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Abstract

Recommender system aims to recommend items
or information that may interest users based on
their behaviors and preferences. However, there
may be sampling selection bias in the data collec-
tion process, i.e., the collected data is not a repre-
sentative of the target population. Many debiasing
methods are developed based on pseudo-labelings.
Nevertheless, the validity of these methods re-
lies heavily on accurate pseudo-labelings (i.e., the
imputed labels), which is difficult to satisfy in
practice. In this paper, we theoretically propose
several novel doubly robust estimators that are
unbiased when either (a) the pseudo-labelings de-
viate from the true labels with an arbitrary user-
specific inductive bias, item-specific inductive
bias, or a combination of both, or (b) the learned
propensities are accurate. We further propose a
propensity reconstruction learning approach that
adaptively updates the constraint weights using
an attention mechanism and effectively controls
the variance. Extensive experiments show that
our approach outperforms the state-of-the-art on
one semi-synthetic and three real-world datasets.

1. Introduction
By analyzing users’ historical behaviors and preferences,
recommender system (RS) predicts and recommends items
or information that users may like (Rui et al., 2022; Li et al.,
2024). However, as users are free to choose which item to
rate, the collected data is always not a representative of the
target population (or inference space) (Schnabel et al., 2016;
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Figure 1. Inaccuracy of imputed ratings on the large scale indus-
trial dataset KUAIREC. The user (item)-side mean absolute error
(MAE) is the average difference between the imputed rating and
the true rating on all the observed interactions for user u (item i).

Yang et al., 2021; Saito and Nomura, 2022; Yang et al.,
2023; Wang et al., 2023c), and similar findings occur with
tasks such as post-view click-through & conversion rate
(CTCVR) prediction (Ma et al., 2018; Wang et al., 2022a),
and uplift modeling (Saito et al., 2019; Sato et al., 2019;
2020). Since the labels are observable only in the collected
data and missing in the target population, this poses a great
challenge to achieve unbiased learning (Wang et al., 2020a).

To address this problem, the error-imputation-based (EIB)
methods (Hernández-Lobato et al., 2014) first impute the
missing labels and then train the prediction model using both
the observed labels and pseudo-labelings. However, as the
pseudo-labeling model is trained with observed data while
deployed in the missing data, it is difficult to obtain accurate
pseudo-labelings, leading to sub-optimal performance (Dai
et al., 2022). The inverse-propensity-scoring (IPS) methods
inversely weight the prediction error for each sample with
observed rating using the propensity of collecting user rat-
ing (Schnabel et al., 2016), but it is empirically difficult to
set proper propensity scores and theoretically has greater
variance (Saito, 2020). By utilizing both pseudo-labeling
and propensity models, the doubly robust (DR) methods are
proposed to weaken the unbiasedness condition of the EIB
and IPS estimators (Wang et al., 2019), with many enhanced
DR approaches developed (Guo et al., 2021; Dai et al., 2022;
Wang et al., 2022a; Song et al., 2023; Li et al., 2023a; Zhang
et al., 2024). The advantage of DR estimators is attributed
to the property of double robustness, i.e., it is unbiased if
either the learned propensities or the pseudo-labelings are
accurate. We summarize the unbiasedness condition of the
previous debiasing estimators in Table 1 (see Appendix A
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Table 1. Comparison of the various debiasing methods, where p̂ and r̃ denotes the learned propensities and pseudo-labelings, respectively.
The red and blue color highlight the unbiasedness of the proposed DR estimator under arbitrary user-specific inductive bias f(bu) and
item-specific inductive bias g(bi), where f and g are two arbitrary real value functions.

Method Unbiasedness Condition

EIB r̃u,i = ru,i

IPS, Multi-IPS, ESCM2-IPS p̂u,i = pu,i

DR, Multi-DR, DR-JL, MRDR, ESCM2-DR p̂u,i = pu,i or r̃u,i = ru,i

User-DR (ours) p̃u,i = pu,i or r̃u,i = ru,i +f(bu), for all f and bu
Item-DR (ours) p̃u,i = pu,i or r̃u,i = ru,i +g(bi), for all g and bi
User-Item-DR (ours) p̃u,i = pu,i or r̃u,i = ru,i +f(bu) +g(bi), for all f, g, bu and bi

Note: bu and bi are arbitrary user-specific and item-specific inductive biases (see Section 3 for more details). Since the proposed methods require reconstructing the learned
propensities, so we use p̃u,i instead of p̂u,i to distinguish.

for more detailed discussions on related work).

Despite the double robustness providing additional protec-
tion against inaccurate pseudo-labelings, recent studies have
shown that DR methods are highly sensitive to inaccurate
pseudo-labelings. Specifically, when the learned propensi-
ties are slightly inaccurate, the DR estimator can be severely
biased with inaccurate pseudo-labelings (Kang and Schafer,
2007; Molenberghs et al., 2015; Vermeulen and Vanstee-
landt, 2015; Seaman and Vansteelandt, 2018). These inac-
curate pseudo-labels would as a result lead to biased pre-
diction models during the training phase (Mansoury et al.,
2020; Krauth et al., 2022; Wen et al., 2022). Therefore, it
is essential to develop novel DR estimators with relaxed
unbiasedness conditions on the accurate pseudo-labelings.

To this end, in this paper we theoretically propose several
novel DR estimators that are unbiased under inaccurate
pseudo-labelings, named User-DR, Item-DR, and User-
Item-DR. As shown in Table 1, our theoretical analysis
proves that the User-Item-DR estimator is unbiased as long
as the pseudo-labelings deviate the true labels with an arbi-
trary user-specific and item-specific inductive bias. Whereas
the corresponding unbiasedness condition of previous DR
estimators requires the pseudo-labelings to be strictly equal
to the true labels, which is much stronger than that of the
proposed User-Item DR estimator. In addition, similar to
the DR estimators, the proposed DR estimators are unbiased
if the learned propensities are accurate. Figure 1 shows the
inaccuracy of the imputed rating on a large scale industrial
dataset. It can be found that the proposed User-Item-DR
method has a much lower bias compared to the doubly ro-
bust joint learning (DR-JL) method, which provides the em-
pirical evidence of the effectiveness of the proposed method.

We further propose a propensity reconstruction learning ap-
proach that alternatively updates the propensity model, the
imputation model, and the prediction model for debiased
learning. To enable the proposed doubly robust estimators
to be unbiased with user- and item-specific inductive biases,
we introduce additional constraints in the learning phase of

the propensity model, where the constraint weights are adap-
tively updated using an attention mechanism. We also theo-
retically show that such propensity reconstruction approach
can effectively achieve a better bias-variance trade-off.

