in (6) is more general than that in (Huang et al., 2023).

Each in-domain task is defined as a binary classification
function that decides the label based on two IDR patterns in
the query. Specifically,
Definition 3.1. (Definition of in-domain tasks) The in-
domain task set T includes M1(M1 − 1) tasks such that
each task f ∈ T is defined as

f(x) =


+1, IDR(x) = µa,

−1, IDR(x) = µb,

random from{+1,−1}, otherwise,
(7)
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(A) (B)
Figure 1. (A) Example of prompt embedding. l = 3, α = 2/3. (B) The mechanism of a trained Transformer (2) to implement ICL.

where µa,µb are two different patterns in {µj}M1
j=1 and are

the decisive patterns for task f .

From (7), the task f outputs label +1 (or -1) if the IDR
pattern is µa (or µb). If the data contains neither of these
two patterns, the label is random.

Out-of-Domain Data and Tasks. Assume there are M ′
1

out-of-domain-relevant (ODR) patterns {µ′
j}
M ′

1
j=1 and M ′

2

out-of-domain-irrelevant (ODI) patterns {ν′
k}
M ′

2

k=1. Any data
x dawn from D′ can be generated by

x = µ′
j + κ′ν′

k (8)

where j ∈ [M ′
1] and k ∈ [M ′

2] are arbitrarily selected, and
κ′ ∼ U(K ′,K ′) for K ′ = O(1). We use ODR(x):= µ′

j to
denote the ODR pattern of x.

The set of out-of-domain tasks T ′ contains M ′
1(M

′
1 − 1)

binary classification problems that are defined in the same
fashion as Definition 3.1, with the only difference of using
{µ′

j}
M ′

1
j=1 rather than {µj}M1

j=1 to determine labels.

Prompt Construction for Training and Testing. Let ltr
and lts denote the length of training and testing contexts,
respectively.

Training prompt embedding: Given an input-label pair
xquery and f(xquery) for training, the context inputs xi
in P in (1) are constructed as follows. The IDR pattern
is selected from {µj}M1

j=1 following a categorical distribu-
tion parameterized by α, where where α = Θ(1) ∈ (0, 1].
Specifically, each of µa and µb (the decisive patterns of task
f ) is selected with probability α/2, and each of these other
M1− 2 patterns elected with probability (1−α)/(M1− 2).
The context labels are determined by task f .

Testing prompt embedding: The context inputs for the testing
query can be selected following a wide range of prompt
selection methods (Liu et al., 2022b; Rubin et al., 2022; Wu
et al., 2023b). Given an in-domain (or out-of-domain) task
f that has decisive patterns µa and µb (or µ′

a and µ′
b), we

only assume at least α′/2 (α′ ∈ (0, 1]) fraction of context
inputs contain the same IDR (or ODR) pattern as the query.

For the label embedding yi for both training and testing,
Embd(+1) = q, Embd(−1) = −q, where q ∈ RdY .
Hence, yi ∈ {q,−q} for i ∈ [ltr] or i ∈ [lts].

3.3. In-Domain and Out-of-Domain Generalization
With Sample Complexity Analysis

In order for the learned model F (Ψ) to generalize all tasks
in T through ICL, the training tasks in Ttr should uniformly
cover all the possibilities of IDR patterns and labels, as
stated by the following condition,

Condition 3.2. For any given j ∈ [M1] and either label +1
or −1, the number of tasks in Ttr that map µj to that label
is |Ttr|/M1(≥ 1).

Note that Condition 3.2 is easy to meet, and |Ttr| does not
have to be large. In fact, |Ttr| can be as small as M1. For
example, let the i-th task function (i ∈ [M1−1]) in Ttr map
the queries with µi and µi+1 as IDR patterns to +1 and −1,
respectively. The M1-th task function maps µM1

and µ1 to
+1 and −1, respectively. We can easily verify Ttr satisfies
Condition 3.2 in this case.

Following (Shi et al., 2021; Karp et al., 2021; Li et al.,
2023a), we assume the training labels are balanced, i.e.,∣∣|{n : zn = +1}|−|{n : zn = −1}|

∣∣ = O(
√
N). The next

theorem states the training and in-domain generalization.

Theorem 3.3. (In-Domain Generalization) Suppose Con-
dition 3.2 holds. For any ϵ > 0, when (i) the number of
neurons in WO satisfies m ≥ Ω(M2

1 logM1), (ii) batch
size B > Ω(max{ϵ−2,M1} · logM1), (iii) the lengths of
training and testing contexts are

ltr ≥ max{Ω(logM1/α),Ω(1/(β
2α))}, lts ≥ α′−1

, (9)

(iv) and the number of iterations satisfies

T = Θ(η−1M1α
− 2

3 β−2/3
√
logM1), (10)

with step size η ≤ 1 and N = BT samples, then with a
high probability, the returned model satisfies that

E
xquery∼D,f∈T

[ℓ(Ψ;P , z)] ≤ O(ϵ). (11)

Theorem 3.3 characterizes the sufficient condition on the
model size, the required number of iterations, and the num-
ber of prompt embedding and label pairs, such that the
trained model achieves an in-domain generalization error of
O(ϵ). Theorem 3.3 includes three major insights:

1. In-domain generalization capability using a diminishing
fraction of training tasks. Because Ttr can satisfy Condition
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3.2 even when |Ttr| = M1, then the number of training
tasks is only a fraction (M1 − 1)−1/2 of the total number
of in-domain tasks in T .

2. (Context length) The required length of training and
testing contexts increase in the order of α−1 and α′−1, re-
spectively, which implies that a longer context is needed
when the fraction of IDR patterns in the context is small.

3. (Convergence and sample complexity) The required num-
ber of iterations and the training samples is proportional
to α−2/3. This indicates that a larger fraction of the IDR
pattern in the context leads to more efficient convergence
and generalization.

Based on the in-domain result, we can also investigate the
properties of out-of-domain generalization.

Theorem 3.4. (Out-of-Domain Generalization)

Suppose Condition 3.2 and conditions (i)-(iv) in Theorem
3.3 hold. For any µ′

1, · · · ,µ′
M1

,ν′
1,ν

′
M2

that are pairwise
orthogonal and ∥µ′

j∥ = ∥ν′
k∥ = β, if

µ′
j ∈

{
M1∑
i=1

kj,iµi

∣∣∣Sj := M1∑
i=1

kj,i ≥ 1, kj,i ∈ R

}
, (12)

and ν′
k ∈ span{ν1,ν2, · · · ,νM ′

2
}, j ∈ [M ′

1], k ∈ [M ′
2],

then with high probability, the learned model can achieve
an out-of-domain generalization error of

E
xquery∼D′,f∈T ′

[ℓ(Ψ;P , z)] ≤ O(ϵ). (13)

Remark 3.5. Theorem 3.4 indicates that a one-layer Trans-
former can generalize well in context, even in the presence
of distribution shifts between the training and testing data.
The conditions for a favorable generalization encompass the
following: (1) the ODR patterns are linear combinations
of IDR patterns with a summation of coefficients ≥ 1, and
each ODI pattern is in the subspace spanned by IDI patterns;
(2) the testing prompt is long enough, which is linear in
α′−1, to include context inputs involving ODR patterns.
Remark 3.6. (Comparison with existing ICL analysis)
(Huang et al., 2023) analyzes the generalization perfor-
mance of ICL on unseen tasks under a similar data model
that includes decisive and indecisive patterns. However,
(Huang et al., 2023) only analyzes in-domain unseen tasks,
while our results also apply to one type of out-of-domain
tasks through data shift. To the best of our knowledge, only
(Zhang et al., 2023a) studies out-of-domain generalization
under the setup of linear regression problems with Gaussian
inputs. They conclude that, under this setup, the covariate
shift, i.e., the difference between the training and testing
data distributions D and D′, does not guarantee general-
ization. We consider classification problems under a data
model different from (Zhang et al., 2023a). We provide
the out-of-domain generalization guarantee for one type of
distribution between D and D′.

3.4. ICL With Magnitude-Based Model Pruning

Theorem 3.7. Let ri be the i-row of WOWV , i ∈ [m].
Suppose Condition 3.2 and conditions (i)-(iv) in Theorem
3.3 hold, then there exists L ⊂ [m] with |L| = Ω(m) s.t.,

∥r(T )
i ∥ ≥ Ω(1), i ∈ L,

∥r(T )
i ∥ ≤ (1/

√
M2), i ∈ Lc,

(14)

where Lc is the complementary set of L. Then, for any
ϵ > 0 and any in- or out-of-domain xquery ∼ D (or D′)
and corresponding f ∈ T (or T ′), pruning all neurons
i ∈ Lc leads to a generalization error

E
xquery,f

[ℓ(ΨLc ;P , z)] ≤ O(ϵ+M
−1/2
1 ), (15)

where ΨLc represents the model weights after removing
neurons in Lc in WO. In contrast, pruning S ⊂ L with
size |S| = Rm, where R ∈ (0, 1) and is a constant, and
α′ ≥ Ω(M−0.5

1 ) results in a generalization error of

E
xquery,f

[ℓ(ΨS ;P , z)] ≥ Ω(R+ (α′M1)
−1). (16)

Remark 3.8. Theorem 3.7 proves that a constant fraction
of neurons in L in the trained MLP layer has large weights,
while the remaining ones in Lc have small weights. Pruning
neurons with a smaller magnitude leads to almost the same
generalization result as that of the unpruned Ψ. However,
pruning neurons with a larger magnitude cause an increas-
ing generalization error as the pruning ratio R increases.
Theorem 3.7 indicates that in our setup, magnitude-based
pruning on WO does not hurt the model’s ICL capability.

4. The Mechanism of ICL by the Trained
Transformer

Here, we provide a detailed discussion about how the gener-
alization performance in Theorems 3.3 and 3.4 are achieved.
We first introduce novel properties of the self-attention layer
and the MLP layer of the learned Transformer to implement
ICL in Sections 4.1 and 4.2. The high-level proof idea of
Theorems 3.3 and 3.4 is presented in Appendix D.1.

4.1. Self-Attention Selects Contexts With the Same
IDR/ODR Pattern as the Query

We first show the learned self-attention layer promotes con-
text examples that share the same IDR/ODR pattern as the
query. Specifically, for any vector p ∈ RdX+dY that in-
cludes input x and the corresponding output embedding y.
We use XDR(p) to represent the relevant pattern, which
is the IDR(x) for in-domain data and ODR(x) for out-of-
domain data. Then
Proposition 4.1. The trained model after being updated by
T (characterized in (10)) iterations satisfies that, for any
(p,W ) ∈ {(pquery,W (T )

Q ), (pi,W
(T )
K )}li=1,

∥[XDR(p)⊤,0⊤]Wp∥ ≥ Ω(
√

logM1), (17)
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(A) (B) (C) (D)
Figure 2. The properties of the trained model. (A) The average norm of WQpquery , WKpi, [XDR(pquery)

⊤/β,0⊤] ·WQpquery , and
[XDR(pi)

⊤/β,0⊤]WKpi. (B) The attention weight summation on contexts with the same ODR pattern as the query and other contexts.
(C) The magnitude of the feature embedding of 5 neurons in WOWV and their angles to µ̄ in 400 epochs. (D) The magnitude of the
label embedding of 10 neurons in WOWV and their angles to q in 400 epochs. We choose 5 neurons for ai > 0 and 5 for ai < 0.

