
KernelWarehouse: Rethinking the Design of Dynamic Convolution

Chao Li 1 Anbang Yao 1

Abstract

Dynamic convolution learns a linear mixture of n
static kernels weighted with their input-dependent
attentions, demonstrating superior performance
than normal convolution. However, it increases
the number of convolutional parameters by n
times, and thus is not parameter efficient. This
leads to no research progress that can allow re-
searchers to explore the setting n > 100 (an order
of magnitude larger than the typical setting n <
10) for pushing forward the performance bound-
ary of dynamic convolution while enjoying param-
eter efficiency. To fill this gap, in this paper, we
propose KernelWarehouse, a more general form
of dynamic convolution, which redefines the basic
concepts of “kernels”, “assembling kernels” and
“attention function” through the lens of exploiting
convolutional parameter dependencies within the
same layer and across neighboring layers of a Con-
vNet. We testify the effectiveness of KernelWare-
house on ImageNet and MS-COCO datasets using
various ConvNet architectures. Intriguingly, Ker-
nelWarehouse is also applicable to Vision Trans-
formers, and it can even reduce the model size
of a backbone while improving the model accu-
racy. For instance, KernelWarehouse (n = 4)
achieves 5.61%|3.90%|4.38% absolute top-1 ac-
curacy gain on the ResNet18|MobileNetV2|DeiT-
Tiny backbone, and KernelWarehouse (n = 1/4)
with 65.10% model size reduction still achieves
2.29% gain on the ResNet18 backbone. The code
and models are available at https://github.
com/OSVAI/KernelWarehouse.

1. Introduction
Convolution is the key operation in convolutional neural
networks (ConvNets). In a convolutional layer, normal con-

1Intel Labs China. Correspondence to: Anbang Yao <an-
bang.yao@intel.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

volution y = W ∗ x computes the output y by applying the
same convolutional kernel W defined as a set of convolu-
tional filters to every input sample x. For brevity, we refer
to “convolutional kernel” as “kernel” and omit the bias
term throughout this paper. Although the efficacy of normal
convolution is extensively validated with various types of
ConvNet architectures (Krizhevsky et al., 2012; He et al.,
2016; Howard et al., 2017; Liu et al., 2022) on many com-
puter vision tasks, recent progress in the efficient ConvNet
architecture design shows that dynamic convolution, known
as CondConv (Yang et al., 2019a) and DY-Conv (Chen et al.,
2020), achieves large performance gains.

The basic idea of dynamic convolution is to replace the sin-
gle kernel in normal convolution by a linear mixture of n
same dimensioned kernels, W = α1W1 + ... + αnWn,
where α1, ..., αn are scalar attentions generated by an input-
dependent attention module. Benefiting from the additive
property of W1, ...,Wn and compact attention module de-
signs, dynamic convolution improves the feature learning
ability with little extra multiply-add cost against normal
convolution. However, it increases the number of convolu-
tional parameters by n times, which leads to a huge rise in
model size because the convolutional layers of a modern
ConvNet occupy the vast majority of parameters. There
exist few research works to alleviate this problem. DCD (Li
et al., 2021b) learns a base kernel and a sparse residual to ap-
proximate dynamic convolution via matrix decomposition.
This approximation abandons the basic mixture learning
paradigm, and thus cannot retain the representation power
of dynamic convolution when n becomes large. ODConv (Li
et al., 2022) presents an improved attention module to dy-
namically weight static kernels along different dimensions
instead of one single dimension, which can get competitive
performance with a reduced number of kernels. However,
under the same setting of n, ODConv has more parameters
than vanilla dynamic convolution. Recently, He et al. (2023)
directly used popular weight pruning strategy to compress
DY-Conv via multiple pruning-and-retraining phases.

In a nutshell, existing dynamic convolution methods based
on the linear mixture learning paradigm are not parameter-
efficient. Restricted by this, the kernel number is typically
set to n = 8 (Yang et al., 2019a) or n = 4 (Chen et al., 2020;
Li et al., 2022). However, a plain fact is that the improved ca-
pacity of a ConvNet constructed with dynamic convolution

1

https://github.com/OSVAI/KernelWarehouse
https://github.com/OSVAI/KernelWarehouse

KernelWarehouse: Rethinking the Design of Dynamic Convolution

comes from increasing the kernel number n per convolu-
tional layer facilitated by the attention mechanism. This
causes a fundamental conflict between the desired model
size and capacity. In this work, we rethink the design of
dynamic convolution, with the goal of reconciling such a
conflict, enabling us to explore the performance boundary
of dynamic convolution with the significantly larger ker-
nel number setting n > 100 (an order of magnitude larger
than the typical setting n < 10) while enjoying parame-
ter efficiency. Note that, for existing dynamic convolution
methods, n > 100 means that the model size will be about
> 100 times larger than the backbone built with normal
convolution.

To this goal, we present a more general form of dynamic
convolution called KernelWarehouse (Figure 1 shows a
schematic overview). Our work is inspired by two obser-
vations about existing dynamic convolution methods: (1)
They treat all parameters in a regular convolutional layer
as a static kernel, increase the kernel number from 1 to n,
and use their attention modules to assemble n static ker-
nels into a linearly mixed kernel. Though straightforward
and effective, they pay no attention to parameter dependen-
cies within the static kernel at a convolutional layer; (2)
They allocate different sets of n static kernels for individ-
ual convolutional layers of a ConvNet, ignoring parameter
dependencies across neighboring convolutional layers. In a
sharp contrast with existing methods, the core philosophy
of KernelWarehouse is to exploit convolutional parameter
dependencies within the same layer and across neighboring
layers of a ConvNet, reformulating dynamic convolution
towards achieving a substantially better trade-off between
parameter efficiency and representation power.

KernelWarehouse consists of three components, namely
kernel partition, warehouse construction-with-sharing and
contrasting-driven attention function, which are closely in-
terdependent. Kernel partition exploits parameter depen-
dencies within the same convolutional layer, by which we
redefine “kernels” for the linear mixture in terms of a much
smaller local scale instead of a holistic scale. Warehouse
construction-with-sharing exploits parameter dependencies
across neighboring convolutional layers, by which we re-
define “assembling kernels” across all same-stage convolu-
tional layers instead of within a single layer, and generate a
large warehouse consisting of n local kernels (e.g., n = 108)
shared for cross-layer linear mixtures. Contrasting-driven
attention function is customized to address the attention
optimization problem under the cross-layer linear mixture
learning paradigm with the challenging settings of n > 100,
by which we redefine “attention function”. Given different
convolutional parameter budgets (see Section. 3.3 for the
definition of convolutional parameter budget), these concept
shifts provide a high degree of flexibility for KernelWare-
house, allowing to well balance parameter efficiency and

representation power with sufficiently large values of n.

As a drop-in replacement of normal convolution, Ker-
nelWarehouse can be easily used to various types of
ConvNet architectures. We validate the effectiveness of
KernelWarehouse through extensive experiments on Ima-
geNet and MS-COCO datasets. On one hand, we show
that KernelWarehouse achieves superior performance com-
pared to existing dynamic convolution methods (e.g., the
ResNet18|ResNet50|MobileNetV2|ConvNeXt-Tiny model
with KernelWarehouse trained on ImageNet dataset reaches
76.05%|81.05%|75.92%|82.55% top-1 accuracy, setting
new performance records for dynamic convolution research).
On the other hand, we show that all three components of
KernelWarehouse are essential to the performance boost in
terms of model accuracy and parameter efficiency, and Ker-
nelWarehouse can even reduce the model size of a ConvNet
while improving the model accuracy (e.g., our ResNet18
model with 65.10% parameter reduction to the baseline
still achieves 2.29% absolute top-1 accuracy gain), and it
is also applicable to Vision Transformers (e.g., our DeiT-
Tiny model reaches 76.51% top-1 accuracy, bringing 4.38%
absolute top-1 accuracy gain to the baseline).

2. Related Work
ConvNet Architectures. In the past decade, many no-
table ConvNet architectures such as AlexNet (Krizhevsky
et al., 2012), VGGNet (Simonyan & Zisserman, 2015),
GoogLeNet (Szegedy et al., 2015), ResNet (He et al.,
2016), DenseNet (Huang et al., 2017), ResNeXt (Xie et al.,
2017) and RegNet (Radosavovic et al., 2020) have been
presented. Around the same time, some lightweight ar-
chitectures like MobileNet (Howard et al., 2017; Sandler
et al., 2018; Howard et al., 2019), ShuffleNet (Zhang et al.,
2018b) and EfficientNet (Tan & Le, 2019a) have been de-
signed for resource-constrained applications. Recently, Liu
et al. (2022) presented ConvNeXt whose performance can
match newly emerging vision transformers (Dosovitskiy
et al., 2021; Liu et al., 2021). Our method could be used to
improve their performance, as we show in the experiments.

Feature Recalibration. An effective way to enhance the
capacity of a ConvNet is feature recalibration. It relies on
attention mechanisms to adaptively refine the feature maps
learnt by a convolutional block. Popular feature recalibra-
tion modules such as RAN (Wang et al., 2017), SE (Hu
et al., 2018b), BAM (Park et al., 2018), CBAM (Woo et al.,
2018), GE (Hu et al., 2018a), SRM (Lee et al., 2019) and
ECA (Wang et al., 2020) focus on different design aspects:
using channel attention, or spatial attention, or hybrid atten-
tion to emphasize important features and suppress unneces-
sary ones. Unlike these methods that retain the static kernel,
dynamic convolution replaces the single static kernel of a
convolutional layer by a linear mixture of n static kernels

2

KernelWarehouse: Rethinking the Design of Dynamic Convolution

weighted with the attention mechanism.

Dynamic Weight Networks. Many research efforts have
been made on developing effective methods to generate
the weights for a neural network. Jaderberg et al. (2015)
proposed a Spatial Transformer module which uses a lo-
calisation network that predicts the feature transformation
parameters conditioned on the learnt feature itself. Dynamic
Filter Network (Jia et al., 2016) and Kernel Prediction Net-
works (Bako et al., 2017; Mildenhall et al., 2018) introduce
two filter generation frameworks which share the same idea:
using a deep neural network to generate sample-adaptive
filters conditioned on the input. Based on this idea, Dy-
namoNet (Diba et al., 2019) uses dynamically generated
motion filters to boost video-based human action recog-
nition. CARAFE (Wang et al., 2019) and Involution (Li
et al., 2021a) further extend this idea by designing effi-
cient generation modules to predict the weights for extract-
ing informative features. By connecting this idea with SE,
WeightNet (Ma et al., 2020), CGC (Lin et al., 2020) and
WE (Quader et al., 2020) design different attention modules
to adjust the weights in convolutional layers of a ConvNet.
Hypernetwork (Ha et al., 2017) uses a small network to gen-
erate the weights for a larger recurrent network instead of a
ConvNet. MetaNet (Munkhdalai & Yu, 2017) introduces a
meta learning model consisting of a base learner and a meta
learner, allowing the learnt network for rapid generalization
across different tasks. Unlike them, this work focuses on
advancing dynamic convolution research.