The main contributions of this paper are:
• We theoretically propose novel DR estimators that are
unbiased when the pseudo-labelings deviate from the true
labels with an arbitrary and unknown user-specific inductive
bias, item-specific inductive bias, or a combination of both.
•We further propose a propensity reconstruction learning
approach that adaptively updates the constraint weights us-
ing an attention mechanism, and theoretically show that
such approach can achieve a better bias-variance trade-off.
•We perform semi-synthetic experiments to verify the effec-
tiveness of the proposed methods for arbitrary user-specific
and item-specific inductive bias, while previous methods
fail to unbiasedly estimate the ideal loss. We also con-
ducted extensive experiments on three real-world datasets
to demonstrate the advantages of the proposed methods.

2. Preliminaries
Let U = {u1, u2, . . . , um} be the set of m users, I =
{i1, i2, . . . , in} be the set of n items, and D = U × I be
the set of all user-item pairs. Denote R ∈ Rm×n as the
rating matrix of all user-item pairs, where ru,i indicates
the rating of user u on item i. Let xu,i be the feature of
user u and item i, and R̂ ∈ Rm×n be the rating prediction
matrix for R, where r̂u,i = f(xu,i; θ) is the predicted rating
induced by a prediction model, θ is the parameter. Let
ou,i be the indicator of whether user u rated item i, O =
{(u, i) ∈ D|ou,i = 1} be the user-item index set with
observed ratings, and Ro = {ru,i ∈ R|ou,i = 1} be the
observed ratings. If R is fully observed, then the prediction
model f(xu,i; θ) can be trained by minimizing the ideal loss

Lideal(θ) =
1

|D|
∑

(u,i)∈D

δu,i,
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where δu,i = ru,iδ
(1)(r̂u,i) + (1− ru,i) δ

(0)(r̂u,i) is the
prediction error, and δ(r)(r̂u,i) is a pre-defined loss function
for r = 0, 1. For example, δ(r)(r̂u,i) = −r log r̂u,i −
(1− r) log (1− r̂u,i) represents the cross-entropy loss.
However, optimizing the ideal loss is infeasible, as ru,i
is observable only when ou,i = 1. A naive method is to opti-
mize the prediction model directly using the user-item pairs
with observed ratings, but this will incur sample selection
bias because the user-item pairs with observed ratings are
no longer representative of all user-item pairs.

To address this problem, many debiasing methods have been
proposed by designing unbiased estimators of the ideal loss.
For example, the EIB method directly imputes the label ru,i
corresponding to missing events, with the estimator

LEIB(θ) =
1

|D|
∑

(u,i)∈D

[
ou,iδu,i + (1− ou,i)δ̂u,i

]
,

where δ̂u,i = r̃u,iδ
(1)(r̂u,i) + (1− r̃u,i) δ

(0)(r̂u,i) is the
imputed error, r̃u,i is the pseudo-labeling for estimating ru,i
given by a labeling-imputation model. Clearly, LEIB(θ) is
an unbiased estimator of the ideal loss when all the pseudo-
labelings are accurate, i.e., r̃u,i = ru,i for (u, i) ∈ D \
O. Nevertheless, the EIB method usually has sub-optimal
performance in practice due to the difficulty of obtaining
accurate pseudo-labelings for the missing ratings (Guo et al.,
2021). By additionally introducing the propensity pu,i =
P(ou,i = 1|xu,i), the DR estimator is proposed as

LDR(θ) =
1

|D|
∑

(u,i)∈D

[
δ̂u,i +

ou,i(δu,i − δ̂u,i)

p̂u,i

]
,

where p̂u,i is the propensity model for estimating pu,i. De-
spite theoretically being doubly robust, i.e., unbiasedness
holds when either the learned propensities or the pseudo-
labelings are accurate for all user-item pairs, however, it has
been widely shown that the DR estimator would result in
severe bias under inaccurate pseudo-labelings if the learned
propensities are slightly inaccurate (Tan, 2007; Molenberghs
et al., 2015; Seaman and Vansteelandt, 2018).

3. Proposed Method
In this section, we first propose User-DR, Item-DR, and
User-Item-DR estimators in Section 3.1, and theoretically
show the unbiasedness of the proposed estimators for arbi-
trary user-specific and item-specific inductive biases, which
greatly weakens the unbiasedness condition of the previous
DR estimators on pseudo-labelings. In Section 3.2, we show
that the variances of the proposed estimators are highly con-
trollable, provided that the reconstructed propensities do
not differ much from the original propensities. In Section
3.3, we further propose a propensity reconstruction learning
approach to effectively achieve unbiased learning.

3.1. User-DR, Item-DR, and User-Item-DR Estimators

In contrast to previous DR estimators that directly use p̂u,i
as propensities, where p̂u,i are obtained by performing a
binary classification on ou,i using xu,i (Wang et al., 2019;
Saito, 2020; Guo et al., 2021), given a prediction model r̂u,i,
the proposed User-DR estimator first learns a constrained
propensity model p̃u,i that satisfies for all u ∈ U , we have

∑
i∈I

(
ou,i
p̃u,i
− 1

)(
δ(1)(r̂u,i)− δ(0)(r̂u,i)

)
= 0, (1)

where δ(r)(r̂u,i) is a pre-defined loss function for r = 0, 1,
such as the cross-entropy loss δ(r)(r̂u,i) = −r log r̂u,i −
(1− r) log (1− r̂u,i). Then the User-DR estimator is

LUDR(θ) =
1

|D|
∑

(u,i)∈D

[
δ̂u,i +

ou,i(δu,i − δ̂u,i)

p̃u,i

]
,

which adopts a similar form to the DR estimator, but requires
the learned propensities p̃u,i satisfying the above constraints
in Eq. (1).

Now, we prove that the constraints in Eq. (1) can effectively
alleviate the inaccurate pseudo-labelings problem in the
previous DR estimators. Formally, the bias of the User-DR
estimator is

Bias(LUDR(θ)) = Lideal(θ)− E(LUDR(θ))

=
1

|D|
∑

(u,i)∈D

δu,i −
1

|D|
∑

(u,i)∈D

E
[
δ̂u,i +

ou,i(δu,i − δ̂u,i)

p̃u,i

]
= E

[ 1

|D|
∑
u∈U

∑
i∈I

(
ou,i
p̃u,i
− 1

)
(δ̂u,i − δu,i)

]
= E

[ 1

|D|
∑
u∈U

∑
i∈I

(
ou,i
p̃u,i
− 1

)
{(

δ(1)(r̂u,i)− δ(0)(r̂u,i)
)
(r̃u,i − ru,i)

}]
.

