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Abstract
Latent confounding bias and collider bias are two
key challenges of causal inference in observa-
tional studies. Latent confounding bias occurs
when failing to control the unmeasured covari-
ates that are common causes of treatments and
outcomes, which can be addressed by using the
Instrumental Variable (IV) approach. Collider
bias comes from non-random sample selection
caused by both treatments and outcomes, which
can be addressed by using a different type of in-
struments, i.e., shadow variables. However, in
most scenarios, these two biases simultaneously
exist in observational data, and the previous meth-
ods focusing on either one are inadequate. To the
best of our knowledge, no approach has been de-
veloped for causal inference when both biases ex-
ist. In this paper, we propose a novel IV approach,
Two-Stage Shadow Inclusion (2SSI), which can
simultaneously address latent confounding bias
and collider bias by utilizing the residual of the
treatment as a shadow variable. Extensive exper-
imental results on benchmark synthetic datasets
and a real-world dataset show that 2SSI achieves
noticeable performance improvement when both
biases exist compared to existing methods.

1. Introduction
Causal inference empowers machine learning methods to
learn causality other than correlations from observational
data. It has achieved remarkable success in trustworthy
machine learning studies (Cui & Athey, 2022; Nilforoshan
et al., 2022; Wang et al., 2022; Zhang et al., 2023; 2024).
The primary task of causal inference in observational studies
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Figure 1. Causal graphs for illustrating the latent confounding prob-
lem and the instrumental variable approach. The dashed node
denotes that the variable is unmeasured.
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Figure 2. Causal graphs for illustrating the collider bias problem
and the shadow variable approach.

is to remove spurious correlations, of which the two most
common sources are confounding bias and collider bias
(Hernán & Robins, 2020).

Figure 1 shows the causal graph of (latent) confounding bias
and a method to address it, where T denotes the treatment
variable, X denotes the observed/measured covariates, U
denotes the unobserved/unmeasured covariates, Y denotes
the outcome variable, and Z denotes an Instrumental Vari-
able (IV). As shown in Figure 1(a), confounding bias occurs
when common causes of T and Y , namely confounders, are
not measured and controlled. Confounding bias introduces
spurious correlations between T and Y , e.g., the non-causal
path T ← U→ Y . In this paper, we focus on confounding
bias caused by unmeasured confounders. The IV approach is
commonly used to address latent confounding bias, that was
initially proposed assuming the existence of well-defined
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Figure 3. Causal graph for illustrating our problem setting. The
undirected edge between X and U implies that X → U or
U → X, or they have more intricate interactions that are not
straightforwardly directional.

IVs under linearity settings (Angrist et al., 1996). As shown
in Figure 1(b), a valid IV Z is a cause of T , not a direct
cause of Y , and independent of U. Recent studies have gen-
eralized the IV approach to nonlinear scenarios (Terza et al.,
2008; Hartford et al., 2017; Xu et al., 2021). The basic idea
of the IV approach is to regress Y on the estimated T by Z,
such that U is conditional independent of the estimated T
in the regression.

Figure 2 shows the causal graph for illustrating the collider
bias and a method to address it, where S denotes the bi-
nary selection indicator and V denotes a shadow variable.
S can be caused by both T and Y . If S = 1, then the
unit is in the observational samples and all the variables are
fully measured; otherwise, the unit is also in the observa-
tional samples, but her outcome value is missing (Heckman,
1979). Figure 2(a) shows the collider bias that arises from
non-random sample selection conditional on S. Collider
bias also introduces spurious correlations between T and Y ,
e.g., the non-causal path T → S ← Y . Previous studies use
shadow variables to address collider bias (d’Haultfoeuille,
2010; Miao & Tchetgen Tchetgen, 2016). As shown in
Figure 2(b), a shadow variable V is associated with Y con-
ditional on T in the S = 1 samples and not a direct cause of
S. The idea of the shadow variable method is to generalize
the results on the S = 1 samples to the S = 0 samples to
remove the spurious correlation caused by S.

Although IV and shadow variable methods have successfully
addressed either latent confounding bias or collider bias,
they are inadequate when both biases exist. As shown in
Figure 3, when both biases exist, IV approaches can only
address the spurious correlation T ← U → Y caused by
latent confounding, and the estimate is still biased due to
the other spurious correlations caused by conditioning on
S. What is worse, collider bias also makes the estimation
results on S = 1 samples inaccurate on the S = 0 samples
because of the distribution shift between the S = 1 and S =
0 samples. Meanwhile, if there exists a shadow variable
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Figure 4. Causal graph for illustrating our motivation, where the
gray node denotes the variable is learned from observed variables.

to address collider bias, this variable does not address the
latent confounding bias.

In real-world scenarios, latent confounding bias and collider
bias commonly both exist (Hernán & Robins, 2020; Griffith
et al., 2020). For example, in the context of selecting pilots,
we study the effect of a voluntary pilot training program
(T ) on the final testing results (Y ), with covariates (X) such
as physical condition and family economic status. Offi-
cers/HR select whom to take the tests based on paperwork,
i.e., whether taking training programs (T ), height, weight,
age (X), etc., and release the admitted ones’ score (the score
Y is larger than a specific value). This selection mechanism
(S) is not affected by candidates’ latent characteristics (U)
(e.g., candidates’ passion for the pilot profession). Only
the test scores (Y ) of selected pilots (S = 1) are released.
We do not observe the test scores (Y ) for unselected pilots
(S = 0), leading to collider bias. Also, candidates who are
passionate about the profession may take more time to pre-
pare for the test and perform better in the test (so U affects
Y ) and also might be more willing to participate in training
(so U affects T ), leading to latent confounding bias. To the
best of our knowledge, no approach has been developed for
causal inference under both latent confounding and collider
bias. Therefore, it is crucial to develop an approach for
causal inference under both biases.

As previously mentioned, prior research on instrumental
variables (IVs) has established identification theory under
latent confounding when well-defined IVs are accessible.
Similarly, studies on shadow variables have provided identi-
fication theory in the presence of collider bias when well-
defined shadow variables are available. However, in prac-
tical scenarios, the simultaneous availability of both well-
defined instrumental variables and shadow variables is rare.
In this paper, we propose a novel approach: leveraging well-
defined IVs to construct the shadow variable and address
latent confounding and collider bias. Thus, we introduce
Two-Stage Shadow Inclusion (2SSI), a method designed to
achieve this objective. As shown in Figure 4, in the first
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stage of 2SSI, we regress T on X and Z, and learn a de-
composed representation Φ of Z that is only related to S
and conditional independent of T . Consequently, we obtain
the residual R of T that is a shadow variable because it is
independent of S conditional on X, T, Y , and Φ, and it is
related to Y through R← U→ Y . In the second stage of
2SSI, we use R and Φ to address the spurious correlations
caused by T ← U→ Y with S = 1 samples, and then gen-
eralize the results to the whole data space to address collider
bias. We conducted extensive experiments on benchmark
and real-world datasets. The experimental results show that
the proposed method outperforms existing methods under
latent confounding and collider bias.

