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Abstract
Multimodal pretraining is an effective strategy
for the trinity of goals of representation learn-
ing in autonomous robots: 1) extracting both
local and global task progressions; 2) enforc-
ing temporal consistency of visual representation;
3) capturing trajectory-level language grounding.
Most existing methods approach these via sep-
arate objectives, which often reach sub-optimal
solutions. In this paper, we propose a universal
unified objective that can simultaneously extract
meaningful task progression information from im-
age sequences and seamlessly align them with
language instructions. We discover that via im-
plicit preferences, where a visual trajectory inher-
ently aligns better with its corresponding language
instruction than mismatched pairs, the popular
Bradley-Terry model can transform into represen-
tation learning through proper reward reparam-
eterizations. The resulted framework, Decision-
NCE, mirrors an InfoNCE-style objective but is
distinctively tailored for decision-making tasks,
providing an embodied representation learning
framework that elegantly extracts both local and
global task progression features, with temporal
consistency enforced through implicit time con-
trastive learning, while ensuring trajectory-level
instruction grounding via multimodal joint en-
coding. Evaluation on both simulated and real
robots demonstrates that DecisionNCE effectively
facilitates diverse downstream policy learning
tasks, offering a versatile solution for unified rep-
resentation and reward learning. Project Page:
https://2toinf.github.io/DecisionNCE/
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1. Introduction
Realizing general-purpose decision-making has long been
an ultimate goal in AI research, which aims to build au-
tonomous robotic agents that can comprehend environments
via raw visual inputs and execute tasks described in natural
language. In pursuit of such intelligent agents, the brute-
force solution is end-to-end training large models on exten-
sive in-domain data with action annotations (Zitkovich et al.,
2023). However, this can be exceedingly data-hungry, often
posing a stratospheric demand for training data. Pretrain-
ing scalable and generalizable vision-language representa-
tions, on the other hand, can leverage cheap out-of-domain
data without action annotations, such as in-the-wild human
manipulation videos (Grauman et al., 2022), to combat
the scarcity of domain-specific data and facilitate effective
downstream policy learning (Nair et al., 2023). Although
these generic videos may not directly subscribe to the spe-
cific downstream embodiment or tasks, their broad state cov-
erage can greatly enhance generalizability. Moreover, these
videos contain context-rich dynamics about how objects
interact with their surroundings, and how task progressions
are semantically inscribed in varied instructions (Ma et al.,
2023a). Hence, they hold immense potential for diverse
downstream task executions, eliminating the dependency on
intensive domain-specific data collection.

An imperative in learning effective multimodal joint rep-
resentations is the trajectory-level grounding of language,
referring to aligning language with a sequence of images
rather than single frames, as image sequences (unlike static
frames) inherently capture agent behaviors toward complet-
ing the given instructions (Nair et al., 2022). In particular,
focusing on image sequences of varied lengths is critical,
as shorter sequences reveal detailed local transitions, while
longer ones offer global task progression semantics. Strik-
ing the right balance between local and global views can be
quite complex, yet it determines the overall quality of task
representation (Zhang et al., 2023). As shown in Table 1,
existing methods tend to either focus on short, fixed-length
sequences, thus missing global context (Karamcheti et al.,
2023; Ma et al., 2023a); or consider only long horizons that
overlook local transitions (Nair et al., 2023; 2022). More-
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Table 1. Comparison of vision-language representation learning
methods for decision making. * Note that R3M can partially extract
global and local progressions but is limited to always starting from
the first image in a whole video, which overlooks intermediary
transitions within a video. Please see Appendix A for details.

Methods Temporal
consistency

Global
progressions

Local
progressions

Unified
learning

LOReL (2022) ✗ ! ✗ ✗

Voltron (2023) ✗ ✗ ! ✗

R3M (2023) ! !∗ !∗ ✗

LIV (2023a) ! ✗ ! ✗

DecisionNCE ! ! ! !

over, they often rely on separate objectives to either cap-
ture task progression, or enforce temporal consistency or
language instruction alignment, delicately balanced by a
hard-to-tune hyper-parameter (Ma et al., 2023a; Nair et al.,
2023), which often compromises certain objectives at the
expense of others. Consequently, developing a principled
solution that addresses these multifaceted challenges in a
unified manner becomes crucial.

To fill this gap, we introduce DecisionNCE, a unified multi-
modal representation learning framework for decision mak-
ing. DecisionNCE is realized via an elegant design that
transforms the popular Bradley-Terry (BT) model (Bradley
& Terry, 1952) in preference-based reinforcement learn-
ing (Akrour et al., 2011) into multimodal representation
learning architecture. Specifically, we introduce the concept
of implicit preferences, where an image trajectory inherently
aligns better with its corresponding language instruction
than mismatched pairs (illustrated in Figure 1). Under this
umbrella, BT model can transform into representation learn-
ing through proper reward reparameterizations. The resulted
algorithm mirrors an InfoNCE-style (Oord et al., 2018) ob-
jective, which is distinctively tailored for decision-making
tasks, by shifting the contrast focus from single images to
language-aligned trajectory segments.

Unlike previous work where instruction grounding is
conducted on full video, which is expensive and time-
consuming, we show that by introducing well-designed re-
ward reparameterizations in embedding spaces, the binary
start-end transition in a selected video segment is sufficient
in capturing task progression, bypassing irrelevant interme-
diary transitions to reduce computational cost and enable
scalable learning. Specifically, we propose two Decision-
NCE variants: 1) DecisionNCE-P derives from the common
inductive bias that final static images are more aligned with
instructions (Nair et al., 2023; Ma et al., 2023b;a); and 2)
DecisionNCE-T intuits that language instruction describes
dynamical transition flows better than static images. No-
tably, by adopting a random segment-sampling strategy,
both DecisionNCE-P/T simultaneously compare short and

Figure 1. Implicit Preference Learning: Matched segments and
instructions are preferred to mismatches. Thus, implicit preference
learning inherently performs a trajectory-level contrastive learning
that compares segments rather than single images.

long segments of various lengths, from which local/global
temporal information can be extracted over diverse time
spans, which artfully mirrors implicit time contrastive learn-
ing (Sermanet et al., 2018). This seamlessly fuses local/-
global task progression with temporal consistency, as well
as language alignment in an elegant and unified objective,
eliminating ad-hoc designs in previous works (Nair et al.,
2023; Ma et al., 2023b;a) and offering a surprisingly simple
yet effective multimodal representation learning framework.

Pretrained on large-scale, in-the-wild human video datasets,
DecisionNCE excels in capturing temporally consistent task
progression and comprehensively aligning with instructions.
The learned representations from DecisionNCE can then be
used for downstream policy learning. Extensive evaluations
on both simulated and real robots demonstrate Decision-
NCE’s superiority to state-of-the-art representation learning
methods. Moreover, the representations can also serve as
zero-shot rewards parameterized in the embedding space,
which can be used for zero-shot trajectory optimization.

2. Preliminaries
Notations. We consider a language-conditioned Markov
Decision Process (MDP) (Puterman, 2014) M :=
(O,A,L, r,P, γ). O,A are state and action space. P :
O × A → O is dynamic, and γ ∈ (0, 1) is discount fac-
tor. We assume the state space O = RH×W×3 is defined
over RGB images. L is language instruction space, which
specifies desired task behaviors. r : O × A × L → R is
language-conditioned reward function. The goal is to learn
a policy π : O × L → A that can solve arbitrary tasks
described in language l ∈ L.

We assume a video dataset D = {vi := (oi1, ..., o
i
hi
; li)}Ni=1,

where each o ∈ O is a raw RGB image, and each video
v comes with a descriptive language annotation l. h is
video length. The dataset D includes diverse out-of-domain
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Figure 2. Overview of DecisionNCE framework. DecisionNCE focuses on jointly training vision and language encoders to achieve
trajectory-level representation alignment. The learned representations can be applied to various downstream decision-making tasks.

data (Grauman et al., 2022; Damen et al., 2018), where
no action labels are available. We aim to train a vision
encoder ϕ : RH×W×3 → RK and a language encoder
ψ : L → RK to map the raw image o and language l into a
sharedK-dimensional vision-language representation space,
using the dataset D. After this, the policy π(ϕ(o), ψ(l)) can
leverage these representations as inputs for policy learning
via imitation learning (IL) or reinforcement learning (RL).

Bradley-Terry (BT) Model. Designing proper rewards is
quite challenging for complex tasks. In contrast, the well-
known BT model (Bradley & Terry, 1952) in preference
learning offers a natural way for humans to convey their
desired outcomes to agents, where humans are required
to rank pairs of segments. Then, BT model optimizes the
rewards to maximize Eq. (1) to fit human preferences (Hu
et al., 2023).

P
[
σ+ ≻ σ−] = exp

∑
t r

(
o+t , o

+
t+1

)∑
i∈{+,−} exp

∑
t r

(
oit, o

i
t+1

) . (1)

where σ = (on, ..., on+m) denotes a length-m segment.
σ+ ≻ σ− indicates segment σ+ is preferred to σ−, and the
preference for σ+ ≻ σ− grows exponentially with the total
rewards of σ+ and diminishes with those of σ−.

3. DecisionNCE
Note the BT model in Eq. (1) is inherently a trajectory-level
contrastive learning model that compares different trajec-
tory segments and favors positive ones. This underlying
equivalence inspires us to leverage BT model for represen-
tation learning. by reparameterizing the rewards with vision
and language representations ϕ(o), ψ(l), and extending the
original BT model into its language-conditioned version:

P
[
σ+ ≻ σ−] = exp

∑
t r

(
o+t , o

+
t+1;ϕ, ψ, l

+
)∑

i∈{+,−} exp
∑
t r

(
oit, o

i
t+1;ϕ, ψ, l

+
) .
(2)

Figure 3. Implicit Preference. Segment is near-optimal for its asso-
ciated language instruction, but is sub-optimal for others.

Eq. (2) essentially contrasts segments under various instruc-
tions, to extract task-relevant semantic features from im-
age sequence segments. This offers a new possibility for
trajectory-level language grounding via adapting BT model.

However, careful readers may notice that naı̈vely extend-
ing Eq. (2) to trajectory-level grounding faces several chal-
lenges: 1) The preference labels are costly to collect (Lee
et al., 2021), and existing video-language datasets have no
explicit preference annotations; 2) It is tricky to select ap-
propriate segment lengths m for comparison, as overly long
segments will induce extensive computations and lose local
transition details, while short segments may lose global task
information; 3) It remains unclear what parameterized form
of reward r is best for multimodal representation learning.

To address these challenges, we introduce three novel de-
signs: implicit preference annotations, random segment sam-
pling, and reward reparametrization in embedding space.