The last equation holds directly from the definitions of δ̂u,i
and δu,i. On the one hand, similar to the previous DR
estimators, the User-DR estimator is unbiased under either
accurate pseudo-labelings r̃u,i = ru,i or accurate learned
propensities p̃u,i = pu,i = P(ou,i = 1|xu,i) for all user-
item pairs. On the other hand, when the pseudo-labelings
model has a user-specific inductive bias, i.e., r̃u,i = ru,i +
f(bu), multiplying both sides of the Eq. (1) by f(bu) and
summing over all u yields

Bias(LUDR(θ)) = E
[∑
u∈U

∑
i∈I

(
ou,i
p̃u,i
− 1

)
(
δ(1)(r̂u,i)− δ(0)(r̂u,i)

)
· f(bu)

]
= 0.
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We summarize and compare the unbiasedness conditions
of previous DR estimators (Wang et al., 2019; Saito, 2020;
Zhang et al., 2020; Guo et al., 2021; Wang et al., 2022a) and
the proposed User-DR estimator below.

Lemma 1 (Wang et al. (2019)). The DR estimator is unbi-
ased when either pseudo-labelings are accurate r̃u,i = ru,i
or learned propensities are accurate p̂u,i = pu,i.

Theorem 1 (main result). The User-DR estimator is un-
biased when either pseudo-labelings deviate from the
true labels with arbitrary user-specific inductive bias
r̃u,i = ru,i + f(bu) or learned propensities are accurate
p̃u,i = pu,i.

Since the improved theoretical guarantees for User-DR orig-
inate from constraints in Eq. (1), one may argue whether
such constraints are too strong to be satisfied. In fact, a
key observation is that when the learned propensities are
accurate, i.e., p̃u,i = pu,i, then these constraints will be sat-
isfied naturally, and LUDR(θ) will degenerates to LDR(θ),
which does not impose additional constraints to reduce the
accuracy of learned propensities. In contrast, if the learned
propensities are inaccurate, i.e., p̃u,i ̸= pu,i, the bias of the
previous DR estimators will strictly depend on the accuracy
of the pseudo-labelings, whereas the proposed User-DR
reduces the influence of those inaccurate pseudo-labelings
by learning an alternative propensity model that satisfies
constraints in Eq. (1).

Similar to the construction of the User-DR, we propose the
Item-DR estimator that is unbiased to item-specific induc-
tive bias by replacing the constraints in Eq. (1) with∑

u∈U

(
ou,i
p̃u,i
− 1

)(
δ(1)(r̂u,i)− δ(0)(r̂u,i)

)
= 0 (2)

for all i ∈ I. Furthermore, the User-Item-DR estimator,
which is robust to both user-specific and item-specific induc-
tive biases, can be obtained by learning a propensity model
satisfying constraints in both Eq. (1) and Eq. (2). Similar to
Theorem 1, we have the following results.

Corollary 1. (a) The Item-DR estimator is unbiased, if
either (i) r̃u,i = ru,i + g(bi), or (ii) p̃u,i = pu,i;

(b) The User-Item-DR estimator is unbiased, if either (i)
r̃u,i = ru,i + f(bu) + g(bi), or (ii) p̃u,i = pu,i.

It is also meaningful to consider inaccurate pseudo-labelings
with item-specific inductive bias, e.g., item popularity bias
and item exposure position bias. Notably, we would like to
clarify that even if the ”user/item-specific inductive bias”
conditions are not strictly satisfied, the biases of the pro-
posed DR estimators are still strictly smaller than the previ-
ous DR, as long as the existence of a user-specific constant
f(bu) or an item-specific constant g(bi) such that the bias
arises from the inaccurate pseudo-labelings {r̃u,i : i ∈ I}

or {r̃u,i : u ∈ U} can be reduced. We illustrate this with a
toy example as follows. Suppose the inductive biases of the
r̃u,i for user u on items i1, i2, and i3 are r̃u,i1 − ru,i1 = 1,
r̃u,i2 − ru,i2 = 2, and r̃u,i3 − ru,i3 = 3, respectively. Then
the UDR estimator are able to cancel a user-specific con-
stant f(bu) (e.g., f(bu) = 2) to make the inductive biases
become 1−f(bu), 2−f(bu), and 3−f(bu), which leads to
smaller biases. We would like to emphasize that it is not nec-
essary for our method to obtain a better-imputed rating than
the previous DR-based methods, i.e., we do not need to fig-
ure out what the f(bu) is in the previous example. The point
is that we can achieve much lower bias on the imputation
side even if the imputed ratings for our method and other
DR methods are the same due to the learned propensities of
our methods satisfying the constraints.

One may argue that we reduce the bias of the imputation-
side at the expense of the accuracy of the propensity-side.
In fact, Imai and Ratkovic (2014) and Li et al. (2023c) point
out that directly learning a propensity with the simple cross
entropy loss is not sufficient for the propensity learning
and a high-quality propensity should have the following
covariate balancing property:

E
[
ou,iϕ(xu,i)

pu,i

]
= E

[
(1− ou,i)ϕ(xu,i)

1− pu,i

]
= E[ϕ(xu,i)],

where ϕ(·) is an arbitrary function. Propensity constraints
will make the learned propensity have the balancing prop-
erty, which leads to a higher quality of learned propensities.

3.2. Further Theoretical Analysis on Variance

The proposed estimators greatly enhance the robustness of
DR to inaccurate pseudo-labelings. A further question is
whether such unbiasedness comes at the cost of increased
variance. Impressively, the variances are highly controllable
and manageable as shown below (see Appendix B for proof).
Theorem 2. If 1/L ≤ p̂2u,i/p̃

2
u,i ≤ L for a constant L ≥ 1,

1

L
· V(LDR(θ)) ≤ V(LUDR(θ)) ≤ L · V(LDR(θ)).

Theorem 2 shows that the variance of the User-DR esti-
mator1 can be controlled by the distance between the base
propensities p̂u,i and the learned constrained propensities
p̃u,i, which is essentially a bias-variance trade-off compared
with the previous DR estimators. This motivates us to fur-
ther propose a propensity reconstruction learning approach
to meet the constraints in Eq. (1) and Eq. (2) with minimal
changes to the original propensities p̂u,i in the following.

