
Improving Neural Logic Machines via Failure Reflection

Zhiming Li * 1 Yushi Cao * 1 Yan Zheng 2 Xu Liu 3 Bozhi Wu 1 Tianlin Li 1 Xiufeng Xu 1 Junzhe Jiang 4

Yon Shin Teo 5 Shang-wei Lin 1 Yang Liu 1

Abstract
Reasoning is a fundamental ability towards arti-
ficial general intelligence (AGI). Fueled by the
success of deep learning, the neural logic ma-
chines models (NLMs) have introduced novel
neural-symbolic structures and demonstrate great
performance and generalization on reasoning
and decision-making tasks. However, the orig-
inal training approaches of the NLMs are still
far from perfect, the models would repeat sim-
ilar mistakes during the training process which
leads to sub-optimal performance. To mitigate
this issue, we present a novel framework named
Failure Reflection Guided Regularizer (FRGR).
FRGR first dynamically identifies and summa-
rizes the root cause if the model repeats simi-
lar mistakes during training. Then it penalizes
the model if it makes similar mistakes in fu-
ture training iterations. In this way, the model
is expected to avoid repeating errors of simi-
lar root causes and converge faster to a better-
performed optimum. Experimental results on mul-
tiple relational reasoning and decision-making
tasks demonstrate the effectiveness of FRGR
in improving performance, generalization, train-
ing efficiency, and data efficiency. Our code is
available at https://sites.google.com/
view/frgr-icml24.

1. Introduction
Neural-symbolic AI (Garcez et al., 2022; Susskind et al.,
2021; Evans & Grefenstette, 2018) has become a novel and
active research direction towards better reasoning ability,

*Equal contribution 1Nanyang Technological University, Sin-
gapore 2Tianjin university, Tianjin, China 3National University of
Singapore, Singapore 4Hong Kong Polytechnic University, Hong
Kong 5Continental Automotive Singapore Pte. Ltd., Singapore.
Correspondence to: Yan Zheng <yanzheng@tju.edu.cn>, Tianlin
Li <tianlin001@e.ntu.edu.sg>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Figure 1. Training loss curve, performance (Per), and generaliza-
tion (Gen) of the NLM, DLM models optimized with original
training approach on the IsUncle reasoning task.

which is critical for artificial general intelligence (Lake et al.,
2017; Kojima et al., 2022). To achieve this, researchers seek
to combine the strengths of both deep learning and symbolic
approaches (logic reasoning). Following this trend, neural
logic machine models (NLMs) (Zimmer et al., 2023; Dong
et al., 2018) have been proposed to learn logic programs
via gradient-based optimization. These NLMs introduce
inductive bias to build neural-symbolic structures that re-
alize Horn clauses (Horn, 1951) in first-order logic. It is
surprising that even though these NLMs are small in size,
thanks to their logical design, they have shown great perfor-
mance and generalization on the reasoning tasks (e.g., de-
cision making, relational reasoning) even powerful Large
language models (LLMs) fail (Valmeekam et al., 2023; Li
et al., 2024). Besides, compared to SAT solver-based meth-
ods (Muggleton et al., 2015; Raghothaman et al., 2019), the
NLMs do not require well-crafted human expert bias for
search space construction (i.e., carefully designed metarules
or templates (Muggleton et al., 2015)), which makes them
easier to apply.

However, despite the accomplishment of the NLMs, we
observe that the original training approach of the current
state-of-the-art models (Dong et al., 2018; Zimmer et al.,
2023) are ineffective and often make the models converge
to an ill-performed local optimum with high oscillation.
Figure 1 shows the training loss curves of two state-of-
the-art neural logic machine models (neural logic machines
(NLM) (Dong et al., 2018) and differentiable logic machines
(DLM) (Zimmer et al., 2023)) on the IsUncle reasoning
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task1. This task requires the model to learn the logic that
deduces whether a person y is another person x’s uncle
in a family tree based on basic input father/mother, and
son/daughter relations. We can observe that the NLM model
oscillates for a long while before the loss drops again (high-
lighted with the red bounding box), and the DLM model
keeps oscillating around a local optimum and fails to achieve
optimal results on the training data. A natural explanation
for this phenomenon is that the model is repeating mistakes
with similar root cause subprograms and the original train-
ing approach fails to identify it and stop the model from
doing so (see Section 4 for the motivation validation).

Based on the above intuition, we present a novel framework
called Failure Reflection Guided Regularizer (FRGR). The
key idea of FRGR is to dynamically identify and summarize
the root cause once the model starts repeating mistakes of
a similar kind. Then based on the summarized root cause,
FRGR penalizes the model if it repeats similar mistakes in
future training iterations. With FRGR, the model is expected
to jump out of the oscillation faster and converge to a better-
performed optimum.

To demonstrate the effectiveness of FRGR, we apply FRGR
on the previous state-of-the-art NLMs on the inductive logic
programming (ILP) tasks (Zimmer et al., 2023; Dong et al.,
2018; Evans & Grefenstette, 2018). Specifically, we con-
duct experiments on both the NLM and DLM models under
the ideal data-rich setting whose demonstrating examples
are abundant. We also evaluate our approach under a sim-
ulated data-scarce setting to see whether it is effective for
low-resource scenarios whose demonstrating examples are
limited. Besides, to understand whether FRGR has miti-
gated models’ erroneous behavior, we conduct an in-depth
analysis of the models’ behavior during the training process.
We show that FRGR is effective in improving the perfor-
mance, generalization, and training efficiency under both
the data-rich and data-scarce settings by effectively mitigat-
ing models’ erroneous behavior. The contributions of this
work are three-fold:

• We propose a novel regularization approach called FRGR
to optimize the learning process of the NLMs. The idea
is to timely detect models’ repetition of similar errors,
identify the root cause subprogram, and use it to regularize
the model.

• Experimental results on two current state-of-the-art NLMs
demonstrate that FRGR can significantly improve the
models’ performance, generalization, and training effi-
ciency under both the data-rich and data-scarce scenarios.

• To the best of our knowledge, it is the first paper to demon-
strate the effectiveness of utilizing error root causes to

1Note that this is a challenging reasoning task even the state-
of-the-art GPT4-Turbo model performs poorly (Li et al., 2024).
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Figure 2. Model architecture of the NLMs.

improve the neural network models, which may benefi-
cially motivate the community to extend the idea to other
domains beyond ILP tasks.

2. Preliminary
In this section, we introduce the fundamentals of inductive
logic programming and neural logic machine models.