In summary, the contributions of this paper are as follows.

• We study a challenging and important problem of
causal inference in observational studies, i.e., causal
inference under latent confounding and collider bias.

• We propose a novel method that simultaneously ad-
dresses latent confounding and collider bias. To the
best of our knowledge, this is the first approach devel-
oped for causal inference when both biases exist.

• Extensive experimental results on both synthetic and
real-world datasets demonstrate the effectiveness of
the proposed method.

2. Related Work
IV approaches for latent confounding. The series of IV
approaches is a commonly employed way to address latent
confounding. The most famous IV method is Two-Stage
Least Regression (2SLS), which uses IVs to estimate the
treatment and utilizes the estimated treatment to estimate the
outcome under linear settings (Angrist et al., 1996; Angrist
& Krueger, 2001; Brito & Pearl, 2002; Baiocchi et al., 2014).
In nonlinear scenarios, Two-Stage Residual Inclusion (2SRI)
is proposed to use the residual of the treatment from the first
stage regression to estimate the outcome in the second stage
(Terza et al., 2008). Recent studies utilize machine learning
techniques to apply IV approaches to more complex real-
world scenarios (Hartford et al., 2017; Bennett et al., 2019;
Singh et al., 2019; Xu et al., 2021; Wu et al., 2022). All the
above IV approaches can only address latent confounding.
When there is also collider bias, since the Y values of S = 0
data are missing, they can only use the S = 1 samples for
the second-stage regression, which brings two challenges for
the above methods: (1) The estimate E[Y | X, T, S = 1] ̸=
E[Y | X, T ] because Y ⊥̸⊥ S | X, T . (2) They can only
eliminate the spurious correlations caused by U→ T , but
still suffer from the ones introduced by conditioning on S.
Note that other methods for the latent confounding problem,
like data fusion and negative control methods (Shi et al.,
2020; Colnet et al., 2023), though being out of the scope of
this paper because the key assumptions are different, also

cannot address collider bias because of the challenges.

Methods for non-random sample selection. Collider bias
can be regarded as a special case of the non-random sample
selection problem, a.k.a. sample selection bias. Previous
works on sample selection bias, including Heckit and its
variants (Heckman, 1979; Ding, 2014; Ogundimu & Hutton,
2016; Wiemann et al., 2022), Inverse Probability of Sam-
pling Weights (IPSW) (Cole & Stuart, 2010), and selection-
backdoor adjustment (Bareinboim et al., 2022; Bareinboim
& Tian, 2015), focus on the non-random sample selection
caused by only the covariates and treatments and cannot
deal with collider bias. d’Haultfoeuille (2010); Miao & Tch-
etgen Tchetgen (2016); Li et al. (2023) propose approaches
that leverage a different type of IV, namely shadow variable,
to address collider bias. These methods use a well-defined
shadow variable V to generalize the estimate results ob-
tained from the S = 1 samples to S = 0 data, i.e., to
generalize E[Y | X, T, V, S = 1] to E[Y | X, T, V, S = 0],
such that all the spurious correlations introduced by condi-
tioning on S can be eliminated. However, their performance
relies on the assumption that all the possible confounders
are fully measured. If there is also latent confounding,
E[Y | X, T, V, S = 1] is not only biased by conditioning
on S but also biased by the non-causal path T ← U→ Y ,
making shadow variable approaches unavailable.

To the best of our knowledge, there is currently no method
developed for causal inference under both latent confound-
ing and collider bias. Therefore, we propose a novel IV
approach to fill this gap in this paper.

3. Preliminaries
3.1. Problem Formulation

Suppose we have the observational data D =
{xi, ti, yi, zi, si}ni=1 sampled from a super population
P , where n denotes the number of units and si ∈ {0, 1}
indicates whether a unit is selected into the sample, i.e.,
whether the value of its outcome can be observed. For a
unit i with si = 1, we observe its treatment ti ∈ T that
can be continuous or binary, outcome yi ∈ Y , instrumental
variable zi ∈ Z , and covariates xi ∈ X . For a unit i with
si = 0, we only observe ti,xi, and zi, while the value of
yi is missing. Our goal is to estimate E[Y | do(T = t),X]
(Pearl, 2009). However, because of latent confounding and
collider bias, we can only estimate E[Y | X, T, S = 1],
which is generally different from E[Y | do(T = t),X].

Following previous works, we make the following assump-
tions throughout this paper (Imbens & Rubin, 2015):

Assumption 3.1. Stable Unit Treatment Value Assump-
tion. The distribution of the potential outcome of one unit
is assumed to be independent of the treatment assignment
of another unit.
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Assumption 3.2. Overlap Assumption. A unit has a
nonzero probability of being treated and selected, i.e., 0 <
P(T = 1 | X = x) < 1 and 0 < P(S = 1 | X = x) < 1.

3.2. Preliminaries of the Instrumental Variable
Approach

In this paper, we utilize the Instrumental Variable (IV) de-
fined as follows (Angrist et al., 1996).

Definition 3.3. Instrumental Variable. An instrumental
variable Z satisfies the following conditions: (1) Z is a
cause of T , i.e., P(T | Z) ̸= P(T ); (2) Z is not a direct
cause of Y , i.e., Z ⊥⊥ Y | X,U, T ; (3) Z is independent of
U and X, i.e., Z ⊥⊥ U,X.

The identification of IV approaches rely on the following
additive model assumption (Newey & Powell, 2003; Heck-
man et al., 2006; Hernán & Robins, 2006; Terza et al., 2008;
Imbens & Rubin, 2015; Hansen, 2022).

Assumption 3.4. Additive Model Assumption. The asso-
ciation between the IV and the treatment and between the
treatment and the outcome follow additive noise models,
i.e., T = g(X, Z) + et(U) and Y = f(X, T ) + ey(U),
where et(U) and ey(U) denote the noise term, a function
of the latent variables U.

Under Assumption 3.4, we can conduct a two-stage regres-
sion to address latent confounding. In the first stage, we
regress T on X and Z and obtain the estimated T that is
independent of U. In the second stage, we regress Y on X
and the estimated T that avoids the influence of U→ T .