3.3. Propensity reconstruction learning

We next propose a propensity reconstruction learning ap-
proach that adaptively updates the constraint weights to meet

1Theorem 2 also holds for Item-DR and User-Item-DR.
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Algorithm 1 Propensity Reconstruction Learning

Input: observed ratings Ro and learned propensities P̂
while stopping criteria is not satisfied do

for number of steps training the propensity model do
Sample a batch of user-item pairs from D
Update P̃: α← α− η∇αLp(α; θ, β | P̂)

end for
for number of steps training the imputation model do

Sample a batch of user-item pairs from O
Update Ê: β ← β − η∇βLe(β;α, θ | P̃)

end for
for number of steps training the prediction model do

Sample a batch of user-item pairs from D
Update R̂: θ ← θ − η∇θLr(θ;α, β | P̃)

end for
end while

the constraints of the proposed User-Item-DR estimator2.
The proposed algorithm alternately trains a reconstructed
propensity model, a pseudo-labeling model for imputing
the prediction errors Ê = {δ̂u,i|(u, i) ∈ D}, and a rating
prediction model R̂ = {r̂u,i|(u, i) ∈ D}.

Step 1. Propensity Reconstruction P̂ → P̃. Given
the learned propensities P̂ = {p̂u,i|(u, i) ∈ D} without
constraints, Theorem 2 states the distance between P̂ and
P̃ = {p̃u,i|(u, i) ∈ D} can provide an upper bound on the
variance of the proposed User-Item-DR estimator. There-
fore, a natural idea is to reconstruct P̂ to the nearest P̃
that satisfies the constraints in Eq. (1) and Eq. (2) in the
User-Item-DR estimator. The optimization problem is

min
p̃

∑
u∈U

∑
i∈I

(
1

p̂u,i
− 1

p̃u,i

)2

,

s.t. p̃u,i > 0, (u, i) ∈ D,∑
i∈I

(
ou,i
p̃u,i
− 1

)(
δ(1)(r̂u,i)− δ(0)(r̂u,i)

)
= 0, u ∈ U ,

∑
u∈U

(
ou,i
p̃u,i
− 1

)(
δ(1)(r̂u,i)− δ(0)(r̂u,i)

)
= 0, i ∈ I,

which is a convex optimization problem with respect to 1/p̃.
The following states the rationality of reconstructing the
inverse of the propensities rather than the propensities them-
selves: first, the former leads to a convex optimization, so
that gradient-based algorithms can efficiently find globally
optimal solutions; second, from the theoretical analysis of
DR estimators (Wang et al., 2019; Guo et al., 2021; Dai
et al., 2022), the bias and variance of the DR estimators are
proportional to the inverse propensities and squared inverse

2Without loss of generality, we use User-Item-DR estimator in
Section 3.3 for illustration purpose.

propensities, respectively, therefore providing more theoret-
ical guarantees. In practice, the optimization problem can
be solved by minimizing the reconstruction loss with the
constraints as the regularizations that

L(p̃ | p̂) = 1

2

∑
u∈U

∑
i∈I

(
1

p̂u,i
− 1

p̃u,i

)2

+
γ

2

∑
u∈U

λu

[∑
i∈I

(
ou,i
p̃u,i
− 1

)(
δ(1)(r̂u,i)− δ(0)(r̂u,i)

) ]2
+
γ

2

∑
i∈I

λi

[∑
u∈U

(
ou,i
p̃u,i
− 1

)(
δ(1)(r̂u,i)− δ(0)(r̂u,i)

) ]2
,

where p̃u,i = π(xu,i;α) is the reconstructed propensity
model, λu and λi are Lagrange multipliers reflecting the
constraint strength, γ is a trade-off hyper-parameter. Nev-
ertheless, there are O(|U|+ |I|) constraints as well as the
Lagrange multipliers in Eq. (1) and Eq. (2). Therefore, the
dual optimization will not lead to faster efficiency. To ad-
dress this problem, we propose an attention mechanism for
collaborative filtering that adaptively learns the constraint
strength (which is also considered to be the role of Lagrange
multipliers), thus reducing the number of parameters of the
dual problem. Specifically, let su and ti be the latent vec-
tors of user u and item i, we propose to use an attention
mechanism to learn λu and λi, which can be formalized as

λu =

∑
i∈I exp(s̃⊤u ti)∑

u∈U
∑

i∈I exp(s̃⊤u ti)
, and s̃u = tanh(Asu+b),

where A is the connection weight matrix and b is the bias,
and λi can be obtained from a similar way. We further
empirically explored other selections of λu in Section 5,
such as the constant weights λu = λ = 1/|U|, or obtain the
weights via a multilayer perceptron.

Step 2. Training Pseudo-labelling with P̃. The pseudo-
labeling model can be learned by minimizing the weighted
average loss of the prediction error and the imputed error of
the observed samples

Le(β;α, θ | P̃) =
1

|D|
∑

(u,i)∈D

ou,i(δu,i − δ̂u,i)
2

p̃u,i
,

where β is the parameter of the pseudo-labeling model,
δu,i = ru,iδ

(1)(r̂u,i)+(1− ru,i) δ
(0)(r̂u,i) is the prediction

error, and δ̂u,i = r̃u,iδ
(1)(r̂u,i)+(1− r̃u,i) δ

(0)(r̂u,i) is the
imputed error.

Step 3. Training Prediction Model with P̃. Given the
reconstructed propensities p̃u,i obtained in Step 1, the pre-
diction model can be learned by minimizing the proposed
User-Item-DR loss

Lr(θ;α, β | P̃) =
1

|D|
∑

(u,i)∈D

[
δ̂u,i +

ou,i(δu,i − δ̂u,i)

p̃u,i

]
.
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Table 2. Relative errors on ML-100K dataset with user-specific and item-specific inductive bias.
U-BIAS Naive EIB IPS SNIPS DR UDR IDR UIDR

ONE 0.068 ± 0.003 0.223 ± 0.004 0.035 ± 0.004 0.034 ± 0.004 0.047 ± 0.005 0.006 ± 0.006∗ 0.016 ± 0.011∗ 0.003 ± 0.002∗

THREE 0.078 ± 0.004 0.234 ± 0.004 0.040 ± 0.004 0.039 ± 0.005 0.049 ± 0.005 0.005 ± 0.003∗ 0.017 ± 0.028∗ 0.002 ± 0.001∗

FIVE 0.100 ± 0.004 0.247 ± 0.004 0.050 ± 0.004 0.050 ± 0.005 0.054 ± 0.005 0.009 ± 0.009∗ 0.028 ± 0.025∗ 0.010 ± 0.006∗

ROTATE 0.137 ± 0.002 0.036 ± 0.001 0.068 ± 0.004 0.069 ± 0.002 0.008 ± 0.002 0.001 ± 0.001∗ 0.003 ± 0.003∗ 0.002 ± 0.001∗