3.1. Implicit Preference Annotations

Despite the absence of explicit preference labels in existing
datasets, it’s crucial to recognize that language instructions
naturally communicate human intentions to agents. We
can reasonably assume a video vi is more preferred for its
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associated language instruction li than other mismatched
instructions l ̸= li, as shown in Figure 3. This mild assump-
tion holds in many cases. For example, a video on “open
microwave” is clearly sub-optimal for “close microwave”
instruction. Thus, the existing video-language dataset D
already possesses a wealth of such implicit preference that
has yet to be fully exploited, eliminating the need for extra
preference annotations.

3.2. Random Segment Sampling

Selecting a certain segment length m that best covers both
local and global information is challenging, and previous
works typically focus on either short or long video seg-
ments (Nair et al., 2023; 2022; Ma et al., 2023a;b; Karam-
cheti et al., 2023) (see Appendix A.1 for detailed discussion).
A good balance between the two is preferable, enjoying the
complementary advantages of both (Zhang et al., 2023). To
realize this, we adopt the widely used random-sampling
strategy in action recognition for segment sampling (Shi
et al., 2013; Wang et al., 2018; Zhi et al., 2021; Zhang et al.,
2023). Specifically, we randomly select a start image on
from video v = (o1, ..., oh) and then a goal image on+m
from the following frames (on+1, ..., oh). Repetitively, this
leads to varied segment lengths m, enabling the preference
model to both capture local transitions in short segments
and global task progressions in longer ones.

Despite the simplicity, we show in Section 4 that surpris-
ingly, this simple sampling strategy induces implicit time
contrastive learning for various DecisionNCE variants, guar-
anteeing smooth temporal consistency over time.

3.3. Implicit Preference Learning via Reward
Reparameterization

This section explains how to train the vision and language
encoders ϕ(o), ψ(l). In principle, the DecisionNCE frame-
work is versatile to any parameterized form of reward.
Demonstratively, we show that with two simple reparame-
terization schemes in embedding space, i.e., potential-based
and transition-direction reward, we can adeptly extend the
original reward learning objective (Eq. (2)) to effective repre-
sentation learning , allowing the optimization of vision and
language encoder ϕ(o), ψ(l) to implicitly optimize rewards.

(1) Potential-based Reward (DecisionNCE-P). Inspired
by prior works that reformulate MDP in embedding space
Mϕ,ψ := (ϕ(O),A, ψ(L), r,P, γ) (Li et al., 2022; Ma
et al., 2023b;a), we define the reward as the language-
embedding distance difference in Eq. (3):

rP (ot, ot+1;ϕ, ψ, l) := S(ϕ(ot+1), ψ(l))− S(ϕ(ot), ψ(l)).
(3)

Here, we choose cosine similarity for S. This reward
behaves similarly to potential-based reward shaping as

Figure 4. Illustration of DecisionNCE-P and DecisionNCE-T.

St+1 −St = (1− γ)St+1 + (γSt+1 −St), which is benefi-
cial for policy learning (Ng et al., 1999). Substitute Eq. (3)
into Eq. (2), the total reward for a segment σ becomes:∑

t

rP (ot, ot+1;ϕ, ψ, l) = ∆S(ϕn+m, ϕn;ψ(l)), (4)

where ∆S(ϕn+m, ϕn);ψ(l)) := S(ϕ(on+m), ψ(l)) −
S(ϕ(on), ψ(l)) denotes the embedding distance shifts.
Then, the resulting DecisionNCE-P instantiation is:

Definition 3.1 (DecisionNCE-P).

PP
[
σ+ ≻ σ−] = exp∆S(ϕ+n+m, ϕ+n ;ψ(l+))∑

i∈{+,−} exp∆S(ϕin+m, ϕin;ψ(l+))
.

(5)

Basically, maximizing Eq. (5) will attract ϕ(o+n+m) to ψ(l+)
while repelling ϕ(o+n ) from ψ(l+), leading to an induc-
tive bias that final images are more aligned with instruc-
tions (Nair et al., 2023; Ma et al., 2023b).

(2) Transition-direction Reward (DecisionNCE-T). We
also introduce an alternative inductive bias: language rep-
resents a transition direction instead of final images, as
instructions most likely describe dynamical behaviors rather
than static images (Karamcheti et al., 2023). To achieve this,
we simply modify the total rewards in Eq. (4) to Eq. (6),
leading to the DecisionNCE-T variant in Definition 3.2.∑

t

rT (ot, ot+1;ϕ, ψ, l) = S(ϕ(on+m)− ϕ(on), ψ(l)),

(6)

Definition 3.2 (DecisionNCE-T).

PT
[
σ+ ≻ σ−] = expS(ϕ(o+n+m)− ϕ(o+n ), ψ(l+))∑

i∈{+,−} expS(ϕ(oin+m)− ϕ(oin), ψ(l+))
.

(7)

Here, we obtain another representation learning objec-
tive. Maximizing Eq. (7) aligns the transition direction
of ϕ(o+n+m)− ϕ(o+n ) and the text embedding vector ψ(l+).
In this case, ϕ(o+n+m) and ϕ(o+n ) can remain distant from
ψ(l+) as long as their transition direction aligns effectively.
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Algorithm 1 DecisionNCE-P/T
Initialize: Out-of-domain video dataset with language annotations D := {vi := (oi1, ..., o

i
hi
; li)}Ni=1, vision-language encoder ϕ, ψ

for each iteration do:
Randomly sample segments {σi}Bi=1 = {(oini

, ..., oini+mi
; li)}Bi=1 from dataset D with random segment length mi.

LDecisionNCE−P(ϕ, ψ) =
1
B

∑B
i=1

[
− log

exp∆S(ϕ(oni+mi
),ϕ(oni

);ψ(li))∑B
j=1 exp∆S(ϕ(onj+mj

),ϕ(onj
);ψ(li))

− log
exp∆S(ϕ(oni+mi

),ϕ(oni
);ψ(li))∑B

j=1 exp∆S(ϕ(onj+mj
),ϕ(onj

);ψ(lj))

]
LDecisionNCE−T(ϕ, ψ) =

1
B

∑B
i=1

[
− log

expS(ϕ(oni+mi
)−ϕ(oni

),ψ(li))∑B
j=1 expS(ϕ(onj+mj

)−ϕ(onj
)),ψ(li))

− log
expS(ϕ(oni+mi

)−ϕ(oni
),ψ(li))∑B

j=1 expS(ϕ(oni+mi
)−ϕ(oni

),ψ(lj))

]
Update ϕ and ψ using SGD: (ϕ, ψ)← (ϕ, ψ)− α∇LDecisionNCE−P(ϕ, ψ) or (ϕ, ψ)← (ϕ, ψ)− α∇LDecisionNCE−T(ϕ, ψ)

Connections between DecisionNCE-P/T. Comparing the
two variants, we notice that DecisionNCE-P explicitly con-
centrates on the absolute similarities between single im-
ages and text instructions, whereas DecisionNCE-T is less
concerned with this aspect, but emphasizes more on the
correctness of the relative transition direction. However,
DecisionNCE-T can implicitly ensure a correct cosine sim-
ilarity between ϕ(o+t+1), ϕ(o

+
t ), and ψ(l+). As shown in

Figure 4 (b), their angle θt can monotonically decrease if
the transition direction is correct. Thus, Decision-T not
only explicitly enforces a meaningful embedding learning
direction, but also implicitly guarantees correct absolute
embedding positions like DecisionNCE-P.

3.4. Practical Implementation

The pseudo-code of DecisionNCE for practical implemen-
tation is presented in Algorithm 1. Specifically, we extend
the single negative segment in Eq. (5), (7) to all mismatched
pairs that appeared in a mini-batch to improve training ef-
ficiency (highlighted as blue), as one gradient step can es-
tablish contrastive learning signals to more negative sam-
ples. This does not affect the analysis in Section 4, since
the optimization direction remains unchanged for positive
and negative segments. This final objective resembles an
InfoNCE-style (Oord et al., 2018) loss function, but the
contrastive terms are start-end transitions rather than single
images. Thus, we term our method as DecisionNCE. Please
see Appendix E for more implementation details.

4. Analyses and Insights
Given the two instantiations of DecisionNCE, in the fol-
lowing, we offer more in-depth analyses and insights of the
algorithm designs and potentials of the proposed framework.

4.1. From Full Segments to Start-end Transitions

Note that by reparameterizing the reward as in Eq. (4),
the intermediary transitions are conveniently canceled out.
This greatly simplifies the comparison of full segments
σ to just a binary start-goal transition on → on+m in
any segment, which has proven advantageous in action
recognition (Korbar et al., 2019; Zhang et al., 2023).

Figure 5. Ablation on differ-
ent numbers of frames used
for preference learning.

This can effortlessly scale to
any segment length, and by
doing so, training efficiency
is significantly improved, as
comparing every transition
within segments can be pro-
hibitively expensive. More-
over, comparing all transitions
often covers numerous mean-
ingless intermediary points,
especially over long segments,
which can overwhelm informative transitions with noise
and complicate training. In contrast, Eq. (4) concentrates
on the critical transition on → on+m, maintaining the es-
sential task progression while bypassing most noisy data.
To investigate this, in Figure 5, we train DeicisionNCE-
T using the total segment rewards calculated by not only
on → on+m, but also including some intermediary points
(see Appendix E.2 for experiment setups). The results show
that including intermediary transitions sometimes can be
harmful for representation learning, leading to decreased
success rate on policy learning. Therefore, we design our
transition-direction reward in Eq. (6) solely on the start-goal
transitions.

4.2. Mirroring Time Contrastive Learning

At first glance, some works also compare binary transitions
similar to DecisionNCE-P/T, but they are limited to either
long transitions o1 → oh across entire trajectories (Nair
et al., 2022) or short transitions with a fixed k-interval ot →
ot+k (Ma et al., 2023a;b; Karamcheti et al., 2023), and
require additional objective for language grounding, which
leads to complicated trade-offs among various elements. By
contrast, we find that our segment comparisons in Eq. (5)
and Eq. (7) effortlessly integrate implicit time contrastive
learning for temporal consistency and meanwhile conduct
local/global language grounding within a single, cohesive
objective, effectively overcoming these challenges.