3. Method
3.1. Motivation and Components of KernelWarehouse

For a convolutional layer, let x ∈ Rh×w×c and y ∈
Rh×w×f be the input having c feature channels and the
output having f feature channels respectively, where h× w
denotes the channel size. Normal convolution y = W ∗ x
uses a static kernel W ∈ Rk×k×c×f consisting of f convo-
lutional filters with the spatial size k × k. Dynamic convo-
lution (Yang et al., 2019a; Chen et al., 2020) replaces W in
normal convolution by a linear mixture of n same dimen-
sioned static kernels W1, ...,Wn weighted with α1, ..., αn

generated by an attention module ϕ(x) , which is defined as

W = α1W1 + ...+ αnWn. (1)

As we discussed earlier, the kernel number n is typically
set to n < 10, restricted by the parameter-inefficient short-
coming. The main motivation of this work is to reformulate
this linear mixture learning paradigm, enabling us to ex-
plore significantly larger settings, e.g., n > 100 (an order
of magnitude larger than the typical setting n < 10), for
pushing forward the performance boundary of dynamic con-
volution while enjoying parameter efficiency. To that end,

our proposed KernelWarehouse has three key components:
kernel partition, warehouse construction-with-sharing, and
contrasting-driven attention function.

3.2. Kernel Partition

The main idea of kernel partition is to reduce kernel di-
mension via simply exploiting the parameter dependencies
within the same convolutional layer. Specifically, for a reg-
ular convolutional layer, we sequentially divide the static
kernel W along spatial and channel dimensions into m
disjoint parts w1,...,wm called “kernel cells” that have the
same dimensions. For brevity, here we omit to define kernel
cell dimensions. Kernel partition can be defined as

W = w1 ∪ ... ∪wm,

and ∀ i, j ∈ {1, ...,m}, i ̸= j, wi ∩wj = ∅.
(2)

After kernel partition, we treat kernel cells w1,...,wm as
“local kernels”, and define a “warehouse” containing n
kernel cells E = {e1, ..., en}, where e1, ..., en have the
same dimensions as w1,...,wm. Then, we use the ware-
house E = {e1, ..., en} to represent each of m kernel cells
w1,...,wm as a linear mixture

wi = αi1e1 + ...+ αinen, and i ∈ {1, ...,m}, (3)

where αi1, ..., αin are the input-dependent scalar attentions
generated by an attention module ϕ(x). Finally, the static
kernel W in a regular convolutional layer is replaced by its
corresponding m linear mixtures.

Thanks to kernel partition, the dimensions of the kernel cell
wi could be much smaller than the dimensions of the static
kernel W. For example, when m = 16, the number of
convolutional parameters in the kernel cell wi is 1/16 to
that of the static kernel W. Under a desired convolutional
parameter budget b (we will define it in Section. 3.3), this
allows a warehouse can easily have a significantly larger
value of n (e.g., n = 64), in comparison to existing dynamic
convolution methods that define the linear mixture in terms
of n (e.g., n = 4) “holistic kernels”.

3.3. Warehouse Construction-with-Sharing

The main idea of warehouse construction-with-sharing is to
further improve the warehouse-based linear mixture learning
formulation through simply exploiting parameter dependen-
cies across neighboring convolutional layers. Specifically,
for l same-stage convolutional layers of a ConvNet, we
construct a shared warehouse E = {e1, ..., en} by using
the same kernel cell dimensions for kernel partition. This
allows the shared warehouse not only can have a larger
value of n (e.g., n = 188) compared to the layer-specific
warehouse (e.g., n = 36), but also can have improved repre-
sentation power (see Table 6). Thanks to the modular design

3

KernelWarehouse: Rethinking the Design of Dynamic Convolution

*𝒙 𝒚

FC

ReLU

FC …

GAP
𝒘𝑚

𝒆1 𝒆𝑖 𝒆𝑛

…

σ𝑖=1
𝑛 𝛼𝑚𝑖𝒆𝑖

𝑾

A
ssem

b
le

𝒘1σ𝑖=1
𝑛 𝛼1𝑖𝒆𝑖

…

Layer

Layer

Layer

Layer

Layer

Layer

Layer

Layer

Layer

(t +1)thStage

t
th Stage

(t ─ 1)thStage

…

…

…

(t +1)th Warehouse

t
th Warehouse

(t ─ 1)th Warehouse

t
th Warehouse

…
…

C
A

F
C

A
F

Figure 1: A schematic overview of KernelWarehouse to a ConvNet. As a more general form of dynamic convolution,
KernelWarehouse consists of three interdependent components, namely kernel partition, warehouse construction-with-
sharing and contrasting-driven attention function (CAF), which redefine the basic concepts of “kernels”, “assembling kernels”
and “attention function” in the perspective of exploiting convolutional parameter dependencies within the same layer and
across neighboring layers of a ConvNet, enabling to use significantly large kernel number settings (e.g., n > 100) while
enjoying improved model accuracy and parameter efficiency. Please see the Method section for the detailed formulation.

mechanism of modern ConvNets, we simply use common
dimension divisors for all l same-stage static kernels as the
uniform kernel cell dimensions to perform kernel partition,
which naturally determines the kernel cell number m for
each same-stage convolutional layer, as well as n for the
shared warehouse when a desired convolutional parameter
budget b is given. Figure 2 illustrates the processes of kernel
partition and warehouse construction-with-sharing.

Convolutional Parameter Budget. For vanilla dynamic
convolution (Yang et al., 2019a; Chen et al., 2020), the con-
volutional parameter budget b relative to normal convolution
is always equal to the kernel number. That is, b == n, and
n >= 1. When setting a large value of n, e.g., n = 188, ex-
isting dynamic convolution methods get b = 188, leading to
about 188 times larger model size for a ConvNet backbone.
For KernelWarehouse, such drawbacks are resolved. Let mt

be the total number of kernel cells in l same-stage convolu-
tional layers (mt = m, when l = 1) of a ConvNet. Then,
the convolutional parameter budget of KernelWarehouse
relative to normal convolution can be defined as b = n/mt.
In implementation, we use the same value of b to all convo-
lutional layers of a ConvNet, so that KernelWarehouse can
easily scale up or scale down the model size of a ConvNet
by changing b. Compared to normal convolution: (1) When
b < 1, KernelWarehouse tends to get the reduced model
size; (2) When b = 1, KernelWarehouse tends to get the
similar model size; (3) When b > 1, KernelWarehouse tends
to get the increased model size.

Parameter Efficiency and Representation Power. Intrigu-
ingly, given a desired parameter budget b, a proper and large
value of n can be obtained by simply changing mt (con-
trolled by kernel partition and warehouse construction-with-

sharing), providing a representation power guarantee for
KernelWarehouse. Thanks to this flexibility, KernelWare-
house can strike a favorable trade-off between parameter
efficiency and representation power, under different con-
volutional parameter budgets, as well validated by trained
model exemplifications KW (1/2×, 3/4×, 1×, 4×) in Ta-
ble 1, Table 2 and Table 4.

3.4. Contrasting-driven Attention Function

With the above formulation, the optimization of KernelWare-
house differs with existing dynamic convolution methods in
three aspects: (1) The linear mixture is used to a dense local
kernel cell scale instead of a holistic kernel scale; (2) The
number of kernel cells in a warehouse is significantly larger
(n > 100 vs. n < 10); (3) A warehouse is not only shared
to represent each of m kernel cells for a specific convolu-
tional layer of a ConvNet, but also is shared to represent
every kernel cell for the other l−1 same-stage convolutional
layers. However, for KernelWarehouse with these optimiza-
tion properties, we empirically find that popular attention
functions lose their effectiveness (see Table 8). We present
contrasting-driven attention function (CAF), a customized
design, to solve the optimization of KernelWarehouse. For
ith kernel cell in the static kernel W, let zi1, ..., zin be the
feature logits generated by the second fully-connected layer
of a compact SE-typed attention module ϕ(x) (its structure
is clarified in Appendix), then CAF is defined as

αij = τβij +(1− τ)
zij∑n

p=1 |zip|
, and j ∈ {1, ..., n}, (4)

where τ is a temperature linearly reducing from 1 to 0 in
the early training stage; βij is a binary value (0 or 1) for ini-
tializing attentions; zij∑n

p=1 |zip| is a normalization function.

4

KernelWarehouse: Rethinking the Design of Dynamic Convolution

Layer 1

2𝑐

𝑓
𝑘2

Layer 2

𝑓

𝑐
3𝑘2

Layer 3

𝑓

𝑐
𝑘2

Layer 1

2𝑐

𝑓
𝑘2

Layer 2

𝑓

𝑐
3𝑘2

Layer 3

𝑓

𝑐
𝑘2

𝑓

𝑐
𝑘2𝑓

𝑐
3𝑘2

2𝑐

𝑓
𝑘2

𝑓

𝑐
𝑘2

𝑐𝑑𝑑 =

𝒆

2𝑐

𝑓
𝑘2 𝑓

𝑐
3𝑘2

𝑓

𝑐
𝑘2

𝑓

𝑐
3𝑘2

2𝑐

𝑓
𝑘2

𝑓

𝑐
𝑘2

𝑓

𝑐
𝑘2

𝒆
kernel partition

using

𝑚𝑡 = 6

linear mixtures

…

𝑛 = 𝑏𝑚𝑡

kernel cellsWarehouse

𝒆𝑛𝒆2 𝒆3𝒆1
…

(a) Determine the dimensions of the kernel cells

(b) Kernel partition using the kernel cell dimensions

(c) Construct the shared warehouse for the stage

Figure 2: An illustration of kernel partition and warehouse construction-with-sharing across three same-stage convolutional
layers of a ConvNet. cdd denotes common kernel dimension divisors, and b is the desired convolutional parameter budget.

Our CAF relies on two smart design principles: (1) The
first term ensures that the initial valid kernel cells (βij = 1)
in a shared warehouse are uniformly allocated to represent
different linear mixtures at all l same-stage convolutional
layers of a ConvNet when starting the training; (2) The
second term enables the existence of both negative and
positive attentions, unlike popular attention functions that
always generate positive attentions. This encourages the op-
timization process to learn contrasting and diverse attention
distributions among all linear mixtures at l same-stage con-
volutional layers sharing the same warehouse (as illustrated
in Figure 3), guaranteeing to improving model performance.