SKEW 0.025 ± 0.002 0.108 ± 0.002 0.012 ± 0.002 0.012 ± 0.002 0.028 ± 0.003 0.003 ± 0.002∗ 0.014 ± 0.015 0.002 ± 0.001∗

CRS 0.105 ± 0.003 0.216 ± 0.004 0.053 ± 0.003 0.052 ± 0.004 0.024 ± 0.003 0.004 ± 0.005∗ 0.012 ± 0.013∗ 0.003 ± 0.000∗

I-BIAS Naive EIB IPS SNIPS DR UDR IDR UIDR

ONE 0.069 ± 0.004 0.222 ± 0.003 0.034 ± 0.004 0.035 ± 0.005 0.049 ± 0.005 0.031 ± 0.012 0.010 ± 0.007∗ 0.004 ± 0.002∗

THREE 0.078 ± 0.003 0.234 ± 0.004 0.038 ± 0.003 0.039 ± 0.004 0.050 ± 0.004 0.017 ± 0.013∗ 0.012 ± 0.020∗ 0.006 ± 0.003∗

FIVE 0.103 ± 0.004 0.245 ± 0.005 0.050 ± 0.004 0.052 ± 0.004 0.057 ± 0.004 0.013 ± 0.012∗ 0.012 ± 0.008∗ 0.007 ± 0.003∗

ROTATE 0.138 ± 0.002 0.035 ± 0.001 0.070 ± 0.004 0.069 ± 0.003 0.008 ± 0.001 0.002 ± 0.002∗ 0.001 ± 0.000∗ 0.002 ± 0.001∗

SKEW 0.025 ± 0.003 0.106 ± 0.001 0.011 ± 0.002 0.012 ± 0.003 0.028 ± 0.002 0.009 ± 0.006∗ 0.009 ± 0.003∗ 0.004 ± 0.001∗

CRS 0.105 ± 0.004 0.216 ± 0.002 0.051 ± 0.003 0.052 ± 0.004 0.024 ± 0.004 0.031 ± 0.019 0.008 ± 0.006∗ 0.006 ± 0.003∗

UI-BIAS Naive EIB IPS SNIPS DR UDR IDR UIDR

ONE 0.066 ± 0.001 0.445 ± 0.006 0.031 ± 0.002 0.032 ± 0.002 0.094 ± 0.003 0.062 ± 0.011 0.025 ± 0.023 0.007 ± 0.007∗

THREE 0.076 ± 0.002 0.470 ± 0.004 0.036 ± 0.003 0.037 ± 0.003 0.099 ± 0.003 0.050 ± 0.032 0.062 ± 0.063 0.009 ± 0.003∗

FIVE 0.099 ± 0.001 0.488 ± 0.003 0.047 ± 0.002 0.048 ± 0.002 0.109 ± 0.001 0.037 ± 0.028∗ 0.013 ± 0.013∗ 0.009 ± 0.006
ROTATE 0.138 ± 0.001 0.071 ± 0.002 0.070 ± 0.002 0.069 ± 0.002 0.015 ± 0.001 0.004 ± 0.004∗ 0.007 ± 0.010∗ 0.002 ± 0.001∗

SKEW 0.025 ± 0.001 0.214 ± 0.003 0.011 ± 0.001 0.012 ± 0.001 0.056 ± 0.002 0.015 ± 0.011 0.027 ± 0.030 0.012 ± 0.004
CRS 0.105 ± 0.003 0.432 ± 0.003 0.051 ± 0.003 0.052 ± 0.003 0.048 ± 0.002 0.048 ± 0.035 0.013 ± 0.007∗ 0.009 ± 0.008∗

Note: * means (p-value ≤ 0.05) using the paired-t-test compared with the best baseline. We bold the best three results and underline the best baseline result.

Figure 2. Relative error with varying inductive bias size. The left (right) two figures are user (item)-specific inductive bias scenarios with
the item (user)-specific inductive bias fixed as 0 and 0.1.

By alternately implementing the above steps, the predic-
tion model can achieve debiased learning under inaccurate
pseudo-labelings. We summarize the alternating training
process in the Algorithm 1.

4. Semi-Synthetic Experiments
Experiment Setup. We conduct semi-synthetic exper-
iments using MOVIELENS 100K (ML-100K) dataset,
which contains 100,000 ratings from 943 users for 1,682
items. We focus on two research questions below: (1)
whether the proposed estimators are unbiased with the user-
specific and item-specific inductive bias; (2) how the varying
bias level affects the estimators’ performance.

Experimental Details. We first generate the ground truth
probability matrix R, ground truth propensity matrix P and
observation matrix O following the previous studies (Schn-
abel et al., 2016; Wang et al., 2019; Guo et al., 2021) (see
Appendix C for the detailed generation process). To verify
the effectiveness of the proposed estimators, we generate

several R̂ based on R as follows:
• ONE: The predicted matrix R̂ is identical to the true ma-
trix R, except that randomly select ru,i = 0.1 with total
amount |{(u, i) | ru,i = 0.9}| are flipped to 0.9.

• THREE: Same as ONE, but flipping ru,i = 0.3 instead.
• FIVE: Same as ONE, but flipping ru,i = 0.5 instead.
• ROTATE: r̂u,i = ru,i − 0.2 when ru,i ≥ 0.3, and r̂u,i =
0.9 when ru,i = 0.1.
• SKEW: Predicted r̂u,i are sampled from the Gaussian
distribution N (µ = ru,i, σ = (1− ru,i)/2), and clipped to
the interval [0.1, 0.9].
• CRS: r̂u,i = 0.2 if ru,i ≤ 0.6. Otherwise, r̂u,i = 0.6.