Specifically, a segment σ+ is randomly selected from v+,
so any frame in v+ can be a “goal” image or a “start” image.
However, thanks to the random segment sampling strategy,
the chance for frame o+t being selected as the goal is not
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(a) DecisionNCE-P (c) LIV (d) R3M(b) DecisionNCE-T
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Figure 6. Heatmap of the learned rewards for various instruction/segment pairs. The diagonals are matched pairs and off-diagonals denote
mismatches. DecisionNCE identifies unmatched pairs with varied segment lengths, extracting both local/global task progressions.

isotropic but gradually increases as the video progresses.
Mathematically, the probability for o+t , 0 < t < h being a
goal image grows monotonically w.r.t its time stamp t (see
Appendix B for proof):

P (o+t is selected as goal) =
1

h

i<t∑
i=1

1

h− i
(8)

Therefore, for DecisionNCE-P, Eq. (8) clearly implies that
later images o+j have an increasing likelihood of being
attracted to ψ(l+) than earlier ones o+i , j > i, with the
attraction strength smoothly increasing over time step t.
Thus, DecisionNCE-P implicitly promotes smooth temporal
progressions in representation spaces, mirroring time con-
trastive learning (Sermanet et al., 2018). This characteristic
also holds for DecisionNCE-T. As depicted in Figure 4(b),
as the transition directions between randomly sampled im-
age embedding pairs are driven to be similar within the same
video, the cosine similarity between consecutive image em-
beddings ϕ(ot), ϕ(ot+1) can also remain large. Indicated by
Eq. (8), the transition direction from initial to later image em-
beddings will be increasingly aligned with the direction of
text embedding vector, as later images are more frequently
chosen as goal images in video trajectories.

Notably, both DecisionNCE-P/T seamlessly integrate lan-
guage grounding and temporal consistency into a single,
simplified loss function, avoiding the intricate balance re-
quired between these two objectives. Additionally, the use
of randomly selected segments eliminates the need for extra
tedious hyper-parameter tuning, unlike prior methods that
rely on fixed or meticulously adjusted intervals (Ma et al.,
2023b;a; Karamcheti et al., 2023; Nair et al., 2023; 2022).

4.3. Positioning Task-Irrelevant Image Embeddings

In DecisionNCE-P/T, frames in negative segments σ− =
(o−n , ..., o

−
n+m; l−) ⊆ v− = (o−1 , ..., o

−
h ; l

−) are optimized
oppositely as compared to positive segments. This can po-
tentially attract sampled initial image embedding ϕ(o−n ) to
ψ(l+), and the first image o−1 in negative video v− will be

Table 2. Cosine similarities among the first image embeddings
ϕ(o1) and similarities to language embeding means ψ(l̃). See
Appendix E.3 for experimental setups.

LIV DeicisionNCE (Ours)

-P -T

ϕ(o1) similarities↑ 0.08± 0.005 0.44± 0.01 0.96± 0.004

Similarities to ψ(l̃) ↑−0.06± 0.02 0.04± 0.008 0.02± 0.01

the most attracted to ψ(l+). Counter-intuitively, this seems
“incorrect” at first glance, as o−1 is typically irrelevant to pos-
itive language instructions. However, we can demonstrate
that this seemingly “incorrect” objective will actually lead
to desired representation spaces, unlike other methods.

Figure 8. Illustration for
task-irrelevant first image
embeddings ϕ(o1).

In fact, based on our designs
in DecisionNCE, ϕ(o−1 ) is not
only drawn to ψ(l+), but to all
mismatched language embed-
dings with l ̸= l−. This essen-
tially drives first image embed-
dings ϕ(o1) of different videos
to the central position among
all language embeddings, as de-
picted in Figure 8. This is ac-
tually desirable, as the first im-
ages of videos hardly carry any
substantial information about
the goal of tasks. Determining the nature of the tasks
based solely on the first images in videos is highly diffi-
cult even for humans. As an example, we notice that in
video-language datasets like KITCHEN-100 (Damen et al.,
2018), the videos for “open door” instruction might not even
show a door in the first image. So ideally, ϕ(o1) should be
positioned away from any specific instruction as it lacks task-
specific information, which is exactly what DecisionNCE-
P/T do. In Table 2, we demonstrate that DecisionNCE-P/T
successfully cluster potentially task-irrelevant first image
embeddings into similar positions, yielding high similarities
among them, whereas other methods cannot.
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Figure 7. Real robot LCBC experimental results. Success rate is averaged over 10 episodes and 3 seeds.

4.4. Advanced Local/Global Trajectory-level Grounding

Beyond previously discussed properties, we also examine
the ability of DecisionNCE to capture both local and global
task progressions. Specifically, similarities for segments
of varied lengths should be higher for matched instructions
than mismatched pairs. The visualization in Figure 6 clearly
demonstrates that DecisionNCE is superior in this aspect,
as our training strategy explicitly guarantees this with the
effective random segment sampling scheme under the im-
plicit preference learning framework, capturing local and
global task progressions by comparing both short and long
segments. Previous methods, however, are often impaired
by noises.

5. Experiments
We pretrain the DecisionNCE encoders using large-scale
human video dataset EPIC-KITCHEN-100 (Damen et al.,
2018) and conduct extensive experiments on both simu-
lated and real robotic environments (Figure 9). Specif-
ically, we investigate whether the representation learned
by DecisionNCE can power effective downstream policy
learning using methods like Language-Conditioned Behav-
ior Cloning (LCBC), and whether DecisionNCE can offer
universal language-conditioned rewards that describe the
desired task progression directions.

Figure 9. Experimental environments.

Baselines. We compare DecisionNCE with following base-
lines: 1) CLIP (Radford et al., 2021b): Aligns images and
language through contrastive learning. 2) R3M (Nair et al.,
2023): Combines LOReL (Nair et al., 2022) and time con-
trastive learning (Sermanet et al., 2018) with a frozen lan-
guage encoder. 3) VIP (Ma et al., 2023b): Trains repre-
sentations via an RL-based objective but has no language

Figure 10. Simulation LCBC results. Max success rate averaged
over 25 evaluation episodes and 3 seeds.

modality. We use pretrained DistilBERT (Sanh et al., 2019)
as the language encoder for VIP. 4) LIV (Ma et al., 2023a):
Extends VIP to vision-language representation learning us-
ing CLIP to align final images with instructions. 5) RT1
(Brohan et al., 2022): An end-to-end LCBC method. We
initialize RT1 with its original pretrained vision-language
encoder for a fair comparison. We do not compare with
Voltron (Karamcheti et al., 2023) as it is trained on small-
scale Something-Something-v2 (Goyal et al., 2017) data.

5.1. Language-conditioned Behavior Cloning Results

We freeze the pretrained vision-language encoders and use
their output representations as input to a 256-256 MLP to
train LCBC policies, trained using a few domain-specific
demonstrations with action annotations. Extensive results
show that DecisionNCE can extract valuable information
that facilitates efficient downstream policy learning.

Results on real robots. For real robots, we evaluate 9 dis-
tinct tasks. For all tasks, the environment is highly stochastic
with randomly initialized robots and objects, and contains
lots of distractors with random locations, colors, and shapes.
Ideally, the representations should be robust against these
disturbances. Please see Appendix E for detailed setups.

Results are presented in Figure 7. DecisionNCE signifi-
cantly outperforms baselines across almost all tasks. Among
all baselines, LIV and R3M achieve the best results, ben-
efiting from the alignment between images and languages
as well as temporal consistency. CLIP, however, performs
poorly as aligning languages with single images misses key
task progression signals encoded in sequential data. More-
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Figure 11. Visualization of the learned reward for diverse data. DecisionNCE provides more accurate rewards than baseline methods.

over, VIP cannot obtain satisfactory results as its pretrained
vision and language embeddings are not aligned. RT1 also
obtains subpar performances as the downstream data is too
small to train a large model.

Results on simulated robots. We also evaluate on the
FrankaKitchen (Gupta et al., 2019) benchmark, following
LIV (Ma et al., 2023a). We train LCBC policies on 5 tasks
in FrankaKitchen environment using 1/3/5 demonstrations
for each task. Figure 10 shows that DecisionNCE achieves
the highest success rate across diverse dataset quantities,
demonstrating its effectiveness in extracting valuable infor-
mation from out-of-domain data.

5.2. Universal Reward Learning

Note that the BT model is widely used in PBRL for reward
learning, thus our learned representations can also be param-
eterized into universal reward signals (as in Section 3.3), of-
fering direct guidance for accomplishing downstream tasks.
We explore this ability of DecisionNCE by visualizing the
normalized rewards calculated by image/language similari-
ties on different videos. We also visualize rewards derived
by other methods. Figure 11(a-b) demonstrates that De-
cisionNCE not only offers accurate reward guidance on
in-distribution data, but also provides effective zero-shot
rewards on out-of-distribution views and embodiments. Fur-
thermore, Figure 11(c) shows DeicisionNCE is the only
model that clearly identifies mismatched video/language
pairs, revealing strong robustness against erroneous instruc-
tions compared to other methods. This robustness likely
stems from DecisionNCE’s training on randomly sampled
segments (resists noisy transitions) and the use of contrastive
learning against negative segments (enhances the ability to
discern mismatched pairs).

5.3. Language-reward Planning

To further assess the quality of implicit reward, we apply it
in a model-based planning method, MPPI (Williams et al.,
2017), where future actions are optimized according to re-
turns derived from the parameterized rewards, in a zero-shot

Table 3. Average success rate overall FrankaKitchen tasks using
MPPI planning based on zero-shot implicit rewards.

Model CLIP R3M LIV DecisionNCE (Ours)

-P -T

Average
Success Rate 0.016 0.036 0.054 0.101 0.122

manner. For baselines, we choose CLIP, LIV and R3M, and
also use their customized rewards to run MPPI. We conduct
experiments on FrankaKitchen, adhering to experimental
protocols from Ma et al. (2023b) (See Appendix E.6 for
details). Results in Table 3 clearly show that DecisionNCE-
P/T both significantly outperform other methods, indicating
superior capability in capturing the similarity between the
images and the language goals, thus offering more accurate
guidance for generic language-directed tasks. Also, note
that DecisionNCE-T performs better than DecisionNCE-P
in most scenarios. We believe this is because DecisionNCE-
T not only ensures correct relative transition directions, but
also correct absolute positions, which makes it well-suited
for reward/representation learning.