∥[a⊤,0⊤]Wp∥ ≤ O(
√

logM1(1/M1 + 1/M2)), (18)

∥[b⊤,0⊤]Wp∥ ≤ O(
√
logM1(1/M1 + 1/M2)), (19)

where a is any IDR (or ODR) pattern that is different from
XDR(p) for in-domain (or out-of-domain) tasks, b is any IDI
(or ODI) pattern, and 0 is an all-zero vector in Rma−dX .

Remark 4.2. Proposition 4.1 indicates that the self-attention
layer parameters W

(T )
Q and W

(T )
K in the returned model

projects pquery or context embeddings pi mainly to the di-
rections of the corresponding IDR pattern for in-domain
data or ODR pattern for out-of-domain data. This can be de-
duced by combining (17), (18), and (19), since components
of Wp in other directions rather than [XDR(p)⊤,0⊤] are
relatively smaller. Hence, Proposition 4.1 implies that the
learned W

(T )
Q and W

(T )
K remove the effect of IDI/ODI pat-

terns. Meanwhile, (17) states that the W
(T )
Q and W

(T )
K

enlarge the magnitude of the IDR or ODR patterns from
Θ(1) to Θ(

√
logM1), given that the W

(0)
Q and W

(0)
K are

initialized with a scalar δ = Θ(1).

Proposition 4.1 enables us to compute the attention map of
the trained model. Therefore, we have the following.

Corollary 4.3. For any testing query embedding pquery =
[x⊤
query,0

⊤]⊤, let N∗ ∈ [l] be the set of indices of context
inputs that share the same IDR (or ODR) pattern as the in-
domain (or out-of-domain) xquery. Then, for any constant
C > 1, by definition in (2), it holds that∑

s∈N∗

attn(Ψ;P , i) ≥ 1−Θ(1/MC
1 ). (20)

Remark 4.4. Corollary 4.3 shows that after training, the
attention weights become concentrated on contexts in N∗.
This means that the learned self-attention layer only selects
some crucial contexts that share the same IDR/ODR pattern
as the query rather than all samples uniformly or randomly.

4.2. MLP Neurons Distinguish Label Embeddings
Rather Than Feature Embeddings.

We next show that the trained MLP layer can distinguish the
label embeddings for data from different classes.

Proposition 4.5. Let ri introduced in Theorem 3.7 be
(r⊤idX

, r⊤idY
, r′i

⊤
) where ridX ∈ RdX , ridY ∈ RdY , and

r′i ∈ Rmb−dX−dY . Then, for any i ∈ L

r
(T )
idX

µ̄/(∥r(T )
idX

∥ · ∥µ̄∥) ≥ 1−Θ(1)/M2, (21)

r
(T )
idY

qe/(∥r(T )
idY

∥ · ∥qe∥) ≥ 1−Θ(1)/M1, (22)

where µ̄ =
∑M1

k=1 µ
⊤
k /M1, qe = q if ai > 0 and qe = −q

if ai < 0, where ai is the i-th entry of a in (1).

Remark 4.6. Proposition 4.5 demonstrates that neurons with
indices in L have the following two properties. (P1) The
first dX entries of all the corresponding row vectors in
W

(T )
O W

(T )
V approximate the average of all IDR patterns

µj , j ∈ [M1]. (P2) The next dY entries of the ith row
of W (T )

O W
(T )
V approximates the label embedding q when

ai > 0 and approximates −q when ai < 0. (P1) indicates
that the output layer focuses on all IDR patterns equally
rather than any IDI pattern. (P2) indicates that the MLP
layer can distinguish label embeddings for different classes.

5. Numerical Experiments
Data Generation We verify our theoretical findings using
data generated as described in Section 2. Let dX = dY =
30, β = 3, K ′ = 5, K = 0.5. The in-context binary
classification error is evaluated by E(x,y)[Pr(y ·F (Ψ;P ) <
0)] for x following either D or D′ and P constructed in
(1). If not otherwise specified, we set M1 = 6, M2 = 24.
For out-of-domain generalization, M ′

1 = 3, ν′
i = νi for

i ∈ [M ′
2]. µ

′
1 = 0.3 ·(µ1−µ2)+aµ5+bµ6. µ′

2 =
√
2/2 ·

(µ1 + µ2). µ′
3 =

√
2/2 · (µ3 + µ4). For testing, we select

contexts with the two decisive patterns with α′/2 probability
each and others with (1 − α′)/(M ′

1 − 2) probability each
to keep the context outputs balanced.

Model and Training Setup: The models we use include
both the one-layer Transformer defined in (2) and the 3-
layer 2-head real-world model GPT-2 (Radford et al., 2019)
following (Bai et al., 2023; Wu et al., 2023a). If not other-
wise specified, we set α = 0.8, ltr = 20 for training. The
training tasks are formulated as follows to satisfy Condition

7
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3.2. Define ai = ai+M1
= µi for i ∈ [M1], and then the

((k − 1) ·M1 + j)-th task function maps the queries with
aj and aj+k as IDR patterns to +1 and −1, respectively,
for j ∈ [M1] and k ∈ [U ]. For the one-layer Transformer,
we use U = 1 and ma = mb = 60. Hence, |Ttr| = 6, and
there are |T \Ttr| = 24 in-domain unseen tasks. For GPT-2,
U = 4. Then, |Ttr| = 24, |T \Ttr| = 6. Note that we eval-
uate in-domain generalization error only on unseen tasks
T \Ttr, which is generally an upper bound of that defined in
(4) after sufficient training.

5.1. Experiments on the Generalization of ICL

We first verify the sufficient condition (12) for out-of-
domain generalization. From the selection of µ′’s, we know
that S1 = a + b, S2 = S3 =

√
2. We vary a and b while

satisfying a2 + b2 + 2 · 0.32 = 1. Figure 3 (A) shows that
the out-of-domain classification error archives < 0.01 when
S1 ≥ 1 and deviates from 0 when S1 < 1, which justifies
the necessity of condition (12). We then investigate how the
context length is affected by α′, i.e., the fraction of contexts
with the same IDR/ODR pattern as the query. Figure 3 (B)
indicates that a longer testing context length is needed when
α′ is smaller for in- or out-of-domain, which is consistent
with the lower bound of lts in (9) and Theorem 3.4.

(A) (B)
Figure 3. Out-of-domain ICL classification error on GPT-2 with
(a) different S1 on GPT-2 (b) different α′ for in-domain (id) and
out-of-domain (ood) generalization.

We then compare ICL with other machine learning algo-
rithms for classification, where contexts are used as training
samples for these methods. Figure 4 (A) and (B) show that
when α′ = 0.8, the advance of ICL over other algorithms
is not significant, while when α′ = 0.6, ICL is the most
sample-efficient for a small generalization error. Thus, ICL
can remove irrelevant data and is more robust to random
noise in labels than other learning algorithms.

We also investigate the effect of pruning techniques on ICL.
Let α = 0.6. Figure 5 (A) shows that magnitude-based
pruning does not hurt out-of-domain generalization if the
pruning rate is lower than around 15%, which is the ratio of
WO neurons with a small magnitude. The generalization
error increases as the pruning rate increases when pruning
neurons with large weights. This is consistent with Theorem
3.7 and Remark 3.8. Figure 5 (B) justifies the impact of α′

in Theorem 3.7 that larger α′ can improve the performance
of the pruned model.

(A) (B)
Figure 4. Binary classification performance of using ICL, logistic
regression (Logistic), SVM with Gaussian kernel (SVM Gau.),
SVM with linear kernel (SVM Lin.), 1-nearest neighbor (1-NN),
and 3-nearest neighbor (3-NN) with one-layer Transformer when
(A) α′ = 0.8 (B) α′ = 0.6.

(A) (B)
Figure 5. (A) Out-of-domain classification error (left y-axis for
curves) with model pruning of the trained WO using baseline (no
pruning), random pruning, and magnitude-based pruning (Mag.-
based), and the magnitude of each neuron of WO (right y-axis for
light blue bars) (B) Out-of-domain classification error when vary-
ing α′. These two are implemented on a one-layer Transformer.

5.2. Experiments on the Mechanism of ICL

We examine our findings regarding the mechanism of ICL in
Section 4 using a one-layer Transformer formulated in (2).
In Figure 2 (A) and (B), we consider out-of-domain data
with a = b = 0.64. Figure 2 (A) shows that for any query
pquery (or context example pi for i ∈ lts), the norm of
[XDR(p)⊤,0⊤]WQpquery (or [XDR(p)⊤,0⊤]WKpi)
is close to the norm of WQpquery (or WKpi). This implies
that the components of WQpquery (or WKpi) in directions
other than [XDR(p)⊤,0⊤] are small, which is consistent
with (18) and (19) in Proposition 4.1. Moreover, these norms
increase from initialization during training, which justifies
(17). Figure 2 (B) depicts the concentration of attention on
contexts in N∗ after training. This verifies Corollary 4.3.
Figure 2 (C) and (D) jointly verify Proposition 4.5. The
color bars represent the epochs of training. We can observe
that except for some neurons, ridX grows to be close to
the direction of µ̄ with a larger magnitude in Figure 2 (C).
Moreover, Figure 2 (D) shows for ai > 0 (or ai < 0), ridY
becomes close to q (or −q) with a large magnitude.

8
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6. Conclusion
This paper provides theoretical analyses of the training dy-
namics of Transformers with nonlinear attention and non-
linear MLP, and the resulting ICL capability for new tasks
with possible data shift. This paper also provides a theo-
retical justification for magnitude-based pruning to reduce
inference costs while maintaining the ICL capability. Future
directions include designing practical prompt selection al-
gorithms and model pruning methods based on the obtained
insights, as well as investigating ICL on generation tasks.
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A. Proof Sketch
We partially include the proof backbone in Section 4 when introducing the mechanism of the trained Transformer. We
elaborate more about our proof intuition of Theorem 3.3 in the following.

We first briefly introduce our proof intuition of Theorem 3.3. We first respectively build Lemmas D.5, D.6, and D.7 to
characterize gradient updates for WQ and WK , WV and WO. These Lemmas are based on an observation that a constant
fraction of neurons in WO can always be activated (Lemma D.9, D.10) to avoid the non-smoothness of Relu activation.
The orthogonality of patterns and Definition 3.1 enable the self-attention layer to learn in-domain-relevant (IDR) patterns
rather than in-domain-irrelevant (IDI) patterns and select contexts with the same IDR pattern as the query. Then, to develop
Theorem 3.3, we use Lemma D.5 to show that the attention weights converge to be close to 1 when ηT ≥ Ω(M1

√
logM1).

Next, we compute the network output according to the label embedding using Lemma D.6 and D.7. Finally, we derive the
required number of iterations to make the generalization error O(ϵ) by concentration inequalities.