Following the previous studies (Guo et al., 2021; Dai
et al., 2022), we estimate the inverse propensity by 1/P̂ =
(1 − ρ)/P + ρ/pe, where pu,i is the ground truth propen-
sity, pe = |D|−1

∑
(u,i)∈D ou,i, and ρ is randomly sampled

from the uniform distribution U(0, 1) to introduce noises.
Next, we simulate the biased pseudo-labelings r̃u,i for EIB,
DR and the proposed estimators in three ways: (1) r̃u,i =
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Table 3. Performance on AUC, NDCG@K, and F1@K on the unbiased test set of Coat, Music and KuaiRec.
COAT MUSIC KUAIREC

Method AUC N@5 F1@5 AUC N@5 F1@5 AUC N@50 F1@50

MF 0.680±0.006 0.616±0.011 0.470±0.006 0.651±0.005 0.626±0.001 0.300±0.001 0.741±0.003 0.724±0.003 0.566±0.002

IPS 0.710±0.003 0.603±0.009 0.450±0.008 0.656±0.002 0.633±0.001 0.308±0.001 0.750±0.003 0.734±0.003 0.572±0.002

ASIPS 0.712±0.008 0.627±0.010 0.470±0.007 0.661±0.003 0.641±0.004 0.322±0.003 0.746±0.009 0.733±0.004 0.585±0.006

DR 0.710±0.006 0.632±0.003 0.471±0.003 0.656±0.009 0.669±0.007 0.330±0.005 0.745±0.004 0.718±0.003 0.574±0.003

DR-JL 0.714±0.007 0.646±0.009 0.486±0.006 0.682±0.001 0.660±0.002 0.326±0.001 0.759±0.002 0.757±0.004 0.582±0.005

MRDR-JL 0.715±0.004 0.653±0.006 0.492±0.005 0.684±0.001 0.645±0.001 0.315±0.001 0.762±0.003 0.751±0.002 0.579±0.003

CVIB 0.718±0.004 0.640±0.008 0.486±0.008 0.685±0.001 0.647±0.003 0.316±0.002 0.758±0.001 0.752±0.001 0.575±0.001

DIB 0.726±0.003 0.628±0.008 0.469±0.007 0.690±0.002 0.653±0.002 0.320±0.001 0.775±0.001 0.760±0.001 0.592±0.001

DR-MSE 0.715±0.001 0.630±0.009 0.475±0.008 0.685±0.001 0.648±0.002 0.316±0.002 0.779±0.002 0.773±0.002 0.589±0.002

MR 0.728±0.006 0.655±0.009 0.489±0.007 0.698±0.004 0.680±0.004 0.323±0.005 0.776±0.002 0.793±0.001 0.599±0.002

TDR 0.730±0.008 0.651±0.013 0.487±0.010 0.694±0.002 0.667±0.003 0.337±0.002 0.792±0.004 0.799±0.003 0.604±0.003

TDR-JL 0.729±0.005 0.656±0.011 0.493±0.010 0.702±0.002 0.672±0.004 0.332±0.003 0.793±0.004 0.799±0.004 0.603±0.003

Stable-DR 0.719±0.006 0.631±0.008 0.475±0.006 0.687±0.001 0.650±0.003 0.316±0.002 0.764±0.003 0.791±0.003 0.595±0.002

ESMM 0.686±0.004 0.638±0.005 0.485±0.004 0.601±0.002 0.665±0.003 0.328±0.001 0.721±0.006 0.764±0.006 0.576±0.004

Multi-IPS 0.711±0.005 0.604±0.005 0.463±0.008 0.651±0.005 0.667±0.006 0.331±0.004 0.748±0.005 0.738±0.008 0.579±0.004

Multi-DR 0.719±0.004 0.634±0.009 0.480±0.011 0.686±0.002 0.660±0.003 0.323±0.002 0.752±0.014 0.767±0.012 0.581±0.008

ESCM2-IPS 0.721±0.005 0.645±0.006 0.490±0.005 0.680±0.002 0.653±0.002 0.322±0.002 0.779±0.001 0.767±0.001 0.592±0.002

ESCM2-DR 0.730±0.009 0.642±0.010 0.489±0.009 0.688±0.001 0.669±0.002 0.326±0.001 0.788±0.001 0.796±0.001 0.606±0.001

UDR (ours) 0.739∗
±0.004 0.676∗±0.003 0.521∗

±0.003 0.705∗
±0.001 0.766∗

±0.002 0.389∗
±0.001 0.802∗

±0.003 0.804∗
±0.002 0.610∗

±0.002

IDR (ours) 0.721±0.002 0.681∗±0.003 0.529∗
±0.005 0.694±0.003 0.747∗

±0.002 0.378∗
±0.001 0.801∗

±0.001 0.803∗
±0.002 0.607±0.002

UIDR (ours) 0.740∗
±0.006 0.722∗±0.006 0.539∗

±0.005 0.713∗
±0.001 0.752∗

±0.001 0.382∗
±0.001 0.804∗

±0.004 0.804∗
±0.004 0.610∗

±0.003

Note: * means (p-value ≤ 0.05) using the paired-t-test compared with the best baseline. We bold the best three results and underline the best baseline result.

ru,i + bu (user-specific inductive bias); (2) r̃u,i = ru,i + bi
(item-specific inductive bias); (3) r̃u,i = ru,i+bu+bi (user-
item inductive bias), where bu and bi are randomly sampled
from the uniform distribution U(0, ν), leading to the in-
accurate pseudo-labelings. Finally, we use ru,i ∈ [0, 1]
as the positive sample probabilities for Bernoulli sampling
to obtain the binary outcome matrix. The absolute rela-
tive error (RE) is used for evaluation, which is defined as
RE(Lest) = |Lideal(R̂)−Lest(R̂)|/Lideal(R̂), where Lest

denotes the loss of estimator to be compared. RE evaluates
the accuracy of the estimated loss, the smaller the RE, the
more accurate the estimation.

Performance Comparison. The experiment results with
bias level ν = 0.2 are shown in Table 2. First, the proposed
estimators significantly outperform the baselines in all sce-
narios. Impressively, the proposed User-DR (Item-DR) esti-
mator is still able to outperform the previous DR estimator
in item-specific (user-specific) inductive bias scenarios. Sec-
ond, the proposed User-DR (Item-DR) outperforms in the
case of user-specific (item-specific) inductive bias, and the
User-Item-DR estimator shows the most competing perfor-
mance in all three scenarios, which further validates the
ability of the proposed methods for eliminating the induc-
tive bias. Meanwhile, since the IPS and SNIPS estimators
are not affected by pseudo-labelings, they show competitive
performance when increasing the inductive biases.

In addition, Figure 2 shows the experiment results with vary-
ing inductive bias levels by taking ONE for illustration, and

similar results can be found in the other five prediction matri-
ces. In the user-specific inductive bias scenario, as the bias
level increases, both User-DR and User-Item-DR estima-
tors demonstrate relatively stable performance. Meanwhile,
the Item-DR estimator exhibits a slow increase in terms of
RE compared with the DR estimator. Similar results are
observed in the item-specific inductive bias scenario.