At CAF initialization, the setting of βij at l same-stage
convolutional layers should assure the shared warehouse
can assign: (1) At least one specified kernel cell (βij = 1)
to every linear mixture, given b ≥ 1; (2) At most one specific
kernel cell (βij = 1) to every linear mixture, given b < 1.
We adopt a simple strategy to assign one of the total n kernel
cells in a shared warehouse to each of mt linear mixtures at
l same-stage convolutional layers without repetition. When
n < mt, we let the remaining linear mixtures always have
βij = 0 once n kernel cells are used up. In the Appendix,
we provide visualization examples to illustrate this strategy.

3.5. Discussion

Note that the split-and-merge strategy with multi-branch
group convolution has been widely used in many ConvNet
architectures (Szegedy et al., 2015; Xie et al., 2017; Sandler
et al., 2018; Li et al., 2019; Tan & Le, 2019b; Yang et al.,
2019b; Tan & Le, 2019b; Li et al., 2020; Liu et al., 2022).
Although KernelWarehouse also uses the parameter splitting
idea in kernel partition, its focus and motivation we have

clarified above are clearly different from them. Besides,
KernelWarehouse could be also used to improve their per-
formance as they use normal convolution. We validate this
on MobileNetV2 and ConvNeXt (see Table 2 and Table 4).

According to its formulation, KernelWarehouse will degen-
erate into vanilla dynamic convolution (Yang et al., 2019a;
Chen et al., 2020) when uniformly setting m = 1 in kernel
partition (i.e., all kernel cells in each warehouse have the
same dimensions as the static kernel W in normal convolu-
tion) and l = 1 in warehouse sharing (i.e., each warehouse is
used to its specific convolutional layer). Therefore, Kernel-
Warehouse is a more general form of dynamic convolution.

In formulation, the three key components of KernelWare-
house are closely interdependent, and their joint regularizing
effect leads to significantly improved performance in terms
of both model accuracy and parameter efficiency, as vali-
dated by multiple ablations in the Experiments section.

4. Experiments
In this section, we conduct comprehensive experiments on
ImageNet dataset (Russakovsky et al., 2015) and MS-COCO
dataset (Lin et al., 2014) to evaluate the effectiveness of our
proposed KernelWarehouse (“KW” for short, in Tables).

4.1. Image Classification on ImageNet Dataset

Our basic experiments are conducted on ImageNet dataset.

ConvNet Backbones. We select five ConvNet backbones
from MobileNetV2 (Sandler et al., 2018), ResNet (He et al.,
2016) and ConvNeXt (Liu et al., 2022) families for experi-
ments, including both lightweight and larger architectures.

5

KernelWarehouse: Rethinking the Design of Dynamic Convolution

Table 1: Results comparison on ImageNet with the
ResNet18 backbone using the traditional training strat-
egy. Best results are bolded.

Models Params Top-1 Acc (%) Top-5 Acc (%)
ResNet18 11.69M 70.25 89.38
+ SE 11.78M 70.98 (↑0.73) 90.03 (↑0.65)
+ CBAM 11.78M 71.01 (↑0.76) 89.85 (↑0.47)
+ ECA 11.69M 70.60 (↑0.35) 89.68 (↑0.30)
+ CGC 11.69M 71.60 (↑1.35) 90.35 (↑0.97)
+ WeightNet 11.93M 71.56 (↑1.31) 90.38 (↑1.00)
+ DCD 14.70M 72.33 (↑2.08) 90.65 (↑1.27)
+ CondConv (8×) 81.35M 71.99 (↑1.74) 90.27 (↑0.89)
+ DY-Conv (4×) 45.47M 72.76 (↑2.51) 90.79 (↑1.41)
+ ODConv (4×) 44.90M 73.97 (↑3.72) 91.35 (↑1.97)
+ KW (1/2×) 7.43M 72.81 (↑2.56) 90.66 (↑1.28)
+ KW (1×) 11.93M 73.67 (↑3.42) 91.17 (↑1.79)
+ KW (2×) 23.24M 74.03 (↑3.78) 91.37 (↑1.99)
+ KW (4×) 45.86M 74.16 (↑3.91) 91.42 (↑2.04)

Experimental Setup. In the experiments, we make diverse
comparisons of our method with related methods to demon-
strate its effectiveness. Firstly, on the ResNet18 backbone,
we compare our method with various state-of-the-art atten-
tion based methods, including: (1) SE (Hu et al., 2018b),
CBAM (Woo et al., 2018) and ECA (Wang et al., 2020),
which focus on feature recalibration; (2) CGC (Lin et al.,
2020) and WeightNet (Ma et al., 2020), which focus on
adjusting convolutional weights; (3) CondConv (Yang et al.,
2019a), DY-Conv (Chen et al., 2020), DCD (Li et al., 2021b)
and ODConv (Li et al., 2022), which focus on dynamic con-
volution. Secondly, we select DY-Conv (Chen et al., 2020)
and ODConv (Li et al., 2022) as our key reference methods,
since they are top-performing dynamic convolution methods
which are most closely related to our method. We compare
our KernelWarehouse with them on all the other ConvNet
backbones except ConvNeXt-Tiny (since there is no pub-
licly available implementation of them on ConvNeXt). To
make fair comparisons, all the methods are implemented
using the public codes with the same settings for training
and testing. In the experiments, we use b× to denote the
convolutional parameter budget of each dynamic convolu-
tion method relative to normal convolution, the values of n
and m in KernelWarehouse and the experimental details for
each ConvNet backbone are provided in the Appendix.

Results Comparison with Traditional Training Strategy.
We first use the traditional training strategy adopted by lots
of previous studies, training the ResNet18 backbone for
100 epochs. The results are shown in Table 1. It can be
observed that dynamic convolution methods (CondConv,
DY-Conv and ODConv), which introduce obviously more
extra parameters, tend to have better performance compared
with the other reference methods (SE, CBAM, ECA, CGC,
WeightNet and DCD). Note that our KW (1/2×), which
has 36.45% parameters less than the baseline, can even
outperform all the above attention based methods (except

Table 2: Results comparison on ImageNet with the
ResNet18, ResNet50 and ConvNeXt-Tiny backbones us-
ing the advanced training strategy (Liu et al., 2022).

Models Params Top-1 Acc (%) Top-5 Acc (%)
ResNet18 11.69M 70.44 89.72
+ DY-Conv (4×) 45.47M 73.82 (↑3.38) 91.48 (↑1.76)
+ ODConv (4×) 44.90M 74.45 (↑4.01) 91.67 (↑1.95)
+ KW (1/4×) 4.08M 72.73 (↑2.29) 90.83 (↑1.11)
+ KW (1/2×) 7.43M 73.33 (↑2.89) 91.42 (↑1.70)
+ KW (1×) 11.93M 74.77 (↑4.33) 92.13 (↑2.41)
+ KW (2×) 23.24M 75.19 (↑4.75) 92.18 (↑2.46)
+ KW (4×) 45.86M 76.05 (↑5.61) 92.68 (↑2.96)
ResNet50 25.56M 78.44 94.24
+ DY-Conv (4×) 100.88M 79.00 (↑0.56) 94.27 (↑0.03)
+ ODConv (4×) 90.67M 80.62 (↑2.18) 95.16 (↑0.92)
+ KW (1/2×) 17.64M 79.30 (↑0.86) 94.71 (↑0.47)
+ KW (1×) 28.05M 80.38 (↑1.94) 95.19 (↑0.95)
+ KW (4×) 102.02M 81.05 (↑2.61) 95.21 (↑0.97)
ConvNeXt-Tiny 28.59M 82.07 95.86
+ KW (3/4×) 24.53M 82.23 (↑0.16) 95.88 (↑0.02)
+ KW (1×) 32.99M 82.55 (↑0.48) 96.08 (↑0.22)

ODConv (4×), but including CondConv (8×) and DY-Conv
(4×) which increase the model size to 6.96|3.89 times).
Comparatively, our KW (4×) achieves the best results.

Results Comparison with Advanced Training Strategy.
To better explore the potential of our method, we further
adopt the advanced training strategy recently proposed
in ConvNeXt (Liu et al., 2022), with a longer training
schedule of 300 epochs and aggressive augmentations, for
comparisons on the ResNet18, ResNet50 and ConvNeXt-
Tiny backbones. From the results summarized in Table 2,
we can observe: (1) KW (4×) gets the best results on
the ResNet18 backbone, bringing a significant top-1 gain
of 5.61%. Even with 36.45%|65.10% parameter reduc-
tion, KW (1/2×)|KW(1/4×) brings 2.89%|2.29% top-1
accuracy gain to the baseline model; (2) On the larger
ResNet50 backbone, vanilla dynamic convolution DY-Conv
(4×) brings small top-1 gain to the baseline model, but
KW (1/2×, 1×, 4×) gets promising top-1 gains. Even with
30.99% parameter reduction against the baseline model, KW
(1/2×) attains a top-1 gain of 0.86%. KW (4×) outperforms
DY-Conv (4×) and ODConv (4×) by 2.05% and 0.43% top-
1 gain, respecrtively. Besides, we also apply our method to
the ConvNeXt-Tiny backbone to investigate its performance
on the state-of-the-art ConvNet architecture. Results show
that our method generalizes well on ConvNeXt-Tiny. Sur-
prisingly, KW(3/4×) with 14.20% parameter reduction to
the baseline model gets 0.16% top-1 gain.

Results Comparison on MobileNets. We further apply
our method to MobileNetV2 (1.0×, 0.5×) to validate its
effectiveness on lightweight ConvNet architectures. Since
the lightweight MobileNetV2 backbones have lower model
capacity compared to ResNet and ConvNeXt backbones,
we don’t use aggressive augmentations. The results are
shown in Table 4. We can see that our method can strike a

6

KernelWarehouse: Rethinking the Design of Dynamic Convolution

Table 3: Results comparison on MS-COCO using the pre-trained backbone models. Best results are bolded.

