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Abstract

Large language models (LLM) have recently at-
tracted significant attention in the field of artifi-
cial intelligence. However, the training process
of these models poses significant challenges in
terms of computational and storage capacities,
thus compressing checkpoints has become an ur-
gent problem. In this paper, we propose a novel
Extreme Checkpoint Compression (ExCP) frame-
work, which significantly reduces the required
storage of training checkpoints while achieving
nearly lossless performance. We first calculate
the residuals of adjacent checkpoints to obtain
the essential but sparse information for higher
compression ratio. To further excavate the redun-
dancy parameters in checkpoints, we then propose
a weight-momentum joint shrinking method to
utilize another important information during the
model optimization, i.e., momentum. In partic-
ular, we exploit the information of both model
and optimizer to discard as many parameters as
possible while preserving critical information to
ensure optimal performance. Furthermore, we uti-
lize non-uniform quantization to further compress
the storage of checkpoints. We extensively eval-
uate our proposed ExCP framework on several
models ranging from 410M to 7B parameters and
demonstrate significant storage reduction while
maintaining strong performance. For instance, we
achieve approximately 70× compression for the
Pythia-410M model, with the final performance
being as accurate as the original model on vari-
ous downstream tasks. Codes will be available at
https://github.com/Gaffey/ExCP.
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1. Introduction
Large Language Model (LLM) (Brown et al., 2020; Tou-
vron et al., 2023; Wang et al.; Chowdhery et al., 2023; Team
et al., 2023) has attracted the attention of the vast majority
of academia and industry concentrated on Artificial Intel-
ligence (AI). The current LLM can conduct daily conver-
sations with humans, ask questions and answer questions,
help humans extract information from articles and charts,
and even complete professional-related tasks such as con-
sultation and programming, which greatly improves the
efficiency of human-computer interaction. Thousands of
laboratories and companies are involved in the training of
the LLMs. Computing power and storage have become
key resources in the LLM era. Training an LLM requires
up to thousands of GPUs or computing cards like TPUs or
Ascends, and it is difficult to keep such a large computing
cluster running completely smoothly. At the same time, re-
searchers are also faced with the need to interrupt training at
any time to adjust training data and hyperparameters. Some-
times it is even necessary to go back to earlier checkpoints
to solve problems introduced during training. Therefore,
frequent saving of checkpoints has become a must during
the whole training process.

Take the open source model Pythia (Biderman et al., 2023)
as an example, the checkpoint of the largest version Pythia-
12B model takes more than 24GB to save. Not to mention
the relevant momentum states of the optimizer. Adam opti-
mizer requires twice the storage space of the weight. The
training process of Pythia-12B saves 154 checkpoints which
requires about 11TB storage, which would cost $5000 a
month on a general cloud server to store these checkpoints.
And this is just an entry-level scenario for large company.
Conservative estimates suggest that the largest models of
the most advanced LLMs, such as the GPT series and Gem-
ini series, has the number of parameters on the order of
hundreds to thousands of billions. Some publicly available
data is shown Figure 1. Larger models also require more
checkpoints and longer training time. So the total cost of
storage for a cutting-edge LLM may grow to tens of millions
of dollars.

In view of the above problems, compressing model check-
points has become a very urgent need. Model compression
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Figure 1. The number of parameters of some LLMs and the general training process of LLMs. (a) Parameters of some recent LLMs, most
of them contain billions of weights and keep getting larger in trend. (b) The training of LLMs consists of several stages with variety
of schemes and data. A large quantity of checkpoints would be stored in each stage. Considering the magnitude of LLMs’ parameters,
extremely high capacity storage is needed for training of LLMs, which could cost tens of millions of dollars.

itself is not a new topic. The model size is compressed to re-
duce the storage occupied by checkpoints (Han et al., 2015;
Hu et al., 2020; Eisenman et al., 2022; Chen et al., 2020; Jin
et al., 2023; Agrawal et al., 2023) or compress the calcula-
tion amount of the model to improve the model’s inference
performance (Liu et al., 2017; Tang et al., 2020; Dettmers
et al., 2022; Xiao et al., 2023; Chen et al., 2022; Shu et al.,
2023; Wu et al., 2023). These researches have drawn atten-
tions of researchers in the past ten years. However, previous
checkpoints compression work concerns more about the size
of weight checkpoints instead of the whole training states,
so there is a lack of relevant researches on momentum states
compression. In addition, the similarity of adjacent check-
points should also be considered in the compression pipeline.
This feature can improve the pruning ratio instead of simply
reducing the final size using some encoding techniques.