We then would like to specify how we handle the Relu activation in the gradient of WK , WQ. We also want to clarify that
how we can handle the training dynamics related to the softmax is different from (Huang et al., 2023) although we both
derive a sparse attention distribution. Inspired by the intuition of feature-learning analyses for two-layer Relu networks
(Brutzkus & Globerson, 2021; Shi et al., 2021; Zhang et al., 2023c; Allen-Zhu & Li, 2023), we initialize the model such that
at least a constant fraction of the neurons of WO are activated (Lemma D.9), which are called lucky neurons as in (Zhang
et al., 2023c; Li et al., 2023a). We prove that these lucky neurons are always activated (Lemma D.10) and grow with an
increasing magnitude and two fixed directions of the label embedding along the training (Lemma D.7). Then, we can show
that the gradient growths of WQ and WK can be lower bounded by contributions from these lucky neurons. Therefore, we
are able to characterize the gradient updates of WK and WQ given a dynamic WO. This process is different from (Huang
et al., 2023) since (Huang et al., 2023) does not include Relu MLP, so there is no need to study lucky neurons. Besides, we
use Hinge loss, while their training loss is logistic loss, which leads to more training phases, as a difference in the training
dynamics between us.

B. Addition Discussions and Extensions
B.1. The Motivation to Study NONLINEAR Transformers

The reasons we study nonlinear Transformers in this work are as follows. First, nonlinear Transformers for ICL, which
are different from linear Transformers, are common in practice but less explored in theory. Nonlinear attention and
nonlinear MLP are default components of standard Transformers (Vaswani et al., 2017) and are widely applied in large
language models for implementing ICL in practice. Existing works show that nonlinear Transformers exhibit their empirical
advantages when learning nonlinear functions (Cheng et al., 2023) or conducting dynamic programming tasks (Yang et al.,
2024). However, state-of-the-art theoretical works (Zhang et al., 2023a; Huang et al., 2023; Wu et al., 2023a) ignore the
nonlinearities (partially) to simplify the analysis or the presentation. Second, the analysis of nonlinear Transformers is quite
different from that of Transformers without nonlinearities. For example, softmax attention has a different derivative from
linear attention, which includes nonlinear exponential terms and needs a more complicated computation of the gradient
updates. Relu MLP provides several non-differential points, which makes the loss landscape more challenging to analyze.

B.2. The Discussion on Single/Multi-Head Attention

There are several reasons why we only study single-head attention in the main body of the paper. First, all the previous
theoretical works studying the optimization and generalization of Transformers on ICL (Zhang et al., 2023a; Huang et al.,
2023; Wu et al., 2023a) only consider single-head attention in the network. Some concurrent works consider multi-head
attention, but they either do not study ICL (Deora et al., 2023; Chen & Li, 2024) or do not involve convergence/generalization
guarantee (Cui et al., 2024). Hence, the question of how the ICL ability on unseen tasks and out-of-domain data is obtained
by training is still unexplored. Our theoretical analysis studies the convergence and generalization of ICL using Transformers
with softmax attention and Relu MLP, involving generalization on unseen tasks and OOD data. Second, our empirical
experiments on GPT-2 in Figure 3 are conducted with two heads to verify our theoretical findings, which means some
theoretical conclusions hold in Transformers with multiple heads.

However, our analysis for single-head attention can be extended to multi-head attention to some degree. Consider a
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multi-head attention layer where the layer output is a concatenation of the output of each head, i.e.,∥∥∥∥H
h=1

l∑
i=1

WVh
pi · softmax(pi⊤W⊤

Kh
WQh

pquery). (23)

The overall conclusion will remain the same, given the same data formulation and initialization on each head because
of the orthogonality of patterns. Specifically, we can still show that each attention head selects contexts with the same
in-domain-relevant (IDR) pattern as the query. The MLP layer will still make predictions based on the label embedding, as
suggested in Section 4.2. We will leave the analysis on multi-head attention with more general settings as future directions.

B.3. Extension to Multiple Patterns for One Class

We can extend our analysis to the case that several orthogonal IDR patterns correspond to the label +1, while some other
orthogonal IDR patterns correspond to the label −1. Then, as long as there is always a context input that shares the same
IDR/ODR pattern as the query, we can still prove that the self-attention layer selects contexts with the same IDR/ODR
pattern as the query. Furthermore, we can show the MLP layer makes predictions based on the label embedding. Therefore,
the mechanism remains the same as the current setting in the manuscript, where one pattern corresponds to one pattern. We
will leave other cases where the data formulation is different in future works.

The reason why we use our current setting in the main body of the paper is to simplify the presentation while emphasizing
our major contributions of analyzing optimization and generalization of nonlinear Transformers both in-domain and out-
of-domain. As the first work on this problem, as far as we know, we believe our data formulation keeps the necessary
complexity.

B.4. Additional Related Works

We introduce other existing theoretical works on learning and generalization of neural networks in this section. Some
works (Zhong et al., 2017; Fu et al., 2020; Li et al., 2022b; Zhang et al., 2023b; Li et al., 2024) study the generalization
performance following the model recovery framework by probing the local convexity around a ground truth parameter. The
neural-tangent-kernel (NTK) analysis (Jacot et al., 2018; Allen-Zhu et al., 2019a;b; Cao & Gu, 2019; Zou & Gu, 2019; Chen
et al., 2020; Li et al., 2022a; Sun et al., 2024) considers strongly overparameterized networks to linearize the neural network
around the initialization. The generalization performance is independent of the feature distribution. (Daniely & Malach,
2020; Shi et al., 2021; Karp et al., 2021; Brutzkus & Globerson, 2021; Zhang et al., 2023c; Li et al., 2023a; Zhang et al.,
2024; Chowdhury et al., 2023; 2024) investigate the generalization of neural networks assuming a data model consisting of
discriminative patterns and background patterns. Our analysis belongs to the last line of research.

C. Additional Experiments and the Algorithm
We first present the training algorithm introduced in Section 2.3.

Algorithm 1 Training with Stochastic Gradient Descent (SGD)
1: Hyperparameters: The step size η, the number of iterations T , batch size B.
2: Initialization: Each entry of W (0)

O and a(0) from N (0, ξ2) and Uniform({+1/
√
m,−1/

√
m}), respectively. WQ,

WK and WV are initialized such that all diagonal entries of W (0)
V , and the first dX diagonal entries of W (0)

Q and W
(0)
K

are set as δ with δ ∈ (0, 0.2].
3: Training by SGD: For each iteration, we independently sample xquery ∼ D, f ∈ Ttr to form a batch of training

prompt and labels {P n, zn}n∈Bt
as introduced in Section 3.2. Each IDR pattern is sampled equally likely in each batch.

For each t = 0, 1, · · · , T − 1 and W (t) ∈ Ψ(t)

W (t+1) = W (t) − η · 1

B

∑
n∈Bt

∇W (t)ℓ(Ψ(t);P n, zn). (24)

4: Output: W
(T )
O , W (T )

V , W (T )
K , W (T )

Q .

Then, we introduce additional experiments to verify our theory.
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C.1. The impact of α

We choose α = 0.6 and use a one-layer Transformer as in (2). Figure 6 shows that the required length of the training prompt
is linear in α−1, while the required number of training iterations is linear in α−2/3, which verify the theoretical findings in
(9) and (10).

Figure 6. The prompt length against α, and the required number of training iterations against α.

C.2. The required number of training tasks

We choose α = 0.6 and use a one-layer Transformer as in (2). For a given T , we first generate a set of tasks that satisfies
Condition 3.2 as follows. Define ai = ai+M1

= µi for i ∈ [M1], and then the j-th task function map the queries with
aj and aj+1 as IDR patterns to +1 and −1, respectively, for j ∈ [M1]. Then, we get a task set Ttr0 with |Ttr0| = M1.
Then, we vary the number of training tasks in the way that (1) we sample within Ttr0 to get a set Ttr with |Ttr| ≤ M1 (2)
we sample within T \Ttr0 to get a set T ′

tr, and Ttr = T ′
tr ∪ Ttr0 such that |Ttr| ≥ M1. Figure 7 shows that for any M1,

the generalization error is significant as long as |T |tr < M1, while the generalization error reaches around 0 as long as
|T |tr ≥ M1 and T covers all the possibilities of IDR patterns and labels. This verifies that Condition 3.2 can be met with a
fraction of (M1 − 1)−1/2 of total number of in-domain tasks.

Figure 7. The required number of training tasks for different M1.

D. Proofs of the Main Theorems
We first provide several useful definitions and key lemmas for the proof of the main theorems. Table 2 shows a summary of
notations used in the proof.

D.1. Proof Overview of Main Theorems

This section illustrates how Corollary 4.3 and Proposition 4.5 contribute to the final in- and out-of-domain generalization
performance of ICL.

The establishment of generalization

1. (Self-Attention) We can deduce from Corollary 4.3 that, for a query with IDR pattern µj (j ∈ [M1]) and label +1, the
weighted summation of contexts and the query by the attention score, i.e.,

∑l
i=1 piattn(Ψ;P , i), is close to [µ⊤

j , q
⊤]⊤.

This is because as long as the training/testing prompt length satisfies (9), large attention weights are assigned on pi of which
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Table 2. Summary of Notations

Notations Annotation
xn

s , yn
s xns is the data for classification. yns is the embedding of the label for xns .

P n, zn P n is a prompt that consists of l pairs of xns and yns , s ∈ [l]. The last column of P n contains
pnquery , which is the query of P n. zn ∈ {+1,−1} is the binary label of pnquery , which is also
the label of P n when we formulate the problem as a supervised learning problem.

F (Ψ;P n), ℓ(Ψ;P n, zn) F (Ψ;P n) is the Transformer output for P n with Ψ as the parameter. ℓ(Ψ;P n, zn) is the loss
function value given P n and the corresponding label zn.

pn
s , µj , νk pns is the s-th example with the corresponding label in P n. If s = query, pns is the query.

µj and νk are the IDR and IDI patterns in the feature embedding of pns as the corresponding
coefficients, respectively.

q q is the label space embedding.
M1, M2, M M1 is the number of IDR patterns. M2 is the number of IDI patterns. M = M1 +M2.
α, a α is the probability of selecting examples that contain either of the two decisive IDR patterns

in each P n. a = 1/|ai| where ai is the entry of each neuron in WO. a = m.
κ, κ′, K, K′, β κ and κ′ are the coefficients of the IDI pattern and the ODI pattern in the input x, respectively.

κ and κ′ follow uniform distribution U(−K,K) and U(−K ′,K ′) with K ≤ 1/2 and K ′ ≤
O(1), respectively. β is the norm of in-/out-of-domain-(ir)relevant (IDR/ODR/IDI/ODI)
patterns.

Wn, Un The sets of lucky neurons. Wn is the set of neurons of WO that can activate the terms inside
Relu(·) in F (Ψ;P n) for zn = +1 at initialization. Un is the set of neurons of WO that can
activate the Relu part of F (Ψ;P n) for zn = −1 at initialization.