5. Real-World Experiments
Datasets and Evaluation Metrics. Three widely-used real-
world datasets are adopted in our experiments, which are
COAT, MUSIC, and KUAIREC (Gao et al., 2022). COAT
contains ratings from 290 users to 300 items, with 6,960 bi-
ased ratings and 4,640 unbiased ratings in total. MUSIC con-
tains ratings from 15,400 users to 1,000 items, with 311,704
biased ratings and 54,000 unbiased ratings. KUAIREC
contains a fully exposed industrial dataset which contains
4,676,570 video watching ratio records from 1,411 users to
3,327 videos. Three widely-used evaluation metrics, namely
AUC, NDCG@K, and F1@K, are used to evaluate perfor-
mance, where K is set to 5 for COAT and MUSIC and K is
set to 50 for KUAIREC (see Appendix D for more details).

Baselines. We take matrix factorization (MF) (Koren et al.,
2009) as the base model, and compare with the following
baselines: IPS (Schnabel et al., 2016; Saito et al., 2020),
ASIPS (Saito, 2020), DR (Saito, 2020), CVIB (Wang et al.,
2020b), DIB (Liu et al., 2021), TDR (Li et al., 2023b),
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(a) AUC on MUSIC (b) AUC on KUAIREC (c) N@5 on MUSIC (d) N@50 on KUAIREC

Figure 3. Effects of varying hyper-parameter γ in UIDR loss.

Table 4. Ablation study on KUAIREC.

Method Lre γ AUC N@50 F1@50

DR-JL × × 0.759 0.757 0.582
UDR w/o γ ✓ × 0.754 0.754 0.589
UDR w/o Lre × ✓ 0.787 0.789 0.599
UDR ✓ ✓ 0.802 0.804 0.610

DR-BIAS (Dai et al., 2022), DR-MSE (Dai et al., 2022),
Stable-DR (Li et al., 2023d), and MR (Li et al., 2023a).
We also consider the following baselines based on joint
learning and multi-task learning: DR-JL (Wang et al., 2019),
MRDR-JL (Guo et al., 2021), TDR-JL (Li et al., 2023b),
ESMM (Ma et al., 2018), Multi-IPS (Zhang et al., 2020),
Multi-DR (Zhang et al., 2020), ESCM2-IPS (Wang et al.,
2022a) and ESCM2-DR (Wang et al., 2022a).

Performance Analysis. The results of proposed methods
and baselines on COAT, MUSIC and KUAIREC are shown
in Table 3. First, almost all debiasing methods perform
better than the base model (MF), which shows the necessity
of debiasing in CF. Second, all three proposed methods
significantly outperform all the baselines with a p-value
less than 0.05, which is attributed to the more relaxed and
realistic unbiasedness assumptions compared to the DR
baselines. Finally, among the three proposed methods, Item-
DR performs slightly worse than User-DR and User-Item-
DR, which may be attributed to the inductive bias on the
item side is less than that on the user side in practice.

Ablation Studies. We conduct the ablation study for User-
DR on the large-scale industrial dataset KUAIREC with the
results shown in Table 4. When only the reconstruction loss
is retained, our propensity model will be the same as the
base propensity model. Therefore, User-DR degenerates to
the DR-JL. When only the constraint losses are retained, the
reconstructed propensities will be much more distinct from
the base propensities, leading to an increasing variance as
shown in Theorem 2, which harms the performance.

In-Depth Analysis. We investigate the effect of hyper-
parameter γ on the performance of User-Item-DR on the
MUSIC and KUAIREC datasets, and the results are shown in
Figure 3. We can see that moderate constraints are the most

Table 5. In-depth Analysis for λu.

MUSIC KUAIREC

Method AUC N@5 F1@5 AUC N@50 F1@50

Constant 0.695 0.739 0.373 0.797 0.796 0.605
MLP 0.696 0.743 0.376 0.803 0.801 0.605
Attention 0.713 0.752 0.382 0.804 0.804 0.610

helpful to trade-off between propensity estimation and es-
timator robustness and thus improve the debiasing perfor-
mance. Meanwhile, the weight of each constraint is cru-
cial throughout the learning process. Table 5 shows the
impact of different models when learning λu on User-DR
prediction performance. When we use the constant model
to generalize all the λu, each user’s constraint is equally
important. As a result, the model will not utilize the user
information effectively, which harms the performance. In
addition, although MLP has a good fitting capacity, it is
easy to allocate a higher weight to some specific constraints
and to ignore other constraints, which also harms the perfor-
mance. Therefore, when the attention mechanism is used
for model training, it allows the model to adaptively trade
off the fitting capacity and flexibility, which results in the
desirable debiasing performance.

6. Conclusion
In this paper, we proposed the User-DR, Item-DR, and User-
Item-DR estimators that can achieve unbiased learning even
under inaccurate pseudo-labelings. The proposed estimators
greatly relax the unbiasedness condition and improve the
robustness of existing DR estimators to inaccurate pseudo-
labelings. Our theoretical analysis shows that the variances
of the proposed estimators are highly controllable and man-
ageable. We further propose a propensity reconstruction
learning to be compatible with the theory of the proposed es-
timators, which uses an attention mechanism that adaptively
updates the weights of the proposed constraints. Extensive
experiments are conducted to verify the validity of our pro-
posal. A limitation of this work is the proposed learning
method cannot guarantee that all the constraints in Eq. (1)
and Eq. (2) hold strictly, due to the computational burden.
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A. Related Works
Collaborative filtering (CF) plays an important role in today’s digital and informative world (Chen et al., 2018; Huang
et al., 2023; Lv et al., 2023; 2024). However, the collected data is observational rather than experimental, leading to the
selection bias, which causes the distribution of the training data to be different from the distribution of the test data, thus
making it challenging to achieve unbiased estimation and learning (Wang et al., 2022b; 2023b; Zhang et al., 2023; Wang
et al., 2023a; 2024). Error imputation-based (EIB) methods first learn pseudo-labelings for missing events and train the
prediction model with both pseudo-labelings and observed labels (Marlin et al., 2007; Steck, 2013; Hernández-Lobato et al.,
2014). However, the unbiasedness EIB requires that pseudo-labelings are accurate for all user-item pairs. By introducing
an additional propensity model, doubly robust (DR) method is proposed to improve EIB (Wang et al., 2019), with many
enhanced DR approaches developed (Guo et al., 2021; Zhang et al., 2020; Chen et al., 2021; Wang et al., 2021; 2022a;
Oosterhuis, 2023). The advantage of DR estimators is attributed to the property of double robustness, i.e., it is unbiased if
either the pseudo-labelings or the learned propensities are accurate.