2.1. Inductive Logic Programming

Logic programming (LP) is a programming paradigm based
on first-order logic (FOL). There are two basic primi-
tives for FOL: predicate and variable. A predicate p de-
notes the name of a property/relation verification func-
tion p(v1, . . . , vn), also called atom, where v1, . . . , vn
are the input variables of this function. E.g., for atom
IsMother(x, y), IsMother is the predicate, and the
atom takes two variables x, y as input. An atom is
called a ground atom if all the variables of it are instan-
tiated with constants. For example, we instantiate x, y
of IsMother(x, y) with two people A,B respectively,
if B is A’s mother, then IsMother(A,B) =True, oth-
erwise the result would be False. Then, based on the
atoms, we can construct the FOL rule, which is in the
form: α ← α1 ⊙ · · · ⊙ αn, ⊙ denotes logical operators
(i.e., conjunction, disjunction). Inductive Logic Program-
ming (ILP) (Getoor & Taskar, 2007; Muggleton, 1991;
Getoor et al., 2001) refers to the problem of learning a
logic program (written in FOL) given a set of demonstrating
examples. The learned program is required to deduce all the
positive examples and none of the negative examples.

2.2. NLMs

The neural logic machines (NLM) (Dong et al., 2018) and
differentiable logic machines (DLM) (Zimmer et al., 2023)
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Figure 3. Truth value tensor of the HasSister task sample.
Given the truth value tensor of the input predicates HasMother,
HasFather, IsMother and IsDaughter, the neural logic
program induction model is required to learn a program π that de-
duces the truth value tensor of the output predicate HasSister.

are the two current state-of-the-art NLMs2 They introduce a
neural-symbolic network architecture with strong inductive
bias to realize the forward chaining (Evans & Grefenstette,
2018) reasoning mechanism. The forward chaining is a
reasoning mechanism that conducts deduction based on the
background atom sets to derive new atoms, then appends
the newly derived atom to the atom set and sequentially
repeats the process until the desired target output atom is
derived. The concrete model architecture of the two models
is shown in Figure 2. It is composed of B ×D basic unit
called logic module (LM), where B denotes the maximum
breadth and D denotes the maximum depth (number of lay-
ers) of the model. A LM at breath b ∈ {0, . . . , B} and
layer d ∈ {0, . . . , D} takes the truth value tensor of b-ary,
b − 1-ary and b + 1-ary atoms from the previous layer as
input: Idb = {pd−1

b−1 ,p
d−1
b ,pd−1

b+1}. Then the LM conducts
input predicate combination and deduction to output newly
invented atom pd

b : pd
b ← pd−1

b−1 ⊙ pd−1
b ⊙ pd−1

b+1 , ⊙ denotes
logical operators (i.e., conjunction, disjunction). Concretely,
NLM uses a multi-layer perceptron (MLP) for the realiza-
tion of the LM: pd

b = σ(MLP(pd−1
b−1 ,p

d−1
b ,pd−1

b+1 )). To
improve the interpretability of the model, DLM proposes
using fuzzy-logic operators (i.e., fuzzy conjunction, fuzzy
disjunction) for the LM realization. The model sequentially
applies the forward chaining to generate new predicates by
stacking layers of multiple depth D to derive the desired
target predicate.

Figure 3 shows an input & output representation of a reason-
ing task HasSister. The input background atoms include
two unary atoms: HasFather(x), HasMother(x) and
two binary atoms: IsMother(x, y), IsDaughter(x, y).

2The term NLMs used in this paper refers to general neural
logic machine models, which include both NLM and DLM.
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Figure 4. Overview of the FRGR framework.

For a family of four people: A,B,C,D: A,B are fa-
ther and mother; C,D are the two daughters. The back-
ground atoms can be instantiated by replacing the vari-
able with concrete family members (e.g., since B is
C and D’s mother, for the matrix of IsMother(x, y):
IsMother(C,B) = 1, IsMother(D,B) = 1). We
therefore obtain the truth value tensor representation for
each atom. For example, for the IsMother atom, the
tensor representation is pIsMother ∈ [0, 1]4×4. Given
the truth value table representation of the background
atoms as input, The NLMs are required to learn the
ground truth FOL program and generate the truth value
tensor representation of the target output atom. E.g., for
the HasSister task, the ground truth FOL program to
learn is: HasSister(x)← ∃y, z,IsDaughter(z, y) ∧
IsMother(x, z) and the NLMs should generate the truth
value tensor representation of the target output atom
HasSister(x).

3. Methodology
Motivated by the above-mentioned intuition in Section 1, we
now introduce our proposed method, called FRGR (Failure
Reflection Guided Regularizer). The key idea of FRGR is
to timely detect and summarize the root cause that is respon-
sible for the NLM models’ repetition of errors, therefore
stopping it from oscillating around a local optimum by pe-
nalizing the root cause. The FRGR is applied dynamically
as the learning proceeds. Figure 4 shows the overview of the
FRGR framework. We first propose the root cause mining
module that dynamically identifies the model’s repetition
of mistakes and summarizes the root cause subprogram
(Section 3.1). Second, we introduce a novel regularization
approach: repetition regularization that is used to avoid
error repetition in future iterations based on the summarized
root cause subprogram (Section 3.2).

3.1. Root Cause Mining

We first use an intuitive example of the learning pro-
cess of a rule-based ILP model to illustrate the moti-
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Figure 5. A motivating example of our approach.

vation of FRGR. The model is trying to synthesize a
program for the HasSister task: HasSister(x) ←
∃y, z,IsDaughter(z, y) ∧ IsMother(x, z). Figure 5
shows the induced programs of three successive iterations
that are erroneous. It can be seen from the highlighted part
of the figure that all three programs involve using the sub-
program: Inv1(x, y) ← IsSon(x, y). The model keeps
updating the program by replacing the higher-level atoms
(i.e., atoms closer to the target atom HasSister(x, y) in
the deduction process) while keeping the highlighted sub-
program unchanged. It can be inferred based on human
knowledge that as long as the induced program involves
using this subprogram, it will always be erroneous or re-
dundant. By identifying the model’s repetitious usage of
such root cause subprograms that are responsible for the
erroneous induced program, we can leverage the root cause
to avoid the model from repeating errors of such kind in
future iterations and stop it from oscillating around an ill-
performed local optimum.

Therefore, in order to identify whether the NLMs model is
repeating mistakes of similar root causes, and summarize the
root cause if it does during the training process, we propose
a novel method called root cause mining (RCM), which
contains three parts: (1) program extraction, (2) history
program queue, (3) root cause mining.