W , U W = ∪n∈[N ]Wn. U = ∪n∈[N ]Un
Nn

j The set of examples in P n that contains µj as the IDR pattern.
γt γt is the summation of attention weight on examples that have different IDR patterns from the

query.
ζt ζt is smallest positive value inside the Relu(·) in F (Ψ;P n) for all the WO neuron and all

n ∈ [N ].
Bb Bb is the SGD batch at the b-th iteration.
ltr ltr is the prompt length of the training data.
lts lts is the prompt length of the testing data.
O(), Ω(), Θ() We follow the convention that f(x) = O(g(x)) (or Ω(g(x)), Θ(g(x)))) means that f(x)

increases at most, at least, or in the order of g(x), respectively.
≳, ≲ f(x) ≳ g(x) (or f(x) ≲ g(x) ) means that f(x) ≥ Ω(g(x)) (or f(x) ≲ O(g(x))).

the IDR pattern is µj , and the label embedding is q by (20). Similarly, if its label is −1, the weighted summation of contexts
and the query outputs [µ⊤

j ,−q⊤]⊤.

2. (MLP) By Proposition 4.5, we know that a large enough proportion of positive (or negative) neurons i ∈ [m] have the
label embedding of W (T )

O(i,·)
W

(T )
V close to ±q (22). They can thus map the weighted summation of contexts and the query

by attention with +q (or −q) to positive (or negative) values. This leads to a correct prediction in-domain (Theorem 3.3).

3. (Out-of-Domain Generalization) Since Corollary 4.3 also applies to ODR patterns, then for a query with an ODR pattern
µ′
j , j ∈ [M ′

1], the resulting weighted summation of contexts and the query is close to [µ′
j
⊤
, q⊤]⊤ or [µ′

j
⊤
,−q⊤]⊤. Then,

by combining (21), (22) and the condition on ODR pattern characterized in (12), we can ensure that the MLP layer produces
a desired prediction out of the domain (Theorem 3.4).

D.2. Preliminaries

Lemma D.1. (Multiplicative Chernoff bounds, Theorem D.4 of (Mohri et al., 2018)) Let X1, · · · , Xm be independent
random variables drawn according to some distribution D with mean p and support included in [0, 1]. Then, for any
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γ ∈ [0, 1
p − 1], the following inequality holds for p̂ = 1

m

∑m
i=1 Xi:

Pr(p̂ ≥ (1 + γ)p) ≤ e−
mpγ2

3 , (25)

Pr(p̂ ≤ (1− γ)p) ≤ e−
mpγ2

2 . (26)

Definition D.2. (Vershynin, 2010) We say X is a sub-Gaussian random variable with sub-Gaussian norm K > 0, if
(E|X|p)

1
p ≤ K

√
p for all p ≥ 1. In addition, the sub-Gaussian norm of X, denoted ∥X∥ψ2

, is defined as ∥X∥ψ2
=

supp≥1 p
− 1

2 (E|X|p)
1
p .

Lemma D.3. ((Vershynin, 2010) Proposition 5.1, Hoeffding’s inequality) Let X1, X2, · · · , XN be independent centered
sub-gaussian random variables, and let K = maxi ∥Xi∥ψ2

. Then for every a = (a1, · · · , aN ) ∈ RN and every t ≥ 0, we
have

Pr
(∣∣∣ N∑

i=1

aiXi

∣∣∣ ≥ t
)
≤ e · exp

(
− ct2

K2∥a∥2

)
, (27)

where c > 0 is an absolute constant.

Definition D.4. For any data index n and iteration t, we can find i such that

W
(t)
O(i,·)

∑l+1
s=1(W

(t)
V pns )softmax(pns

⊤W
(t)
K

⊤
W

(t)
Q pnquery) > 0 by the initialization with high probability. Define

1. ζi,n,t := W
(t)
O(i,·)

∑l+1
s=1(W

(t)
V pns )softmax(pns

⊤W
(t)
K

⊤
W

(t)
Q pnquery).

2. ζi,t = minn{ζi,n,t}.

3. ζt = mini{ζi,t}.

4. γt,n = 1−
∑
s∈Nn

∗
softmax((W (t)

K pns )
⊤(W

(t)
Q pnquery)).

5. γt = maxn∈[N ]{γt,n}.

Lemma D.5. (gradient updates of WQ and WK) By the SGD training method described in Section 2.3, we have the
following equations. Given the definition of in-/out-of-domain data as in (1) and the in-/out-of-domain data distribution D
in (6) and D′ in (8), we study the gradient updates in the directions of queries or contexts. Note that we require m ≳ M2

1 ,
B ≳ M1 logM1, l = ltr ≳ 1, β ∈ [1, O(1)].
We first consider the case when the feature embeddings of the query xquery and the example xq, q ∈ [l] are µj . The label
embedding is 0 for the query and ±q for non-query examples. Then, for any l, a ∈ [M1], k ∈ [M2], t0 ≥ 1, where µl forms
a task in Ttr with µj and µa does not,

(µ⊤
j ,0

⊤)η

t0∑
b=0

1

B

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
Q

∣∣∣
t=t0

(x⊤
query,0

⊤)⊤ ≳ η
1

M1

t0∑
b=0

ζbδγbβ
4, (28)

∣∣∣(µ⊤
l ,0

⊤)η
1

B

t0−1∑
b=0

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
Q

∣∣∣
t=t0

(x⊤
query,0

⊤)⊤
∣∣∣

≲e−Θ((
ηt0
M1

)2)
∣∣∣(µ⊤

j ,0
⊤)η

t0−1∑
b=0

1

B

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
Q

∣∣∣
t=t0

(x⊤
query,0

⊤)⊤
∣∣∣, (29)

∣∣∣(µ⊤
a ,0

⊤)η
1

B

t0−1∑
b=0

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
Q

∣∣∣
t=t0

(x⊤
query,0

⊤)⊤
∣∣∣

≲
1

M1

∣∣∣(µ⊤
j ,0

⊤)η

t0−1∑
b=0

1

B

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
Q

∣∣∣
t=t0

(x⊤
query,0

⊤)⊤
∣∣∣, (30)
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k ,0

⊤)η
1

B

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
Q

∣∣∣
t=t0

(x⊤
query,0

⊤)⊤
∣∣∣ ≲ 1

M2

∣∣∣(µ⊤
j ,0

⊤)η
1

B

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
Q

∣∣∣
t=t0

(x⊤
query,0

⊤)⊤
∣∣∣,

(31)

(µ⊤
j ,0

⊤)η
1

B

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
K

∣∣∣
t=t0+1

pq ≳ η
1

M1

t0∑
b=0

ζbδγbβ
4, (32)

∣∣∣(µ⊤
l ,0

⊤)η
1

B

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
K

∣∣∣
t=t0

pq

∣∣∣
≲e−Θ((

ηt0
M1

)2)
∣∣∣(µ⊤

j ,0
⊤)η

1

B

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
K

∣∣∣
t=t0

pq

∣∣∣, (33)

∣∣∣(µ⊤
a ,0

⊤)η
1

B

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
K

∣∣∣
t=t0

pq

∣∣∣ ≲ 1

M1

∣∣∣(µ⊤
j ,0

⊤)η
1

B

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
K

∣∣∣
t=t0

pq

∣∣∣, (34)

∣∣∣(ν⊤
k ,0

⊤)η
1

B

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
K

∣∣∣
t=t0

pq

∣∣∣ ≲ 1

M2

∣∣∣(µ⊤
j , q

⊤)η
1

B

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
K

∣∣∣
t=t0

pq

∣∣∣. (35)

In the above, equations (28), (29), (30), and (31) characterize the directions of gradient updates of WQ when projected with
(x⊤
query,0)

⊤. Similarly, equations (32), (33), ( 34), and (35) characterize the directions of gradient updates of WK when
projected with pq, q ∈ [l].

Lemma D.6. (gradient updates of WV ) For pnj defined in (1) and t0 ≥ 1, if l = ltr ≳ max{1, 1
αβ2 } and BT ≳ Θ(M2

1 ),
B ≳ M1, we have that for pj of which the corresponding label embedding is q,

η
1

B

∑
n∈Bb

t0∑
b=0

∂ℓ(P̃ n, zn; Ψ)

∂W
(b)
V

pj

= η

t0∑
b=0

(
∑
i∈Wn

Vi(b)W
(b)
O(i,·)

+
∑
i∈Un

Vi(b)W
(b)
O(i,·)

+
∑

i/∈Wn∪Un

Vi(b)W
(b)
O(i,·)

),

(36)

where
−Vi(b) ≳ β2(1− γt)/a, i ∈ Wn, (37)

−Vi(b) ≤
1

β2 + 1
Vj(b), i ∈ Un, j ∈ Wn, (38)

|Vi(b)| ≲
√

logB

B
· 1
a
, i /∈ Wn ∪ Un. (39)

If the corresponding label embedding is −q, we have the that (36) holds with

−Vi(b) ≳ β2(1− γt)/a, i ∈ Un, (40)

−Vi(b) ≤
1

β2 + 1
Vj(b), i ∈ Wn, j ∈ Un, (41)

|Vi(b)| ≲
√

logB

B
· 1
a
, i /∈ Wn ∪ Un. (42)

We can also derive

η
1

B

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
V

(ν⊤
k ,0

⊤)⊤

=:η

t0∑
b=0

(
∑
i∈Wn

V ′
i (b)W

(b)
O(i,·)

+
∑
i∈Un

V ′
i (b)W

(b)
O(i,·)

+
∑

i/∈Wn∪Un

V ′
i (b)W

(b)
O(i,·)

),

(43)
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where
|V ′
i (b)| ≤ |Vi(b)| ·

1

M2
. (44)

Lemma D.7. (gradient updates of WO) We are given Θ(1) ≥ β ≥ 1 and m ≳ M2
1 , BT ≳ M1 logM1, B ≳ M1,

t = t0 ≥ Θ(1). Denote the set of examples that share the same IDR pattern as pnquery as Bnb in the b-th iteration. For
i ∈ W , b ̸= a, and pnquery corresponding to q and µa,

η
1

|Bnb |
∑
n∈Bn

b

∂ℓ(P̃ n, zn; Ψ)

∂W
(t0)
O(i,·)

(µ⊤
a , q

⊤)⊤ = δ(β2 + 1)
αη

2a
(1 +

η2m

a2
)t0 , (45)

η
1

B

t0+1∑
b=0

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t0)
O(i,·)

(µ⊤
a , q

⊤)⊤ ≳ δ(β2 + 1)
αηt0
2a

. (46)

For i ∈ U , b ̸= a, and pnquery corresponding to q and µa,

η
1

|Bnb |
∑
n∈Bn

b

∂ℓ(P̃ n, zn; Ψ)

∂W
(t0)
O(i,·)

(µ⊤
a ,−q⊤)⊤ = δ(β2 + 1)

αη

2a
(1 +

η2m

a2
)t0 , (47)

η
1

B

t0+1∑
b=0

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(b)
O(i,·)

(µ⊤
a ,−q⊤)⊤

≳δ(β2 + 1)
αηt0
2a

.