In this paper, we propose a checkpoints compression frame-
work that does not rely on training code and information. We
calculate the residual value of adjacent checkpoints, apply
weight-momentum joint pruning, and then non-uniformly
quantize the weights and momentum states to extremely
compress the checkpoints. Meanwhile, our residual com-
pression strategy ensures that we can resume the training
from compressed checkpoints nearly lossless. Our main
contributions are as follows:

• We propose a checkpoints compression frame-
work which contains residual calculation, weight-
momentum joint pruning and non-uniform quantiza-
tion. This framework makes full use of the character-
istics of checkpoints compression, achieving almost
lossless training recovery while achieving a high com-

pression ratio.

• We derive a weight-momentum joint pruning method,
and prove the convergence of the optimizer under this
pruning method. This is the first work to our knowl-
edge that jointly considers both weights and momen-
tum states pruning.

• We conduct experiments on various models and evalu-
ation benchmarks. Our compressed model achieves up
to 70× nearly lossless compression on Pythia-410M
model, which could largely reduce the storage of sav-
ing checkpoints.

2. Related Work
2.1. Large Language Model

Recently, the emergence of large language model and
the corresponding strong capabilities in various natu-
ral language processing (NLP) applications have drawn
widespread attention in research society. The demonstrated
powerful abilities by the model scaling have furthermore
increased the parameters of large language models. The re-
markable work GPT3 (Brown et al., 2020) shows impressive
performance on solving real-world NLP tasks. However, as
shown in Table 1, the model contains 175 billion parame-
ters and requires large amount of hardware resources to be
trained and stored. A single training checkpoint of GPT3
can reach up to 2.3TB. Following large language models
such as PaLM (Chowdhery et al., 2023) and LLaMA (Tou-
vron et al., 2023) consume comparable or even more hard-
ware resources. Due to the huge resource consumption and
common training failures, the checkpoints of LLMs should
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Table 1. The parameter and checkpoint size of part LLMs. High-
capacity storage devices are essential for checkpoints for LLM
training process.

Model Param. Storage

GPT3 (Brown et al., 2020) 175B 2.3TB
PaLM (Chowdhery et al., 2023) 540B ∼7TB

LLaMA-70B (Touvron et al., 2023) 75B 1.0TB
PanGu-π (Wang et al.) 7B 99GB

be updated and stored frequently, which could occupy much
more resources of the communication bandwidth and stor-
age devices. Thus, the exploration of redundancy in LLM
checkpoint is meaningful and necessary, which can save the
memory consumption in great extent and make the training
procedure more efficient and more affordable.

2.2. Compression Method

Data Compression Methods. Compression methods for
efficient storage of data have been investigated for long
decades. These previous methods can be categorized into
two types, the lossy and the lossless. Lossy compression
methods like JPEG (Rao & Hwang, 1996) and MP3 (Sterne,
2012) are widely used in the compression of image and
video data which does not require precise restoration. Huff-
man coding (Huffman, 1952) is a classic lossless compres-
sion method, which statisticizes the frequency of the charac-
ters to get an optimized coding length according to different
frequency of occurrence. The lossless compression method
can be easily applied to the checkpoints of LLMs. However,
the generalizability of the data compression method deter-
mines that the compression rate would be relatively low
when applied to LLM checkpoints. Specialized compres-
sion method should be investigated and designed to achieve
a higher compression rate for heavy intrinsic redundancy of
LLM checkpoint.

Neural Network Compression Methods. The neural net-
work compression methods have been explored by many
work due to the increasing model size and computation
resources. DeepCompression (Han et al., 2015) utilizes net-
work pruning, quantization and huffman coding to obtain a
compact neural network. Llm (Dettmers et al., 2022) and
Smoothquant (Xiao et al., 2023) adopt the quantization to
compress the large language models. These network com-
pression methods could reduce the quantity or bit-width
of parameters in neural networks but are often highly re-
lated to the training targets. Thus, these methods cannot
be generally applied to compress the checkpoints with vari-
ous task background. Moreover, re-training or finetuning is
often necessary for compression methods like network prun-
ing (Liu et al., 2017) and quantization-aware training (Esser
et al., 2019), which could be extremely computationally
expensive especially for large language models with huge
training data and huge amount of network parameters.