3.3. Preliminaries of the Shadow Variable Approach

Previous studies propose to use shadow variables to ad-
dress collider bias under the assumption that there are no
unmeasured confounders. The shadow variable is defined
as follows (d’Haultfoeuille, 2010; Miao et al., 2024):

Definition 3.5. Shadow Variable. A shadow variable V
needs to satisfy the following conditions: (1) V is related
to Y conditional on X and T in the S = 1 samples, i.e.,
V ⊥̸⊥ Y | X, T, S = 1; (2) V is not a direct cause of S, i.e.,
V ⊥⊥ S | X, T, Y .

With the help of a shadow variable, we can estimate E[Y |
X, T, V, S = 1] with the S = 1 samples and generalize it
to the S = 0 samples by the following equation (Miao &
Tchetgen Tchetgen, 2016; Miao et al., 2024):

τ0(X, T, V ) =
OR(X, T, Y ) · τ1(X, T, V )

E[OR(X, T, Y ) | X, T, V, S = 1]
, (1)

where τ0(X, T, V ) is equal to E[Y | X, T, V, S = 0],
τ1(X, T, V ) is equal to E[Y | X, T, V, S = 1], and

OR(X, T, Y ) is the odds ratio function defined as

OR(X, T, Y ) =
P(S = 0 | X, T, Y ) · P(S = 1 | X, T, Y = 0)

P(S = 0 | X, T, Y = 0) · P(S = 1 | X, T, Y )
.

Note that Y = 0 is used as a reference value and can
also be other values within the support of Y . Equation
(1) shows that the key challenge of collider bias is that
E[Y | X, T, V, S = 0] is unidentifiable. This challenge can
be addressed by using shadow variables through integrating
the odds ratio function over the distribution of the S = 1
samples. Since E[Y | X, T, V, S = 1] can be obtained
from the fully observed S = 1 samples, the only problem is
identifying the odds ratio function. The identification can
be guaranteed by the following theorem.

Condition 3.6. (Miao et al., 2024) For all square-integrable
functions h(X, T, Y ), E[h(X, T, Y ) | X,Z, T, S = 1] = 0
almost surely if and only if h(X, T, Y ) = 0 almost surely.

Theorem 3.7. (Miao et al., 2024) If V satisfies the
conditions in Definition 3.5, let ÕR(X, T, Y ) denote
OR(X, T, Y )/E[OR(X, T, Y ) | X, T, S = 1] and
ÕR1(X, T, Y ) denote E[ÕR(X, T, Y ) | X, T, V, S = 1],
we have

OR(X, T, Y ) =
ÕR(X, T, Y )

ÕR(X, T, Y = 0)
(2)

and

ÕR1(X, T, Y ) =
E[V | X, T, S = 0]

E[V | X, T, S = 1]
. (3)

Under Condition 3.6, Equation (3) has a unique solution.
Consequently, τ0(X, T, V ) and OR(X, T, Y ) can be iden-
tified, and thus E[Y | X, T, V ] can be identified.

Theorem 3.7 indicates that with E[V | X, T, S = 0] and
E[V | X, T, S = 1] obtained from the observed data,
we can obtain ÕR(X, T, Y ) by Equation (3) and iden-
tify OR(X, T, Y ) by Equation (2). As τ1(X, T, V ) and
OR(X, T, Y ) can both be identified, τ0(X, T, V ) can also
be identified by Equation (1).

Note that in our problem setting, there is no well-defined
shadow variable because any measured variable can be a
direct cause of S. Meanwhile, because of the latent con-
founding problem, shadow variable approaches are not ap-
plicable since the assumption that there are no unmeasured
confounders is violated.

4. Two-Stage Shadow Inclusion
4.1. Motivation

Under both latent confounding and collider bias, IV ap-
proaches are not applicable because of the two problems
stated in Section 2:
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• The basic idea of IV approaches is to leverage the
estimated T by Z that is independent of U to eliminate
the spurious correlations caused by T ← U → Y .
However, when there is also collider bias, the other
spurious correlations introduced by conditioning on S
also bias the estimate.

• We can only estimate (biased) E[Y | X, T, S = 1],
which is different from E[Y | X, T ] because collider
bias makes Y ⊥̸⊥ S | X, T .

To address the above problems of IV methods and make
causal inference under both biases possible, we propose
to leverage an IV to accomplish two objectives simultane-
ously: (1) Addressing the spurious correlations introduced
by T ← U → Y , and (2) automatically constructing a
shadow variable and use it to generalize E[Y | X, T, S = 1]
to E[Y | X, T ], such that the spurious correlations intro-
duced by conditioning on S is also avoided.

Throughout this paper, we make the following additional
assumption.

Assumption 4.1. Unconfounded Sample Selection As-
sumption. The unmeasured confounders are not direct
causes of the sample selection, i.e., S ⊥⊥ U | X, T, Y, Z.

Assumption 4.1 indicates that except for the unmeasured
U, the measured variables X, T, Y , and Z can all be direct
causes of S, as shown in Figure 3. Note that Assumption
4.1 only requires that U does not influence S, but does
not require that all of X, T, Y , and Z influence S. Instead,
this assumption implies that our method can handle the
complex scenarios where they all influence S. However, if
some of them do not affect S, our method remains effective.
The assumption is reasonable in many real-world scenarios
because data collectors usually select data based on what
they can observe. For example, in scenarios where selection
is driven by data processors based on existing information
(as exemplified earlier in this paper), U only indirectly
affects S through the observed variables like X.

Under Assumptions 3.1, 3.2, 3.4, and 4.1, we can use the
IV Z in a two-stage regression way to address both latent
confounding and collider bias.

• In the first stage, we regress T on X and Z and obtain
the residual R in this regression. Simultaneously, we
learn a decomposed representation Φ of Z that is con-
ditional independent of T and is associated with S by
regressing S on X, T , and Φ.

• In the second stage, we incorporate R and Φ in the
outcome regression process, using R as both a proxy
for U and a shadow variable, i.e., we regress Y on
X, T,Φ, and R.

The detailed explanation is as follows.

Proposition 4.2. Under Assumption 3.4, it is possible to

consistently estimate f(X, T ) by including R and address-
ing the collider bias in the second stage.

Proof. In the first stage, because X, T , and Z are all fully
measured, we can regress T on X and Z using both S = 1
and S = 0 data, which ensures that the first-stage regression
is not conditional on S. Hence, the first-stage regression is
not affected by collider bias. We can consistently estimate
g(X, Z) in the first-stage regression and the residual R is
a consistent estimator of et(U). Then following the same
argument in (Terza et al., 2008), by includingR and properly
addressing the collider bias in the second stage, it is possible
to remove the bias from the term ey(U) and consistently
estimate f(X, T ).