3.1.1. PROGRAM EXTRACTOR

Let f t
θ be a NLMs model parameterized by weight tensor

θ at the training epoch t. Since the NLMs model does not
contain an explicit logic program for deduction, a program
extractor ϵ(·) is utilized to extract the deduction process
(i.e., program) from the neural model. Concretely, for NLM,
for each MLP logic module l ∈ f t

θ, we use the largest
weight that connects to each output conclusive predicate
(i.e., output neuron) as the approximation of its semantics.
Finally, we collect the indices of all these weights (i.e., con-
nections) of the logic module Sl, l ∈ f t

θ and we use the Sl

of all logic modules as the representation of the induced

program. Formally:

ωt
fθ

= ϵ(fθ
t) =

⋃
l∈ft

θ

Sl

=
⋃
l∈ft

θ

{(bl, dl, x, y)|1 ≤ y ≤ m,x = argmax
x

coly θl}

(1)

where bl ∈ {1, . . . , B}, dl ∈ {1, . . . , D} denote the breadth
and depth index of the logic module l, θl ∈ Rm×n repre-
sents the weight matrix of logic module l, y is the index of
an output neuron of l, and x denotes the index of the largest
input neuron that connects to y: x = argmax

x
coly θl.

Similarly, for DLM, the representation of the induced pro-
gram is:

ωt
fθ

= ϵ(fθ
t) =

⋃
l∈ft

θ

Sl

=
⋃
l∈ft

θ

{(bl, dl, x, z, y)|1 ≤ y ≤ m,x = argmax
x

colz,y θl},

(2)

where θl ∈ Rm×2×n represents the weight matrix of logic
module l, y is the index of an output neuron of l, z ∈
{1, 2} denotes a sign that tells which fuzzy logic module the
weight belongs to (z = 1 denotes the fuzzy conjunction and
z = 2 represents the fuzzy disjunction), x is the index of
the largest input neuron that connects to the output neuron:
argmax

x
colz,y θl.

3.1.2. HISTORY PROGRAM QUEUE

After obtaining the program representation of the NLMs
model, we use a history program queue data structure to
store it for the downstream root cause mining. Specifically,
let Q : |Q| = m be a history program queue of size m.
During the training process of a model f t

θ at training step
t, if the model’s deduced conclusions on the mini-batch
u ∈ Dtrain include error, we extract its current program
representation ωt

f and enqueue it into Q:

Qt+1 = enqueue(Qt, ωt
fθ
),∃(I,O) ∈ u : f t

θ(I) ̸= O (3)

where enqueue(Q, x) represents the operation of enqueuing
element x into the queue Q, (I,O) is the input and output
data of a sample.

3.1.3. ROOT CAUSE MINING

Given the history program queue Q of erroneous program
representations, we now summarize the root cause subpro-
gram that is responsible for error repetition if it happens. To
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Algorithm 1 FRGR framework.
Input: maximum iteration step T , NLMs model fθ param-

eterized by θ, regulatory coefficient β
1 repeat
2 for t = 1, . . . , T do
3 Train f t

θ on mini-batch (xt,yt) ∼ Dtrain
4 if f t

θ(xt) ̸= yt then
5 Extract program rep. and enqueue:

Qt+1 = enqueue(Qt, ωt
f ) ▷ Eq.1,2,3

6 end
7 if | Q || t then
8 update root cause rep. with Apriori ▷ Eq.4

9 end
10 Update fθ with vanilla loss and ReReg loss:

Lθ = LCLS + βLReReg ▷ Eq.5,6

11 end
12 until reaching maximum training steps;

approximate the root cause subprogram, we introduce an
efficient realization called root cause mining (RCM). Con-
cretely, we approximate the root cause with the frequently
coexisting set of neurons among the collected erroneous pro-
gram representations in Q. In specific, we adopt the Apriori
algorithm (Agrawal & Srikant, 1994) and perform frequent
item mining on Q to obtain the root cause subprogram rep-
resentation ρQ, which is a set that contains the indices of the
frequently coexisted neurons among the collected program
representations ωt

fθ
. Formally,

ρQ =
{
J ⊆ Sfθ | |

{
ωt
fθ
∈ Q | J ⊆ ωt

fθ

}
|> minsup

}
(4)

where Sfθ denotes the set that contains the indices of all
weights of the NLMs model fθ , J denotes a subset of neuron
indices that coexisted in more than minsup many programs:
|
{
ωt
fθ
∈ Q | J ⊆ ωt

fθ

}
|> minsup, minsup is a minimum

support threshold. During the training process, if the NLMs
model repeats errors of similar root cause, the RCM module
would promptly identify it by returning the summarized root
cause ρQ. We perform RCM every m epochs to balance to
overhead brought by the frequent itemset mining.

3.2. Repetition Regularization

With the summarized root cause subprogram ρQ obtained in
the previous section, we now aim to utilize it to regularize
the model and avoid it from repeating similar mistakes in
future training. In particular, we propose a regularization
term called repetition regularization (ReReg). ReReg mea-
sures the degree of repetition ϕ by taking the intersection of
the current program representation of the model ωt

fθ
and the

root cause subprogram representation ρQ. Then we penalize

the repetition with L1 regularization:

LReReg(θ) =

|ϕ|∑
j=0

∥ϕj∥1 ,

ϕ =
{
θ(b,d,x,y) : (b, d, x, y) ∈ ωt

fθ
∩ ρQ

} (5)

Finally, the overall training objective function of FRGR
contains the original conclusion classification loss and the
ReReg loss LReReg as:

L(θ) =

conclusion classification︷ ︸︸ ︷
−

|D|∑
i=0

yi · log fθ(xi)+

repetition regularization︷ ︸︸ ︷
βLReReg (6)

where β is a regulatory coefficient. The detailed pseudo-
code of the FRGR framework is shown in Algorithm 1.

4. Experiments
To demonstrate the effectiveness of FRGR, we evaluate
the models under two settings: (1) high-resource data-rich
setting, and (2) low-resource data-scare setting. For the
following of this section, we answer three research questions
(RQs) to lead our discussion:

(RQ1) Motivation Validation & Repetition Mitigation
How serious is NLMs’ repetition of erroneous subprograms?
Is FRGR effective in mitigating the model’s repetitious us-
age of erroneous subprograms?

(RQ2) Data-rich Setting Can FRGR improve the NLMs
models under the data-rich setting?

(RQ3) Data-scarce Setting Can FRGR improve the NLMs
models under the data-scarce setting?