6. Related Work
Representation learning for decision making. Pretrained
representations are useful for downstream decision-making
tasks (Shah & Kumar, 2021; Zhang et al., 2021; Parisi
et al., 2022; Cui et al., 2022; Laskin et al., 2020b). Yet,
most prior works focus on narrow and expensive in-domain
data (Laskin et al., 2020a; Yarats et al., 2021; Seo et al.,
2022; Kumar et al., 2022; Myers et al., 2023; Bhateja et al.,
2023). Our work explores a broader setting that leverages
extensive cheap out-of-domain data like human demon-
stration videos (Damen et al., 2018; Goyal et al., 2017;
Grauman et al., 2022) to improve representation quality.
While some works have studied similar settings, they mostly
limit to uni-model representations that focus only on visual
modality (Mendonca et al., 2023). For instance, Xiao et al.
(2022) and Radosavovic et al. (2023) noticed that Masked-
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Autoencoder (He et al., 2022; Liu et al., 2023) for vision
representation learning can improve decision making, and
VIP (Ma et al., 2023b) performed Goal-Conditioned Rein-
forcement Learning (GCRL) (Ma et al., 2022) with final
image as goal specification to extract task-relevant features.

Language grounding for decision making. Several stud-
ies directly apply existing multimodal representations, like
CLIP (Radford et al., 2021a), without tailoring them for
decision making (Radford et al., 2021b; Khandelwal et al.,
2022; Reid et al., 2022), potentially overlooking critical
elements such as environmental dynamics and task pro-
gressions. For instance, LIV (Ma et al., 2023a) aligns lan-
guage with static goal images using CLIP, missing these
essential elements. By contrast, trajectory-level ground-
ing, which aligns language with image sequences, is more
suited for decision making. Voltron (Karamcheti et al.,
2023) proposed a joint vision-language objective, yet its
temporal length is quite short, failing to capture global
task progressions. Conversely, R3M (Nair et al., 2023)
and LOReL (Nair et al., 2022) employed a language reward
head to extract global task progressions, but miss some
local transition details. HULC (Mees et al., 2022) used
CLIP to align language with image sequences, but is lim-
ited to short sequence length due to high computation costs.
Moreover, most previous works often employ additional
time contrastive learning objective (Sermanet et al., 2018)
for temporal consistency, leading to a complex trade-off
between two stages: grounding and ensuring temporal con-
sistency, balanced by a hard-to-tune hyper-parameter (Nair
et al., 2023; Ma et al., 2023a). In contrast, our Decision-
NCE framework elegantly merges the two-stage objectives
into a unified loss, bypassing all nuanced trade-offs, pre-
senting a principled vision-language representation learning
framework for decision-making. Please see Appendix A for
extended discussions.

7. Conclusion
In this paper, we show that by introducing several smart
designs, i.e., implicit preference annotations, random seg-
ment sampling, and reward reparameterization in embed-
ding spaces, the Bradley-Terry model in preference learning
can be elegantly extended to vision-language representation
learning. This adaptation naturally leads to an elegant and
cohesive trajectory-level InfoNCE-style optimization objec-
tive that is specifically tailored for decision making. The
derived DecisionNCE framework effectively addresses the
central challenges in trajectory-level grounding problem, of-
fering a principled approach to universal representation and
reward learning. Due to limited resources, we instantiate
DecisionNCE based on the CLIP encoders. Future research
can further scale up DecisionNCE to train large Vision-
Language Models (VLMs). More discussion on limitations

and future direction can be found in Appendix F.
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K., Pertsch, K., Hausman, K., Go, K., Gopalakrishnan,
K., Goldberg, K., Byrne, K., Oslund, K., Kawaharazuka,
K., Zhang, K., Majd, K., Rana, K., Srinivasan, K., Chen,
L. Y., Pinto, L., Tan, L., Ott, L., Lee, L., Tomizuka,
M., Du, M., Ahn, M., Zhang, M., Ding, M., Srirama,
M. K., Sharma, M., Kim, M. J., Kanazawa, N., Hansen,
N., Heess, N., Joshi, N. J., Suenderhauf, N., Palo, N. D.,
Shafiullah, N. M. M., Mees, O., Kroemer, O., Sanketi,
P. R., Wohlhart, P., Xu, P., Sermanet, P., Sundaresan,
P., Vuong, Q., Rafailov, R., Tian, R., Doshi, R., Martı́n-
Martı́n, R., Mendonca, R., Shah, R., Hoque, R., Julian,
R., Bustamante, S., Kirmani, S., Levine, S., Moore, S.,
Bahl, S., Dass, S., Song, S., Xu, S., Haldar, S., Adebola,
S., Guist, S., Nasiriany, S., Schaal, S., Welker, S., Tian, S.,
Dasari, S., Belkhale, S., Osa, T., Harada, T., Matsushima,
T., Xiao, T., Yu, T., Ding, T., Davchev, T., Zhao, T. Z.,
Armstrong, T., Darrell, T., Jain, V., Vanhoucke, V., Zhan,
W., Zhou, W., Burgard, W., Chen, X., Wang, X., Zhu, X.,
Li, X., Lu, Y., Chebotar, Y., Zhou, Y., Zhu, Y., Xu, Y.,
Wang, Y., Bisk, Y., Cho, Y., Lee, Y., Cui, Y., hua Wu, Y.,
Tang, Y., Zhu, Y., Li, Y., Iwasawa, Y., Matsuo, Y., Xu, Z.,
and Cui, Z. J. Open X-Embodiment: Robotic learning
datasets and RT-X models. https://arxiv.org/
abs/2310.08864, 2023. 28

Cui, Y., Niekum, S., Gupta, A., Kumar, V., and Rajeswaran,
A. Can foundation models perform zero-shot task specifi-
cation for robot manipulation? In Learning for Dynamics
and Control Conference, pp. 893–905. PMLR, 2022. 8

Damen, D., Doughty, H., Farinella, G. M., Fidler, S.,
Furnari, A., Kazakos, E., Moltisanti, D., Munro, J., Per-
rett, T., Price, W., et al. Scaling egocentric vision: The
epic-kitchens dataset. In Proceedings of the European
conference on computer vision (ECCV), pp. 720–736,
2018. 3, 6, 7, 8, 9, 17, 24, 27

Du, Y., Yang, M., Dai, B., Dai, H., Nachum, O., Tenenbaum,

J. B., Schuurmans, D., and Abbeel, P. Learning universal
policies via text-guided video generation. arXiv preprint
arXiv:2302.00111, 2023a. 15

Du, Y., Yang, M., Florence, P., Xia, F., Wahid, A.,
Ichter, B., Sermanet, P., Yu, T., Abbeel, P., Tenenbaum,
J. B., et al. Video language planning. arXiv preprint
arXiv:2310.10625, 2023b. 15

Goyal, R., Ebrahimi Kahou, S., Michalski, V., Materzynska,
J., Westphal, S., Kim, H., Haenel, V., Fruend, I., Yianilos,
P., Mueller-Freitag, M., et al. The” something something”
video database for learning and evaluating visual com-
mon sense. In Proceedings of the IEEE international
conference on computer vision, pp. 5842–5850, 2017. 7,
8, 14, 28

Grauman, K., Westbury, A., Byrne, E., Chavis, Z., Furnari,
A., Girdhar, R., Hamburger, J., Jiang, H., Liu, M., Liu,
X., et al. Ego4d: Around the world in 3,000 hours of
egocentric video. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
18995–19012, 2022. 1, 3, 8, 28

Gupta, A., Kumar, V., Lynch, C., Levine, S., and Hausman,
K. Relay policy learning: Solving long-horizon tasks
via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019. 8, 25

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016. 24

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick,
R. Masked autoencoders are scalable vision learners. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.
9

Hu, X., Li, J., Zhan, X., Jia, Q.-S., and Zhang, Y.-Q. Query-
policy misalignment in preference-based reinforcement
learning. arXiv preprint arXiv:2305.17400, 2023. 3

Jang, E., Irpan, A., Khansari, M., Kappler, D., Ebert, F.,
Lynch, C., Levine, S., and Finn, C. Bc-z: Zero-shot
task generalization with robotic imitation learning. In
Conference on Robot Learning, pp. 991–1002. PMLR,
2022. 15

Karamcheti, S., Nair, S., Chen, A. S., Kollar, T., Finn, C.,
Sadigh, D., and Liang, P. Language-driven representation
learning for robotics. arXiv preprint arXiv:2302.12766,
2023. 1, 2, 4, 5, 6, 7, 9, 14, 26

Khandelwal, A., Weihs, L., Mottaghi, R., and Kembhavi,
A. Simple but effective: Clip embeddings for embodied

10

https://arxiv.org/abs/2310.08864
https://arxiv.org/abs/2310.08864


DecisionNCE: Embodied Multimodal Representations via Implicit Preference Learning

ai. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 14829–14838,
2022. 9

Korbar, B., Tran, D., and Torresani, L. Scsampler: Sampling
salient clips from video for efficient action recognition. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 6232–6242, 2019. 5, 15, 24

Kumar, A., Singh, A., Ebert, F., Nakamoto, M., Yang, Y.,
Finn, C., and Levine, S. Pre-training for robots: Offline rl
enables learning new tasks from a handful of trials. arXiv
preprint arXiv:2210.05178, 2022. 8

Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., and
Srinivas, A. Reinforcement learning with augmented data.
Advances in neural information processing systems, 33:
19884–19895, 2020a. 8

Laskin, M., Srinivas, A., and Abbeel, P. Curl: Contrastive
unsupervised representations for reinforcement learning.
In International Conference on Machine Learning, pp.
5639–5650. PMLR, 2020b. 8

Lee, K., Smith, L. M., and Abbeel, P. Pebble: Feedback-
efficient interactive reinforcement learning via relabeling
experience and unsupervised pre-training. In Interna-
tional Conference on Machine Learning, pp. 6152–6163.
PMLR, 2021. 3

Li, J., Hu, X., Xu, H., Liu, J., Zhan, X., Jia, Q.-S., and
Zhang, Y.-Q. Mind the gap: Offline policy optimization
for imperfect rewards. arXiv preprint arXiv:2302.01667,
2023. 14

Li, Y., Wei, C., and Ma, T. Towards explaining the regu-
larization effect of initial large learning rate in training
neural networks. Advances in Neural Information Pro-
cessing Systems, 32, 2019. 16

Li, Y., Gao, T., Yang, J., Xu, H., and Wu, Y. Phasic self-
imitative reduction for sparse-reward goal-conditioned
reinforcement learning. In International Conference on
Machine Learning, pp. 12765–12781. PMLR, 2022. 4

Liu, H.-T. D., Williams, F., Jacobson, A., Fidler, S., and
Litany, O. Learning smooth neural functions via lipschitz
regularization. In ACM SIGGRAPH 2022 Conference
Proceedings, pp. 1–13, 2022. 16

Liu, J., Huang, X., Zheng, J., Liu, Y., and Li, H. Mixmae:
Mixed and masked autoencoder for efficient pretraining
of hierarchical vision transformers. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6252–6261, 2023. 9