Next we show how to address the collider bias. Our pro-
posed approach is to learn a decomposed representation Φ
of Z that is conditional independent of T and is associated
with S during the first stage. Then the next proposition
shows that by conditioning on Φ, X, and T , the residual R
satisfies the definition of shadow variable. Therefore, it is
possible to address the collider bias by using R and Φ.

Proposition 4.3. Conditional on Φ satisfying that Φ⊥̸⊥ S
and Φ ⊥⊥ T | Z, the residual R is a shadow variable that
satisfies all the conditions in Definition 3.5.

Proof. Since Φ ⊥̸⊥ S and Φ ⊥⊥ T | Z, we have R ⊥⊥
S | X, T, Y,Φ and R ⊥̸⊥ Y | X, T,Φ, S = 1 (because of
R ← U → Y ). Therefore, R is a shadow variable that
satisfies the conditions in Definition 3.5.

Based on Propositions 4.2 and 4.3, including R and Φ in the
second stage can not only address the latent confounding
bias, but also the collider bias. Thus, f(X, T ) can be con-
sistently estimated, as shown in the following proposition.

Proposition 4.4. Under Assumptions 3.1, 3.2, 3.4, and 4.1,
we can consistently estimate f(X, T ) under latent confound-
ing and collider bias by including R and Φ in the second
stage.

Proof. As stated in the proof of Proposition 4.2, the first-
stage regression is not conditional on S and thus is not
collider-biased. Meanwhile, latent confounding does not
affect the estimation of the parameters of Z and X in the
first-stage regression. Therefore, the first-stage regression is
unbiased even when these two biases exist.

Therefore, including both R and Φ in the second stage can
not only address the spurious correlations caused by T ←
U → Y through blocking U → T by R, but also address
the spurious correlations introduced by conditioning on S
through using R as a shadow variable. As a result, with
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the help of the IV, we can construct the shadow variable R
and consistently estimate E[Y | X, T,Φ, R] under latent
confounding and collider bias.

4.2. Implementation

Based on the above motivation, we propose a novel IV
approach that simultaneously addresses latent confound-
ing and collider bias, namely Two-Stage Shadow Inclusion
(2SSI). Following previous works (Hartford et al., 2017;
Xu et al., 2021), we utilize deep neural networks to learn
deep features of the instruments, treatments, and covariates,
which allows us to fit highly nonlinear basis functions.

The first-stage regression. In the first stage of 2SSI, we
regress T on the fully observed X and Z with both S = 1
and S = 0 data by a treatment prediction function ft(X, Z).
Meanwhile, we also learn a representation Φ of Z satisfying
that Φ ⊥̸⊥ S and Φ ⊥⊥ T | Z by a representation func-
tion fΦ(Z) and a selection indicator prediction function
fs(X, T, fΦ(Z)). The loss function is

Lt =
1

n

n∑
i=1

(ti − ft(xi, zi))
2

− 1

n

n∑
i=1

[
si · log(fs(xi, ti, fΦ(zi)))

+ (1− si) · log(1− fs(xi, ti, fΦ(zi)))
]

+ λ · disc(T, fΦ(Z)),

where λ is a hyperparameter and disc(T, fΦ(Z)) denotes
the distributional discrepancy measurement used for mak-
ing Φ independent of T conditional Z. Following previous
works (Shalit et al., 2017; Hassanpour & Greiner, 2020;
Wu et al., 2022), for binary treatments, we use the Inte-
gral Probability Metric (IPM) to minimize the distance be-
tween P(fΦ(Z) | T = 1) and P(fΦ(Z) | T = 0), i.e.,
disc(T, fΦ(Z)) = IPM({fΦ(zi)}i:ti=1, {fΦ(zi)}i:ti=0).
For continuous treatments, we use Contrastive Log-ratio Up-
per Bound (CLUB) (Cheng et al., 2020) to minimize the Mu-
tual Information (MI) of Φ and T , i.e., disc(T, fΦ(Z)) =
MI(T, fΦ(Z)). The second and third lines in Lt are the like-
lihood to predict S using X, T , and fΦ(Z), ensuring that
the learned Φ is associated with S, while being conditionally
independent of T given Z (from disc(T, fΦ(Z))).

Subsequently, we obtain the residualsR of T byR = T−T̂ ,
where T̂ is the predicted value of T . Note that for binary
treatments, a generalized version of residual (Gourieroux
et al., 1987) is a viable option.

The second-stage regression. In the second stage of 2SSI,
we incorporate R and Φ into the regression of Y . Be-
cause the value of Y for the S = 0 samples are miss-
ing, we first learn a selected outcome prediction function
fy1(X, T,Φ, R) to estimate E[Y | X, T,Φ, R, S = 1] with

Algorithm 1 Two-Stage Shadow Inclusion
Input: D = {xi, ti, yi, zi, si}ni=1, λ, mini-batch sizes
m1,m2(A),m2(B), number of updates e1, e2.

Output: The estimated conditional expectation of Y on the
target population, i.e., E[Y | X, T,Φ, R].
Initialize parameters in fΦ, fs, ft, fy1

, fr1 , fr0 , fõr, fy0
,

fp.
repeat

Sample m1 units from D as Batch 1.
for j = 1 to e1 do

Optimize fΦ, fs, and ft by Lt using Batch 1.
end for
R← T − ft(X, Z).
Sample m2(A) units with S = 1 as Batch 2(A).
Sample m2(B) units with S = 0 as Batch 2(B).
for j = 1 to e2 do

Optimize fp by Lp using Batch 1.
Optimize fy1

by Ly1
using Batch 2(A).

Optimize fr1 by Lr1 using Batch 2(A).
Optimize fr0 by Lr0 using Batch 2(B).

end for
for j = 1 to e2 do

Optimize fõr by Lõr using Batch 2(A).
end for
Calculate OR(X, T,Φ, Y ) and Ỹ in Batch 2(A) by
Equations (1) and (3).
for j = 1 to e2 do

Optimize fy0
by Ly0

using Batch 2(A).
end for

until convergence
E[Y | X, T,Φ, R] ← fy0

(X, T,Φ, R) · (1 −
fp(X, T,Φ, R)) + fy1(X, T,Φ, R) · fp(X, T,Φ, R).
return E[Y | X, T,Φ, R]

the following loss function

Ly1
=

1

n1

n1∑
i=1

(yi − fy1
(xi, ti, fΦ(zi), ri))

2,

where n1 denotes the number of S = 1 units in D. This
estimation avoids the spurious correlations caused by T ←
U → Y because R blocks this path. However, it is still
biased due to the other spurious correlations introduced
by the collider bias. Therefore, we propose to use R as a
shadow variable to address this problem.