(48)

For i ∈ W ∪ U and c ∈ [M2],

∥W (t0)
O(i,·)

∥ ≳
√
M1δ(β

2 + 1)
1
2
αηt0
2a

, (49)

η
1

B

t0∑
b=0

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(b)
O(i,·)

(ν⊤
c ,±q⊤)⊤ ≤ 1

M2
η
1

B

t0∑
b=0

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(b)
O(i,·)

(µ⊤
b , q

⊤)⊤. (50)

For i /∈ W ∪ U , we have

η
1

B

t0∑
b=0

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(b)
O(i,·)

(µ⊤
a ,±q⊤)⊤ ≤ ηt

√
logB

B

1

a
. (51)

Definition D.8. Define

V n(t) :=

l+1∑
s=1

W
(t)
V pns softmax(pns

⊤W
(t)
K

⊤
W

(t)
Q pnquery), (52)

for P n. Let WO(i,·) = (Oi,1,Oi,2,0
⊤) where Oi,1 ∈ RdX ,Oi,2 ∈ RdY . Let V n(t) = (Vn,1(t)

⊤,Vn,2(t)
⊤,0⊤)⊤ where

Vi,1(t) ∈ RdX ,Vi,2(t) ∈ RdY . Define Wn, Un as the sets of lucky neurons such that

Wn = {i : O(0)
i,1Vn,1(0) > 0,O

(0)
i,2Vn,2(0) > 0, ai > 0}, (53)

Un = {i : O(0)
i,1Vn,1(0) > 0,O

(0)
i,2Vn,2(0) > 0, ai < 0}. (54)

Define
Nn,i
j = {i : i ∈ [l + 1],xni = µj + κni νk + nni , k ∈ [M2]}, (55)

Mn,i
k = {i : i ∈ [l + 1],xni = µj + κni νk + nni , j ∈ [M1]}, (56)

as the set of example inputs with µj as the IDR patterns or with νk as the IDI patterns, respectively.

W =

N⋃
n=1

Wn, U =

N⋃
n=1

Un. (57)
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Lemma D.9. By the definition of lucky neurons in (53) and (54), and the initialization described in Section 2.3, the number
of lucky neurons |Wn|, |Un| satisfies

|Wn|, |Un| ≥ Ω(m). (58)

Hence,
|W|, |U| ≥ Ω(m). (59)

Lemma D.10. Under the condition that m ≳ M2
1 logM1, we have the following results.

1. When t ≥ 0, for V n(t) where pnquery corresponds to the label +1,

1[W
(t)
O(i,·)

V n(t)] = 1, i ∈ Wn, (60)

for V n(t) where pnquery corresponds to the label −1,

1[W
(t)
O(i,·)

V n(t)] = 1, i ∈ Un. (61)

2. When t ≥ Θ(1), for i ∈ W , we have that for V n(t) where pnquery corresponds to the label +1,

1[W
(t)
O(i,·)

V n(t)] = 1. (62)

For i ∈ U , we have that for V n(t) where pnquery corresponds to the label −1,

1[W
(t)
O(i,·)

V n(t)] = 1. (63)

Lemma D.11. With in-domain tasks defined in Definition 3.1 and Condition 3.2, the number of training tasks should satisfy
|Ttr| ≥ M1 to make Condition 3.2 hold.

D.3. Proof of Theorem 3.3

Proof. We first look at the required length of the prompt. Define mi as the corresponding IDR pattern in the i-th
demonstration. Consider the categorical distribution where the probabilities of selecting µa and µb are α/2 respectively. By
the Chernoff bound of Bernoulli distribution in Lemma D.1, we can obtain

Pr

(
1

ltr

ltr∑
i=1

1[mi = µa] ≤ (1− c)
α

2

)
≤ e−ltrc

2 α
2 = M−C

1 , (64)

for some c ∈ (0, 1) and C > 0. Hence, with a high probability, combining the condition ltr ≥ (αβ2)−1 in Lemma D.6,

ltr ≳ max

{
Ω

(
2 logM1

α

)
,Ω

(
1

αβ2

)}
. (65)

By the condition in Lemma D.5, we have that

B ≥ Ω(M1 logM1). (66)

We know that there exists gradient noise caused by imbalanced IDR patterns in each batchTherefore, by Hoeffding’s
inequality (27), for any W ∈ Ψ,

Pr

(∥∥∥ 1

|Bb|
∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
− E

[
∂ℓ(Ψ;P n, zn)

∂W

] ∥∥∥ ≥
∣∣∣E [∂ℓ(Ψ;P n, zn)

∂W

]
ϵ

)
≤ e−Bϵ

2

≤ M−C
1 , (67)

if B ≳ ϵ−2 logM1. Therefore, we require

B ≳ max{ϵ−2,M1} logM1. (68)
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(a) We have that for i such that ai > 0 but i /∈ W by the definition of the Relu function,

aiRelu(W (T )
O(i,·)

l+1∑
s=1

(W
(T )
V pns )softmax((W (T )

K pns )
⊤(W

(T )
Q pnquery))) ≥ 0. (69)

(b) Furthermore, we have that for i ∈ W , and for pns that shares the same IDR pattern as pnquery , with a high probability of
1−M−C

1 ,

η

T−1∑
b=0

W
(T )
O(j,·)

∑
j∈Wn

W
(b)
O(j,·)

⊤

≥η

T−1∑
b=0

M1δ(β
2 + 1)

1
2
αηT

2a
· δ(β2 + 1)

1
2
αηb

2a

≳δ2(β2 + 1)α2 (ηT )
3M1

a2
,

(70)

where the first step comes from (49) in Lemma D.7, and the second step is by
∑T−1
b=0 b = Θ(T 2). Then, we can obtain

W
(T )
O(i,·)

W
(T )
V pns

=W
(T )
O(i,·)

(δpns +

T−1∑
b=0

η(
∑
i∈Wn

Vi(b)W
(b)
O(i,·)

+
∑
i∈Un

Vi(b)W
(b)
O(i,·)

+
∑

i/∈Wn∪Un

Vi(b)W
(b)
O(i,·)

)⊤)

≳δ2(β2 + 1)
αηT

2a
+ δ2(β2 + 1)α2 (ηT )

3M1

a2
,

(71)

where the first step is by (36) in Lemma D.6, and the last step comes from Lemma D.7.

Therefore, by combining Lemma D.9 and Lemma D.10, we have that

∑
i∈W

aiRelu(W (T )
O(i,·)

l+1∑
s=1

(W
(T )
V pns )softmax((W (T )

K pns )
⊤(W

(T )
Q pnquery)))

≳(1− γT ) ·
(
δ2(β2 + 1)

αηT

2a
+ δ2(β2 + 1)α2 (ηT )

3M1

a2

)
,

(72)

when γT is order-wise smaller than 1.We next give a bound for γT , which is give by Definition D.4,

γT ≥ 1−
∑
s∈Nn

∗

softmax((W (T )
K pns )

⊤(W
(T )
Q pnquery)), (73)

from Defition D.4 for µj as the IDR pattern in pnquery. We can tell from (72) and Definition D.4,

ζb ≳δ2(β2 + 1)
αηT

2a
+ δ2(β2 + 1)α2 (ηT )

3M1

a2
. (74)

Then, if ζT ≳ 1 and T ≳ M1, by Lemma D.5, with high probability,

(W
(T )
K pns )

⊤(W
(T )
Q pnquery)

≳(η
1

M1

T−1∑
b=0

ζbδγbβ
2 + δ)2

≳(η

T−1∑
b=0

γbβ
2 · (δ2αηT

2a
+ δ2(β2 + 1)α2 (ηT )

3M1

a2
) + δ)2

:=(η

T−1∑
b=0

γb ·∆T + δ)2,

(75)
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where the first step comes from the fact that the gradient update projections of WQ and WK onto queries or examples are
close to the corresponding IDR pattern the most by Lemma D.5. In the last inequality of (75), we only consider the term
related to T and γb. For any pnl that shares a different IDR pattern as pnquery, we have

(W
(T )
K pnl )

⊤(W
(T )
Q pnquery) ≲

1

M1
(W

(T )
K pns )

⊤(W
(T )
Q pnquery), (76)

by Lemma D.5. Then, given the definition of softmax,

∑
s∈Nn

j

softmax(pns
⊤W

(t)
K

⊤
W

(t)
Q pnquery)

≥

∑
s∈Nn

j
eΘ(δ2)+(η

∑T−1
b=0 γb·∆T )2∑

s∈Nn
j
eΘ(δ2)+(η

∑T−1
b=0 γb·∆T )2 +

∑
s∈[l]−Nn

j
e

1
M1

(η
∑T−1

b=0 γb·∆T )2

≥1− 2− α

α
e−(η

∑T−1
b=0 γb·∆T )2 ,

(77)

where the first step is by (75) and (76). Combining with (73), we can derive

γT ≤2− α

α
e−(η

∑T−1
b=0 γb·∆T )2 =

2− α

α
e−(η

∑T−2
b=0 γb·∆T )2 · e−η

2∆2
T (2γT−1

∑T−2
b=0 γb+γ

2
T−1)

=γT−1 · e−η
2∆2

T (2γT−1

∑T−2
b=0 γb+γ

2
T−1).

(78)

When T is large, γT is approaching zero. Hence, the equality of (78) is close to being achieved, in which case,

γT ≈ γT−1 · e−η
2∆2

T (2γT−1

∑T−2
b=0 γb+γ

2
T−1). (79)

We can observe that when
∑t0−1
b=0 ηγb∆T ≥

√
logM1, γt0 reaches Θ(1/M1 · 2−α

α ). Similarly, when
∑t′0−1
b=0 ηγb∆T ≤√

logC for some C > 1, γt′0 is still Θ(1), which indicates t′0 ≲ η−1M1

√
logC if we only care about η and M1 as variables.

Therefore, we require that the final T satisfies T ≳ η−1M1

√
logM1.

(c) We next look at i where ai < 0. If i ∈ U , we have that for s such that the y-embedding of pns is q, the summation of
corresponding softmax value is 1− γT . Furthermore,

W
(T )
O(i,·)

W
(T )
V pns

≲− δ2
αηT

2a
− δ2α2 (ηT )

3M1

a2
,

(80)

if β ≤ Θ(1). Hence,

Relu(W (T )
O(i,·)

l+1∑
s=1

(W
(T )
V pns )softmax((W (T )

K pns )
⊤(W

(T )
Q pnquery))) = 0. (81)

(d) If i /∈ W ∪ U and s ∈ W , we have,

W
(T )
O(i,·)

W
(T )
V pns ≲

1√
M1

W
(T )
O(i,·)

W
(T )
V pns , (82)

by Lemma D.6 and B ≳ M1. The final lower bound of F (Ψ;P n) is based on the lower bound introduced by i ∈ W .
Then, combining (69), (72), (81), and (82), we can derive

F (Ψ;P n)

≳(1− γT ) ·
(
δ2(β2 + 1)

αηT

2a
+ δ2(β2 + 1)α2 (ηT )

3M1

a2

)
.