Compression methods for checkpoints. As the deep neu-
ral network model getting larger and the training cost get-
ting more expensive, some research work begin to focus
on the compression of checkpoints. LC-Checkpoint (Chen
et al., 2020) proposes a lossy compression scheme for check-
point constructions on the assumption of SGD optimizer.
Check-N-Run (Eisenman et al., 2022) applies differential
and quantization for recommendation models. Delta-DNN
(Hu et al., 2020) focuses on the storage of floating point
numbers and records the differential of two neighboring
versions. QD-Compressor (Jin et al., 2023) further develops
a layer-based quantization and achieves higher compression
ratio. When these methods applied on large-scale models
of LLM, undesirable accuracy degradation would occur
due to the uniform and constant quantization strategy dur-
ing training procedure. Recent DynaQuant (Agrawal et al.,
2023) tackles this issue by precisely compressing model pa-
rameters based on different contributions to the final result
quality with an efficient dynamic quantization configuration
and a quantization-aware delta encoding scheme. However,
most of previous work focus on the compression of model
parameters while ignoring the momentum states of opti-
mizer, which occupy more memory storage and exist more
redundancy in LLM checkpoints.

3. Our Method
A checkpoint Pt of a neural network during the tth train-
ing iteration generally contains the model weightsWt and
parameters Ot of the optimizer momentum.

Pt = {Wt,Ot}. (1)

Saving checkpoints for T times during training leads to a
series of checkpoints P .

P = {P1,P2, · · · ,Pt · · · ,PT }. (2)

For the widely used Adam optimizer, the parameters with
most significant storage cost are the first-order and second-
order moments vt, mt, i.e.,

Ot = {vt,mt}. (3)

Note that some variables such as learning rate and weight
decay etc. are also stored in the optimizer checkpoint, but
can be simply neglected when compared with moments.

In the traditional pruning-related work, researchers only
concern about the weights of models, since the main pur-
pose of pruning is reducing the overhead of calculation and
storage during the inference stage. However, when we turn
to the checkpoint compression during the training process,
the pruning of momentum is also important to reduce the
total size of training checkpoints. Take the most general
optimizer Adam used in LLM training as an example, it
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Figure 2. Framework of our proposed compression process. We calculate the residual ∆Wt and apply joint-pruning on ∆Wt and Ot.
Then we quantize them separately and save the cluster center Ct and cluster index It.

saves the first-order and second-order moment of gradients
which require double storage of weights. Therefore, we
have to take both model weights and optimizer momentum
states into consideration for extreme compression of model
training checkpoints.

3.1. Residual Checkpoint

During the tth iteration of training, since we have already
stored t− 1 checkpoints1 during previous training period,
it is important to jointly utilize the temporal information of
checkpoints to obtain more compact storage. The model
weights will be updated upon previous ones according to
the gradient during training, thus the difference between
adjacent model weights is mostly to be sparse, which is more
suitable for compression. In contrast, the momentum states
stored in the optimizer checkpoints are the moving average
of the first-order and second-order moments, which are only
weakly related to the parameters in the previous checkpoint
after updating for hundreds to thousands of steps, espectially
for the first-order moment whose general β1 = 0.9. So we
do not apply residual calculation on optimizer momentum.
The residual checkpoint ∆Pt is defined as

∆Pt = {∆Wt,Ot} = {Wt −Wt−1,Ot}. (4)

There is a comparison between the pruning on residual
checkpoint and pruning on original checkpoint in Figure 3.
We plot the histogram of the original weights, weights after
direct pruning and weights after pruning on residual check-
points. We find that pruning the residual checkpoint has
almost no impact on the parameter distribution. This helps
us to further prune the parameters.

3.2. Joint Weight-Momentum Pruning

Weight pruning is a common way to discard unimportant
values while maintaining the performance to the maximum

1We give a detailed description about how to deal with previous
checkpoints saved in residual format in Section 3.4

extent. For the checkpoint compression, we need to obtain
the corresponding pruning masks for model weights and mo-
mentum states, which are denoted asMw andMo, respec-
tively. Intuitive way for pruning model weights and momen-
tum states is to discard values with some pre-defined metric.
However, this separate strategy leads to sub-optimal solu-
tion since there are strong relations between model weights
and momentum states. Therefore, in this paper we propose a
novel joint weight-momentum pruning method that obtains
better performance for checkpoint compression.