Detectors Backbone Models Object Detection Instance Segmentation
AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

Mask R-CNN

ResNet50 39.6 61.6 43.3 24.4 43.7 50.0 36.4 58.7 38.6 20.4 40.4 48.4
+ DY-Conv (4×) 39.6 62.1 43.1 24.7 43.3 50.5 36.6 59.1 38.6 20.9 40.2 49.1
+ ODConv (4×) 42.1 65.1 46.1 27.2 46.1 53.9 38.6 61.6 41.4 23.1 42.3 52.0
+ KW (1×) 41.8 64.5 45.9 26.6 45.5 53.0 38.4 61.4 41.2 22.2 42.0 51.6
+ KW (4×) 42.4 65.4 46.3 27.2 46.2 54.6 38.9 62.0 41.5 22.7 42.6 53.1
MobileNetV2 (1.0×) 33.8 55.2 35.8 19.7 36.5 44.4 31.7 52.4 33.3 16.4 34.4 43.7
+ DY-Conv (4×) 37.0 58.6 40.3 21.9 40.1 47.9 34.1 55.7 36.1 18.6 37.1 46.3
+ ODConv (4×) 37.2 59.4 39.9 22.6 40.0 48.0 34.5 56.4 36.3 19.3 37.3 46.8
+ KW (1×) 36.4 58.3 39.2 22.0 39.6 47.0 33.7 55.1 35.7 18.9 36.7 45.6
+ KW (4×) 38.0 60.0 40.8 23.1 40.7 50.0 34.9 56.6 37.0 19.4 37.9 47.8
ConvNeXt-Tiny 43.4 65.8 47.7 27.6 46.8 55.9 39.7 62.6 42.4 23.1 43.1 53.7
+ KW (3/4×) 44.1 66.8 48.4 29.7 47.4 56.7 40.2 63.6 43.0 24.8 43.6 54.3
+ KW (1×) 44.8 67.7 48.9 29.8 48.3 57.3 40.6 64.4 43.4 24.7 44.1 54.8

Table 4: Results comparison on ImageNet with the Mo-
bileNetV2 backbones trained for 150 epochs.

Models Params Top-1 Acc (%) Top-5 Acc (%)
MobileNetV2 (0.5×) 1.97M 64.30 85.21
+ DY-Conv (4×) 4.57M 69.05 (↑4.75) 88.37 (↑3.16)
+ ODConv (4×) 4.44M 70.01 (↑5.71) 89.01 (↑3.80)
+ KW (1/2×) 1.47M 65.19 (↑0.89) 85.98 (↑0.77)
+ KW (1×) 2.85M 68.29 (↑3.99) 87.93 (↑2.72)
+ KW (4×) 4.65M 70.26 (↑5.96) 89.19 (↑3.98)
MobileNetV2 (1.0×) 3.50M 72.02 90.43
+ DY-Conv (4×) 12.40M 74.94 (↑2.92) 91.83 (↑1.40)
+ ODConv (4×) 11.52M 75.42 (↑3.40) 92.18 (↑1.75)
+ KW (1/2×) 2.65M 72.59 (↑0.57) 90.71 (↑0.28)
+ KW (1×) 5.17M 74.68 (↑2.66) 91.90 (↑1.47)
+ KW (4×) 11.38M 75.92 (↑3.90) 92.22 (↑1.79)

favorable trade-off between parameter efficiency and repre-
sentation power for lightweight ConvNets as well as larger
ones. Even on the lightweight MobileNetV2 (1.0×, 0.5×)
with 3.50M|1.97M parameters, KW (1/2×) can reduce the
model size by 24.29%|25.38% while bringing top-1 gain of
0.57%|0.89%. Similar to the results on the ResNet18 and
ResNet50 backbones, KW (4×) also obtains the best results
on both MobileNetV2 (1.0×) and MobileNetV2 (0.5×).

4.2. Detection and Segmentation on MS-COCO Dataset

Next, to evaluate the generalization ability of the classifica-
tion backbone models trained by our method to downstream
object detection and instance segmentation tasks, we con-
duct comparative experiments on MS-COCO dataset.

Experimental Setup. We adopt Mask R-CNN (He et al.,
2017) as the detection framework, ResNet50 and Mo-
bileNetV2 (1.0×) built with different dynamic convolution
methods as the backbones which are pre-trained on Ima-
geNet dataset. Then, all the models are trained with stan-
dard 1× schedule on MS-COCO dataset. For fair compar-
isons, we adopt the same settings including data processing
pipeline and hyperparameters for all the models. Experi-
mental details are described in the Appendix.

Results Comparison. Table 3 summarizes all results. For
Mask R-CNN with the ResNet50 backbone, we observe a

Table 5: Effect of kernel partition.

Models Kernel Partition Params Top-1 Acc (%) Top-5 Acc (%)
ResNet18 - 11.69M 70.44 89.72

+ KW (1×) ! 11.93M 74.77 (↑4.33) 92.13 (↑2.41)
% 11.78M 70.49 (↑0.05) 89.84 (↑0.12)

similar trend to the main experiments on ImageNet dataset:
KW (4×) outperforms DY-Conv (4×) and ODConv (4×)
on both object detection and instance segmentation tasks.
Our KW (1×) brings an AP improvement of 2.2%|2.0%
on object detection and instance segmentation tasks, which
is even on par with ODConv (4×). On the MobileNetV2
(1.0×) backbone, our method yields consistent high accu-
racy improvements to the baseline, and KW (4×) achieves
the best results. With the ConvNeXt-Tiny backbone, the
performance gains of KW (1×) and KW (3/4×) to the
baseline model become more pronounced on MS-COCO
dataset compared to those on ImageNet dataset, showing
good transfer learning ability of our method.

4.3. Ablation Studies

For a better understanding of our method, we further con-
duct a lot of ablative experiments on ImageNet dataset, using
the advanced training strategy proposed in ConvNeXt (Liu
et al., 2022).

Effect of Kernel Partition. Thanks to the kernel partition
component, our method can apply dense kernel assembling
with a large number of kernel cells. In Table 5, we provide
the ablative experiments on the ResNet18 backbone with
KW (1×) to study the efficacy of kernel partition. We can
see, when removing kernel partition, the top-1 gain of our
method to the baseline model sharply decreases from 4.33%
to 0.05%, demonstrating its great importance to our method.

Effect of Warehouse Sharing Range in terms of Layer.
To validate the effectiveness of the warehouse construction-
with-sharing component, we first study warehouse sharing
range in terms of layer by performing ablative experiments
on the ResNet18 backbone with KW (1×). From the results

7

KernelWarehouse: Rethinking the Design of Dynamic Convolution

Table 6: Effect of warehouse sharing range in terms of layer.

Models Warehouse Sharing Range Params Top-1 Acc (%) Top-5 Acc (%)
ResNet18 - 11.69M 70.44 89.72

+ KW (1×)
Within each stage 11.93M 74.77 (↑4.33) 92.13 (↑2.41)
Within each layer 11.81M 74.34 (↑3.90) 91.82 (↑2.10)
Without sharing 11.78M 72.49 (↑2.05) 90.81 (↑1.09)

Table 7: Effect of warehouse sharing range in terms of static
kernel dimensions.

Models Warehouse sharing range Params Top-1 Acc (%) Top-5 Acc (%)
ResNet50 - 25.56M 78.44 94.24

+ KW (1×) Different dimensioned kernels 28.05M 80.38 (↑1.94) 95.27 (↑1.03)
Same dimensioned kernels 26.95M 79.80 (↑1.36) 95.01 (↑0.77)

Table 8: Effect of different attention functions.

Models Attention Functions Params Top-1 Acc (%) Top-5 Acc (%)
ResNet18 - 11.69M 70.44 89.72

+ KW (1×)

zij/
∑n

p=1 |zip| (ours) 11.93M 74.77 (↑4.33) 92.13 (↑2.41)
Softmax 11.93M 72.67 (↑2.23) 90.82 (↑1.10)
Sigmoid 11.93M 72.09 (↑1.65) 90.70 (↑0.98)

max(zij , 0)/
∑n

p=1 |zip| 11.93M 72.74 (↑2.30) 90.86 (↑1.14)

shown in Table 6, we can see that when sharing warehouse
in a wider range, our method brings larger performance im-
provement to the baseline model. This clearly indicates that
explicitly enhancing convolutional parameter dependencies
either within the same or across the neighboring layers can
strengthen the capacity of a ConvNet.

Effect of Warehouse Sharing Range in terms of Static
Kernel Dimensions. For modern ConvNet backbones, a
convolutional block in the same-stage mostly contains sev-
eral static kernels having different dimensions (k×k×c×f).
Next, we perform ablative experiments on the ResNet50
backbone to study the effect of warehouse sharing range in
terms of static kernel dimensions in the same-stage convo-
lutional layers of a ConvNet. Results are summarized in
Table 7, showing that warehouse sharing across convolu-
tional layers having different dimensioned kernels performs
better than only sharing warehouse across convolutional
layers having the same dimensioned kernels. Combining
the results in Table 6 and Table 7, we can conclude that
enhancing the warehouse sharing between more kernel cells
tends to achieve better performance for our method.

Effect of Different Attention Functions. Recall that our
method relies on the proposed contrasting-driven attention
function (CAF). To explore its role, we also conduct ablative
experiments on the ResNet18 backbone to compare the per-
formance of KernelWarehouse using different attention func-
tions. According to the results in Table 8, the top-1 gain of
our CAF zij/

∑n
p=1 |zip| against popular attention function

Softmax|Sigmoid reaches 2.10%|2.68%, and our CAF also
outperforms another counterpart max(zij , 0)/

∑n
p=1 |zip|

by 2.03% top-1 gain. These experiments well validate the
efficacy and importance of two design principles (clarified
in the Method section) of our CAF.

Effect of Attentions Initialization Strategy. To help the

Table 9: Effect of attentions initialization strategy.

Models Attentions Initialization Strategy Params Top-1 Acc (%) Top-5 Acc (%)
ResNet18 - 11.69M 70.44 89.72

+ KW (1×) ! 11.93M 74.77 (↑4.33) 92.13 (↑2.41)
% 11.93M 73.39 (↑2.95) 91.24 (↑1.52)

Table 10: Applying CAF to other dynamic convolution
methods.

Models Params Attention Function Top-1 Acc (%) Top-5 Acc (%)
ResNet18 11.69M - 70.44 89.72

+ DY-Conv (4×) 45.47M Softmax 73.82 (↑3.38) 91.48 (↑1.76)
Our CAF 73.74 (↑3.30) 91.45 (↑1.73)

+ ODConv (4×) 44.90M Softmax 74.45 (↑4.01) 91.67 (↑1.95)
Our CAF 74.27 (↑3.83) 91.62 (↑1.90)

+ KW (1×) 11.93M Softmax 72.67 (↑2.23) 90.82 (↑1.10)
Our CAF 74.77 (↑4.33) 92.13 (↑2.41)

+ KW (4×) 45.86M Softmax 74.31 (↑3.87) 91.75 (↑2.03)
Our CAF 76.05 (↑5.61) 92.68 (↑2.96)

Table 11: Applying KW to Vision Transformer backbones.