Ma, J. Y., Yan, J., Jayaraman, D., and Bastani, O. Offline
goal-conditioned reinforcement learning via f -advantage

regression. Advances in Neural Information Processing
Systems, 35:310–323, 2022. 9

Ma, Y. J., Kumar, V., Zhang, A., Bastani, O., and Jayaraman,
D. LIV: Language-image representations and rewards
for robotic control. In Krause, A., Brunskill, E., Cho,
K., Engelhardt, B., Sabato, S., and Scarlett, J. (eds.),
Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Ma-
chine Learning Research, pp. 23301–23320. PMLR, 23–
29 Jul 2023a. URL https://proceedings.mlr.
press/v202/ma23b.html. 1, 2, 4, 5, 6, 7, 8, 9, 14,
16, 24, 26, 27

Ma, Y. J., Sodhani, S., Jayaraman, D., Bastani, O., Ku-
mar, V., and Zhang, A. Vip: Towards universal visual
reward and representation via value-implicit pre-training.
In The Eleventh International Conference on Learning
Representations, 2023b. 2, 4, 5, 6, 7, 8, 9, 14, 26, 27

Mees, O., Hermann, L., and Burgard, W. What matters
in language conditioned robotic imitation learning over
unstructured data. IEEE Robotics and Automation Letters,
7(4):11205–11212, 2022. 9

Mendonca, R., Bahl, S., and Pathak, D. Structured
world models from human videos. arXiv preprint
arXiv:2308.10901, 2023. 8

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spec-
tral normalization for generative adversarial networks.
arXiv preprint arXiv:1802.05957, 2018. 16

Myers, V., He, A. W., Fang, K., Walke, H. R., Hansen-
Estruch, P., Cheng, C.-A., Jalobeanu, M., Kolobov, A.,
Dragan, A., and Levine, S. Goal representations for
instruction following: A semi-supervised language inter-
face to control. In Conference on Robot Learning, pp.
3894–3908. PMLR, 2023. 8

Nair, S., Mitchell, E., Chen, K., Savarese, S., Finn, C.,
et al. Learning language-conditioned robot behavior from
offline data and crowd-sourced annotation. In Conference
on Robot Learning, pp. 1303–1315. PMLR, 2022. 1, 2,
4, 5, 6, 7, 9, 14, 27

Nair, S., Rajeswaran, A., Kumar, V., Finn, C., and Gupta,
A. R3m: A universal visual representation for robot ma-
nipulation. In Liu, K., Kulic, D., and Ichnowski, J. (eds.),
Proceedings of The 6th Conference on Robot Learning,
volume 205 of Proceedings of Machine Learning Re-
search, pp. 892–909. PMLR, 14–18 Dec 2023. 1, 2, 4, 6,
7, 9, 14, 25, 26

Ng, A. Y., Harada, D., and Russell, S. Policy invariance
under reward transformations: Theory and application
to reward shaping. In Icml, volume 99, pp. 278–287.
Citeseer, 1999. 4

11

https://proceedings.mlr.press/v202/ma23b.html
https://proceedings.mlr.press/v202/ma23b.html


DecisionNCE: Embodied Multimodal Representations via Implicit Preference Learning

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018. 2, 5

Oprea, S., Martinez-Gonzalez, P., Garcia-Garcia, A., Castro-
Vargas, J. A., Orts-Escolano, S., Garcia-Rodriguez, J.,
and Argyros, A. A review on deep learning techniques for
video prediction. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 44(6):2806–2826, 2020. 15

Parisi, S., Rajeswaran, A., Purushwalkam, S., and Gupta, A.
The unsurprising effectiveness of pre-trained vision mod-
els for control. In International Conference on Machine
Learning, pp. 17359–17371. PMLR, 2022. 8

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014. 2

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021a. 9, 14,
24, 26

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021b. 7, 9

Radosavovic, I., Xiao, T., James, S., Abbeel, P., Malik, J.,
and Darrell, T. Real-world robot learning with masked
visual pre-training. In Conference on Robot Learning, pp.
416–426. PMLR, 2023. 8

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G.,
Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky,
Y., Kay, J., Springenberg, J. T., et al. A generalist agent.
arXiv preprint arXiv:2205.06175, 2022. 15

Reid, M., Yamada, Y., and Gu, S. S. Can wikipedia
help offline reinforcement learning? arXiv preprint
arXiv:2201.12122, 2022. 9

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter. arXiv preprint arXiv:1910.01108, 2019. 7, 26

Seo, Y., Lee, K., James, S. L., and Abbeel, P. Reinforce-
ment learning with action-free pre-training from videos.
In International Conference on Machine Learning, pp.
19561–19579. PMLR, 2022. 8

Sermanet, P., Lynch, C., Chebotar, Y., Hsu, J., Jang, E.,
Schaal, S., Levine, S., and Brain, G. Time-contrastive
networks: Self-supervised learning from video. In 2018

IEEE international conference on robotics and automa-
tion (ICRA), pp. 1134–1141. IEEE, 2018. 2, 6, 7, 9, 14

Shah, R., Martı́n-Martı́n, R., and Zhu, Y. Mutex: Learning
unified policies from multimodal task specifications. In
7th Annual Conference on Robot Learning, 2023. 15

Shah, R. M. and Kumar, V. Rrl: Resnet as representation
for reinforcement learning. In International Conference
on Machine Learning, pp. 9465–9476. PMLR, 2021. 8

Shi, F., Petriu, E., and Laganiere, R. Sampling strategies for
real-time action recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 2595–2602, 2013. 4, 15

Shridhar, M., Manuelli, L., and Fox, D. Perceiver-actor:
A multi-task transformer for robotic manipulation. In
Conference on Robot Learning, pp. 785–799. PMLR,
2023. 15

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023. 28

Virmaux, A. and Scaman, K. Lipschitz regularity of deep
neural networks: analysis and efficient estimation. Ad-
vances in Neural Information Processing Systems, 31,
2018. 16

Walke, H. R., Black, K., Zhao, T. Z., Vuong, Q., Zheng, C.,
Hansen-Estruch, P., He, A. W., Myers, V., Kim, M. J., Du,
M., et al. Bridgedata v2: A dataset for robot learning at
scale. In Conference on Robot Learning, pp. 1723–1736.
PMLR, 2023. 17, 25

Wang, G., Cheng, S., Zhan, X., Li, X., Song, S., and Liu, Y.
Openchat: Advancing open-source language models with
mixed-quality data. arXiv preprint arXiv:2309.11235,
2023. 28

Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X.,
and Van Gool, L. Temporal segment networks for action
recognition in videos. IEEE transactions on pattern anal-
ysis and machine intelligence, 41(11):2740–2755, 2018.
4, 15

Williams, G., Aldrich, A., and Theodorou, E. A. Model
predictive path integral control: From theory to parallel
computation. Journal of Guidance, Control, and Dynam-
ics, 40(2):344–357, 2017. 8, 27

Xiao, T., Radosavovic, I., Darrell, T., and Malik, J. Masked
visual pre-training for motor control. arXiv preprint
arXiv:2203.06173, 2022. 8

12



DecisionNCE: Embodied Multimodal Representations via Implicit Preference Learning

Yarats, D., Fergus, R., and Kostrikov, I. Image augmentation
is all you need: Regularizing deep reinforcement learning
from pixels. In 9th International Conference on Learning
Representations, ICLR 2021, 2021. 8

Zakharov, A., Guo, Q., and Fountas, Z. Long-horizon
video prediction using a dynamic latent hierarchy. arXiv
preprint arXiv:2212.14376, 2022. 15

Zhang, A., McAllister, R. T., Calandra, R., Gal, Y., and
Levine, S. Learning invariant representations for re-
inforcement learning without reconstruction. In In-
ternational Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=-2FCwDKRREu. 8

Zhang, Y., Zhao, J., Chen, Z., Mi, S., Zhu, H., and Geng,
X. A closer look at video sampling for sequential action
recognition. IEEE Transactions on Circuits and Systems
for Video Technology, 2023. 1, 4, 5, 15

Zhi, Y., Tong, Z., Wang, L., and Wu, G. Mgsampler: An ex-
plainable sampling strategy for video action recognition.
In Proceedings of the IEEE/CVF International conference
on Computer Vision, pp. 1513–1522, 2021. 4, 15

Zitkovich, B., Yu, T., Xu, S., Xu, P., Xiao, T., Xia, F.,
Wu, J., Wohlhart, P., Welker, S., Wahid, A., et al. Rt-2:
Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp.
2165–2183. PMLR, 2023. 1, 15

13

https://openreview.net/forum?id=-2FCwDKRREu
https://openreview.net/forum?id=-2FCwDKRREu


DecisionNCE: Embodied Multimodal Representations via Implicit Preference Learning

A. Additional Discussions on Related Works
A.1. In-depth Comparisons with Closely Related Studies

This section provides detailed comparisons with several closely related works, including R3M (Nair et al., 2023), LIV (Ma
et al., 2023a), and Voltron (Karamcheti et al., 2023).

R3M (Nair et al., 2023) designs two separate loss functions, one is time contrastive learning (Sermanet et al., 2018)
to enforce temporal consistency and an alignment loss based on LOReL (Nair et al., 2022) to achieve vision-language
alignment:

Ltcn(ϕ) =
1

B

B∑
b=1

[
− log

exp(S(ϕ(obi ), ϕ(o
b
j))

exp(S(ϕ(obi ), ϕ(o
b
j))) + exp(S(ϕ(obi ), ϕ(o

b
k))) + exp(S(ϕ(obi ), ϕ(o

̸=b
j ))

]

Lalignment(ϕ, θ) =
1

B

B∑
b=1

[
− log

exp(Gθ(ϕ(o
b
0), ϕ(o

b
j);ψ(l

b)))

exp(Gθ(ϕ(ob0), ϕ(o
b
j);ψ(l

b))) + exp(Gθ(ϕ(ob0), ϕ(o
b
i );ψ(l

b))) + exp(Gθ(ϕ(o̸
=b
0 ), ϕ(o̸=b

j );ψ(l ̸=b)))

]
LR3M(ϕ, θ) = λ1Ltcn + λ2Lalignment + λ3∥ϕ(oi)∥1 + λ4∥ϕ(oi)∥2,

(9)

where k > j > i are the frame ids of video vb, S is negative L2 distance, Gθ is a reward model and λ1,2,3,4 are the weight
parameters. For the alignment loss, the image ob0 is selected from the first 20% of the video. R3M employs ob0 along with
other randomly sampled images to align with language.