4.1. Experimental Setup

Datasets. We follow previous work (Dong et al., 2018;
Zimmer et al., 2023) and evaluate our framework on two rea-
soning benchmarks: relational reasoning and reinforcement
learning3:

• Relational reasoning. The relational reasoning tasks
contain two major categories: Family Tree Reason-
ing (Dong et al., 2018; Evans & Grefenstette, 2018) and
General Graph Reasoning (Graves et al., 2016; Dong
et al., 2018; Zimmer et al., 2023). For the Family Tree
Reasoning tasks, each sample is a family tree consist-
ing of n family members. The goal of this task is
to induce more complex relations of the family mem-
bers based on some basic background relation atoms:
e.g., inducing the IsMGUnle(x, y) atom (i.e., whether

3Please refer to the appendix for the detailed benchmark de-
scriptions and the training setup.
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Figure 6. UAR during the training process (first row) and the training loss curve (second row). Blue lines represent training with vanilla
classification loss only, and red lines represent training with FRGR regularization.

y is x’s maternal great uncle) or HasSister(x)
(i.e., whether x has at least one sister) based on the
IsMother(x, y), IsFather(x, y), IsSon(x, y), and
IsDaughter(x, y) background atoms. For the General
Graph Reasoning tasks, each sample is an undirected
graph sample that consists of n nodes. The background
atom is HasEdge(x, y), which describes whether there
exists an edge between node x and y. Based on the back-
ground atom, the goal of this benchmark is to induce
complex properties of a node or relations between nodes:
e.g., learning a logic program that determines whether
two nodes can be connected by a path within k edges (k-
Connectivity); or whether the out-degree of a node
equals to k (k-OutDegree). To evaluate the model’s
performance and generalization, for the Family Tree Rea-
soning task, all the models are trained on family trees with
20 family members and tested on samples of family sizes
of 20 (performance) and 100 (generalization). For the
General Graph Reasoning task, all the models are trained
on graphs with 10 nodes and tested on graphs with 10
nodes (performance) and 20 nodes (generalization).

• Reinforcement learning. We evaluate FRGR on three
RL tasks: Sorting, Path (Graves et al., 2016), and Blocks
World (Nilsson, 1982; Gupta & Nau, 1992). For the
Sorting task, an array of length m is used as input, and
the goal is to learn the swap predicate (i.e., swapping
two integers in the array) to sort the list in ascending
order. The learning is based on the following background
atoms: SmallerIndex(x,y), SameIndex(x,y),
LargerIndex(x,y), SmallerNumber(x,y),
SameNumber(x,y), LargerNumber(x,y). For
the Path environment, given an undirected graph

represented by the background atom HasEdge(x,y),
the goal is to find a path between the start node s and
the end node e, which are represented by two unary
predicates (IsStart, IsEnd). The Blocks World
task includes two worlds: an initial world and a target
world, both of which contain m objects (m − 1 cubes
and 1 ground). The goal is to learn how to move the
objects to change the world from the initial setting to the
target setting. Each object is represented by four char-
acteristics: world id, cube id, coordinate x,
and coordinate y. The binary relations of all
the above four characteristics are given as input:
SmallerWorldID(x,y), SameWorldID(x,y),
LargerWorldID(x,y), SmallerCubeID(x,y),
SameCubeID(x,y), LargerCubeID(x,y),
SmallerX(x,y), SameX(x,y), LargerX(x,y),
SmallerY(x,y), SameY(x,y), LargerY(x,y).
For RL tasks, all the models are trained with curriculum
learning (Bengio et al., 2009) via REINFORCE algo-
rithm (Williams, 1992) using environments containing
less than 12 objects and tested on 10 and 50 objects.

Backbone Models. We conduct experiments on two
state-of-the-art NLMs, namely, neural logic machines
(NLM (Dong et al., 2018)) and differentiable logic machines
(DLM (Zimmer et al., 2023)). For a fair comparison, we use
the official code of the original papers and strictly follow
the network structure and training setup. Please refer to the
appendix for more implementation details.

Evaluation Metrics We adopt the same evaluation met-
rics used in previous works (Dong et al., 2018; Zimmer
et al., 2023). The success rate measures the ratio of samples
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Table 1. The comparative results of original NLMs and Ours (with FRGR) under the data-rich setting. n is the size of the data sample,
e.g., how many members in a family. For RL tasks, all models are trained using curriculum learning on environments with n ≤ 12. The
number before the slash is the original NLMs’ results, and after the slash, the NLMs w/ FRGR’s result. Results in blue represent the
original NLMs perform better, and red if NLMs w/ FRGR is better.

Task NLM / NLM w/ FRGR (Ours) DLM / DLM w/ FRGR (Ours)

Family Tree Grad-ratio (%)↑ n=20 (%)↑ n=100 (%)↑ # Epochs↓ Grad-ratio (%)↑ n=20 (%)↑ n=100 (%)↑ # Epochs↓
HasFather 100.00/100.00 100.00/100.00 100.00/100.00 5.90/6.00 100.00/100.00 100.00/100.00 100.00/100.00 22.00/23.6

HasSister 100.00/100.00 100.00/100.00 100.00/100.00 18.09/17.64 100.00/100.00 100.00/100.00 100.00/100.00 68.80/67.20

IsGrandparent 100.00/100.00 100.00/100.00 100.00/100.00 96.20/55.80 100.00/100.00 100.00/100.00 100.00/100.00 50.40/51.20

IsUncle 90.00/100.00 99.76/100.00 82.60/100.00 143.70/78.40 60.00/80.00 60.00/80.00 60.00/80.00 319.20/278.40

IsMGUncle 70.00/100.00 97.16/99.96 10.04/60.44 203.88/175.20 40.00/60.00 48.1/58.20 20.00/40.00 459.20/423.80

Graph Reasoning Grad-ratio (%)↑ n=10 (%)↑ n=20 (%)↑ # Epochs↓ Grad-ratio (%)↑ n=10 (%)↑ n=20 (%)↑ # Epochs↓
1-OutDegree 100.00/100.00 100.00/100.00 100.00/100.00 14.30/17.00 100.00/100.00 100.00/100.00 100.00/100.00 46.20/50.00

2-OutDegree 90.00/100.00 96.52/100.00 90.80/100.00 77.9/13.40 100.00/100.00 100.00/100.00 100.00/100.00 81.60/73.60

4-Connectivity 100.00/100.00 100.00/100.00 100.00/100.00 16.80/20.50 100.00/100.00 100.00/100.00 100.00/100.00 90.40/87.40

6-Connectivity 60.00/100.00 74.40/100.00 69.20/100.00 278.00/41.60 80.00/80.00 86.90/95.40 53.28/90.10 282.40/230.80

Reinforcement Learning Grad-ratio (%)↑ n=10 (%)↑ n=50 (%)↑ # Epochs↓ Grad-ratio (%)↑ n=10 (%)↑ n=50 (%)↑ # Epochs↓
Sorting 100.00/100.00 100.00/100.00 100.00/100.00 24.00/22.20 - - - -

Path 50.00/60.00 99.55/100.00 99.95/100.00 311.00/305.20 - - - -

BlocksWorld 40.00/60.00 97.11/96.59 76.89/83.90 390.11/386.67 - - - -

in the data set that the models achieve 100% accuracy of
a task. It is used to evaluate the model’s performance and
generalization. Graduation ratio measures the percentage of
the training instances of different seeds that reach a success
rate of 100% on the training set. Finally, Epochs measures
the number of training epochs required to reach optimal
success rate on the validation set. We use it to measure
training efficiency.