(83)

Therefore, as long as
T = Θ(η−1M1δ

−2/3β−2/3α−2/3
√

logM1), (84)
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for some large C > 1, we can obtain

F (Ψ;P n) ≥ 1. (85)

Similarly, we can derive that for zn = −1,

F (Ψ;P n) ≤ −1. (86)

Then, we study in-domain generalization. By (67), for any given testing prompt embedding P with z = +1, we have

F (Ψ;P ) ≥ 1− ϵ, (87)

and if z = −1,

F (Ψ;P ) ≤ −1 + ϵ. (88)

Therefore,

E
xquery∼D,f∈T

[ℓ(Ψ;P , y)] ≤ ϵ. (89)

D.4. Proof of Theorem 3.4

Proof. Note that we require that the fraction of contexts with the same ODR pattern as the query is at least α′. Since we
need that there exists at least one context that contains the same ODR pattern as the query, we have

lts ≥
1

α′ . (90)

Consider pnquery
′ such that the label is +1. Let µ′

j =
∑M1

j=1 cjµj where
∑M1

j=1 c
2
j = 1 and ν′

k =
∑M2

j=1 gjνj where∑M2

j=1 g
2
j = 1. Following the derivation of (74) and (75), we have that for s ∈ Nn,

(W
(T )
K pns

′)⊤W
(T )
Q pnquery

′

≳
M1∑
j=1

c2j · (η
T−1∑
b=0

γbβ
2 · (δ2αηT

2a
+ δ2(β + 1)2α2 (ηT )

3M1

a2
))2

≳ logM1.

(91)

For ODR patterns, by Proposition 4.1, we have for pnl that has a different ODR pattern than pnquery,

(W
(T )
K pnl )

⊤(W
(T )
Q pnquery) ≲ (

1

M1
+

1

M2
)(W

(T )
K pns )

⊤(W
(T )
Q pnquery). (92)

Therefore, by similarly defining Nn
j = {pns ′ : The testing-relevant pattern of P n is µ′

j}, we can derive

∑
s∈Nn

j

softmax((W (T )
K pns

′)⊤(W
(T )
Q pnquery

′)) ≥ 1− 2− α′

α′ Θ(
1

M1
) ≥ 1− 2

α′Θ(
1

M1
). (93)

Note that for pns
′ =

∑M1

i=1 ciµi +
∑M2

j=1 κ
n
s
′gjνj , when M1 ≥ M2, we can find a set of µj + κns

′νj from j = 1 to j = M2

with gj as the coefficients. When M1 < M2 = Θ(M1), we can find a set of µt + κns
′νj from j = 1 to j = M2 with

t ∈ [M1], gj as the coefficients likewise. The remaining µi has coefficients of which the summation is smaller than 1.
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Therefore, we have that for a certain i ∈ W and pns where the corresponding label-space embedding is q,

W
(T )
O(i,·)

W
(T )
V pns

′

=W
(T )
O(i,·)

W
(T )
V (

M1∑
i=1

ciµi
⊤ + κns

′
M2∑
j=1

gjνj
⊤ + ons

⊤, q⊤)⊤

≳
M1∑
i=1

ci(δ
2β2αηT

2a
+ δ2(β2α2 (ηT )

3M1

a2
)

+ (δ2
αηT

2a
+ δ2α2 (ηT )

3M1

a2
)(1− ϵ)

≥(δ2(β2 + 1)
αηT

2a
+ δ2(β2 + 1)α2 (ηT )

3M1

a2
) · (1− ϵ),

(94)

where the first equality comes from the definition of pns
′. The first inequality of (94) is derived from (67). The last inequality

is by the condition
∑M1

i=1 ci ≥ 1. Therefore, we can derive that

F (Ψ;P n′) ≳(1− γT )(δ
2(β2 + 1)

αηT

2a
+ δ2(β2 + 1)α2 (ηT )

3M1

a2
) ·(1− ϵ)

≥1− ϵ,

(95)

where the first step is by following (85), and the remaining steps are from basic mathematical computation. Likewise, for
pnquery

′ such that the label is −1, we can obtain

F (Ψ;P n′) < −(1− ϵ). (96)

Therefore, we have

E
xquery∼D′,f∈T ′

[ℓ(Ψ;P , y)] ≤ ϵ. (97)

D.5. Proof of Theorem 3.7

Proof. We cover the proof in the proof of Proposition 4.5. Please see Section E.4 for more details.

E. Proofs of Key Lemmas and propositions
E.1. Proof of Lemma D.11

Proof. We first show that if |Ttr| < M1, Condition 3.2 cannot hold. Then, We show that there exists Ttr with |Ttr| ≥ M1

such that Condition 3.2 holds.

(1) If |Ttr < M1|, then |Ttr|/M1 < 1, which is contradict to |Ttr|/M1 ≥ 1 in Condition 3.2.

(2) The following example satisfies |Ttr| ≥ M1. In this example, the i-th task function (i ∈ [M1]) in Ttr maps the query
with µi and µi+1 as IDR patterns to +1 and −1, respectively, where we denote µM1+1 := µ1. Hence, the numbers of tasks
that map µj to +1 and −1 are both 1 for any j ∈ [M1]. In this case, |Ttr| = M1.

E.2. Proof of Proposition 4.1

Proof. We first show the results for in-domain patterns.
(1) We investigate the results about WQ and then WK . For pquery with µj as the IDR pattern and a ∈
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{µ1, · · · ,µM1
}\{µj}, by (30), we have

(a⊤,0⊤)W
(T )
Q pquery

=(a⊤,0⊤)(W
(0)
Q + η

1

B

T−1∑
b=0

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
Q

∣∣∣
t=b

pquery

≲
1

M1
· (µ⊤

j ,0
⊤)η

1

B

T−1∑
b=0

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
Q

∣∣∣
t=b

pquery,

(98)

if a does not form a task in Ttr with µj . If a forms a task in Ttr with µj , and ηT = Θ(M1

√
logM1), by (29)

(a⊤,0⊤)W
(T )
Q pquery

≲
1

M1
· (µ⊤

j ,0
⊤)η

1

B

T−1∑
b=0

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
Q

∣∣∣
t=b

pquery.
(99)

For a ⊥ µj but a /∈ {µ1, · · · ,µM1
}, by (31), we have

(a⊤,0⊤)W
(T )
Q (µ⊤

j ,0
⊤)⊤

=(a⊤,0⊤)(W
(0)
Q + η

1

B

T−1∑
b=0

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
Q

∣∣∣
t=b

)pquery

≲
1

M2
· (µ⊤

j ,0
⊤)η

1

B

T−1∑
b=0

∑
n∈Bb
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Q
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(100)

By (28) and the initialization, we have

(µ⊤
j ,0

⊤)W
(T )
Q pquery ≥ (µ⊤

j ,0
⊤)η

1

B
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∂W
(t)
Q

∣∣∣
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pquery ≳
√
logM1 + δ ≳

√
logM1, (101)

where the
√
logM1 in the second step comes from that ηT ≥ Θ(M1)

√
logM1. Hence, by combining (98), (99), and (101),

we can derive that

∥W (T )
Q pnquery∥ ≲

√
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1
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1
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1

M2
1

+
1

M2
2
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⊤)η
1

B

T−1∑
b=0

∑
n∈Bb
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1
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⊤)η
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∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
Q

∣∣∣
t=b

pquery,

(102)

where in the first step, the first 1/M2
1 ·M1 comes from (98) with M1 − 1 choices of a. The second 1/M2

1 comes from (99),
i.e., (1/M1)

2 · Θ(1) since there are only a constant number of such cases. The third 1/M2
2 ·M2 is from (100) with M2

choices of a. Therefore, by (101) and (102), for a ∈ {µ1, · · · ,µM1
}\{µj}, we have

(a⊤,0⊤)W
(T )
Q pquery ≲

√
logM1

M1
. (103)

For a ⊥ µj but a /∈ {µ1, · · · ,µM1},

(a⊤,0⊤)W
(T )
Q pquery ≲

√
logM1

M2
. (104)
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For WK , we can make derivations following the above steps. For pq with µj as the IDR pattern and a ∈
{µ1, · · · ,µM1}\{µj}, by (34), we have

(a⊤,0⊤)W
(T )
K pq

≲
1

M1
· (µ⊤

j ,0
⊤)η

1

B

T−1∑
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∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
K

∣∣∣
t=b

pq,
(105)

if a does not form a task in Ttr with µj . If a forms a task in Ttr with µj , and ηT = Θ(M1

√
logM1), by (33),

(a⊤,0⊤)W
(T )
K pq

≲
1

M1
· (µ⊤

j ,0
⊤)η

1

B
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n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
K

∣∣∣
t=b

pq.
(106)

For a ⊥ µj but a /∈ {µ1, · · · ,µM1
}, by (35), we have

(a⊤,0⊤)W
(T )
K pq

≲
1

M2
· (µ⊤

j ,0
⊤)η

1

B

T−1∑
b=0

∑
n∈Bb

∂ℓ(P̃ n, zn; Ψ)

∂W
(t)
K

∣∣∣
t=b

pq.
(107)

By (32) and the initialization, we have

(µ⊤
j ,0

⊤)W
(T )
K pq ≥

√
logM1 + δ ≥

√
logM1. (108)

Hence, by combining (105), (106), and (107), we can derive that

∥W (T )
K pni ∥ ≲

√
1 +

1

M1
+

1

M2
1

+
1

M2
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1
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∂ℓ(P̃ n, zn; Ψ)
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(t)
K

∣∣∣
t=b

(µ⊤
j ,±q)⊤. (109)

Therefore, by (108) and (109), for a ∈ {µ1, · · · ,µM1}\{µj}, we have

(a⊤,0⊤)W
(T )
K pq ≲

√
logM1

M1
. (110)

For a ⊥ µj but a /∈ {µ1, · · · ,µM1
},

(a⊤,0⊤)W
(T )
K pq ≲

√
logM1

M2
. (111)

(2) For out-of-domain patterns, we have the following derivation. Let µ′
j =

∑M1

i=1 kjiµi where
∑M1

i=1 kji ≥ 1 and∑M1

i=1 k
2
ji = 1. Then, for a query p′

query, of which the corresponding ODR pattern is µ′
j , we have that by (28), (29), (30),

and (31),

|(µ⊤
j ,0

⊤)W
(T )
Q p′

query| ≥ |kj |(µ⊤
j ,0

⊤)W
(T )
Q pquery(1−

Θ(1)

M1
− Θ(1)

M2
), (112)

|(µ⊤
j ,0

⊤)W
(t)
Q p′

query| ≤ |kj |(µ⊤
j ,0

⊤)W
(t)
Q pquery(1 +

Θ(1)

M1
+

Θ(1)

M2
), (113)

for any pquery with µj as the IDR pattern. Meanwhile,

|(ν⊤
k ,0

⊤)W
(t)
Q p′

query| ≤
1

M2
(µ⊤

j ,0
⊤)W

(t)
Q pquery. (114)

Therefore,

∥W (t)
Q p′

query∥ ≥
√
logM1(1−

Θ(1)

M1
− Θ(1)

M2
) ≳

√
logM1, (115)
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∥W (t)
Q p′

query∥ ≤
√
logM1(1 +

Θ(1)

M1
+

Θ(1)

M2
) ≲

√
logM1, (116)

|(µ′
j
⊤
,0⊤)W

(T )
Q p′

query| ≳
M1∑
i=1

|kji|
√
logM1 ≥

√
logM1. (117)

For µa ∈ {µ′
1, · · · ,µ′

M ′
1
}\{µ′

j}, let µa =
∑M1

i=1 kaiµi, we have

(a⊤,0⊤)W
(T )
Q pquery ≲ (

1

M1
+

1

M2
)

M1∑
i=1

|kaikji| ≤
√
logM1(

1

M1
+

1

M2
), (118)

where the first step is by (112) and (113), and the second step is by Cauchy-Schwarz inequality given that
∑M1

i=1 k
2
ji =∑

i=1 k
2
ai = 1. For a ⊥ µ′

j but a /∈ {µ′
1, · · · ,µ′

M ′
1
},

(a⊤,0⊤)W
(T )
Q pquery ≲

√
logM1(

1

M1
+

1

M2
). (119)

Likewise, we can derive the conclusion for the testing context with W
(T )
K .