Models Params Top-1 Acc (%) Top-5 Acc (%)
DeiT-Small 22.06M 79.78 94.99
+ KW (3/4×) 19.23M 79.94 (↑0.16) 95.05 (↑0.06)
+ KW (1×) 24.36M 80.63 (↑0.85) 95.24 (↑0.25)
DeiT-Tiny 5.72M 72.13 91.32
+ KW (1×) 6.39M 73.56 (↑1.43) 91.82 (↑0.50)
+ KW (4×) 20.44M 76.51 (↑4.38) 93.05 (↑1.73)

optimization of KernelWarehouse in the early training stage,
our CAF uses binary βij with temperature γ to initialize
the scalar attentions. Next, we perform experiments on
the ResNet18 backbone to study its role. As shown in Ta-
ble 9, this attentions initialization strategy is essential to our
method in learning contrasting and diverse attention rela-
tionships between linear mixtures and kernel cells, bringing
1.38% top-1 gain to the baseline model with KW (1×).

Applying CAF to Other Dynamic Convolution Methods.
In Table 10, we provide experimental results for applying the
proposed attention function CAF to existing top-performing
dynamic convolution methods DY-Conv and ODConv. We
can see that CAF gets slight model accuracy drop compared
to the original Softmax function. This is because CAF is
customized to fit three unique optimization properties of
KernelWarehouse, as we discussed in the Method section.

Applying KW to Vision Transformer Backbones. One
interesting question is whether our method can be gener-
alized to Vision Transformer backbones. We study it by
applying our method to two popular DeiT (Touvron et al.,
2021) backbones. In the experiments, each of partitioned
cells of weight matrices for “value and MLP” layers of
each DeiT backbone is represented as a linear mixture of
kernel warehouse shared across multiple multi-head self-
attention blocks and MLP blocks, except the “query” and
“key” matrices which are used to compute self-attention.
From the results shown in Table 11, it can be seen that: (1)
With a small parameter budget, e.g., b = 3/4, KW gets
slightly improved model accuracy while reducing model

8

KernelWarehouse: Rethinking the Design of Dynamic Convolution

Figure 3: Visualization of statistical mean values of learnt attention αij in each warehouse. The results are obtained from
the pre-trained ResNet18 model with KW (1×) using the whole ImageNet validation set. Best viewed with zoom-in.

Table 12: Runtime model speed (frames per second (FPS))
comparison. All models are tested on an NVIDIA TITAN X
GPU (with batch size 100 and input image size 224×224).

Models Params Top-1 Acc (%) Runtime Speed (FPS)
ResNet50 25.56M 78.44 647.0
+ DY-Conv (4×) 100.88M 79.00 (↑0.56) 322.7
+ ODConv (4×) 90.67M 80.62 (↑2.18) 142.3
+ KW (1/2×) 17.64M 79.30 (↑0.86) 227.8
+ KW (1×) 28.05M 80.38 (↑1.94) 265.4
+ KW (4×) 102.02M 81.05 (↑2.61) 191.1
MobileNetV2 (1.0×) 3.50M 72.02 1410.8
+ DY-Conv (4×) 12.40M 74.94 (↑2.92) 862.4
+ ODConv (4×) 11.52M 75.42 (↑3.40) 536.5
+ KW (1/2×) 2.65M 72.59 (↑0.57) 926.0
+ KW (1×) 5.17M 74.68 (↑2.66) 798.7
+ KW (4×) 11.38M 75.92 (↑3.90) 786.9

size of DeiT-Small; (2) With a larger parameter budget,
e.g., b = 4, KW can significantly improve model accuracy,
bringing 4.38% top-1 accuracy gain to DeiT-Tiny; (3) These
performance trends are similar to our results on ConvNet
backbones (see Table 2 and Table 4), demonstrating the
appealing generalization ability of our method to different
neural network architectures.

Visualization of Learnt Attentions. In Figure 3, we pro-
vide visualization results to analyze the statistical mean
values of learnt attention αij , for better understanding our
method. The results are obtained from the pre-trained
ResNet18 model with KW (1×). We can observe: (1) Each
linear mixture can learn its own distribution of scalar at-
tentions for different kernel cells; (2) In each warehouse,
the maximum value of αij in each row mostly appears in
the diagonal line throughout the whole warehouse. This
indicates that our attentions initialization strategy can help
our method to build rich one-to-one relationships between
linear mixtures and kernel cells; (3) The attentions αij with
higher absolute values for linear mixtures in the same layer
have more overlaps than linear mixtures across different
layers. This indicates that parameter dependencies within
the same kernel are stronger than those across neighboring
layers, which can be learned by our method.

Runtime Model Speed and Discussion. The above exper-
imental results demonstrate that KernelWarehouse strikes
a favorable trade-off between parameter efficiency and rep-
resentation power. Table 12 further compares the runtime
model speeds of different dynamic convolution methods.
We can see, under the same convolutional parameter bud-
get b, the runtime model speed of KernelWarehouse: (1)
is slower than DY-Conv (vanilla dynamic convolution) on
larger backbones like ResNet50; (2) is at a similar level
to DY-Conv on lightweight backbones like MobileNetV2;
(3) is always faster than ODConv (existing best-performing
dynamic convolution method). The model speed gap of Ker-
nelWarehouse to DY-Conv is primarily due to the dense at-
tentive mixture and assembling operations at the same-stage
convolutional layers having a shared warehouse. Thanks
to the parallel property of these operations, there are some
potential optimization strategies to alleviate this gap. Given
a ConvNet model pre-trained with KernelWarehouse, a cus-
tomized optimization strategy is to adaptively allocate avail-
able Tensor Cores and CUDA Cores for a better trade-off
of memory-intensive and compute-intensive operations in
KernelWarehouse at different convolutional layers. Another
potential optimization strategy is to reduce the number of
kernel cells in a shared warehouse or reduce the warehouse
sharing range, under the condition that the desired model
size and accuracy can be still reached in real applications.

More experiments and visualizations are in the Appendix.

5. Conclusion
In this paper, we rethink the design of dynamic convolution
and present KernelWarehouse. As a more general form of
dynamic convolution, KernelWarehouse can improve the
performance of modern ConvNets while enjoying parame-
ter efficiency. Experiments on ImageNet and MS-COCO
datasets show its great potential. We hope our work would
inspire future research in dynamic convolution.

9

KernelWarehouse: Rethinking the Design of Dynamic Convolution

Acknowledgements
This work was done when Chao Li was an intern at In-
tel Labs China, supervised by Anbang Yao who led the
project and the paper writing. We thank Intel Data Center
& AI group’s great support of their DGX-2 and DGX-A100
servers for training large models in this project.

Impact Statement
This paper presents KernelWarehouse, a more general form
of dynamic convolution, which advances dynamic convo-
lution research towards substantially better parameter effi-
ciency and representation power. As far as we know, our
work does not have any ethical impacts and potential societal
consequences.

References
Bako, S., Vogels, T., McWilliams, B., Meyer, M., Nov-

Dollák, J., Harvill, A., Sen, P., DeRose, T., and Rousselle,
F. Kernel-predicting convolutional networks for denois-
ing monte carlo renderings. In Siggraph, 2017.

Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., and Liu,
Z. Dynamic convolution: Attention over convolution
kernels. In CVPR, 2020.

Cubuk, E. D., Zoph, B., Shlens, J., and V, L. Q. Ran-
daugment: Practical automated data augmentation with a
reduced search space. In CVPR Workshops, 2020.

Diba, A., Sharma, V., Van Gool, L., and Stiefelhagen, R.
Dynamonet: Dynamic action and motion network. In
ICCV, 2019.

Dosovitskiy, A., Dosovitskiy, A., Beyer, L., Kolesnikov, A.,
Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M.,
Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and
Houlsby, N. An image is worth 16x16 words: Transform-
ers for image recognition at scale. In ICLR, 2021.

Ha, D., Dai, A. M., and Le, Q. V. Hypernetworks. In ICLR,
2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. Mask
r-cnn. In ICCV, 2017.

He, S., Jiang, C., Dong, D., and Ding, L. Sd-conv: To-
wards the parameter-effciency of dynamic convolution.
In WACV, 2023.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,
Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le,
Q. V., and Adam, H. Searching for mobilenetv3. In ICCV,
2019.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Hu, J., Shen, L., Albanie, S., Sun, G., and Vedaldi, A.
Gather-excite: Exploiting feature context in convolutional
neural networks. In NeurIPS, 2018a.

Hu, J., Shen, L., and Sun, G. Squeeze-and-excitation net-
works. In CVPR, 2018b.

Huang, G., Liu, Z., van der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
CVPR, 2017.

Jaderberg, M., Simonyan, K., Zisserman, A., and
Kavukcuoglu, K. Spatial transformer networks. In NIPS,
2015.

Jia, X., Brabandere, B. D., Tuytelaars, T., and Gool, L. V.
Dynamic filter networks. In NIPS, 2016.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In NIPS, 2012.

Lee, H., Kim, H.-E., and Nam, H. Srm: A style-based
recalibration module for convolutional neural networks.
In ICCV, 2019.

Li, C., Zhou, A., and Yao, A. Omni-dimensional dynamic
convolution. In ICLR, 2022.

Li, D., Yao, A., and Chen, Q. Psconv: Squeezing feature
pyramid into one compact poly-scale convolutional layer.
In ECCV, 2020.

Li, D., Hu, J., Wang, C., Li, X., She, Q., Zhu, L., Zhang,
T., and Chen, Q. Involution: Inverting the inherence of
convolution for visual recognition. In CVPR, 2021a.

Li, X., Wang, W., Hu, X., and Yang, J. Selective kernel
networks. In CVPR, 2019.

Li, Y., Chen, Y., Dai, X., Liu, M., Chen, D., Yu, Y., Lu,
Y., Liu, Z., Chen, M., and Vasconcelos, N. Revisiting
dynamic convolution via matrix decomposition. In ICLR,
2021b.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., and Zitnick, C. L. Microsoft
coco: Common objects in context. In ECCV, 2014.

Lin, X., Ma, L., Liu, W., and Chang, S.-F. Context-gated
convolution. In ECCV, 2020.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. Swin transformer: Hierarchical vision
transformer using shifted windows. In ICCV, 2021.

10

KernelWarehouse: Rethinking the Design of Dynamic Convolution

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T.,
and Xie, S. A convnet for the 2020s. In CVPR, 2022.