Based on Theorem 3.7, we separately use functions
fr1(X, T,Φ) and fr0(X, T,Φ) to estimate E[R |
X, T,Φ, S = 1] and E[R | X, T,Φ, S = 0] with S = 1
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and S = 0 data. The loss functions are

Lr1 =
1

n1

n1∑
i=1

(ri − fr1(xi, ti, fΦ(zi)))
2,

Lr0 =
1

n0

n0∑
i=1

(ri − fr0(xi, ti, fΦ(zi)))
2,

where n0 denotes the number of S = 0 units in D. Fol-
lowing this, we can obtain ÕR1(X, T,Φ, Y ) by Equation
(3) and further estimate ÕR(X, T,Φ, Y ) using a function
fõr(X, T,Φ, Y ). The loss function is

Lõr =
1

n1

∑
i:si=1

(fõr(xi, ti, fΦ(zi), yi)

− fr0(xi, ti, fΦ(zi))/fr1(xi, ti, fΦ(zi)))
2,

Next, we get OR(X, T,Φ, Y ) in Equation (2) and
the counterfactual S = 0 outcomes of the S =
1 samples in Equation (1), denoted as Ỹ , i.e.,
Ỹ = fõr(X, T,Φ, Y )/fõr(X, T,Φ, fy1

(X, T,Φ, R)) ·
fy1

(X, T,Φ, R). Now, we can learn another unselected
outcome prediction function fy0

(X, T,Φ, R) to estimate
E[Y | X, T,Φ, R, S = 0], with the loss function being

Ly0
=

1

n1

n1∑
i=1

(ỹi − fy0
(xi, ti, fΦ(zi), ri))

2.

All the above learning processes in the second stage share
the same features of X, T , Φ, and R and can thus be jointly
optimized. To finally obtain E[Y | X, T,Φ, R], we also
learn a sample selection function fp(X, T,Φ, R) that esti-
mates P(S = 1 | X, T,Φ, R) with the loss function being

Lp =− 1

n

n∑
i=1

(si · log(fp(xi, ti, fΦ(zi), ri))

+ (1− si) · log(1− fp(xi, ti, fΦ(zi), ri))).

Following this, we simultaneously address latent confound-
ing and collider bias and estimate E[Y | X, T,Φ, R] by

E[Y | X, T,Φ, R] = fy0
(X, T,Φ, R) · (1− fp(X, T,Φ, R))

+ fy1
(X, T,Φ, R) · fp(X, T,Φ, R).

The pseudo-codes are in Algorithm 1, and the source code
is available at https://github.com/ZJUBaohongLi/
2SSI.

5. Experiments
5.1. Baselines

We compare the proposed 2SSI with two groups of meth-
ods. One group is IV approaches for addressing latent

confounding, including (1) 2SRI (Terza et al., 2008), (2)
DeepIV (Hartford et al., 2017), (3) Kernel IV (Singh et al.,
2019), (4) DeepGMM (Bennett et al., 2019), (5) DFIV (Xu
et al., 2021), (6) CB-IV (Wu et al., 2022). The other group
is approaches for addressing non-random sample se-
lection, including (1) Heckit (Heckman, 1979), (2) IPSW
(Cole & Stuart, 2010), and (3) Shadow variable estimation
(SHADOW) (Miao & Tchetgen Tchetgen, 2016).

Because there is no shadow variable available in our prob-
lem setting, we used Z as a shadow variable to implement
SHADOW. Specifically, with the help of the decomposed
representation Φ learned from the first-stage regression
of 2SSI, Z satisfies that Z ⊥̸⊥ Y | X, T,Φ, S = 1 and
Z ⊥⊥ S | X, T, Y,Φ. Therefore, SHADOW can be re-
garded as an ablation version of 2SSI without incorporating
the residual into the second-stage regression. Note that 2SRI
can be regarded as another ablation version of 2SSI without
learning Φ in the first-stage regression and incorporating it
to make the residual a shadow variable in the second-stage
regression.

5.2. Experiments on Synthetic Data

5.2.1. DATASETS

Following previous works (Hartford et al., 2017; Xu et al.,
2021; Wu et al., 2022), we use the benchmark datasets of
IV studies, i.e., Demand datasets, to evaluate the perfor-
mance of 2SSI and the baselines. We adopted the same
data generation process (DGP) following previous works
(Hartford et al., 2017; Xu et al., 2021) with minor changes
because the original datasets are not collider-biased. That is,
we additionally generated a selection indicator S that satis-
fies Assumption 4.1 to introduce collider bias into Demand
datasets. We also introduced two additional parameters, i.e.,
α and β, into the DGP as measurements of the collider bias
and latent confounding strengths (the bias is stronger when
the value is larger), respectively. We conducted experiments
on the low-dimensional and high-dimensional settings of
Demand datasets. The detailed description and DGP of the
collider-biased Demand datasets is in Appendix C.

5.2.2. RESULTS

Following previous works (Hartford et al., 2017; Xu et al.,
2021; Wu et al., 2022), we use the Mean Square Error (MSE)
as the evaluation metric. To clearly evaluate the performance
of these methods under collider bias, we separately report
the results on S = 1 and S = 0 samples. Under the low-
dimensional setting of Demand datasets, we changed the
collider bias strength α and latent confounding strength β
in the experiments to test the robustness of 2SSI and the
baselines as the biases strengthen. That is, we first fixed
β = 10 and conducted experiments with α = {5, 10, 15}
and then fixed α = 10 and conducted experiments with
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Table 1. Out-of-sample MSE (mean ± std) on Demand datasets under different collider bias strengths α with a fixed latent confounding
strength β = 10. The results in the table are scaled by a factor of 103 for clarity. The best results are in bold.

α = 5 α = 10 α = 15

ESTIMATOR S = 1 DATA S = 0 DATA S = 1 DATA S = 0 DATA S = 1 DATA S = 0 DATA

HECKIT 0.648±0.038 5.685±0.324 0.724±0.060 6.741±0.359 0.714±0.057 6.763±0.507
2SRI 0.998±0.070 6.076±0.262 1.052±0.097 6.673±0.219 1.016±0.063 6.799±0.363
IPSW 1.075±0.082 12.72±1.070 1.063±0.093 12.39±0.656 1.056±0.085 12.45±0.442
SHADOW 0.852±0.083 4.619±0.269 0.956±0.116 5.233±0.289 0.957±0.088 5.258±0.449
DEEPIV 0.630±0.048 12.06±0.832 0.633±0.051 12.46±0.424 0.641±0.053 12.57±1.007
KERNEL IV 0.297±0.097 6.450±0.367 0.400±0.175 6.995±0.526 0.428±0.109 7.220±0.903
DEEPGMM 0.655±0.105 8.138±1.268 0.688±0.108 8.399±1.555 0.699±0.104 9.163±1.419
DFIV 0.572±0.090 12.72±0.686 0.580±0.106 12.97±1.667 0.620±0.052 13.60±1.181
CB-IV 1.202±0.228 7.910±0.482 1.270±0.225 8.442±0.574 1.343±0.153 8.771±0.712
2SSI 0.147±0.020 1.320±0.335 0.154±0.016 1.278±0.155 0.155±0.024 1.275±0.227

Table 2. Out-of-sample MSE (mean ± std) on Demand datasets under different latent confounding strengths β with a fixed collider bias
strength α = 10. The results in the table are scaled by a factor of 103 for clarity. The best results are in bold.