Weight Pruning. For weights pruning, using the magnitude
or the gradients of weights as an indicator is the common
practice. There is a little difference between our weight
pruning task and the general one. As we introduced in
Section 3.1, we need to prune the residual values of weights
of two adjacent checkpoints instead of the original value
of weights. Thus we recommend to use the second-order
moment of gradients of weights as an indicator, since they
can represent the statistical average of the weight change
during training process. We use the indicator to calculate
the pruning threshold of each layer and the formula is shown
below,

rw =
α
√
mt
×median(W),Mw(i) = 1wt(i)>rw . (5)

In whichW and mt represents the weights and the second-
order moment, respectively. α is a hyperparameter. After
determining the pruning threshold of each layer, we prune
the residual of weights to zero by magnitude for each layer.

Momentum Pruning. For momentum pruning, we use the
first-order moment as an indicator to determine whether to
prune this momentum states or not. We give a brief proof
in the next section to explain why we choose it. Besides,
if a specific location of weights is pruned, intuitively it is
not important to preserve the corresponding momentum
states. We prune the parameters of momentum following
the formula below, in which β is a hyper-parameter.

ro = β ×mean(vt),Mo(i) = 1vt(i)>ro and Mw(i)=1. (6)
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Figure 3. Weights distribution for original weights, pruning on residual checkpoints and pruning on original weights. We plot the histogram
of random 100k non-zero weights of each case for clarity. The range of bins are bounded by (mean - 3 * std, mean + 3 * std) and 256 bins
are used.

Convergence Analysis. Since we prune both the model
weights and momentum states during training, it is impor-
tant to analyze whether the whole training with checkpoint
compression still have convergence guarantee.

Theorem 3.1. According the convergence analysis in
Adam (Kingma & Ba, 2014), assume that the function ft has
bounded gradients, ‖∇ft(θ)‖2 ≤ G, ‖∇ft(θ)‖∞ ≤ G∞
for all θ ∈ Rd and distance between any θt generated by
Adam is bounded, ‖θn − θm‖2 ≤ D, ‖θm − θn‖∞ ≤ D∞
for any m,n ∈ {1, . . . , T}, and β1, β2 ∈ [0, 1) satisfy
β2
1√
β2
< 1. Let αt = α√

t
and β1,t = β1λ

t−1, λ ∈ (0, 1). If
we prune the moments with a maskMo ∈ {0, 1} at itera-
tion τ , Adam could also achieves the following guarantee,
for all T ≥ 1.

R̃(T ) ≤ D2

2α (1− β1)

d∑
i=1

√
T v̂T,i

+
α (1 + β1)G∞

(1− β1)
√

1− β2(1− γ)2

d∑
i=1

‖g1:T,i‖2

+
D2

∞G∞
√

1− β2
2α

d∑
i=1

t∑
t=1

β1,t
(1− β1,t)

√
t

+
D2

2α (1− β1)

d∑
i=1

(
√
T v̂τ,i −

√
T v̂τ,iMo)

(7)

Compared with the original convergence analysis of
Adam (Kingma & Ba, 2014), the regret bound for our check-

point compression method has an additional term:

∆R̃(T ) =
D2

2α (1− β1)

d∑
i=1

(
√
T v̂τ,i −

√
T v̂τ,iMo)

=
D2

2α (1− β1)

d∑
i=1

(
√
T v̂τ,i(1−Mo)).

(8)

Since we only prune the values that v is relatively small, thus
the regret bound is quite close to that of original training
process.

Similar to the original optimization process of Adam, the
average regret of our method also converges. Denote the
regret bound of original Adam as R(T ), thus we have

lim
T→∞

R̃(T )

T
≤ lim
T→∞

R(T ) + ∆R̃(T )

T
= 0 (9)

Therefore, our pruning method for momentum also achieves
the following guarantee for all T ≥ 1:

R(T )

T
= O

(
1√
T

)
(10)

This indicates that our method also has good convergence
rate as that of training without checkpoint compression.
Detailed analysis can be found in Appendix A.