E.3. Proof of Corollary 4.3

Proof. From (75) to (79), we can derive the conclusion for IDR patterns. For ODR patterns, from (93), we can obtain the
conclusion. Note that 2−α

α = Θ(1) since α = Θ(1).

E.4. Proof of Proposition 4.5

Proof. For any i, we denote W
(b)
O(i,·)

= (O
(b)
i,1 ,O

(b)
i,2 ,0

⊤) where O
(b)
i,1

⊤
∈ RdX and O

(b)
i,2

⊤
∈ RdY . Following the derivation

of (71), we can obtain that for s ∈ [l] or s is the query,

W
(T )
O(i,·)

W
(T )
V (pns ,0

⊤)⊤

=W
(T )
O(i,·)

(δ(pns ,0
⊤)⊤ +
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η(
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(b)
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(b)
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⊤)

≳δ2β2αηT

2a
+ δ2β2α2 (ηT )

3M1

a2
,

(120)

for any j ∈ [M1], and

W
(T )
O(i,·)

W
(T )
V (κni ν

⊤
k ,0

⊤)⊤ ≤ 1

M2
·W (T )

O(i,·)
W

(T )
V (µ⊤

j ,0
⊤)⊤, (121)

for k ∈ [M2] by (44) and (50) in Lemma D.6 and D.7, respectively. Then, we have

( 1
M1

∑M1

j=1 µ
⊤
j ,0

⊤)W
(T )
O(i,·)

W
(T )
V

∥( 1
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W
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≥ 1√
1 + 1
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2
·M2
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M2
,

(122)

because BT ≥ Θ(M2
1 ). For any i ∈ W ,

W
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W
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(123)
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Note that by gradient updates of WO and WV , there are no gradient components perpendicular to p except some Gaussian
noise. Hence,

(0⊤, q⊤)W
(T )
O(i,·)

W
(T )
V

∥(0⊤, q⊤)∥∥W (T )
O(i,·)

W
(T )
V ∥

≥ 1√
1 + ξ

≥1− Θ(1)

M1
.

(124)

For any i ∈ U ,

W
(T )
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W
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(125)

Similarly to (124), we have

(0⊤,−q⊤)W
(T )
O(i,·)

W
(T )
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∥(0⊤,−q⊤)∥∥W (T )
O(i,·)

W
(T )
V ∥

≥1− Θ(1)

M1
. (126)

Hence, for i ∈ W ∪ U ,

∥W (T )
O(i,·)

W
(T )
V ∥ ≳ β−1 = Ω(1). (127)

By (82), we have that for i /∈ W ∪ U ,

∥W (T )
O(i,·)

W
(T )
V ∥ ≲

√
1

M1
+

1

M2
2

·M2 =
1√
M2

, (128)

where 1/M1 is the square of (82). 1/M2
2 is the square of the scaling in RHS of (121), and M2 is the number of IDI patterns.

If we prune all neurons i /∈ W ∪ U , we have that

E
xquery,f

[ℓ(Ψ;P , y)] ≤1− (1− 2

α′M1
)

1− ϵ

(1− 2
αM1

)
(1− 1√

M1

)

≤1− (1− 2
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)(1− ϵ)(1− 1√
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)
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− ϵ− 1√

M1

)

≤O(ϵ+
1√
M1

+
1

α′M1
)

≤O(ϵ+
1√
M1

),

(129)

where the first step combines (83), (82), and 2/(αM1) and 2/(α′M1) comes from (77) and (93). The last step comes from
α′ ≥ M

−1/2
1 . Meanwhile, if we prune R fraction of neurons in W ∪ U , given (67), we have for the trained model Ψ,

F (Ψ;P n) ≤ (1 + ϵ)(1−R) ·
(1− 2

α′M1
)

(1− 2
αM1

)
. (130)

28



How do Nonlinear Transformers Learn and Generalize in In-Context Learning?

Then,

E
xquery,f

[ℓ(Ψ;P , y)] ≥1− (1− 2

α′M1
)

1 + ϵ
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)
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)

≥Ω(R+
1
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),

(131)

where the second step is by (1− x)−1 ≤ 1 + 2x for small x > 0, and the last step is by R = Θ(1).

E.5. Proof of Lemma D.5

Proof. We first study the gradient of W (t+1)
Q in part (a) and the gradient of W (t+1)

K in part (b). The proof is derived with a
framework of induction combined with Lemma D.6 and D.7.
(a) From the training loss function, by basic mathematical computation, we can obtain
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(132)

If t = 0, we have that

(W
(t)
K pns )

⊤(W
(t)
Q pnquery) = pns

⊤W
(t)
K

⊤
W

(t)
Q pnquery. (133)

When zn = +1, let xnquery be a noisy version of µj + κnqueryνk where j ∈ {1, 2, · · · ,M1} and k ∈ {1, 2, · · · ,M2}.
Define mi as the corresponding IDR pattern in the i-th demonstration. Consider the categorical distribution where the
probability of selecting µq is α/2. We know there exists a µj such that the probability of selecting µj is also α/2. Selecting
other µt for t ̸= p, j has a probability of (1−α)/(M1 − 2). Selecting any IDI pattern νk has a probability of 1/M2. By the
Chernoff bound of Bernoulli distribution in Lemma D.1, given l ≥ Θ(max{M1,M2} logM1), we can obtain

Pr

(
l∑
i=1

1[mi = µj ] ≤ l · α
2

)
≤ e−C logM1 = M−C

1 , (134)
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Pr

(
l∑
i=1

1[mi = µs] ≤ l · α
2

)
≤ e−C logM1 = M−C

1 , (135)

Pr

(
l∑
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1[mi = µt] ≥ l · 1
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)
≤ e−C logM1·M1· 1
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1 , (136)

Pr

(
l∑
i=1

1[mi = νk] ≥ l · 1

M2

)
≤ e−C logM1·M2· 1

M2 = M−C
1 , (137)

for some C > 0. Therefore, since that 1√
M2

· eδ2 ≲ α
2 = Θ(1),

∑
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Similarly, ∑
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(139)

where the last step is by the fact that there exists µs for p ∈ {1, 2, · · · ,M2}\{j} such that selecting µs has a probability of
α/2. Let i ∈ W , s ∈ Nn,i

j −Mn,i
k , then
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(140)

where the second step is by (138) and (139). Similarly, for s ∈ Nn,i
j ∩Mn,i

k ,
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For s ∈ Mn,i
k −Nn,i

j ,
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For s ∈ [l]−Nn,i
j −Mn,i

k ,
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By (53) and (54) in Definition D.8, we have that for i ∈ Wn,
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Then we derive
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One can observe that
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Hence, by Definition D.4,
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Since that the feature space embedding of (pnr
⊤,0⊤)⊤ are orthogonal to W

(t)
Q pnquery for r ∈ [l]−Nn,i

j , we have that with
high probability, for s ∈ Nn,i

j ,
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where γt comes from the definition. β is from the definition of the data. Meanwhile, for r such that µr is the IDR pattern
with the probability of α/2 to be selected,∣∣∣(xnr⊤,0⊤)

∑
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(149)

where (1− α)/(1− α/2) comes from the fraction of attention weights on µr in [l]−Nn,i
j . If µr is the pattern that does

not decide the label of the current P n, we have∣∣∣(xnr⊤,0⊤)
∑
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(150)

where l in the denominator comes from that with high probability, at most 1 µr appears in one data for a certain r. Therefore,

for i ∈ Wn, we denote that ζ ′i,n = W
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∑
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Q pnquery). Then, if ζ ′i,n > 0, we

have that for µq that has the same IDR pattern as xquery,
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(151)

where γt comes from that W (t)
O(i,·)

pns is much larger in average, i ∈ Wn, if than other W (t)
O(i,·)

pnt if s ∈ Nn
∗ while s /∈ Nn

∗ .
For j such that µj is the IDR pattern with the probability of α/2 to be selected but different from q,
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For µj that does not decide the label of the current P n, we have
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(153)

To deal with s ∈ [l]−Nn,i
j , we cover this part when summing up all the neurons. Since that each entry of WO(i,·) follows

N (0, ξ2), we have
Pr(∥WO(i,1:dX )

xnquery∥ ≤ βξ) ≤ βξ, (154)
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by the standard property of Gaussian distribution. Meanwhile, by Hoeffding’s inequality (27),

Pr(∥WO(i,1:dX )
xnquery∥ ≥ βξ logM1) ≤ M−C

1 , (155)

for some C > 1. Hence, with a high probability, by Hoeffding’s inequality (27),
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(156)
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For p such that the probability of selecting µp is α/2, we have
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We have that for zn = 1, we can then derive that for s ∈ Nn,i
j , by Definition D.4, for µq which is the IDR pattern of xquery ,
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(159)

where ζi,t is used as a lower bound after taking an average of i ∈ Wn. Similarly, for j such that µj has a probability of α/2
to be selected, but different from q we have
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For j ∈ [l]−Nn,i
q with probability of (1− α)/(M1 − 2) to be selected, with high probability, at most 1 example has µj in

each data. Then,
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If i ∈ Un, since that zn = 1, the indicator by the Relu activation returns zero. Hence, we do not need to compute this case.
If i /∈ Wn ∪ Un, by the uniform distribution of ai, we have that, for µq which is the IDR pattern of xquery,
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where
√
logm/m is because ai can be either +1 and −1 following a uniform distribution in this case. For µj that has a

probability of α/2 to be selected but different from µq , we have
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(163)
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For xnj with µj that has a probability of (1− α)/(M1 − 2) to be selected, we have
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Therefore, by (159), (162), (163), and (164), we have that for one xquery,
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as long as

m ≳ 1, (166)

and

B ≳ M1 logM1, (167)

to ensure that
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for some c ∈ (0, 1) and C > 1, where mi denotes the IDR pattern in the query of the n-th data. Meanwhile, for j ∈ [l]−Nn,i
q

that has a IDR pattern which forms a task in Ttr with the IDR pattern of xquery, more indicators of i ∈ Un is activated.
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For other j ∈ [l]−Nn,i
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(170)

where M1 comes from the fact that the softmax value between pnquery and pnr with µj as the IDR pattern of pnr is
Θ(1− γt)/M1 in average of B ≳ M1 logM1 samples. Then, by combining (165), (169), and (170), we have
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By (169) and (170), we have that for µj which forms a task in Ttr with the µq ,
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For µj which does not form a task in Ttr with the µq ,∣∣∣(µ⊤
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Similarly, for k ∈ [M2], ∣∣∣(ν⊤
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where M2 comes from that for νk that is added to µj , the contribution of gradient is 1/M2 times of replacing νk with µj .
Hence, 1/M2 · (1 + 1/M1 ·M1) = 2/M2 = Θ(1/M2). For the label embedding, we have
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We then have ∣∣∣q⊤η
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Hence, the conclusion holds when t = 1. Suppose that the statement also holds when t = t0. When t = t0 + 1, the
gradient update is the same as in (165) and (169). Note that the indicator of Wn will not change along the training. The only
difference is the changes in ζt and γt. Thus, we can obtain that for µq with the same IDR pattern as xquery,
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(177)
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as long as (167) holds. We also have
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Similarly, for j ̸= q and j ∈ [M1] where µl does not form a task in Ttr with the µq ,
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For j ̸= q and j ∈ [M1] where µj forms a task in Ttr with µq ,
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(180)

where the first step comes from the fact that a negative gradient update makes the softmax value of µl much smaller. The
last step is obtained in the order related to η, t,M1 as variables. Meanwhile, for k ∈ [M2],
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(b) Then we study the updates of WK . We can compute the gradient as
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If we investigate W
(t)
K pns , we can tell that the output is a weighed summation of multiple W