Despite the double robustness providing additional protection against inaccurate pseudo-labelings, i.e., unbiasedness
holds when either the learned propensities or the pseudo-labelings are accurate for all user-item pairs, recent studies have
shown that DR methods are highly sensitive to inaccurate pseudo-labelings, i.e., when the learned propensities are slightly
inaccurate, the DR estimator can be severely biased with inaccurate pseudo-labelings (Kang and Schafer, 2007; Molenberghs
et al., 2015; Vermeulen and Vansteelandt, 2015; Seaman and Vansteelandt, 2018). Thus, it can be summarized that the
effectiveness of both the EIB and DR methods rely heavily on accurate pseudo-labelings.

Unfortunately, obtaining such accurate pseudo-labelings for all user-item pairs is usually impractical in practice, as user-
item interactions are influenced by various factors, such as user self-selection (Ma et al., 2018; Luo et al., 2021), user
conformity (Liu et al., 2016; Zheng et al., 2021), item popularity (Zhang et al., 2021; Wei et al., 2021), and item exposure
position (Ai et al., 2018; Agarwal et al., 2019), causing inaccurate pseudo-labelings in practice. Motivated by this, we
theoretically proposes several novel DR estimators and learning approach that achieve unbiasedness even with inaccurate
pseudo-labelings, which greatly relaxes the unbiasedness condition of the doubly robust estimators.

B. Proof of Theorem 2
Theorem 2. If 1/L ≤ p̂2u,i/p̃

2
u,i ≤ L for a constant L,

1

L
· V(LDR(θ)) ≤ V(LUDR(θ)) ≤ L · V(LDR(θ)).

Proof. As shown in Guo et al. (2021); Dai et al. (2022),

V(LDR(θ)) =
1

|D|2
∑

(u,i)∈D

pu,i(1− pu,i)(δu,i − δ̂u,i)
2

p̂2u,i
.

The variance of UDR has the same form of DR but replaces p̂u,i with p̃u,i satisfying Eq. (1),

V(LUDR(θ)) =
1

|D|2
∑

(u,i)∈D

pu,i(1− pu,i)(δu,i − δ̂u,i)
2

p̃2u,i
.

Now, it is clear that if 1/L ≤ p̂2u,i/p̃
2
u,i ≤ L for a constant L, then we have

1

L
≤ V(LUDR(θ))

V(LDR(θ))
=

p̂2u,i
p̃2u,i
≤ L.

C. More Details about Semi-Synthetic Experiments
Data Preprocessing. Following the previous studies (Schnabel et al., 2016; Wang et al., 2019; Guo et al., 2021), the detailed
preprocessing for the ML-100K3 dataset is shown as follows.

3https://grouplens.org/datasets/movielens/100k/

12



Relaxing the Accurate Imputation Assumption in Doubly Robust Learning for Debiased Collaborative Filtering

(1) Complete the full rating matrix using Matrix Factorization (MF) (Koren et al., 2009). Since the rating matrix completed
by MF will have an unrealistic high prediction value for ratings of almost all user-item pairs, we adjust the proportion of
ratings to match a more realistic rating distribution by first sorting all ratings in ascending order, then set ratings below
the p1 quantile to 1, set ratings between p1 quantile and p2 quantile to 2, and so on. The adjusted rating matrix contains
Ru,i ∈ {1, 2, 3, 4, 5} with proportion [p1, p2, p3, p4, p5], respectively (Schnabel et al., 2016; Guo et al., 2021).

(2) Set a propensity pu,i ∈ (0, 1) for each user-item pair with pu,i = pαmin(4,6−Ru,i). In our experiment, p = 1 and α = 0.5
(Wang et al., 2019; Guo et al., 2021). Then we obtain the ground truth propensity matrix P.

(3) Transfer the adjusted rating matrix to the probability matrix by replacing Ru,i ∈ {1, 2, 3, 4, 5} with ru,i ∈
{0.1, 0.3, 0.5, 0.7, 0.9} correspondingly. Because only binary click indicators can be observed, we sample click indi-
cators according to the following Bernoulli distribution:

ou,i ∼ Bern(pu,i),∀(u, i) ∈ D,

where Bern(·) denotes the Bernoulli distribution. Then we obtain a fully observed observation matrix O and a ground truth
probability matrix R.

D. Dataset and Preprocessing, Experimental Protocols and Details
Dataset and Preprocessing. Following the previous studies (Wang et al., 2019; 2021; Chen et al., 2021), we conduct
extensive experiments on three real-world datasets: COAT4, MUSIC5, and KUAIREC6 (Gao et al., 2022). COAT dataset
contains 290 users and 300 items with 6,960 biased ratings and 4,640 unbiased ratings. MUSIC dataset contains 15,400 users
and 1,000 items with 311,704 biased ratings and 54,000 unbiased ratings. COAT and MUSIC are both five-scale datasets, and
we binarize ratings less than three to 0, otherwise to 1. KUAIREC is a large-scale fully exposed industrial dataset collected
from a short video sharing platform, which contains 4,676,570 video watching ratios from 1,411 users to 3,327 videos. For
KUAIREC dataset, we binarize the video watching ratios less than one to 0, otherwise to 1.

Experimental Protocols and Details. We use three widely adopted evaluation metrics, AUC, NDCG@K, and F1@K,
where K is set to 5 for COAT and MUSIC and 50 for KUAIREC. All the experiments are implemented on PyTorch with Adam
as the optimizer. For all experiments, we use GeForce RTX 3090 as the computing resource. Logistic regression is used as
the propensity model for all the methods with propensity. We tune the learning rate in {0.001, 0.005, 0.01, 0.05, 0.1} and the
batch size in {32, 64, 128, 256} for COAT and {1024, 2048, 4096, 8192} for MUSIC and KUAIREC. We tune the embedding
dimension in {2, 4, 8, 16, 32, 64} for COAT and {16, 32, 64, 128, 256, 512} for MUSIC and KUAIREC. Moreover, we tune
the hyper-parameter γ in {1e− 6, 5e− 5, 1e− 5, ..., 1e− 1}.

4https://www.cs.cornell.edu/˜schnabts/mnar/
5http://webscope.sandbox.yahoo.com/
6https://github.com/chongminggao/KuaiRec
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