It should be noted that Sashank et al. (Sashank et al., 2018)
point out the potential problem with the proof of conver-
gence in (Kingma & Ba, 2014) and tremendous efforts (Shi
& Li, 2021; Zhang et al., 2022; Défossez et al., 2020) have
been taken for better analysis of convergence of Adam algo-
rithm. In the above section, we provide an proof-of-concept
analysis for the convergence of our checkpoint compression
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Algorithm 1 Compressing process

Require: last reconstructed weight checkpoint Ŵt−1, orig-
inal weight checkpointWt, original optimizer checkpoint
Ot
∆Wt ←Wt − Ŵt−1
∆W∗t ,O∗t ← joint prune(∆Wt,Ot)
IWt , CWt ← quantize(∆W∗t )
IOt , COt ← quantize(∆O∗t )
P ′t ← 7zip(IWt , CWt , IOt , COt )
save P ′t

framework. Incorporating newer convergence analysis of
Adam into our framework should be feasible since we only
modify the moments in a specific iteration. Extensive exper-
iments also demonstrate the convergence of our proposed
method.

3.3. Quantization

Besides pruning, quantization is also a common used
method to compress the models or reduce the overhead
of calculations. In our task, we only concern about the
size of checkpoint, so we can choose non-uniform quantiza-
tion method, which has better compression ratio but cannot
accelerate the inference process.

Shown in Figure 2, we quantize weights and momentum
states separately. We leave the pruned weights or momen-
tum states to zero, and apply K-means algorithm on other
weights or momentum states to cluster them to 2n − 1 clus-
ter centers. Then we save the cluster centers Ct and cluster
index It.

3.4. Compressing and Reconstructing Checkpoints

Based on the methods we describe on the above sections,
we here give a detailed introduction of our compressing and
reconstructing process. During the whole training process,
once we reach a saving node, we start our compression
process independent of the main training process. We al-
ways keep a reconstructed version of the last checkpoint,
for fast compression and training recovery. With this recon-
structed version, the compressing process is described in
Algorithm 1.

In which I and C represent the index and clustering center of
non-uniform quantization, respectively. After we finish the
compression of iteration t, we can either keep the original
checkpoint Wt or reconstruct the weight checkpoint Ŵt

for the compression of next checkpoint or fast resumption
from training crashed. We delete the other checkpoints
Ŵi, i ≤ t− 1 to save the storage.

We can reconstruct a weight checkpoint Ŵt from last
saved/reconstructed weight checkpointWt−1/Ŵt−1 and our
saved compressed checkpoint Pt following the Algorithm 2.

Algorithm 2 Reconstructing process

Require: last reconstructed weight checkpoint Ŵt−1, com-
pressed checkpoint Pt
IWt , CWt , IOt , COt ← unzip(Pt)

∆WQ∗
t ← CWt [IWt ]

Ôt ← COt [IOt ]

Ŵt ← Ŵt−1/Wt−1 + ∆WQ∗
t

Algorithm 3 Reconstructing arbitrary checkpoints
Require: random seed s, compressed checkpoints Pi, re-

quired iterations t
Ŵ0 = init(s)
while i < t do
Ŵi ← recon(Ŵi−1,Pi)

end while

Once we finished the whole training process, only the ran-
dom seed for initialize weights and the compressed check-
points are required to be saved, which are significantly
smaller than the whole weights and optimizer checkpoint. If
we want to reconstruct arbitrary checkpoints, we can follow
the Algorithm 3.

4. Experiments
4.1. Models and Datasets

We conduct our experiments on ViT-L32 (Dosovitskiy et al.,
2020), Pythia-410M (Biderman et al., 2023), PanGu-π-1B
and PanGu-π-7B (Wang et al., 2023) models. The ViT-L32
model is trained and evaluated on ImageNet-1K dataset.
As for LLMs, we train Pythia-410M on on a subset of the
standard Pile (Gao et al., 2020) dataset. We used about 1/20
of the 300B tokens for this experiment. The PanGu-π series
models are trained following the training details of their
paper (Wang et al., 2023), which are trained on about 1.6
trillion tokens.

For evaluation, we use opencompass (Contributors, 2023)
as the evaluation framework. We choose HellaSwag, ARC-
easy, PIQA, C3, CSL and LAMBADA tasks to evaluate the
performance of Pythia-410M, since these evaluation bench-
marks are sensitive to model performance. And we evaluate
the PanGu-π series models following their paper (Wang
et al., 2023) which uses 11 benchmarks belonging to 4
categories, examination, knowledge, reasoning and under-
standing.