See from Eq. (9) that the choice of ob0 appears somewhat ad-hoc. This makes the task progression features extracted by R3M
always limit to starting from the first image, which may overlook some intermediary transitions within a video. Moreover,
R3M presents a two-stage training, separately considering the temporal consistency and language grounding, which
inevitably introduces complex trade-offs among these two potential contradicting objectives. In addition, see from LR3M

that R3M requires to balance a lot of hyperparameters of different loss, making it hard to tune. In contrast, DecisionNCE
inherently merges the complex two-stage training processes into a simple and unified objective in Eq. (5) and Eq. (7),
naturally marries language grounding and temporal consistency in a more principled and hyper-parameter-free manner,
eliminating all hyper-parameters to balance these complex loss.

LIV (Ma et al., 2023a) trains temporally consistent vision representations using goal conditioned reinforcement learning
based on VIP (Ma et al., 2023b), and utilizes CLIP (Radford et al., 2021a) to only align the static goal images with language:

LVIP(ϕ) =
1− γ
B

B∑
b=1

[
−S(ϕ(obi ), ϕ(gb))

]
+ log

1

B

B∑
b=1

exp
[
S(ϕ(obk), ϕ(gb)) + r − γS(ϕ(obk+1), ϕ(g

b))
]

LCLIP(ϕ, ψ) =
1− γ
B

B∑
b=1

[
− log

exp(1− γ)S(ϕ(gb), ψ(lb))
1
B

∑B
b′=1 [exp(1− γ)S(ϕ(gb

′), ψ(lb′))]

]
LLIV(ϕ, ψ) = λ1LVIP + λ2LCLIP,

(10)

where gb is the last frame of video vb. The employment of VIP loss aids in acquiring representations that adhere to
temporal consistency. Nevertheless, aligning simply static goal images with language falls short of achieving trajectory-level
grounding as single images cannot fully describe a dynamical behavior. In addition, see from Eq. (10) that LIV also faces a
complex balance between temporal consistency and language grounding, but DecisionNCE solves this in an elegant and
unified learning objective.

Moreover, note that LIV uses reinforcement learning to train representations, and thus must require correct reward signals.
In LIV, the authors defined the rewards as 0 for goal frames and -1 for all other frames. However, it is widely known that
hand-engineered reward design is challenging, and thus the human defined rewards are typically imperfect and may lead to
unsatisfactory results (Li et al., 2023). In contrast, DecisionNCE is extended from the popular reward learning method, the
Bradley-Terry model in Preference-based Reinforcement Learning or widely known Reinforcement Learning from Human
Feedback (RLHF), to train representations, leading to fewer assumptions on rewards than LIV.

Voltron (Karamcheti et al., 2023) proposed two tasks, language conditioning and language generation, to jointly train
images and language encoders. However, the selected image sequences are always short with a fixed length (the sequence
length is fixed to only 2), leading to a lack of trajectory-level alignment. We do not compare with Voltron, as it is pre-trained
solely on small-scale Something-Something-V2 (Goyal et al., 2017) dataset.
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A.2. Language-Conditioned Decision Making

To achieve generalist agent, another branch of works is end-to-end training language-conditioned vision-based agent (Jang
et al., 2022; Reed et al., 2022; Brohan et al., 2022; Zitkovich et al., 2023; Shah et al., 2023; Shridhar et al., 2023). These
approaches, however, is quite data-hungry, requiring tremendous expensive in-domain data. Some works reuse the broad
out-of-domain data to improve decision making via a hierarchical structure, such as vidio planning (Black et al., 2023; Du
et al., 2023b;a; Ajay et al., 2023), but does not show how representation affects decision making. DecisionNCE, however,
effectively reuse out-of-domain data to extract decision-centric representations for efficient downstream policy learning,
largely eliminating the significant demands for extensive task-specific data collection.

A.3. Other Related Works

We notice that trajectory-level grounding is closely related with action recognition and video prediction. Action recogni-
tion (Shi et al., 2013; Wang et al., 2018; Korbar et al., 2019; Zhi et al., 2021; Zhang et al., 2023) centers on detecting and
categorizing movements of humans or objects in video sequences. Also, video prediction (Oprea et al., 2020; Zakharov
et al., 2022) aims to forecast upcoming frames or events within a video. We can see that the core of these technologies also
requires to extract local and global task progressions embedded in image sequences. Therefore, It would be an interesting
topic to adopt the techniques from action recognition and video prediction to improve decision-centric vision-language
representation learning.

B. Proof of Eq. (8)
In this section, we briefly present the proof for Eq. (8). Here, we first review the conclusion in Eq. (8). In specific,
the probability of image o+t being selected as a goal is not isotropic but progressively increases as the video progresses.
Mathematically, the probability for o+t , 0 < t < h being a goal image grows monotonically w.r.t its time stamp t:

P (o+t is selected as goal) =
1

h

i<t∑
i=1

1

h− i

Proof.

P (o+t is selected as goal)

1
=

h∑
i=1

P (o+i is selected as start ∩ o+t is selected as goal when o+i is start)

2
=

h∑
i=1

P (o+i is selected as start)× P (o+t is selected as goal when o+i is start)

3
=

1

h

i<t∑
i=1

P (o+t is selected as goal when o+i is start) +
1

h

t≤i≤h∑
i=1

P (o+t is selected as goal when o+i is start)

4
=

1

h

i<t∑
i=1

P (o+t is selected as goal when o+i is start) + 0

5
=

1

h

i<t∑
i=1

1

h− i
,

(11)

where the 3rd equation holds since the start image oi is uniformly sampled from the whole video, and thus
P (o+i is selected as start) = 1

h where h is the video length. The 4th equation holds because it is impossible to se-
lect o+t as a goal image when i > t, as o+t is selected from the following images after oi with t > i. The 5th equation holds
because o+t is uniformly selected from the following frames after oi, and thus the remaining video length becomes h− i.
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C. Theoretical Analysis (Informal)
What does DecisionNCE update do? For a mechanistic understanding of DecisionNCE, it is useful to analyze the
gradient of its loss function LDecisionNCE. In the following, we present the gradient analysis of DecisionNCE-P (Definition 3.1)
and DecisionNCE-T (Definition 3.2). We begin by introducing the main assumption used in our analysis.

Assumption C.1 (Differentiable and Lipschitz continuous function approximators). The vision encoder ϕ we trained is
differentiable and L-Lipschitz continuous, i.e., ∥∇xϕ(x)∥ ≤ L,∀x ∈ O.

Note that assumption C.1 is a mild assumption which is frequently utilized in plenty of works (Li et al., 2019; Miyato et al.,
2018; Virmaux & Scaman, 2018; Liu et al., 2022).

DecisionNCE-P. According to the Definition 3.1 of the DecisionNCE-P:

PP
[
σ+ ≻ σ−] = exp(S(ϕ(o+n+m);ψ(l+))− S(ϕ(o+n );ψ(l+)))

exp(S(ϕ(o+n+m);ψ(l+))− S(ϕ(o+n );ψ(l+))) + exp(S(ϕ(o−n+m);ψ(l+))− S(ϕ(o−n );ψ(l+)))

=
1

1 + exp(S(ϕ(o−n+m);ψ(l+))− S(ϕ(o−n );ψ(l+))− S(ϕ(o+n+m);ψ(l+)) + S(ϕ(o+n );ψ(l+)))

(12)

The loss function of DecisionNCE-P is as follows:

LDecisionNCE-P(ϕ, ψ) = − logPP
[
σ+ ≻ σ−]

= log
[
1 + exp(S(ϕ(o−n+m);ψ(l+))− S(ϕ(o−n );ψ(l+))− S(ϕ(o+n+m);ψ(l+)) + S(ϕ(o+n );ψ(l+)))

]
(13)

The gradient with respect to the parameters θ of ψ cab be written as:
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(14)

where we denote ∇bS(a, b) as S ′(a, b). As we choose metric S as cosine similarity throughout the paper, S ′(a, b) =
a

|a||b| − S b
|b|2 . We perform a Taylor expansion on S ′(ϕ(x), ψθ(l

+)) at x = on:

S ′(ϕ(x), ψθ(l
+)) = S ′(ϕ(on), ψθ(l

+)) +∇ϕS ′(ϕ(x);ψθ(l
+))∇xϕ(x)|x=on(x− on) +R(x) (15)

where R(x) is higher-order infinitesimal of (x− on). Hence we have:

S ′(ϕ(on), ψθ(l
+))− S ′(ϕ(on+m), ψθ(l

+) = −∇ϕS ′(ϕ(x);ψθ(l
+))∇xϕ(x)|x=on(on+m − on)−R(on+m) (16)

And
gP (o

−
n , o

−
n+m, o

+
n , o

+
n+m, l

+) =∇ϕS ′(ϕ(x);ψθ(l
+))∇xϕ(x)|x=o−n (o

−
n+m − o−n ) +R(o−n+m)

−∇ϕS ′(ϕ(x);ψθ(l
+))∇xϕ(x)|x=o+n (o

+
n+m − o+n )−R(o+n+m)

(17)

where ∇aS
′(a, b) = ∇a∇bS(a, b) = ∇a(

a
|a||b| − S b

|b|2 ) is bounded. According to assumption C.1, ∇xϕ(x) is bounded
as well. When m is set to a large value, there may be a substantial difference between on+m and on, resulting in a
situation where gP (o−n , o

−
n+m, o

+
n , o

+
n+m, l

+) contributes more to the loss gradient ∇θLDecisionNCE-P(ϕ, ψθ). In our work, m
is randomly set from 1 to the maximum segment length. In contrast, some other works (such as VIP-L in Equ.4 of (Ma et al.,
2023a)) resemble setting m = 1, leading to a minor difference between on+m and on, resulting in a slower change in the
loss. This can be less effective in training language encoder compared to our method.