4.2. Results Analysis

4.2.1. MOTIVATION VALIDATION & REPETITION
MITIGATION (RQ1)

First, we show how serious NLMs’ repetition of erro-
neous subprograms is and therefore validate the motiva-
tion of FRGR. Specifically, we analyze a specific kind
of erroneous subprogram and experiment on two tasks:
6-Connectivity and IsUncle. The ground-truth pro-
grams of the two evaluated tasks do not contain any unary
predicates (refer to the appendix for detailed ground-truth
programs), thus it is erroneous if the extracted program rep-
resentation ωt

fθ
of the NLMs contains a high proportion of

unary predicates. To quantify the evaluation, we use a mea-
surement called unary atom ratio (UAR), which computes
the ratio of unary atoms in ωt

fθ
. We visualize the UAR value

during the training process, the results are shown in the first
row of Figure 6. We observe that during the training pro-
cess, the UAR of training with vanilla loss only is high and
often fails to decrease. This demonstrates the motivation
that the NLMs are repeating such mistakes. Training with
FRGR manages to decrease the UAR effectively. We further
present the UAR of the converged models (shown in the title
of each figure), the UAR decreases significantly with the
use of FRGR.

We further investigate whether FRGR is effective in opti-
mizing the learning process by decreasing the repetition of
mistakes. We visualize the training loss curves of different
methods as shown in the second row of Figure 6. We have
two key observations: (1) we observe that FRGR can help
achieve a much well-performed optimum with lower train-
ing loss compared with training with vanilla loss function
only (2) when oscillation around a local optimum occurs,
FRGR can timely stop it and continue the loss decreasing.

In summary, the experiments show that the NLMs would
repeat similar erroneous subprograms, and FRGR can ef-
fectively reduce the repetition and optimize the learning
process.

4.2.2. DATA-RICH SETTING (RQ2)

We first follow the setup of previous works (Dong et al.,
2018; Zimmer et al., 2023) and conduct experiments under
the ideal data-rich setting (i.e., the number of training sam-
ples are sufficient). The results are shown in Table 1. In
particular, from top to bottom, we range the tasks from the
simplest to the hardest according to the number of predicates
involved in their ground-truth programs.

We observe that FRGR can significantly improve the NLMs’
test performance and generalization. E.g., For the most
difficult Family Tree reasoning task: IsMGUncle, NLM
w/ FRGR achieves near-optimal IID performance and five
times higher generalization over NLM. Besides, FRGR can
also improve the training process of the NLMs by achieving
a much better graduation ratio on both relational reasoning
and reinforcement learning tasks. For the training efficiency,
we observe that with the introduction of FRGR, the mod-
els require much fewer epochs to converge. E.g., for the

7
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Table 2. The comparative results of original NLMs and Ours (with FRGR) under the data-scarce setting. The training settings are the
same as the data-rich setting except for the number of training data. The number before the slash is the original NLMs’ results, and after
the slash, the NLMs w/ FRGR’s result. Results in blue represent the original NLMs perform better, and red if NLMs w/ FRGR is better.

Task NLM / NLM w/ FRGR (Ours) DLM / DLM w/ FRGR (Ours)

Family Tree Grad-ratio (%)↑ n=20 (%)↑ n=100 (%)↑ # Epochs↓ Grad-ratio (%)↑ n=20 (%)↑ n=100 (%)↑ # Epochs↓
HasFather 100.00/100.00 100.00/100.00 100.00/100.00 5.50/ 5.50 100.00/100.00 100.00/100.00 100.00/100.00 23.20/27.00

HasSister 100.00/100.00 100.00/100.00 100.00/100.00 13.20/13.30 100.00/100.00 100.00/100.00 100.00/100.00 67.20/68.00

IsGrandparent 90.00/100.00 68.70/77.51 63.40/72.26 127.90/54.30 100.00/100.00 100.00/100.00 100.00/100.00 57.14/56.00

IsUncle 100.00/100.00 96.49/98.05 62.53/81.50 134.30/102.80 40.00/80.00 40.20/80.00 40.00/80.00 401.60/362.80

IsMGUncle 70.00/100.00 68.52/94.20 33.00/48.00 356.30/251.60 0.00/0.00 0.00/0.00 0.00/0.00 500.00/500.00

Graph Reasoning Grad-ratio (%)↑ n=10 (%)↑ n=20 (%)↑ # Epochs↓ Grad-ratio (%)↑ n=10 (%)↑ n=20 (%)↑ # Epochs↓
1-OutDegree 100.00/100.00 100.00/100.00 100.00/100.00 52.90/61.10 100.00/100.00 100.00/100.00 100.00/100.00 47.20/48.00

2-OutDegree 90.00/100.00 99.92/100.00 99.72/100.00 135.70/73.30 100.00/100.00 100.00/100.00 100.00/100.00 92.00/83.62

4-Connectivity 100.00/100.00 100.00/100.00 100.00/100.00 151.60/195.10 100.00/100.00 100.00/100.00 100.00/100.00 82.80/68.00

6-Connectivity 80.00/80.00 63.20/77.20 39.40/70.80 63.75/38.25 20.00/40.00 75.30/86.30 59.80/70.00 424.00/359.20

Reinforcement Learning Grad-ratio (%)↑ n=10 (%)↑ n=50 (%)↑ # Epochs↓ Grad-ratio (%)↑ n=10 (%)↑ n=50 (%)↑ # Epochs↓
Sorting 100.00/100.00 100.00/100.00 100.00/100.00 28.20/24.60 - - - -

Path 70.00/100.00 98.94/99.88 93.65/99.80 304.60/206.00 - - - -

BlocksWorld 40.00/40.00 84.13/90.13 45.93/52.60 414.00/442.00 - - - -

IsUncle task, NLM w/ FRGR requires 45.44% fewer
epochs than NLM to converge to the optimal solution; DLM
w/ FRGR requires 12.70% fewer epochs than DLM. Sim-
ilarly, for the reinforcement learning benchmarks, NLM
w/ FRGR manages to reduce the number of epochs for
all the evaluated tasks4. We notice that the numbers of
epochs required for the HasFather, 1-OutDegree, and
4-Connectivity tasks are slightly increased. After our
investigation, we attribute this to the fact that these tasks are
rather straightforward to learn (less than 20 epochs are re-
quired for NLM to converge to the optimal solutions). While
FRGR introduces additional regularization to the learning
process, which may result in a slower learning speed but
works better on more challenging tasks that require complex
logical reasoning.