Ma, N., Zhang, X., Huang, J., and Sun, J. Weightnet: Re-
visiting the design space of weight networks. In ECCV,
2020.

Mildenhall, B., Barron, J. T., Chen, J., Sharlet, D., Ng, R.,
and Carroll, R. Burst denoising with kernel prediction
networks. In CVPR, 2018.

Munkhdalai, T. and Yu, H. Meta networks. In ICML, 2017.

Park, J., Woo, S., Lee, J.-Y., and Kweon, I. S. Bam: Bottle-
neck attention module. In BMVC, 2018.

Quader, N., Bhuiyan, M. M. I., Lu, J., Dai, P., and Li,
W. Weight excitation: Built-in attention mechanisms in
convolutional neural networks. In ECCV, 2020.

Radosavovic, I., Kosaraju, R. P., Girshick, R., He, K., and
Dollár, P. Designing network design spaces. In CVPR,
2020.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Li, F.-F. Imagenet large scale visual
recognition challenge. IJCV, 2015.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In CVPR, 2018.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In ICLR,
2015.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going deeper with convolutions. In CVPR, 2015.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer
vision. In CVPR, 2016.

Tan, M. and Le, Q. Efficientnet: Rethinking model scaling
for convolutional neural networks. In ICML, 2019a.

Tan, M. and Le, Q. V. Mixconv: Mixed depthwise convolu-
tional kernels. In BMVC, 2019b.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles,
A., and Jégou, H. Training data-efficient image trans-
formers & distillation through attention. In ICML, 2021.

Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H.,
Wang, X., and Tang, X. Residual attention network for
image classification. In CVPR, 2017.

Wang, J., Chen, K., Xu, R., Liu, Z., Chen, C. L., and Lin, D.
Carafe: Content-aware reassembly of features. In ICCV,
2019.

Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., and Hu, Q. Eca-
net: Efficient channel attention for deep convolutional
neural networks. In CVPR, 2020.

Woo, S., Park, J., Lee, J.-Y., and Kweon, I. S. Cbam:
Convolutional block attention module. In ECCV, 2018.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. Aggre-
gated residual transformations for deep neural networks.
In CVPR, 2017.

Yang, B., Bender, G., Le, Q. V., and Ngiam, J. Condconv:
Conditionally parameterized convolutions for efficient
inference. In NeurIPS, 2019a.

Yang, Z., Yunhe, W., Chen, H., Liu, C., Shi, B., Xu, C., Xu,
C., and Xu, C. Legonet: Efficient convolutional neural
networks with lego filters. In ICML, 2019b.

Yun, S., , Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo, Y.
Cutmix: Regularization strategy to train strong classifiers
with localizable features. In ICCV, 2019.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D.
mixup: Beyond empirical risk minimization. In ICLR,
2018a.

Zhang, X., Zhou, X., Lin, M., and Sun, J. Shufflenet: An ex-
tremely efficient convolutional neural network for mobile
devices. In CVPR, 2018b.

Zhong, Z., Zheng, L., Kang, G., Li, S., and Yang, Y. Ran-
dom erasing data augmentation. In AAAI, 2020.

11

KernelWarehouse: Rethinking the Design of Dynamic Convolution

A. Appendix
A.1. Datasets and Implementation Details

A.1.1. IMAGE CLASSIFICATION ON IMAGENET

Recall that we use ResNet (He et al., 2016), MobileNetV2 (Sandler et al., 2018) and ConvNeXt (Liu et al., 2022) families
for the main experiments on ImageNet dataset (Russakovsky et al., 2015), which consists of over 1.2 million training images
and 50,000 validation images with 1,000 object categories. We use an input image resolution of 224×224 for both training
and evaluation. All the input images are standardized with mean and standard deviation per channel. For evaluation, we
report top-1 and top-5 recognition rates of a single 224×224 center crop on the ImageNet validation set. All the experiments
are performed on the servers having 8 GPUs. Specifically, the models of ResNet18, MobileNetV2 (1.0×), MobileNetV2
(0.5×) are trained on the servers with 8 NVIDIA Titan X GPUs. The models of ResNet50, ConvNeXt-Tiny are trained on
the servers with 8 NVIDIA Tesla V100-SXM3 or A100 GPUs. The training setups for different models are as follows.

Training setup for ResNet models with the traditional training strategy. All the models are trained by the stochastic
gradient descent (SGD) optimizer for 100 epochs, with a batch size of 256, a momentum of 0.9 and a weight decay of
0.0001. The initial learning rate is set to 0.1 and decayed by a factor of 10 for every 30 epoch. Horizontal flipping and
random resized cropping are used for data augmentation. For KernelWarehouse, the temperature τ linearly reduces from 1
to 0 in the first 10 epochs.

Training setup for ResNet and ConvNeXt models with the advanced training strategy. Following the settings of
ConvNeXt (Liu et al., 2022), all the models are trained by the AdamW optimizer with β1 = 0.9, β2 = 0.999 for 300
epochs, with a batch size of 4096, a momentum of 0.9 and a weight decay of 0.05. The initial learning rate is set to 0.004
and annealed down to zero following a cosine schedule. Randaugment (Cubuk et al., 2020), mixup (Zhang et al., 2018a),
cutmix (Yun et al., 2019), random erasing (Zhong et al., 2020) and label smoothing (Szegedy et al., 2016) are used for
augmentation. For KernelWarehouse, the temperature τ linearly reduces from 1 to 0 in the first 20 epochs.

Training setup for MobileNetV2 models. All the models are trained by the SGD optimizer for 150 epochs, with a batch
size of 256, a momentum of 0.9 and a weight decay of 0.00004. The initial learning rate is set to 0.1 and annealed down to
zero following a cosine schedule. Horizontal flipping and random resized cropping are used for data augmentation. For
KernelWarehouse, the temperature τ linearly reduces from 1 to 0 in the first 10 epochs.

A.1.2. OBJECT DETECTION AND INSTANCE SEGMENTATION ON MS-COCO

Recall that we conduct comparative experiments for object detection and instance segmentation on the MS-COCO 2017
dataset (Lin et al., 2014), which contains 118,000 training images and 5,000 validation images with 80 object categories.
We adopt Mask R-CNN as the detection framework, ResNet50 and MobileNetV2 (1.0×) built with different dynamic
convolution methods as the backbones which are pre-trained on ImageNet dataset. All the models are trained with a batch
size of 16 and standard 1× schedule on the MS-COCO dataset using multi-scale training. The learning rate is decreased by
a factor of 10 at the 8th and the 11th epoch of total 12 epochs. For a fair comparison, we adopt the same settings including
data processing pipeline and hyperparameters for all the models. All the experiments are performed on the servers with 8
NVIDIA Tesla V100 GPUs. The attentions initialization strategy is not used for KernelWarehouse during fine-tuning to
avoid disrupting the learnt relationships of the pre-trained models between kernel cells and linear mixtures. For evaluation,
we report both bounding box Average Precision (AP) and mask AP on the MS-COCO 2017 validation set, including AP50,
AP75 (AP at different IoU thresholds) and APS , APM , APL (AP at different scales).

A.2. Visualization Examples of Attentions Initialization Strategy

Recall that we adopt an attentions initialization strategy for KernelWarehouse using τ and βij . It forces the scalar attentions
to be one-hot in the early training stage for building one-to-one relationships between kernel cells and linear mixtures. To
give a better understanding of this strategy, we provide visualization examples for KW (1×), KW (2×) and KW (1/2×),
respectively. We also provide a set of ablative experiments to compare our proposed strategy with other alternatives.

Attentions Initialization for KW (1×). A visualization example of attentions initialization strategy for KW (1×) is shown
in Figure 4. In this example, a warehouse E = {e1, . . . , e6, ez} is shared to 3 neighboring convolutional layers with kernel
dimensions of k × k × 2c× f , k × 3k × c× f and k × k × c× f , respectively. The kernel dimensions are selected for
simple illustration. The kernel cells have the same dimensions of k × k × c× f . Note that the kernel cell ez doesn’t really

12

KernelWarehouse: Rethinking the Design of Dynamic Convolution

Warehouse

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

𝒘1

𝒘2

𝒘3

𝒘2

𝒘1

Layer 1

Layer 2

𝒘1 0 0 0 0 0 1 0

𝒆6𝒆2 𝒆3 𝒆4 𝒆5𝒆1 𝒆𝑧

Layer 3

𝒆6𝒆2 𝒆3 𝒆4 𝒆5𝒆1 𝒆𝑧

Layer 1

2𝑐

𝑓
𝑘2

Layer 2

𝑓

𝑐

3𝑘2

Layer 3

𝑓

𝑐
𝑘2

𝛽𝑖𝑗

Figure 4: A visualization example of attentions initialization strategy for KW (1×), where both n and mt equal to 6. It helps
the ConvNet to build one-to-one relationships between kernel cells and linear mixtures in the early training stage according
to our setting of βij . ez is a kernel cell that doesn’t really exist and it keeps as a zero matrix constantly. In the beginning
of the training process when temperature τ is 1, a ConvNet built with KW (1×) can be roughly seen as a ConvNet with
standard convolutions.

Layer

Warehouse

1 0 0 0 0

0 1 0 0 0𝒘2

𝒘1𝒆2 𝒆3 𝒆4 𝒆𝑧𝒆1

𝒆2 𝒆3 𝒆4 𝒆𝑧𝒆1

𝑓

𝑐

2𝑘2

𝛽𝑖𝑗

1 0 1 0 0

0 1 0 1 0𝒘2

𝒘1

𝒆2 𝒆3 𝒆4 𝒆𝑧𝒆1
𝛽𝑖𝑗

(a)

(b)

Figure 5: Visualization examples of attentions initialization
strategies for KW (2×), where n = 4 and mt = 2. (a) our
proposed strategy builds one-to-one relationships between
kernel cells and linear mixtures; (b) an alternative strategy
which builds two-to-one relationships between kernel cells
and linear mixtures.