DecisionNCE-T. According to the definition 3.2 of the DecisionNCE-T:

PT
[
σ+ ≻ σ−] = exp

(
S(ϕ(o+n+m)− ϕ(o+n );ψ(l+))

)
exp

(
S(ϕ(o+n+m)− ϕ(o+n );ψ(l+))

)
+ exp

(
S(ϕ(o−n+m)− ϕ(o−n );ψ(l+))

)
=

1

1 + exp
(
S(ϕ(o−n+m)− ϕ(o−n );ψ(l+))− S(ϕ(o+n+m)− ϕ(o+n );ψ(l+))

) (18)
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The loss function of DecisionNCE-T is as follow:

LDecisionNCE-T(ϕ, ψ) = − logPT
[
σ+ ≻ σ−]

= log
[
1 + exp

(
S(ϕ(o−n+m)− ϕ(o−n );ψ(l

+))− S(ϕ(o+n+m)− ϕ(o+n );ψ(l
+))

)] (19)

The gradient with respect to the parameters θ of ψ cab be written as:

∇θLDecisionNCE-T(ϕ, ψθ) =
(
1− PT

[
σ+ ≻ σ−]) [S ′(ϕ(o−n+m)− ϕ(o−n );ψ(l+))− S ′(ϕ(o+n+m)− ϕ(o+n );ψ(l+))

]︸ ︷︷ ︸
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(20)

We perform Taylor expansion on S ′(ϕ(x)− ϕ(on), ψθ(l
+)) at x = on:

S ′(ϕ(x)− ϕ(on), ψθ(l
+)) = S ′(0, ψθ(l

+)) +∇ϕS ′(ϕ(x)− ϕ(on);ψθ(l
+))∇xϕ(x)|x=on(x− on) +R(x) (21)

where R(x) is higher-order infinitesimal of (x− on). Hence gT can be written as:
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+
n+m − o+n )−R(o+n+m)
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+))∇xϕ(x)|x=o−n (o
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(22)
Similarly, in our method, m is randomly set from 1 to the maximum segment length, implying a faster descent in loss
compared to setting m = 1 alone.

D. Additional Results
In this section, we provide more cases to demonstrate that our DecisionNCE-P/T can learn accurate and generalizable
reward, and conduct a deeper analysis.

D.1. In-distribution reward

We randomly selected segments from EPIC-KITCHEN-100 dataset (Damen et al., 2018) with their corresponding text
annotations to visualize the rewards curves learned through DecisionNCE-P/T. As shown in Figure 12, DecisionNCE
accurately assigns rewards to different video frames across various action types, scenes, and target objects, resulting
in a smooth and trend-correct reward curve. Next, we will delve deeper into discussing some intriguing and insightful
characteristics observed in specific reward curves.

Slope of curves: The slope of the reward curves provides an insight into the task’s progression. For example, curves (c) and
(g) demonstrate varying growth rates. This variation is due to the differing amplitudes of actions in the videos over time, as
can be seen in the accompanying images.

Robustness in Complex Tasks: In the context of kitchen tasks, which may involve complex actions with subgoals such
as drying hands, rinsing a cloth, or cutting something, the robustness of DecisionNCE is notable. As
illustrated by curve (h), the DecisionNCE curve fluctuates, reflecting the presence of subgoals. This variation is a reasonable
response to the complexity of the tasks.

D.2. Zero-shot reward

To assess the generalizability of the reward learned through DecisionNCE, we also visualize the reward curves on Bridgedata-
V2 (Walke et al., 2023), a open-source robotics manipulation dataset. The results are presented in Figure 13. DecisionNCE
successfully captures the correct trend, demonstrating promising generalizability on out-of-domain data. It is important
to note the significant domain gap between EPIC-KITCHEN-100 and Bridgedata-V2 which encompasses differences in
embodiments, scenes, and view points.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12. In-distribution Reward
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13. Zero-shot Reward
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D.2.1. FAILURE CASES ANALYSIS

Indeed, while we observe numerous successful instances, there are also several results that deviate from our expectations.
Upon a thorough examination of these unsuccessful cases, we discern two main factors. To provide a clearer understanding
of these issues, we select two representative cases as shown in Figure 14 for in-depth analyses.

Out-of-domain skills. Understanding actions at the trajectory level is notably more challenging to transfer than image
perception skills. As a result, DecisionNCE demonstrates impressive performance with in-domain skills like pick-up,
put-down, open, and take-out, maintaining its effectiveness even when there are changes in the target object or action
sequence. However, it struggles when confronted with instructions describing a novel skill not previously encountered in the
Epic-Kitchen dataset. For instance, in the case of Topple as shown in (a), DecisionNCE is unable to accurately track the
correct task progression.

Dataset-specific task bias. The lack of precision in text annotations within the EPIC-KITCHEN-100 dataset results in a
dataset-specific task bias, as learned by DecisionNCE. A prime example of this can be seen in (b), where the task move
drying rack out of sink exhibits an incorrect reward trend according to DecisionNCE’s learning. This issue
arises crucially due to a distinctive pattern in EPIC-KITCHEN-100. In EPIC-KITCHEN-100 dataset, most move actions
result in the target object moving away from the center of the field of view. However, in this Bridgedata-V2 example, the
scenario is reversed, which contributes to this erroneous reward curve.

In conclusion, the observed failures are primarily attributed to the limitations in the quality and scope of the dataset. For
future advancements, it is imperative to enhance these aspects by incorporating a broader, more diverse, and higher-quality
range of pre-training datasets. Please see Appendix F for more discussions on limitations and solutions.

(a) (b)

Figure 14. Zero-shot failure cases

D.3. Reward for mismatched video-instruction pair

As metioned in Section 5, DecisionNCE effectively identifies mismatched video-language pairs. In this section, we delve
deeper into the rewards assigned by DecisionNCE to these mismatched pairs, offering a detailed discussion of our findings.

D.3.1. COMPLETELY IRRELEVANT VIDEO-INSTRUCTIONS PAIRS

For most cases, altering either the target object or the action in the instruction renders it incongruent with the task progression
shown in the video. Under these Completely Irrelevant Video-Instructions Pairs, the resulting reward curve tends to lack
a clear trend and appears chaotic, as illustrated in the Figure 15. Significantly, DecisionNCE does not erroneously interpret
these unmatched instructions as correct, even when there is similarity in actions or objects. This demonstrates the model’s
strong robustness in differentiating between matched and mismatched pairs.

Certainly, mismatched video-instruction pairs are not always entirely irrelevant. Next, we will explore two intriguing cases
to further illustrate the generalizability of DecisionNCE.

D.3.2. CONTRADICTORY VIDEO-INSTRUCTIONS PAIRS

Given that tasks in EPIC-KITCHEN-100 are predominantly single-step, many have corresponding mirror tasks, such as
Open and Close, Pick-up and Put-down, Pull and Return. With these mirrored instructions, the task progression

20



DecisionNCE: Embodied Multimodal Representations via Implicit Preference Learning

(a) (b)

(c) (d)

(e) (f)

Figure 15. Irrelevant video-instruction pair reward
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in the video is effectively the opposite. We have visualized the reward curve for these Contradictory Video-Instruction
Pairs in a similar manner as before. As depicted in Figure 16, the reward curve aligns with our expectations: as the task
progresses, the reward value tends to decrease.

(a) (b)

(c) (d)

(e) (f)

Figure 16. Contradictory video-instruction pair reward

Failure cases: We also discovered that certain mirror tasks pose significant challenges in differentiation from their original
counterparts. As shown in Figure 17, tasks such as Turn on and Turn off an appliance, like a heater (a) or stereo (b),
often involve almost identical movement trajectories. To accurately distinguish between these tasks, the model needs to
discern the initial and final states of the target appliance, a task that becomes exceedingly difficult without supplemental
annotations. In this instance, DecisionNCE fails to differentiate between these two tasks.

D.3.3. INDIRECTLY RELEVANT VIDEO-INSTRUCTIONS PAIRS

Usually, the completion of a task typically involves accomplishing several sub-tasks or certain task subgoals. The Epic-
Kitchen dataset, however, does not provide annotations with such granularity. For these sub-task instructions, they are
indirectly related to the video. We have illustrated the reward curve for these Indirectly Relevant Video-Instruction Pairs
in Figure 18. The results show that DecisionNCE effectively recognizes these sub-tasks, even in the absence of explicit
human annotations. For instance, in the case of video (b), the annotation is take spoon, yet the task close drawer is
concurrently completed. So when open drawer is used as the instruction, DecisionNCE appropriately assigns a reward
curve with an opposing trend.
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(a) (b)

Figure 17. Failure cases of contradictory pairs

(a) (b)

(c) (d)

Figure 18. Indirectly relevant video-instructions pairs reward
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E. Experimental setups
In this section, we provide detailed experimental setups.

E.1. Vision-Language representation training

Following LIV (Ma et al., 2023a), we use a modified ResNet-50 (He et al., 2016) from CLIP (Radford et al., 2021a) for the
vision encoder and a CLIP transformer for the language encoder. We initialize our DecisionNCE-P/T with CLIP model and
train them on EPIC-KITCHEN-100 (Damen et al., 2018) under the same training setting. The training hyperparameters
used during the pre-training are listed in Table 4. It is worth noting that our training objective in Algorithm 1 compares all
mismatched pairs in mini-batch samples, which enjoys much higher training efficiency and thus only 20K training steps can
obtain well-trained representations. Therefore, our training only take about 9 hours on four A100 GPUs, showing higher
training efficiency compared to previous work.

Table 4. Hyper-parameters for pretraining .

config value

training iteration 20K
optimizer Adam
learning rate 1× 10−5

batch size 1024
weight decay 0.001
optimizer momentum β1, β2=0.9,0.999
data augmentation RandomCropResize

E.2. Experimental setup for Figure 5

In Eq. (6), we directly define the segment total rewards as the cosine similarity between the transition direction and the text
embedding as follows:

(Ours) :
∑
t

rT (ot, ot+1;ϕ, ψ, l) = S(ϕ(on+m)− ϕ(on), ψ(l)), (23)

Like the potential-based reward for DeicisionNCE-P, this transition-direction reward bypasses all intermediary transitions and
only focuses on the binary start-goal transition directions. This has been proven advantageous in action recognition (Korbar
et al., 2019). However, we would like to provide a more detailed experimental evaluation to further support this.

In specific, we also define transition-direction rewards considering some intermediary transitions as follows:

(4 frames) :
∑
t

rT (ot, ot+1;ϕ, ψ, l) =

4∑
i=1

S(ϕ(on+⌊m×i
4 ⌋)− ϕ(o

n+⌊m×(i−1)
4 ⌋), ψ(l)), (24)

(8 frames) :
∑
t

rT (ot, ot+1;ϕ, ψ, l) =

8∑
i=1

S(ϕ(on+⌊m×i
8 ⌋)− ϕ(o

n+⌊m×(i−1)
8 ⌋), ψ(l)), (25)

This treatment will include more intermediary transitions when calculating the preference model. Then, we use these
objectives to train representations and use the obtained representations to serve as input for downstream Frankakitchen
LCBC tasks. The results are presented in Figure 5. Results clearly demonstrate that including more intermediary points
may complicate the training process and hamper downstream policy learning. Therefore, we focus solely on the teleporting
start-goal transitions to train representations.