β = 5 β = 10 β = 15

ESTIMATOR S = 1 DATA S = 0 DATA S = 1 DATA S = 0 DATA S = 1 DATA S = 0 DATA

HECKIT 0.089±0.007 6.008±0.230 0.724±0.060 6.741±0.359 1.819±0.122 9.490±0.778
2SRI 0.114±0.011 3.317±0.155 1.052±0.097 6.673±0.219 2.918±0.251 10.88±0.452
IPSW 0.136±0.035 5.588±0.777 1.063±0.093 12.39±0.656 3.150±0.396 24.65±2.918
SHADOW 0.099±0.009 3.220±0.149 0.956±0.116 5.233±0.289 2.512±0.260 7.350±0.520
DEEPIV 0.065±0.007 4.697±0.278 0.633±0.051 12.46±0.424 1.945±0.117 24.97±1.596
KERNEL IV 0.052±0.015 3.734±0.182 0.400±0.175 6.995±0.526 1.759±0.747 12.07±0.611
DEEPGMM 0.040±0.009 3.893±0.443 0.688±0.108 8.399±1.555 2.445±0.396 13.59±2.546
DFIV 0.072±0.008 5.056±0.435 0.580±0.106 12.97±1.667 1.809±0.302 28.27±1.978
CB-IV 0.099±0.021 3.737±0.276 1.270±0.225 8.442±0.574 4.031±0.412 14.46±0.615
2SSI 0.038±0.020 1.995±0.088 0.154±0.016 1.278±0.155 0.522±0.411 2.655±0.630

β = {5, 10, 15}. For each setting, we randomly sampled
10, 000 units and performed 20 replications to report the
mean and the standard deviation (std) of the MSE. The
results are reported in Tables 1 and 2.

From the results, we observe that: (1) For all methods, the
performance on S = 0 data is much worse than that on
S = 1 data, which proves the harm of the collider bias prob-
lem. (2) The methods for addressing non-random sample
selection caused by T and X, i.e., Heckit and IPSW, per-
form poorly in all settings, and the performance gets worse
as the latent confounding strength β gets larger. The reason
is that these methods cannot address either collider bias or
latent confounding. (3) SHADOW, as an ablation version of
2SSI, performs better than Heckit and IPSW because it is
designed to address collider bias. However, its performance
is still much worse than 2SSI since it cannot address the
latent confounding problem. This observation also demon-
strates the necessity of using the residual as a proxy for
U in the second-stage regression. (4) The performance of
all the IV baselines is bad and worsens as the collider bias
strength α increases because they all suffer from collider
bias. (5) Moreover, 2SRI, as an ablation version of 2SSI,

also performs worse than 2SSI. It demonstrates the neces-
sity of decomposed representation learning in the first-stage
regression and using the residual as a shadow variable in the
second-stage regression. (6) 2SSI achieves the best perfor-
mance under all settings of α and β, and the performance
remains robust in the face of varying strengths of both bi-
ases. An interesting observation is that the performance
under β = 5 is worse than that under β = 10. The reason is
that if the latent confounding is too weak, the conditional
dependence between R and Y also gets weak. Therefore,
just as most IV approaches need, before conducting an IV
analysis, we can first analyze how much latent confounding
there is and whether using IVs is needed by scientific con-
sideration and statistical tests (Baiocchi et al., 2014). These
observations prove the effectiveness of 2SSI in addressing
both biases.

We also conducted experiments on Demand datasets under
high-dimensional settings, as well as ablation experiments
studying the first-stage decomposed representation learn-
ing module. The results and observations can be found in
Appendix A.
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Figure 5. The ATE estimation results on the Fertil2 dataset, where
True denotes the reference for the ground truth ATE reported in
Wooldridge (2010).

5.3. Experiments on Real-World Data

5.3.1. DATASET

To evaluate the performance of different methods in real-
world scenarios where both latent confounding and collider
bias exist, we conducted experiments on a real-world dataset
with the latent confounding problem, i.e., Fertil2 dataset
(Wooldridge, 2010). This dataset has a well-defined IV.
To introduce collider bias into the Fertil2 dataset, we non-
randomly selected a subset of samples from the original
dataset. Since the treatment is binary in the Fertil2 dataset,
the goal is to estimate the Average Treatment Effect (ATE)
on the population of the original Fertil2 dataset using only
S = 1 samples. ATE is defined as E[Y | do(T = 1),X] =
E[Y | do(T = 0),X]. The detailed description of the
collider-biased Fertil2 dataset is in Appendix C.

5.3.2. RESULTS

We aim to compare the estimators’ performance of using the
collider-biased samples with latent confounding to estimate
the ATE on the target population, i.e., the population of
the original Fertil2 dataset without collider bias. Following
previous studies (Ding et al., 2017), we regarded the ATE
estimation results in Wooldridge (2010) as a reference for
the ground truth ATE. Therefore, we can tell an estimator
is better when facing both latent confounding and collider
bias if the result is more similar to this reference. To further
evaluate the robustness of the estimators, we performed ten
replications for each estimator. We report the mean values
and error bars of the estimated in Figure 5.