Layer

Warehouse

1 0 0

0 0 1

0 0 1

0 1 0

𝒘2

𝒘1

𝒆1 𝒆2 𝒆𝑧

(a)

𝑓

𝑐 𝑘2

𝒘3

𝒘4

1 0 0

1 0 0

0 1 0

0 1 0

𝒘2

𝒘1

𝒘3

𝒘4

(b)

𝒆2 𝒆𝑧𝒆1
𝛽𝑖𝑗

𝒆1
𝛽𝑖𝑗

𝒆2 𝒆𝑧

Figure 6: Visualization examples of attentions initialization
strategies for KW (1/2×), where n = 2 and mt = 4. (a) our
proposed strategy builds one-to-one relationships between
kernel cells and linear mixtures; (b) an alternative strategy
which builds one-to-two relationships between kernel cells
and linear mixtures.

exist and it keeps as a zero matrix constantly. It is only used for attentions normalization but not assembling kernels. This
kernel is mainly designed for attentions initialization when b < 1 and not counted in the number of kernel cells n. In the
early training stage, we adopt a strategy to explicitly force every linear mixture to build relationship with one specified
kernel cell according to our setting of βij . As shown in Figure 4, we assign one of e1, . . . , e6 in the warehouse to each
of the 6 linear mixtures at the 3 convolutional layers without repetition. So that in the beginning of the training process
when temperature τ is 1, a ConvNet built with KW (1×) can be roughly seen as a ConvNet with standard convolutions.
The results of Table 9 in the main manuscript validate the effectiveness of our proposed attentions initialization strategy.
Here, we compare it with another alternative. In this alternative strategy, we force every linear mixture to build relationships
with all the kernel cells equally by setting all the βij to be 1. The results are shown in Table 13. The all-to-one strategy
demonstrates similar performance with KernelWarehouse without using any attentions initialization strategy, while our
proposed strategy outperforms it by 1.41% top-1 gain.

Attentions Initialization for KW (2×). For KernelWarehouse with b > 1, we adopt the same strategy for initializing
attentions used in KW (1×). Figure 5(a) provides a visualization example of attentions initialization strategy for KW (2×).
For building one-to-one relationships, we assign e1 to w1 and e2 to w2, respectively. When b > 1, another reasonable
strategy is to assign multiple kernel cells to every linear mixture without repetition, which is shown in Figure 5(b). We use
the ResNet18 backbone based on KW (4×) to compare the two strategies. From the results in Table 13, we can see that our

13

KernelWarehouse: Rethinking the Design of Dynamic Convolution

Algorithm 1: Implementation of KernelWarehouse
Part-A: Kernel Partition and Warehouse Construction-with-Sharing

Require :network M consisting of S convolutional stages, parameter budget b
1 for s← 1 to S do
2 {Wi ∈ Rki×ki×ci×fi}li=1= static kernels in the s-th stage of M
3 ke, ce, fe ←cdd({ki}li=1),cdd({ci}li=1),cdd({fi}li=1)
4 mt ← 0
5 for i← 1 to l do
6 {wj ∈ Rke×ke×ce×fe}mj=1 ←kernel partition(Wi, ke, ce, fe)

7 Wi ← w1 ∪ · · · ∪wm, and ∀i, j ∈ {1, . . . ,m}, i ̸= j, wi ∩ wj = ∅
8 m← kikicifi/kekecefe
9 mt ← m+mt

10 end
11 n← bmt

12 Es ← {ei ∈ Rke×ke×ce×fe}ni=1

13 end
14 E← {E1, . . . ,ES}

Return :network M with partitioned kernels, set E consisting of S warehouses

Part-B: Kernel Assembling for Single Same-Stage Convolutional Layer
Require : input x, attention module ϕ, warehouse E = {ei}ni=1, linear mixtures {wi}mi=1

1 α← ϕ(x)
2 for i← 1 to m do
3 wi ← αi1e1 + · · ·+ αinen
4 end
5 W← w1 ∪ · · · ∪wm, and ∀i, j ∈ {1, . . . ,m}, i ̸= j, wi ∩ wj = ∅

Return :assembled kernel W

Table 13: Ablation of KernelWarehouse with different attentions initialization strategies.

Models Attentions Initialization Strategies Params Top-1 Acc (%) Top-5 Acc (%)
ResNet18 - 11.69M 70.44 89.72

+ KW (1×)
1 kernel cell to 1 linear mixture 11.93M 74.77 (↑4.33) 92.13 (↑2.41)
all the kernel cells to 1 linear mixture 11.93M 73.36 (↑2.92) 91.41 (↑1.69)
without attentions initialization 11.93M 73.39 (↑2.95) 91.24 (↑1.52)

+ KW (4×) 1 kernel cell to 1 linear mixture 45.86M 76.05 (↑5.61) 92.68 (↑2.96)
4 kernel cells to 1 linear mixture 45.86M 76.03 (↑5.59) 92.53 (↑2.81)

+ KW (1/2×) 1 kernel cell to 1 linear mixture 7.43M 73.33 (↑2.89) 91.42 (↑1.70)
1 kernel cell to 2 linear mixtures 7.43M 72.89 (↑2.45) 91.34 (↑1.62)

one-to-one strategy performs better.

Attentions Initialization for KW (1/2×). For KernelWarehouse with b < 1, the number of kernel cells is less than that of
linear mixtures, meaning that we cannot adopt the same strategy used for b ≥ 1. Therefore, we only assign one of the total n
kernel cells in the warehouse to n linear mixtures respectively without repetition. And we assign ez to all of the remaining
linear mixtures. The visualization example for KW (1/2×) is shown in Figure 6(a). When temperature τ is 1, a ConvNet
built with KW (1/2×) can be roughly seen as a ConvNet with group convolutions (groups=2). We also provide comparison
results between our proposed strategy and another alternative strategy which assigns one of the n kernel cells to every 2
linear mixtures without repetition. As shown in Table 13, our one-to-one strategy achieves better result again, showing that
introducing an extra kernel ez for b < 1 can help the ConvNet learn more appropriate relationships between kernel cells and
linear mixtures. When assigning one kernel cell to multiple linear mixtures, a ConvNet could not balance the relationships
between them well.

A.3. Design Details of KernelWarehouse

In this section, we describe the design details of our KernelWarehouse. The corresponding values of m and n for each of our
trained models are provided in the Table 14. Note that the values of m and n are naturally determined according to our
setting of the dimensions of the kernel cells, the layers to share warehouses and b. Algorithm 1 shows the implementation of
KernelWarehouse, given a ConvNet backbone and the desired convolutional parameter budget b.

Design details of Attention Module of KernelWarehouse. Following existing dynamic convolution methods, KernelWare-

14

KernelWarehouse: Rethinking the Design of Dynamic Convolution

Table 14: The values of m and n for the ResNet18, ResNet50, ConvNeXt-Tiny, MobileNetV2 (1.0×) and MobileNetV2
(0.5×) backbones based on KernelWarehouse.

Backbones b m n

ResNet18

1/4 224, 188, 188, 108 56, 47, 47, 27
1/2 224, 188, 188, 108 112, 94, 94, 54
1 56, 47, 47, 27 56, 47, 47, 27
2 56, 47, 47, 27 112, 94, 94, 54
4 56, 47, 47, 27 224, 188, 188, 108

ResNet50
1/2 348, 416, 552, 188 174, 208, 276, 94
1 87, 104, 138, 47 87, 104, 138, 47
4 87, 104, 138, 47 348, 416, 552, 188

ConvNeXt-Tiny 1 16,4,4,4,147,24,147,24,147,24,147,24,147,24,147,24 16,4,4,4,147,24,147,24,147,24,147,24,147,24,147,24
3/4 16,4,4,4,147,24,147,24,147,24,147,24,147,96,147,96 16,4,4,4,147,24,147,24,147,24,147,24,147,48,147,48

MobileNetV2 (1.0×)
MobileNetV2 (0.5×)

1/2 9, 36, 18, 27, 36, 27, 12, 27, 80, 40 9, 36, 18, 27, 36, 27, 6, 27, 40, 20
1 9, 36, 34, 78, 18, 42, 27, 102, 36, 120, 27, 58, 27 9, 36, 34, 78, 18, 42, 27, 102, 36, 120, 27, 58, 27
4 9, 36, 11, 1, 2, 18, 7, 3, 27, 4, 4, 36, 9, 3, 27, 11, 3, 27, 20 36, 144, 44, 4, 8, 72, 28, 12, 108, 16, 16, 144, 36, 12, 108, 44, 12, 108, 80

Table 15: The example of warehouse sharing for the ResNet18 backbone based on KW (1×) according to the original stages
and reassigned stages.

Dimensions of Kernel Cells Original Stages Layers Reassigned Stages Dimensions of Kernel Cells

1×1×64×64 1

3×3×64×64

1 1×1×64×64
3×3×64×64
3×3×64×64
3×3×64×64

1×1×64×128 2

3×3×64×128
3×3×128×128

2 1×1×128×1283×3×128×128
3×3×128×128

1×1×128×256 3

3×3×128×256
3×3×256×256

3 1×1×256×2563×3×256×256
3×3×256×256

1×1×256×512 4

3×3×256×512
3×3×512×512

4 1×1×512×5123×3×512×512
3×3×512×512

house also adopts a compact SE-typed structure as the attention module ϕ(x) (illustrated in Figure 1) to generate attentions
for weighting kernel cells in a warehouse. For any convolutional layer with a static kernel W, it starts with a channel-wise
global average pooling (GAP) operation that maps the input x into a feature vector, followed by a fully connected (FC)
layer, a rectified linear unit (ReLU), another FC layer, and a contrasting-driven attention function (CAF). The first FC layer
reduces the length of the feature vector by 16, and the second FC layer generates m sets of n feature logits in parallel which
are finally normalized by our CAF set by set.

Design details of KernelWarehouse on ResNet18. Recall that in KernelWarehouse, a warehouse is shared to all same-stage
convolutional layers. While the layers are originally divided into different stages according to the resolutions of their input
feature maps, the layers are divided into different stages according to their kernel dimensions in our KernelWarehouse.
In our implementation, we usually reassign the first layer (or the first two layers) in each stage to the previous stage. An
example for the ResNet18 backbone based on KW (1×) is given in Table 15. By reassigning the layers, we can avoid
the condition that all the other layers have to be partitioned according to a single layer because of the greatest common
dimension divisors. For the ResNet18 backbone, we apply KernelWarehouse to all the convolutional layers except the first
one. In each stage, the corresponding warehouse is shared to all of its convolutional layers. For KW (1×), KW (2×) and
KW (4×), we use the greatest common dimension divisors for static kernels as the uniform kernel cell dimensions for kernel
partition. For KW (1/2×) and KW (1/4×), we use half of the greatest common dimension divisors.

Design details of KernelWarehouse on ResNet50. For the ResNet50 backbone, we apply KernelWarehouse to all
the convolutional layers except the first two layers. In each stage, the corresponding warehouse is shared to all of its
convolutional layers. For KW (1×) and KW (4×), we use the greatest common dimension divisors for static kernels as
the uniform kernel cell dimensions for kernel partition. For KW (1/2×), we use half of the greatest common dimension
divisors.