4.2.3. DATA-SCARCE SETTING (RQ3)

To address RQ3, we simulate the data-scare scenario by us-
ing only 1/500 of the data-rich training data volume on the
relational reasoning benchmark. The results are shown in
Table 2. The experiment illustrates that the performance and
generalization of the original NLMs decrease considerably
compared with the data-rich results, which demonstrate the
data-hungry nature of the NLMs. With the usage of FRGR,
we observe a significant improvement in terms of all eval-
uation metrics. E.g., on the IsUncle task, the DLM’s
performance and generalization drops by 20% (i.e., 60.00%
to 40.00%), while DLM w/ FRGR manages to keep the
same performance and generalization under the data-rich
setting (i.e., 80.00%). The results demonstrate that FRGR is
effective in improving the NLMs’ data efficiency by boost-

4We have contacted the DLM’s authors yet we are unable to
reproduce the results of the reinforcement learning benchmarks
reported in the original DLM paper

ing its results under the data-scare setting.

5. Related Work
Neural Program Induction & Synthesis. Program in-
duction and synthesis are the tasks that aim to learn pro-
grams that satisfy pre-defined program specifications. In
recent years, with the development of deep learning, neu-
ral networks-based program induction and synthesis have
been proven effective in logical reasoning tasks with much
less manual design effort (Evans & Grefenstette, 2018; De-
vlin et al., 2017; Chen et al., 2018; Bunel et al., 2018).
Evans et al. (Evans & Grefenstette, 2018) proposes a dif-
ferentiable implementation of inductive logic programming
(∂ILP) which is capable of synthesizing white-box Datalog
programs given noisy input data. Based on ∂ILP, Cao et
al. (Cao et al., 2022) propose a sketch-based program synthe-
sis framework for reinforcement learning tasks and achieves
high performance, generalizability, and knowledge reusabil-
ity. Neural Logic Machines (NLM) (Dong et al., 2018) pro-
poses using a novel rule induction system that implements
boolean logic rules and quantifications with neural modules.
Trivedi et al. (Trivedi et al., 2021) propose a neural program
synthesis framework that first learns a program embedding
space that parameterizes behaviors in an unsupervised man-
ner, then generates a program that maximizes the return of a
task by searching over the program embedding space. The
proposed framework manages to outperform previous deep
reinforcement learning and program synthesis baselines.

Relational Inductive Bias. Deep learning models easily
suffer from bias issues (Tommasi et al., 2017; Du et al.,
2021; Li et al., 2022; 2023a;b). However, relational induc-
tive biases of neural network architectures can improve
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models’ learning about entities and relations. For ex-
ample, the relational inductive biases of graph networks
can improve combinatorial generalization and sample effi-
ciency (Battaglia et al., 2018). For reinforcement learning,
architectural inductive biases within a deep reinforcement
learning agent are effective in learning relations (Zambaldi
et al., 2018). Besides, the architectural inductive bias also
contributes to the good performance of the inductive logic
programming models (Dong et al., 2018; Zimmer et al.,
2023).

6. Conclusions
In this work, we propose a novel regularization framework
called FRGR, which improves the optimization of the NLMs
models by utilizing the root cause of error repetition. Our
proposed method first summarizes the root cause of errors
from the models’ previous behavior with pattern mining
techniques. Then based on the summarized root cause,
FRGR penalizes the model if it repeats similar mistakes
in future training iterations. Experimental results on mul-
tiple reasoning benchmarks demonstrate that FRGR can
effectively improve the NLMs’ performance, generalization,
training efficiency, and data efficiency. In future work, we
would like to further develop FRGR by applying the idea to
other fields and model architectures.
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A. Benchmark Details
In this section, we illustrate the details of the reasoning
benchmarks.

Family tree reasoning. The family tree reasoning bench-
mark consists of tasks that require the model to induce pro-
grams that deduce more complex relations based on some ba-
sic properties of family members or relations between them.
Specifically, a family tree is represented with four basic
predicates: IsMother(x, y), IsSon(x, y), IsSon(x, y),
IsDaughter(x, y). E.g., IsMother(x, y) is True if y
is x’s mother, the semantics of the other basic predicates
are similar. This benchmark contains 5 target predicates to
induce. The details are as follows:

• HasFather(x): the semantics of HasFather(x) is
to determine whether x has a father. The ground-truth
program to induce is:

HasFather (x)← ∃y, IsFather (x, y) (7)

• HasSister(x): the semantics of this predicate is to de-
termine whether x has a sister. The ground-truth program
to induce is:

HasSister(x)← ∃y, z,IsDaughter(z, y)∧
IsMother(x, z)

(8)

• IsGrandparent(x, y): the semantics of this predicate
is to determine whether y is the grandparent of x. The
ground-truth program to induce is:

IsGrandparent(x, y)← ∃z, ((IsSon(y, z)∧
IsFather(x, z)) ∨ (IsDaughter(y, z)∧
IsMother(x, z)))

(9)

• IsUncle(x, y): the semantics of this predicate is to de-
termine if y is the uncle of x. The ground-truth program
to induce is:

IsUncle(x, y)← ∃z, (( IsMother (x, z)∧
Invented(z, y))) ∨ ( IsFather (x, z)∧
Invented(z, y))

Invented(x, y)← ∃z, ((IsSon(z, y) ∧ IsSon(z, x))
∨ (IsSon(z, y) ∧ IsDaughter(z, x)))

(10)
• IsMGUncle(x, y): the semantics of this predicate is to

determine whether y is the maternal great uncle of x. The
ground-truth program to induce is:

IsMGUncle(x, y)← ∃z, (IsMother(x, z)∧
IsUncle(z, y))

(11)

General graph reasoning. The general graph reasoning
benchmark consists of tasks that require the models to in-
fer the logic of high-level target predicates that describe
properties/relations of a graph based on a basic predicate:
HasEdge(x, y) (i.e., whether there is an undirected edge
between node x and y in the graph). This benchmark con-
tains 4 target predicates to infer. The details are as follows:

• 4-Connectivity(x, y): the semantics of
4-Connectivity(x, y) is to determine whether
there exists a path between node x and node y within 4
edges. The ground-truth program to induce is:

4-Connectivity (x, y)← ∃z, ( HasEdge

(x, y) ∨ Invented (x, y) ∨ (

Invented (x, z) ∧ HasEdge(z, y)) ∨ (

Invented (x, z) ∧ Invented (z, y)))

Invented(x, y)← ∃z, (HasEdge(x, z)∧
HasEdge(z, y))

(12)
• 6-Connectivity(x, y): the semantics of
6-Connectivity(x, y) is to determine whether
there exists a path between node x and node y within 6
edges. The ground-truth program to induce is:

6-Connectivity (x, y)← ∃z, ( HasEdge

(x, y) ∨ Invented1 (x, y) ∨ Invented2
(x, y) ∨ (Invented1(x, z) ∧ Invented1(z, y))
∨ ( Invented2 (x, z) ∧ Invented1
(z, y)) ∨ (Invented2(x, z) ∧ Invented2
(z, y)))Invented1(x, y)← ∃z, (HasEdge
(x, z) ∧ HasEdge(z, y))Invented2(x, y)
← ∃z, (HasEdge(x, z) ∧ Invented1(z, y))

(13)
• 1-Outdegree(x): the semantics of this predicate is to

determine whether the outdegree of node x in a graph is
exactly 1. The ground-truth program to induce is:

1-Outdegree (x)← ∃y,∀z, (HasEdge(x, y)∧
¬HasEdge(x, z))

(14)
• 2-Outdegree(x): the semantics of this predicate is to de-

termine whether the outdegree of node x in a graph is
exactly 2. The ground-truth program to induce is:

2-Outdegree (x)← ∃z, w,∀y(¬HasEdge(x, y)
∧ HasEdge(x, z) ∧ HasEdge(x,w))

(15)
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Algorithm 1 FRGR framework for reinforcement learning
tasks.
Input: maximum number of episodes Epi, maximum iter-

ation step T , NLMs model fθ parameterized by θ,
regulatory coefficient β

1 repeat
2 Running Policy πθ for T steps
3 Collecting trajectory Traj = {(st, at, rt, ωt)}0...T
4 Calculating the discounted return {G1, G2, . . . , GT }
5 if Traj Fails then
6 Update Q according to {(Gt, ωt)}0...T ▷ Eq.1,3

7 end
8 if | Q || t then
9 update root cause rep. with Apriori ▷ Eq.4

10 end
11 Update fθ with REINFORCE loss and ReReg loss:
12 Lθ = LREI − βLReReg ▷ Eq.16

13 until reaching maximum number of episodes;

B. FRGR for the Reinforcement Learning
Tasks
In this section, we illustrate the details of the FRGR frame-
work for reinforcement learning tasks. Reinforcement learn-
ing tasks focus on making sequential decisions to complete
the tasks with the goal of maximizing the returns (at time
step t, the parameterized policy will take action at at state
st, and continue until the task is completed or reaches the
maximum steps allowed). Consequently, determining the
correctness of a single action within an RL sequence is
challenging. Therefore, after finishing a sequence, the final
return of each state-action pair taken in that sequence will be
calculated using a discounting factor. RL algorithms mainly
optimize policies toward the direction of maximizing the
returns. Similarly, in FRGR, the discounted returns are also
used to determine which behavioral snapshots are used for
error pattern mining. Algorithm 1 shows the detailed steps.

Given a reinforcement learning task, the model (policy πθ)
interacts with the environment for a maximum of T steps.
For each step t, the model takes the grounded state st and
outputs the action at. The program representation is also ex-
tracted (ωt). Then, by interacting with the environment via
at, the environment gives the reward rt and next state st+1.
After one episode, the discounted returns (G1, G2, . . . , GT )
are calculated based on the rewards collected, as shown
from line 2 to 4. If the model fails to complete the task in
this episode, we update the history program queue Q based
on the discounted returns. Specifically, Q is implemented
as a max heap with the size τ , storing the tuple (Gt, ωt).
For every new tuple (Gi, ωi), when its return is smaller
than the return of the root node, it is added to the history
program queue Q, as shown in line 6. In this way, the sub-
programs that cause the lowest returns are considered the
(most) root cause subprograms. Finally, similar to the rela-

tional reasoning scenario, the history program queue is used
for root cause mining, as shown in line 9. The summarized
root cause subprogram is then used as the regularization to
penalize the final loss, as shown in line 11 and line 12.

C. Implementation Details
In this section, we illustrate the training details. We conduct
all experiments on a Ubuntu 18.05 server with 48 cores of
Intel Xeon Siver 4214 CPU, 4 NVIDIA Quadro RTX 8000
GPUs, and 252GB RAM.

Training Method. For our method, we strictly follow
the training settings of both NLM (Dong et al., 2018) and
DLM(Zimmer et al., 2023). They are trained using Adam
optimizer (Kingma & Ba, 2014) with a 0.005 learning rate.
For all the relational reasoning tasks, the Softmax Cross
Entropy is used as the loss function. For reinforcement
learning tasks, the REINFORCE (Williams, 1992) algorithm
is used for optimization in NLM5. For NLM w/ FRGR, the
policy entropy term is also added to the loss function. By
adding the behavioral regularization term, parameters θ of
the RL policy π is updated via:

θ′ =θ + η[

REINFORCE LOSS︷ ︸︸ ︷
γt
r∇θ log πθQπθ

(st, at) + λ∇θH(πθ)

− β∇
repetition regularization︷ ︸︸ ︷
LReReg ]

(16)

where η is the learning rate, γt
r is the discounted reward

at time step t, H is the entropy regularization, λ is the
discount factor to control the entropy, β is the regularization
coefficient, st and at are the state and action at time step
t. Across all the environments, a positive of +1.00 will be
given to the agent. To encourage the agent to use as few
moves as possible, a negative reward of −0.01 is given for
each action taken.

Curriculum Learning. For reinforcement learning tasks,
curriculum learning (Bengio et al., 2009; Dong et al., 2018)
is also applied in NLM. The training instances are grouped
into lessons according to their complexity. The number
of objects in the environment is considered an indicator of
complexity. The model will start with a simple lesson and
gradually increase the difficulty when the model passes the
exam. The exam will be taken when the model is well-
trained on the current lesson, i.e., the accuracy reaches a
certain threshold. Specifically, during the lesson, all failed
and successful environments will be recorded. The training
examples will be sampled from the successful environments
with the probability of Ω and failed environments with the
probability of 1− Ω.