From the results, we observe that: (1) The ground truth ATE
on the target population is supposed to be positive, but the
estimated ATE range of most baselines is close to zero, and
the mean values of DeepGMM, SHADOW, and DFIV are
even negative. It demonstrates that these methods cannot si-

multaneously address latent confounding and collider bias in
treatment effect estimation. (2) Although CB-IV sometimes
obtained results similar to the ground truth, it also achieved
the worst estimation results in stark contrast to the reference
range. Therefore, CB-IV is not applicable to address both bi-
ases. (3) 2SSI achieves the best overall performance among
all estimators and can consistently achieve positive ATE
estimates, demonstrating the effectiveness and robustness
of 2SSI for treatment effect estimation under both biases.
(4) The standard deviation of estimated ATEs by 2SSI in
Fertil2 is larger than those of some baselines, which is not
observed in Demand. This observation is reasonable be-
cause of the differing methodologies employed for repeated
experimentation across the two datasets. Since Demand
is a semi-synthetic dataset, we regenerated data based on
the DGPs in each experiment. This leads to varying values
for T, Y , and S in each experiment, resulting in larger stds
across all methods on this dataset. Conversely, Fertil2 is
a real-world dataset where T, Y , and S values remain con-
stant across experiments, with variations only in the training
and testing set splits. Hence, most methods exhibit smaller
stds on this dataset. However, those methods showing lower
stds have not escaped the curse of latent confounding and
collider bias in each experiment; hence, they consistently
show a stable high bias in each experiment. On the contrary,
our method shows a relatively higher std (though still very
small) because it manages to address the biases, albeit to
varying degrees across different experiments.

6. Conclusion
In this paper, we studied the problem of causal inference
under both latent confounding and collider bias and pro-
posed a novel IV approach, i.e., 2SSI, to address it. In the
first stage of 2SSI, we simultaneously regress the treatment
to obtain the residual and regress the selection indicator to
learn a decomposed representation. In the second stage, we
incorporate the residual and decomposed representation into
the outcome regression process and use the residual as both
a proxy for the unmeasured confounders and a shadow vari-
able. To the best of our knowledge, it is the first approach
developed for simultaneously addressing the two biases.
One limitation of our work is that the proposed method
requires well-defined IVs, necessitating expert knowledge.
Additionally, as most IV approaches need, we should first
analyze how much latent confounding there is and whether
using IV approaches is necessary. It will be interesting to
test whether the large amounts of existing approaches for
finding valid IVs and testing latent confounding are still
available when there is also collider bias, which is left to
future work.
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A. Supplementary Experiments
A.1. Experiments on Demand Datasets under the High-Dimensional Setting

Under the high-dimensional setting of Demand datasets, we used the same data generation process as in experiments
under the low-dimensional setting with α = 10 and β = 10. The results are shown in Table 3. From the results, we
observe that: (1) The methods for addressing non-random sample selection caused by T and X, i.e., Heckit and IPSW,
perform the worst among all estimators because they cannot address either collider bias or latent confounding and suffer
from model misspecification problems. (2) SHADOW performs better than Heckit and IPSW because it is designed to
address collider bias. However, its performance is still much worse than 2SSI since it cannot address the latent confounding
problem. Meanwhile, SHADOW also performs worse than IV approaches because the latent confounding problem is more
significant in high-dimensional settings. Specifically, since X is high-dimensional and hard to control, the non-causal path
U→ X→ T also biases the estimation. (3) The performance of all the IV baselines is better than the baselines designed
for addressing non-random sample selection. As mentioned earlier, the reason is that the latent confounding problem is
more significant in high-dimensional settings. However, these methods still perform worse than 2SSI because they cannot
address collider bias. (4) 2SSI achieves the best performance, which proves the effectiveness of 2SSI in addressing both
biases under high-dimensional settings.

A.2. Ablation Study of the Decomposed Representation Learning Module of 2SSI

In the first stage of 2SSI, we propose to learn a decomposed representation Φ satisfying that Φ⊥̸⊥ S and Φ ⊥⊥ T | Z, such
that the residual R of T is a shadow variable that satisfies all the conditions in Definition 3.5 conditional on Φ. To do so, we
propose the loss function of the first-stage regression as

Lt =
1

n

n∑
i=1

(ti − ft(xi, zi))
2

− 1

n

n∑
i=1

(si · log(fp(xi, ti, fΦ(zi)))

+ (1− si) · log(1− fs(xi, ti, fΦ(zi))))

+ λ · disc(T, fΦ(Z)),

In this section, we aim to investigate the performance of 2SSI under two scenarios: (1) when Φ is not learned well, i.e.,
λ = 0, and (2) when Φ cannot be learned, i.e., Z does not influence S. Therefore, we conducted ablation experiments on
Demand datasets (with α = 10 and β = 10) by setting λ = 0 and by setting the coefficient of Z on S in the data generation
process to 0. As shown in Table 4, the first scenario hurts the performance of 2SSI since if Φ is not learned well, the residual
R will not satisfy the conditions of a shadow variable. On the contrary, the second scenario does not affect the performance
of 2SSI because if Z itself does not directly cause S, there is no need to learn Φ since R already satisfies the conditions of a
shadow variable (R ⊥̸⊥ Y | X,T, S = 1, and R ⊥⊥ S | X,T, Y ).

B. Implementation Details
We provide an overview diagram of 2SSI, as shown in Figure 6, to help readers better understand the proposed 2SSI.

We implemented the proposed method and the baselines using Python 3.9 with PyTorch 1.13.0. The hardware used was a
Windows 11 operating system with the 13th Gen Intel(R) Core(TM) i7-13700K CPU and NVIDIA GeForce RTX 3080 GPU
(with CUDA version 12.1). Following Xu et al. (2021), we used multi-layer perceptrons with ReLU activation function
to implement each module of 2SSI. We used the Adam optimizer (Kingma & Ba, 2015) with batch normalization (Ioffe
& Szegedy, 2015) in the training process. Following Wu et al. (2022), we implemented the IPM with the Maximum
Mean Discrepancy (MMD) metric and the MI with Contrastive Log-ratio Upper Bound (CLUB) (Cheng et al., 2020). The
hyperparameters of 2SSI on different datasets are in Table 5. Note that we used the same learning rates and weight decays
for all the modules in 2SSI except for the network learning covariate features, of which the weight decay is 0.1.

13



An IV Approach for Causal Inference with Latent Confounding and Collider Bias

Y

Selection
Model P

Stage 2

Stage 1

X

T

R

�

�0

�1

X

Z

T

Figure 6. An overview of the proposed method. In the first stage, we construct a shadow variable by learning a decomposed representation
Φ from Z and the residual R of the treatment T . In the second stage, we incorporate R and Φ into the regression of Y and use R as both a
proxy for U and a shadow variable to estimate τ1 and τ0. Finally, with the help of a selection model that estimates P(S = 1 | X, T,Φ, R),
we can achieve an unbiased estimate of E[Y | X, T,Φ, R].