Design details of KernelWarehouse on ConvNeXt-Tiny. For the ConvNeXt backbone, we apply KernelWarehouse to all

15

KernelWarehouse: Rethinking the Design of Dynamic Convolution

Table 16: Comparison of memory requirements of DY-Conv, ODConv and KernelWarehouse for training and inference. For
ResNet50, we set batch size to 128|100 for each gpu during training|inference; for MobileNetV2(1.0×), we set batch size to
32|100 for each gpu during training|inference.

Models Params Training Memory Inference Memory
(batch size=128) (batch size=100)

ResNet50 25.56M 11,084 MB 1,249 MB
+ DY-Conv (4×) 100.88M 24,552 MB 2,062 MB
+ ODConv (4×) 90.67M 31,892 MB 5,405 MB
+ KW (1/2×) 17.64M 23,323 MB 2,121 MB
+ KW (1×) 28.05M 23,231 MB 2,200 MB
+ KW (4×) 102.02M 24,905 MB 2,762 MB

Models Params Training Memory Inference Memory
(batch size=32) (batch size=100)

MobileNetV2 (1.0×) 3.50M 2,486 MB 1,083 MB
+ DY-Conv (4×) 12.40M 2,924 MB 1,151 MB
+ ODConv (4×) 11.52M 4,212 MB 1,323 MB
+ KW (1/2×) 2.65M 3,002 MB 1,076 MB
+ KW (1×) 5.17M 2,823 MB 1,096 MB
+ KW (4×) 11.38M 2,916 MB 1,144 MB

the convolutional layers. We partition the 9 blocks in the third stage of the ConvNeXt-Tiny backbone into three stages with
the equal number of blocks. In each stage, the corresponding three warehouses are shared to the point-wise convolutional
layers, the depth-wise convolutional layers and the downsampling layer, respectively. For KW (1×), we use the greatest
common dimension divisors for static kernels as the uniform kernel cell dimensions for kernel partition. For KW (3/4×),
we apply KW (1/2×) to the point-wise convolutional layers in the last two stages of ConvNeXt backbone using half of the
greatest common dimension divisors. And we apply KW (1×) to the other layers using the greatest common dimension
divisors.

Design details of KernelWarehouse on MobileNetV2. For the MobileNetV2 (1.0×) and MobileNetV2 (0.5×) backbones
based on KW (1×) and KW (4×), we apply KernelWarehouse to all the convolutional layers. For MobileNetV2 (1.0×, 0.5×)
based on KW (1×), the corresponding two warehouses are shared to the point-wise convolutional layers and the depth-wise
convolutional layers in each stage, respectively. For MobileNetV2 (1.0×, 0.5×) based on KW (4×), the corresponding three
warehouses are shared to the depth-wise convolutional layers, the point-wise convolutional layers for channel expansion
and the point-wise convolutional layers for channel reduction in each stage, respectively. We use the greatest common
dimension divisors for static kernels as the uniform kernel cell dimensions for kernel partition. For the MobileNetV2 (1.0×)
and MobileNetV2 (0.5×) backbones based on KW (1/2×), we take the parameters in the attention modules and classifier
layer into consideration in order to reduce the total number of parameters. We apply KernelWarehouse to all the depth-wise
convolutional layers, the point-wise convolutional layers in the last two stages and the classifier layer. We set b = 1 for
the point-wise convolutional layers and b = 1/2 for the other layers. For the depth-wise convolutional layers, we use the
greatest common dimension divisors for static kernels as the uniform kernel cell dimensions for kernel partition. For the
point-wise convolutional layers, we use half of the greatest common dimension divisors. For the classifier layer, we use the
kernel cell dimensions of 1000×32.

A.4. More Experiments for Studying Other Potentials of KernelWarehouse

In this section, we provide a lot of extra experiments conducted for studying other potentials of KernelWarehouse.

Comparison of Memory Requirements. From the table 16, we can observe that, for both training and inference, the
memory requirements of our method are very similar to those of DY-Conv, and are much smaller than those for ODConv
(that generates attention weights along all four dimensions including the input channel number, the output channel number,
the spatial kernel size and the kernel number, rather than one single dimension as DY-Conv and KernelWarehouse), showing
that our method does not have a potential limitation on memory requirements compared to existing top-performing dynamic
convolution methods. The reason is: although KernelWarehouse introduces dense attentive mixturing and assembling
operations at the same-stage convolutional layers having a shared warehouse, the memory requirement for these operations
is significantly smaller than that for convolutional feature maps and the memory requirement for attention weights are also
significantly smaller than that for convolutional weights, under the same convolutional parameter budget b.

Combining KernelWarehouse with ODConv. The improvement of KernelWarehouse to ODConv could be further boosted
by a simple combination of KernelWarehouse and ODConv to compute attention weights for KernelWarehouse along the
aforementioned four dimensions instead of one single dimension. We add experiments to explore this potential, and the
results are summarized in the Table 17. We can see that, on the ImageNet dataset with MobileNetV2 (1.0×) backbone,
combining ODConv with KernelWarehouse (4×) further brings 1.12% absolute top-1 improvement to ODConv (4×) while
retaining the similar model size.

16

KernelWarehouse: Rethinking the Design of Dynamic Convolution

Table 17: Effect of combining KernelWarehouse and ODConv, where KW* denotes attention function which combines
KernelWarehouse and ODConv.

Models Params Top-1 Acc (%) Top-5 Acc (%)
MobileNetV2 (1.0×) 3.50M 72.02 90.43
+ ODConv (4×) 11.52M 75.42 (↑3.40) 92.18 (↑1.75)
+ KW (4×) 11.38M 75.92 (↑3.90) 92.22 (↑1.79)
+ KW*(4×) 12.51M 76.54 (↑4.52) 92.35 (↑1.92)

A.5. More Visualization Results for Learnt Attentions of KernelWarehouse

In the main manuscript, we provide visualization results of learnt attention values αij for the ResNet18 backbone based
on KW (1×) (see Figure 3 in the main manuscript). For a better understanding of KernelWarehouse, we provide more
visualization results in this section, covering different alternative attention functions, alternative initialization strategies and
values of b. For all the results, the statistical mean values of learnt attention αij are obtained using all of the 50,000 images
on the ImageNet validation dataset.

Visualization Results for KernelWarehouse with Different Attention Functions. The visualization results for Kernel-
Warehouse with different attention functions are shown in Figure 7, which are corresponding to the comparison results
of Table 8 in the main manuscript. From which we can observe that: (1) for all of the attention functions, the maximum
value of αij in each row mostly appears in the diagonal line throughout the whole warehouse. It indicates that our proposed
attentions initialization strategy also works for the other three attention functions, which helps our KernelWarehouse to
build one-to-one relationships between kernel cells and linear mixtures; (2) with different attention functions, the scalar
attentions learnt by KernelWarehouse are obviously different, showing that the attention function plays an important role in
our design; (3) compared to the other three functions, the maximum value of αij in each row tends to be relatively lower for
our design (shown in Figure 7(a)). It indicates that the introduction of negative values for scalar attentions can help the
ConvNet to enhance warehouse sharing, where each linear mixture not only focuses on the kernel cell assigned to it.

Visualization Results for KernelWarehouse with Attentions Initialization Strategies. The visualization results for
KernelWarehouse with different attentions initialization strategies are shown in Figure 8, Figure 9 and Figure 10, which
are corresponding to the comparison results of Table 13. From which we can observe that: (1) with all-to-one strategy or
without initialization strategy, the distribution of scalar attentions learnt by KernelWarehouse seems to be disordered, while
our proposed strategy can help the ConvNet learn more appropriate relationships between kernel cells and linear mixtures;
(2) for KW (4×) and KW (1/2×), it’s hard to directly determine which strategy is better only according to the visualization
results. While the results demonstrate that the learnt attentions of KernelWarehouse are highly related to our setting of
αij ; (3) for KW (1×), KW (4×) and KW (1/2×) with our proposed initialization strategy, some similar patterns of the
value distributions can be found. For example, the maximum value of αij in each row mostly appears in the diagonal line
throughout the whole warehouse. It indicates that our proposed strategy can help the ConvNet learn stable relationships
between kernel cells and linear mixtures.

17

KernelWarehouse: Rethinking the Design of Dynamic Convolution

(a)

(b)

(c)

(d)

Figure 7: Visualization of statistical mean values of learnt attention αij in each warehouse for KernelWarehouse with
different attention functions. The results are obtained from the pre-trained ResNet18 backbone with KW (1×) for all of
the 50,000 images on the ImageNet validation set. Best viewed with zoom-in. The attention functions for the groups of
visualization results are as follows: (a) zij/

∑n
p=1 |zip| (our design); (b) softmax; (c) sigmoid; (d) max(zij , 0)/

∑n
p=1 |zip|.

18

KernelWarehouse: Rethinking the Design of Dynamic Convolution

(a)

(b)

(c)

Figure 8: Visualization of statistical mean values of learnt attention αij in each warehouse for KernelWarehouse with
different attentions initialization strategies. The results are obtained from the pre-trained ResNet18 backbone with KW
(1×) for all of the 50,000 images on the ImageNet validation set. Best viewed with zoom-in. The attentions initialization
strategies for the groups of visualization results are as follows: (a) building one-to-one relationships between kernel cells
and linear mixtures; (b) building all-to-one relationships between kernel cells and linear mixtures; (c) without initialization.

19

KernelWarehouse: Rethinking the Design of Dynamic Convolution

(a)

(b)

Figure 9: Visualization of statistical mean values of learnt attention αij in each warehouse for KernelWarehouse with
different attentions initialization strategies. The results are obtained from the pre-trained ResNet18 backbone with KW
(4×) for all of the 50,000 images on the ImageNet validation set. Best viewed with zoom-in. The attentions initialization
strategies for the groups of visualization results are as follows: (a) building one-to-one relationships between kernel cells
and linear mixtures; (b) building four-to-one relationships between kernel cells and linear mixtures.

20

KernelWarehouse: Rethinking the Design of Dynamic Convolution

(a)

(b)

Figure 10: Visualization of statistical mean values of learnt attention αij in each warehouse for KernelWarehouse with
different attentions initialization strategies. The results are obtained from the pre-trained ResNet18 backbone with KW
(1/2×) for all of the 50,000 images on the ImageNet validation set. Best viewed with zoom-in. The attentions initialization
strategies for the groups of visualization results are as follows: (a) building one-to-one relationships between kernel cells
and linear mixtures; (b) building one-to-two relationships between kernel cells and linear mixtures.

21