(t)
Q pnquery. Similarly, the

output of W (t)
Q pnquery is a weighed summation of multiple W

(t)
K ps. Given the initialization W

(0)
Q and W

(0)
K , the update

of W (t)
K pns and W

(t)
Q pnquery only contains the contribution from the feature space embeddings at the initialization. One
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difference is that since that q appears with 1/2 probability in all pns ,∣∣∣η 1
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Following the steps in Part (a), we can obtain that for µq as the IDR pattern of xq , e ∈ [l],
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and combining (183),
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where the last step holds as long as (167). For µj which forms a task in Ttr with the µq ,
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For µj which does not form a task in Ttr with the µq ,∣∣∣(µ⊤
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Meanwhile, for k ∈ [M2], similar to (181),∣∣∣(ν⊤
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E.6. Proof of Lemma D.6

Proof.
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Let xni and xnj correspond to IDR patterns µa and µb, respectively. For pnquery which corresponds to the IDR feature µa,
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(190)

where the first step holds since that by (137), with high probability, no other xnk where k ̸= l+1 shares the same IDI pattern
as xnquery. The last step holds if
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Meanwhile, by a different IDR pattern of xnj ,
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When t = 0, for all i ∈ Wn, we have that by Lemma D.10, for pnquery that corresponds to µa,
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Therefore, for any pnj = (xnj
⊤,ynj

⊤)⊤ where f (n)(x̃nj ) = +1, and

xnj = µa + κnj νb, (194)

we have
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We then have that by combining (190) and (192),
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Since that for pns and pnj with different label embeddings, their inner product is smaller than −1 + β if they share the same
IDR pattern, or smaller than −1 if they share different IDR patterns. On average, in a batch, this product is close to −1.
Hence
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Meanwhile, since that
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where
√
logB/B is because that zn is selected from {+1,−1} with equal probability. Hence, we can denote and derive

that when t = t0 + 1,
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where
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we have
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where
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We can also derive
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where
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since that 1/M2 fraction of pns has νK as the IDI pattern in average.
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E.7. Proof of Lemma D.7

Proof.
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Consider a certain pns = (xns
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When t = 0, we can obtain that for i ∈ Wn and µa as the IDR pattern of pnquery,
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Then, we have the following results by Lemma D.6, and the magnitude of µa, µb, and q,
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Denote the set of data that share one same IDR pattern as pnquery as Bnb in the b-th iteration. Therefore, when t = 1, we have
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(219)

where the first inequality comes from that the update in the previous step makes the output of W (b)
O(i,·)

for i ∈ Wn be positive.
The second step holds when B ≳ M1. We also have
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For i ∈ Un, we also have
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(222)

if pnj corresponds to label −1 in this task. For i /∈ Wn(t) ∪ Un(t), we have
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Suppose that the conclusion holds when t ≤ t0. Then when t = t0 + 1, we have that for i ∈ Wn, b ̸= a, and pnquery
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corresponding to q and µa,
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(224)

where the first inequality is by plugging the condition in the induction. The last two steps come from basic mathematical
computation. Then,
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where lower bound in the last step is also a tight estimation of the second to last step if η2Tm/a2 ≪ 1. Then, we have
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By Lemma D.10, when t ≥ Θ(1), we have
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Hence,
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which holds for i ∈ ∪n∈[N ]Wn = W . Meanwhile,
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For i ∈ Un and pnquery corresponding to −q and µa, similarly to (226), (227), and (228), we have
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(230)

and when t ≥ Θ(1),
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which also holds for i ∈ ∪n∈[N ]Un = U . Meanwhile,
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Then, for i ∈ Wn ∪ Un,
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For i /∈ W ∪ U , we have
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E.8. Proof of Lemma D.9

Proof. We know that the Gaussian initialization of W (0)
O(i,·)

generates a uniform distribution on the dX − 1-sphere for the
first dX dimensions. Therefore,

Pr(i ∈ Wn) = AcapdX (ϕ)/AdX , (236)

where AdX is the surface area of an dX − 1-sphere. AcapdX (ϕ) is the surface area of a dX − 1-spherical cap with ϕ as the
colatitude angle. By Equation 1 in (Li, 2010), we have
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where I·(·, ·) is the regularized incomplete beta function. Since that

ϕ ≤ π/2−Θ(1/M1), (238)
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to avoid concentration error of Θ(
√
1/m) if m ≳ M2

1 , we have that when dX = M1 +M2 = M = Θ(M),
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where the second inequality comes from that cos2(1/M) = (1 + cos(2/M))/2 ≥ 1− 1/M2 ≥ 1− 1/M , and the third to
last step is by (1− 1/M)

dX−3

2 ≥ Θ(1), and the last step is by M ≥ Θ(1). For the second dY dimensions of W (0)
O(i,·)

, we
can derive a similar result by replacing dX with dY in (239). This implies that

|Wn| ≥ Ω(1) · Ω(1) ·m ≥ Ω(m). (240)

Likewise, the conclusion holds for Un. Since that W = ∪n∈[NWn, U = ∪n∈[NUn, we have

|W|, |U| ≥ Ω(m). (241)

E.9. Proof of Lemma D.10

Proof. We prove this lemma in two steps. In the first step, we prove the conclusion by replacing W with Wn, and replacing

U with Un. We will also cover the proof of W (0)
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Hence, the conclusion holds. When t = 1, we have
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By (211) and definition of Wn, we have
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Hence,
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By the gradient update when t = 0, we know that the largest component in the feature embedding is the IDR pattern for
pnquery, and the label embedding is close to being in the direction of the label embedding of pnquery. Hence,
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Denote θin as the angle between the feature embeddings of V n(0) and W
(0)
O(i,·)

. Since that the feature embedding of W (0)
O(i,·)

is initialized uniformed on the dX − 1-sphere, we have E[θin] = 0. By Hoeffding’s inequality (27), we have
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with probability of at least 1−M−10
1 . When m ≳ M2 logM1, we can obtain that
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Therefore, for i ∈ Wn, as long as m ≳ M2
1 logM1, we have
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Given B ≳ M1 logM1, by Lemma D.6, and combining (251), we have that
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Therefore, the conclusion holds when t = 1.
Suppose that the conclusion holds when t ≤ t0. When t = t0 + 1, by (244), we can check that
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where the second 0 comes from (248) and the conditions that such conclusion in (253) holds when t ≤ t0. Combining (228)
and the fact that the weighted summation of pns is close to be in the direction of µj and q in the feature label embeddings,
respectively, where µj is the IDR pattern of the pquery, we have
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where the first step is by the formula of the gradient descent, and the second step is by (
∑t0−1
b=0 η

∑
i∈Wn

Vi(b)W
(b)
O(i,·)

+

η
∑
i∈Wn

Vi(t0)W
(t0)
O(i,·)

)W
(t0)
O(i,·)

> 0 from the induction steps. The last step comes from the fact that

∥
∑t0−1
b=0 η

∑
i∈Wn

Vi(b)W
(b)
O(i,·)

∥2 > 0 and
∑t0−1
b=0 η

∑
i∈Wn

Vi(b)W
(b)
O(i,·)

· η
∑
i∈Wn

Vi(t0)W
(t0)
O(i,·)

⊤
> 0 by the in-

duction, and that Vi(t) for i /∈ Wn is much smaller than that in Wn given B ≳ M1. Then,

t−1∑
b=0

η(
∑
i∈Wn

Vi(b)W
(b)
O(i,·)

+
∑
i∈Un

Vi(b)W
(b)
O(i,·)

+
∑

i/∈Wn∪Un

Vi(b)W
(b)
O(i,·)

)⊤W
(t)
O(i,·)

⊤
> 0, (256)

since the norm W
(t)
O(i,·)

for i /∈ Wn is no larger than that for i ∈ Wn. Combining (253), (254), and (256), we have

W
(t)
O(i,·)

V n(t) > 0. (257)
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Hence, we finish the induction.
(2) When t ≳ Θ(β), for i ∈ W , by checking (244), we can deduce that

W
(0)
O(i,·)

W
(t)
O(i,·)

⊤
+ η

1

B

∑
n∈Bb

1

a

l+1∑
s=1

softmax(pns
⊤W

(t)
K

⊤
W

(t)
Q pnquery)δp

n
s
⊤W

(t)
O(i,·)

⊤
> 0, (258)

since that the accumulated label embedding term of W (t)
O(i,·)

contributed positively to pns
⊤W

(t)
O(i,·)

⊤
and is larger than that

of the feature embedding contribution by (154) and (155) (the gradient updates is close in the direction of the IDR pattern of

pnquery when m ≳ M2
1 ). Since that ∥W (0)

O(i,·)
(µ⊤

j ,0
⊤)⊤∥ ≤ βξ for any j ∈ [M1], the effect of W (0)

O(i,·)
W

(t)
O(i,·)

⊤
to the sign

is much smaller than the remaining terms in (258). Hence, we show (258).
Then, since that the label embedding of WO(i,·) , WO(j,·) are both close to q for i, j ∈ W , and that the feature embedding
of WO(i,·) , i ∈ Wn is close to the IDR pattern of pnquery, which is not the negative direction of the feature embedding of
WO(j,·) , j ∈ Wn′ , we have for j ∈ W\Wn,

t−1∑
b=0

η
∑
i∈Wn

Vi(b)W
(b)
O(i,·)

⊤
W

(t)
O(j,·)

⊤
> 0. (259)

Given that Vi(t) for i /∈ Wn is much smaller than that in Wn given B ≳ M1 and the norm W
(t)
O(i,·)

for i /∈ Wn is no larger
than that for i ∈ Wn, we have

t−1∑
b=0

η(
∑
i∈Wn

Vi(b)W
(b)
O(i,·)

+
∑
i∈Un

Vi(b)W
(b)
O(i,·)

+
∑

i/∈Wn∪Un

Vi(b)W
(b)
O(i,·)

)⊤W
(t)
O(i,·)

⊤
> 0. (260)

Therefore, we can derive that for i ∈ W ,
W

(t)
O(i,·)

V n(t) > 0. (261)
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