C. Detailed Description of the Datasets
C.1. Demand Datasets

In Demand datasets (Hartford et al., 2017), we aim to estimate the effect of the ticket price (T ) on the customer’s decision
about whether to buy a ticket (Y ). There are two measured confounders, i.e., the time of year X1 ∈ [0, 10] and customer type
X2 ∈ {1, · · · , 7} categorized by the levels of price sensitivity. The latent confounding problem is introduced by making the
noise term U in Y associated with T . In order to address latent confounding, the cost of fuel (Z) is used as an instrumental
variable. Demand datasets also have a high-dimensional setting, in which the customer type X2 is replaced with the pixels of
the corresponding handwritten digit from the MNIST dataset (LeCun & Cortes, 2010). We adopted the same data generation
process following previous works (Hartford et al., 2017; Xu et al., 2021) with minor changes because the original datasets
are not collider-biased. That is, we additionally generated a selection indicator S that satisfies Assumption 4.1 to introduce
collider bias into Demand datasets. We also introduced two additional parameters, i.e., α and β, as measurements of the
collider bias and latent confounding strengths, respectively. The detailed data generation process of the collider-biased
Demand datasets is as

Y = 100 + (10 + T )X2ψt − 2T + U,

T = 25 + (Z + 3)ψt + βU + E,

and

S = Bernoulli(1 + e−T+0.1(X1+X2+Z)+αY ),

where

ψt = 2

(
(T − 5)4

600
+ e−4(T−5)2 +

T

10
− 2

)
,

Z, U,E ∼ N (0, 1), and Bernoulli(·) denotes the Bernoulli distribution.

C.2. Fertil2 Dataset

The Fertil2 dataset aims to estimate the effect of at least seven years of education for a woman (T ) on the number of living
children in the family (Y ). Several observed confounders are included in the dataset, such as age, religion, the ideal number
of children, and whether the woman lived in urban areas. The instrumental variable Z is a binary indicator of whether the
woman was born in the first half of the year. To introduce collider bias into the Fertil2 dataset, we non-randomly selected a
subset of samples from the original dataset. Specifically, we set S = 0 for those whose ideal number of children is larger
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Table 3. Out-of-sample MSE (mean ± std) on Demand datasets under the high-dimensional setting with α = 10 and β = 10. The results
in the table are scaled by a factor of 103 for clarity. The best results are in bold.

ESTIMATOR S = 1 DATA S = 0 DATA

HECKIT > 10000 > 10000
2SRI 0.869±0.057 8.828±0.506
IPSW > 10000 > 10000
SHADOW 4.046±8.505 16.54±24.86
DEEPIV 0.496±0.100 8.428±0.391
KERNEL IV 0.730±0.126 6.635±0.871
DEEPGMM 1.562±0.156 8.268±0.393
DFIV 0.498±0.095 9.261±1.038
CB-IV 1.409±0.212 8.223±0.505
2SSI 0.489±0.033 5.680±0.168

Table 4. Out-of-sample MSE (mean ± std) of Ablation Experiments on Demand datasets. The results in the table are scaled by a factor of
103 for clarity.

SCENARIO S = 1 DATA S = 0 DATA

Z DOES NOT DIRECTLY CAUSE S 0.166 ± 0.032 1.251 ± 0.174
λ = 0 0.168 ± 0.039 1.908 ± 0.943
THE ORIGINAL SETTING 0.154 ± 0.016 1.278 ± 0.155

than the number of living children and those who did not live in urban areas and had less than seven years of education.
Intuitively, the former group might subjectively refuse to report their outcomes, while the outcomes of the latter group might
be objectively hard to collect.

D. Discussions of the Difference Between 2SSI and Other Related Works
Most previous causal inference studies have developed various techniques to control the measured confounders and shown
great success in addressing the confounding bias caused by fully measured covariates (Shalit et al., 2017; Greiner, 2020;
Zhang et al., 2021; Wang et al., 2023). However, when facing unmeasured confounders, these methods are not applicable.
Therefore, we believe these methods are out of the scope of this paper.

The IV approaches are widely used to address latent confounding. The basis of IV approaches is Two-Stage Least Regression
(2SLS), which uses IVs to regress the treatment and utilizes the estimated treatment to regress the outcome under linear
settings (Angrist et al., 1996; Angrist & Krueger, 2001; Brito & Pearl, 2002; Baiocchi et al., 2014). In nonlinear scenarios,
recent studies utilize machine learning techniques to apply IV approaches to more complex real-world scenarios. DeepIV
(Hartford et al., 2017) utilizes deep models to estimate the conditional probability distribution of the treatment in the first
stage. Kernel IV (Singh et al., 2019) learns relations among variables in 2SLS as nonlinear functions in reproducing kernel
Hilbert spaces (RKHSs). DeepGMM (Bennett et al., 2019) and DFIV (Xu et al., 2021) respectively leverage Generalized
Method of Moments (GMM) (P., 1982) and deep networks to learn the nonlinear basis functions as deep features. CB-IV
(Wu et al., 2022) is proposed to further balance the deep features of the measure covariates in the second stage. The above
IV approaches can only address latent confounding and are not applicable when collider bias exists. This is because collider
bias results in missing Y values of S = 0 data, and thus the outcome regression process can only be conducted conditional
on S, which introduces more spurious correlations than only T ← U→ Y .

The shadow variable approaches are developed for addressing collider bias (d’Haultfoeuille, 2010; Miao & Tchetgen Tch-
etgen, 2016; Li et al., 2023). However, in our problem setting, no shadow variable is available because all measured
variables can directly cause Y , violating the conditional independence condition in Definition 3.5. The baseline SHADOW
implemented in our experiments is indeed an ablation version of 2SSI because only with the decomposed representation
learned by 2SSI can Z be used as a shadow variable.

The most relevant work is the Two-Stage Residual Inclusion (2SRI) approach (Terza et al., 2008), which also introduces the
residuals of T from the first-stage regression into the second stage. However, they differ in the following aspects.
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Table 5. Hyperparameters of 2SSI on different datasets, where DemandLow denotes Demand datasets under the low-dimensional setting
and DemandHigh denotes Demand datasets under the high-dimensional setting.

SETTING DEMANDLow DEMANDHigh FERTIL2

EPOCH 100 100 100
LEARNING RATE 0.001 0.001 0.001
WEIGHT DECAY 0.0001 0.01 0.0001
λ 0.1 0.1 0.1

• The studied problem is different. In this paper, we propose a novel IV method for causal inference under both latent
confounding and collider bias, while 2SRI is only applicable for addressing the latent confounding problem solely and
cannot address collider bias.

• The regression process of the first stage is different. 2SRI only conducts the regression on T to obtain R in the first
stage, while the proposed method additionally conducts the regression on S to learn a decomposed representation Φ of
Z.

• The regression process of the second stage is different. 2SRI simply incorporates R into the outcome regression
process, while the proposed method incorporates R and Φ into the regression and uses R as a shadow variable to
address collider bias further.
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