5Since we are unable to reproduce the results of DLM for RL
tasks, we ignore the details for DLM on RL tasks.
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Table 3. The details of the network structure for all the models for the relational reasoning tasks. Residual indicates the use of Input/Output
residual links.

Tasks Depth
NLM / DLM

Breadth Residual Examples
(Data-rich)

Examples
(Data-scarce)

Family Tree

HasFather 4/5 3 No 50,000 100

HasSister 4/5 3 No 50,000 100

IsGrandparent 4/5 3 No 100,000 200

IsUncle 4/5 3 No 100,000 200

IsMGUncle 4/9 3 No 200,000 400

General Graph

1-Outdegree 4/5 3 No 50,000 100

2-Outdegree 5/7 4 Yes 100,000 200

4-Connectivity 4/5 3 No 50,000 100

6-Connectivity 8/9 3 Yes 50,000 100

Table 4. The details of the network structure and hyperparameters for the NLM and the NLM w/ FRGR models for the reinforcement
learning tasks. The Lessons indicate the different levels of lessons used for training.

Tasks Depth
NLM

Breadth Residual Lessons Ω Epochs Total Episodes
(Data-rich)

Total Episodes
(Data-scarce)

Sorting 3 2 Yes [4,10] 0.5 50 1,000 140

Path 5 3 Yes [3,12] 0.5 400 24,000 600

BlocksWorld 7 2 Yes [2,12] 0.6 500 50,000 1,100

Hyperparameters for relational reasoning tasks. For
our method, we keep all the hyperparameters the same as
NLM and DLM. The details of the network structure of both
NLM and DLM are shown in Table 3. For each computation
unit, the number of intermediate predicates (hidden dimen-
sion) is set to be 8 for all the benchmarks. Specifically, the
residual means the input predicates are concatenated to the
output predicates of each computation unit. For the data-rich
scenario, the examples are divided into 500 epochs, each
containing different samples. For the data-scarce scenario,
the examples are the same for each epoch. The batch size
is set to be 4 across all the experiments. The regulatory
coefficient β is set to be 0.1 and τ is set to be 100 for all
tasks.

Hyperparameters for reinforcement learning tasks. Ta-
ble 4 shows the details of the network structure and hyper-
parameters for reinforcement learning tasks. Each training
batch contains one episode. Similarly, no hidden layer is
used and the number of intermediate predicates is also set
to be 8. Residual linkage is applied for all the RL tasks.
Specifically, for curriculum learning, the NLM starts from a
small number of objects and gradually advances to a larger
number. For example, the first lesson for the Sorting task
contains environments with 2 objects. The second lesson
contains environments with 3 objects, and the final lesson
contains environments with 10 objects. For the data-rich sce-

nario, the environments are different for each lesson taken.
For the data-scarce setting, the environments are the same
for the same level of lessons. The regulatory coefficient β
is set to be 0.1 and τ is set to be 100 for all tasks.

D. Hyperparameter Analysis
In this section, we present more experiments on the two in-
troduced hyperparameters β and τ to understand FRGR
better. More specifically, we conduct experiments on
IsUncle task from Family Tree Reasoning tasks and
6-Connectivity from Graph Reasoning tasks.

Analysis on β We conduct experiments with five different
values of β (0.1, 0.05, 0.01, 0.005, 0.001) for FRGR. The
results in Figure 7 indicate that FRGR steadily improves
over the original NLM for all evaluated settings of β. How-
ever, the training efficiency, performance, and generalization
become sub-optimal when β becomes lower as the model
with FRGR will gradually downgrade to the original model
(when β equals zero). With a higher β, FRGR can more ef-
ficiently regularize the model by penalizing it for repeating
errors.

Analysis on τ We conduct experiments with four different
values of τ (50, 100, 150, 200) for FRGR. The results are
shown in Figure 8. The experiments indicate that with
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Figure 7. Experiments on the hyperparameter β to see its influence.

Figure 8. Experiments on the hyperparameter τ to see this influence.

different buffer sizes, FRGR can steadily improve over the
original model. Under the evaluated values, varying the
buffer size has little effect on performance, generalization,
and training efficiency.

E. More Results of Motivation Validation &
Repetition Mitigation
A high UAR during the training process indicates that the
model relies heavily on the erroneous subprograms (unary
atoms) for deduction which therefore results in a poor per-
formance (high loss value). We plot the repetition regular-
ization loss (green line) along all the other lines, as shown
in Figures 9 and 10. We can observe from the results that
when the classification loss of w/ FRGR is oscillating around
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a local optima, the repetition regularization loss would sig-
nificantly increase. With the regularization applied, the
classification loss would start to decrease again and the
model therefore escapes local optima. The results indicate
that the repetition regularization loss is correlated with the
original classification loss.

Additionally, we further investigate the tasks that require
simple task-solving logic yet FRGR increases the num-
ber of training epochs required ( i.e.,, the HasFather, 1-
OutDegree, and 4-Connectivity tasks). Specifically,
we follow Figure 6 and present the training loss curve and
the unary atom ratio (UAR) (or ternary atom ratio (TAR))
during the training process. Note that for the 1-Outdegree
task, we study the TAR, as the ground-truth program in-
volves using unary & binary atoms, but no ternary atoms.
We conduct the investigation on the NLM model. The re-
sults are shown in Figure 11. We can observe that though
FRGR slightly increases the number of training epochs re-
quired, it still effectively decreases the UAR/TAR during
the training process. In the meanwhile, though the vanilla
NLM model achieves perfect performance & generalization
(100%) on these tasks, its induced programs are redundant
(i.e., high in UAR/TAR).
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Figure 9. UAR during the training process (first row) and the training loss curve (second row) for IsGrandparent, IsUncle, and IsMGUncle
tasks. Blue lines represent training with vanilla classification loss only, and red lines represent training with FRGR regularization. The
greed dotted lines represent the magnitude of FRGR regularization.

Figure 10. UAR during the training process (first row) and the training loss curve (second row) for 2-outdegree and 6-Connectivity tasks.
Blue lines represent training with vanilla classification loss only, and red lines represent training with FRGR regularization. The greed
dotted lines represent the magnitude of FRGR regularization.
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Figure 11. UAR during the training process (first row) and the training loss curve (second row) for HasFather, 4-Connectivity, and
1-Outdegree tasks. Blue lines represent training with vanilla classification loss only, and red lines represent training with FRGR
regularization.
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