E.3. Experimental setup for Table 2

To validate the effectiveness of DecisionNCE-P/T in clustering the first, potentially task-irrelevant image embeddings into
similar positions, we randomly select 100 trajectories from the EPIC-KITCHEN-100 dataset. Subsequently, we calculate and
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compare the cosine similarities among the first image embeddings, denoted as ϕ(o1), from these trajectories. Additionally,
we assess the cosine similarities between ϕ(o1) and ψ(l̄), where ψ(l̄) is derived by averaging all language embeddings
within the EPIC-KITCHEN-100 annotations. The average result from both LIV and our DecisionNCE, acquired after five
instances of random sampling, is presented in Table 2.

We chose LIV as the main baseline since it also builds on top of CLIP, which has the same representation embedding
dimensions as our DecisionNCE. We also calculate the ϕ(o1) similarities for CLIP, and obtain a value of 0.99. However,
we must mention that this comparison is not meaningful in our setting since CLIP does not aim to align text and image at
the task level. Moreover, the EPIC-KITCHEN-100 dataset is significantly smaller in scope compared to the dataset used
for pre-training CLIP, making a direct comparison of values unfair. Additionally, we do not compare against R3M in this
experiment as the vision embedding and language embedding for R3M have different dimensions and thus cannot calculate
the distances or similarities between these two embeddings. In addition, R3M chose S as negative L2 distance, whereas
DecisionNCE chose S as cosine similarity. Therefore, these two methods are not comparable in this setting due to the
differences in their evaluation metrics.

E.4. Environments

Frankakichen. Frankakitchen environment consists of a Franka robot interacting within a kitchen scene that contains
diverse household kitchen objects such as microwaves and cabinets (Gupta et al., 2019). In our work, we follow the same 5
task definitions in LIV (Nair et al., 2023) and R3m (Nair et al., 2023), reported in Table 5. For each task, we have 1/3/5
demonstrations from (Nair et al., 2023), thus the total dataset includes only 5/15/25 episodes, and each episode has 50
environmental steps. These small datasets are not enough to train a vision-language agent from scratch but becomes possible
by pretraining the vision-language representations on abroad out-of-domain data in advance.

Table 5. FrankaKitchen Tasks
Environment ID Language Instruction

kitchen micro open-v3 open microwave
kitchen sdoor open-v3 slide cabinet
kitchen ldoor open-v3 open left door
kitchen knob1 on-v3 turn on stove
kitchen light on-v3 switch on light

WidowX RealRobot. WidowX RealRobot environment contains a WidowX 6DoF robot arm executing diverse manipulation
tasks. In specific, we evaluate on 5 distinct skills including {pick & place, move, fold, flip, open &
close} comprising 9 sub-tasks as shown in Table 6. For each task, we collect around 100 demonstrations using the
demonstration collection system in BridgedataV2 (Walke et al., 2023). For each demonstration, the environmental steps are
around 50 steps. We collect more data for WidowX RealRobot than Frankakitchen as the real robot environment is far more
stochastic, where the object and robot locations are randomly initialized, and the scene also has lots of randomly located
distractors with varied shape and color.

Table 6. WidowX RealRobot Tasks
Environment ID Language Instruction

Red cup on silver pan Pick up the red cup and place it on the silver pan
Red cup on red plate Pick up the red cup and place it on the red plate
Duck on green plate Pick up the duck and place it on the green plate
Duck in pot Pick up the duck and place it in the pot
Move pot Move the pot from right to left
Fold cloth Fold the cloth from right to left
Flip the red cup upright Flip the red cup upright
Open the microwave Open the microwave
Close the microwave Close the microwave
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E.5. LCBC Experiment Details

Here, we train a Language-Conditioned Behavior Cloning (LCBC) policy take the frozen vision-language representations as
inputs. In details, the raw images o and language instructions l will be fed into the learned vision-language encoder and
obtain the representations ϕ(o) and ψ(l). Then, the policy π(StopGrad(ϕ(o)),StopGrad(ψ(l))) take these representations
as input to fit the actions in demonstrations. Note that we freeze the pretrained representations and only optimize a
small MLP to avoid overfit, following (Ma et al., 2023a;b; Nair et al., 2023; Karamcheti et al., 2023), as the downstream
domain-specific data is quite small. The policy input also includes the proprioception information, which is concatenated
with the frozen vision-language representation and fed into the downstream MLP.

Figure 19. Visual input view for LCBC policy.

FrankaKitchen. For FrankaKitchen experiments, we take single left camera view as the vision input, as shown in Figure 19
(a). We choose a small learning rate 1e-4, 16 batch size and 2e4 gradient steps, as the simulation dataset is quite small.
Detailed hyper-parameters can be found in Table 7. We evaluate the policy for 25 episodes per 2e3 gradient steps and report
the max success rate over the training following previous works (Ma et al., 2023a; Nair et al., 2023; Ma et al., 2023b).

WidowX RealRobot. For real robot experiments, we take both a side camera view and a wrist camera view as the vision
inputs, as shown in Figure 19 (b)-(c). We choose a relatively large learning rate 1e-3, 64 batch size, as the real robot dataset
contains more data. We also use data augmentation on the brightness to enhance the generalizability. See Table 7 for more
details. We evaluate the success rate only for the last checkpoint after the training, as the real robot evaluation is extremely
time-costly. We rollout 10 episodes for each checkpoint, and evaluate 3 policy checkpoints trained with different seeds for
each pretrained representation.

Table 7. LCBC experiment details

FrankaKitchen WidowX RealRobot

MLP Architecture [256, 256] [256, 256]
Activation Function ReLU ReLU
Optimizer Adam Adam
Learning Rate 1e-4 1e-3
Batch Size 16 64
Gradient Steps 2e4 200 epoch
Proprioception Yes Yes
Augmentation No Yes

Baseline Setups. We use the official released checkpoints of the vision/vision-language encoder from previous works. For
VIP (Ma et al., 2023b) baseline, we use the pretrained DistilBERT (Sanh et al., 2019) as the language encoder, which is the
same language encoder used in R3M (Nair et al., 2023), as VIP studies only the visual modality. For baselines including
R3M (Nair et al., 2023), LIV (Ma et al., 2023a), VIP (Ma et al., 2023b) and CLIP (Radford et al., 2021a), we adhere the
same hyper-parameters in Table 7 to train the downstream LCBC policy to ensure fair comparisons.
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E.6. Frankakichen Planning Experiments

In this section, we’ll describe more experimental details of language-reward planning. As we can directly roll out
trajectories in FrankaKitchen environment, we combine ground-truth environment dynamics with reward induced by learned
representation as the model in MPPI. This also aligns with the setting in (Ma et al., 2023b) and (Ma et al., 2023a). For
CLIP, LIV, DecisionNCE-P and DecisionNCE-T, we all use S(ϕ(on+1), ψ(l))− S(ϕ(on), ψ(l)) as reward. For R3M, the
model contains a reward model R(o0, on, l) whose inputs are initial observation, present observation and language goal and
output is a score estimating the task completion degree. So we take R(o0, on+1, l)−R(o0, on, l) as reward for R3M. For all
reward model we take discount factor γ = 1.0 to calculate return.

As is pointed out in (Ma et al., 2023a), tasks in FrankaKitchen demand a high level of exploration. So we follow the same
setting and warmstart the action search with a fixed open-loop sequence came from expert demonstration. The warmstart
stage won’t directly solve the task, but will bring the robot end-effector to the vicinity of the task objective. This reduces the
number of planning horizon and proposed action sequences and speed up the planning stage.

We list all hyperparameters of MPPI in Table 8. It’s worth mention that because S(ϕ(on), ψ(l)) could be the cosine similarity
between image and language embedding, S(ϕ(on+1), ψ(l)) − S(ϕ(on), ψ(l)) lies in [−2, 2] and is usually small in this
case. We’ll then normalize the return among all proposed action sequences through Rnormed = R−Rmean

Rstd
.

Table 8. MPPI Hyperparameters (parameters not listed are set to default values in (Ma et al., 2023a))
FrankaKitchen

Planner MPPI (Williams et al., 2017)
Planning Horizon 50
Proposed Action Sequences 64
Optimization Iteration 1
Temperature 10.0

F. Limitations & Discussions & Future Work
Here, we discuss our limitations, potential solutions to our limitations and interesting future works.

1. Implicit Preference. Note some few counterexample also exist that may violate the implicit preference assumption,
which will bring noisy preference labels. For instance, consider two videos, one for “open microwave” and the other
for “open the microwave”. In principle, these two videos should not be treated as different, as they complete the same
task. However, in our paper, these videos are treated as suboptimal for the mismatched language instructions as the
instructions are a little bit different.

Solution and future work: This problem can be solved by proper data filtering and reorganization but might demand
tremendous human costs. In this paper, we directly utilize the original dataset D for convenience, but observe good
robustness to these noisy samples, which have also been observed in previous studies (Nair et al., 2022). We believe
this is an interesting observation and leave this direction as a future work.

2. Reward definition. In this current version, we only evaluate two types of reward definitions in the BT model. Thus,
we cannot guarantee our design choices must be the optimal solution.

Solution and future work: We have shown that by simply designing the rewards as potential-based or transition-direction
rewards in embedding space, we can inherently recover an implicit time contrastive learning, naturally marries language
grounding and temporal consistency in an elegant and unified objective. Therefore, we believe there must be lots of
efficient reward forms still under-explored and encourage the researchers to investigate this.

3. Out-of-domain Dataset. In this current version, we only use the EPIC-KITCHEN-100 dataset (Damen et al., 2018) to
pretrain the representations. Although this is the common choice of previous works (Ma et al., 2023a), we observe the
language diversity in this dataset is far more limited, including lots of simple instructions such as put & take &
open & close & move something. The reason is straightforward, as language is highly abstract, which can
describe many videos with the same language instruction. Therefore, the language diversity is quite limited, which may
be not appropriate to train a generalizable language encoder.
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Solution and future work: To address this, one straightforward solution is to include more out-of-domain data, including
but not limited to Ego4D (Grauman et al., 2022), Something-Something (Goyal et al., 2017), and Open-X-embodiment
dataset (Collaboration et al., 2023). However, we find the language diversity in these datasets is still limited compared
to image diversity. To further tackle this challenge, one promising direction is to utilize the powerful Large Language
Models (LLMs) (Touvron et al., 2023; Wang et al., 2023) to augment the language instruction reasonably.

Overall, although some design choices seem quite simple and some potential limitations exist, they smartly tackle all
challenges faced by previous studies. Moreover, in this work, we have demonstrated the superior effectiveness and versatility
of DecisionNCE to extract value features from out-of-domain data to facilitate efficient downstream policy learning and
provide several solutions to tackle these limitations. Therefore, we leave these further detailed improvements for future work.
In summary, DecisionNCE provides an elegant and principled solution for decision-centric vision-language representation
and reward learning.
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