4.2. Implementation Details

During the training process, we save checkpoints every
epoch for ViT-L32 and every 1000 iterations for LLMs,
and compress the checkpoints in the meantime. We break
our training process periodically, and then we resume the
training from our compressed checkpoints until we finish
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Table 2. Results of ViT-L32 model on ImageNet-1K dataset. CR represents the compression ratio. M2W pruning represents the
Momentum-to-Weights pruning shown in equation 5. No check means that the weights are pruned with a setting threshold instead of
α√
mt

. And W2M pruning represents the Weights-to-Momentum pruning shown in equation 6. No check means thatMo(i) = 1vt(i)>ro .
* We estimate the results of the other work in terms of the checkpoint size of momentum being twice the weights.

Method M2W pruning W2M pruning Top-1 Accuracy(%) CR(Weights) CR(Weights & Momentum)

baseline 71.36 1 1
CNR+ 71.57 7.82 1.41*
QD+ 71.24 16.31 1.45*

DynaQuant 71.82 26.19 1.47*

ExCP(Ours) 71.51 - 19.88
ExCP(Ours) X 71.53 - 25.54
ExCP(Ours) X 71.80 - 22.76
ExCP(Ours) X X 71.69 - 35.21

Table 3. Results of Pythia-410M models. We achieve almost lossless results while the storage is reduce by ∼70×.

Model Method Size Tasks

hellaswag arc-e piqa C3 csl lambada Avg

Pythia-410M
Original model 4.53G 32.52 35.80 62.13 37.21 53.75 37.22 43.11
Residual+7Zip 3.40G 32.52 35.80 62.13 37.21 53.75 37.22 43.11
ExCP (Ours) 0.06G 31.95 37.04 62.62 36.22 52.50 37.24 42.93

the whole training process.

Unless otherwise specified, we set the α in equation 5 and β
in equation 6 as 5e− 5 and 2.0 in our experiments, respec-
tively. The weights except zero are non-uniformly quantized
to 2n−1 clustering center while the value zero occupies one
center. And the bit number n is set as 4 in experiments. We
combine two int4 number into one int8 number while sav-
ing. 7zip compression algorithm is used for further storage
reduction.

4.3. Experimental Results

First we evaluate the effectiveness of our methods on
ViT-L32 models to make a comparison with other check-
point compression methods shown in Table 2. The accu-
racies of CNR+, QD+ and DynaQuant are all from Dy-
naquant (Agrawal et al., 2023). We follow the same setting
as Dynaquant that we break and resume the training pro-
cess from compressed checkpoints every 15 epochs. The
results show that our method achieve better compression ra-
tio which reachs more than 30×. Moreover, previous work
do not compress the momentum of optimizer, which means
that they achieve even less compression ratio while consid-
ering both weights and momentum. We also evaluate our
joint pruning strategy. Using both M2W and W2M pruning
achieve the best results.

Next we evaluate the performance of our methods on a rel-
atively smaller LLM Pythia-410M. The results are shown
in Table 3. The period of breaking is set to 5000 iterations.
From the results, we can find that our methods achieve

nearly lossless compression with ∼70× compression ratio
even the model itself is small enough in LLMs. Besides, our
evaluation results on downstream tasks are even a little bit
better than that of the original model. We think this is the
improvement in generalization ability brought by the intro-
duction of additional regularizers during the compression
process.

The training loss curve and the comparison of storage of
each checkpoint during the training process is shown in
Figure 4. We plot the training loss every 100 iterations. We
can find that our training curve fits well with the original
one, with only a small loss increase. Meanwhile, we achieve
∼ 70× compression in every node. When the learning rate
is large, the stored checkpoint is relatively large. When the
learning rate is small, the model size decreases since the
model tends to be stable. This is related to our strategy of
compressing residuals.

We also evaluate the PanGu-π-1B and PanGu-π-7B models
in Table 4. Since we reproduce their results, the original
models may differ slightly from the results in their paper.
Our compressed models achieve∼ 25× storage reduce with
negligible precision loss. Notice that the weights of PanGu-
π series models are originally saved in float16 format, so the
compression ratio would be less than that of Pythia series
models.

We show a question & answer results for PanGu-π-1B
model in Figure 5 to show the difference between our com-
pressed model and the original model. In this example, our
compressed model shows a better understanding to the limit

7
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Table 4. Results of PanGu-π series models. We achieve almost lossless results while the storage is reduced by ∼ 25×.

Model Size Examination Knowledge Reasoning Understanding Avg
C-Eval CMMLU MMLU AGI-Eval BoolQ AX-b PIQA CSL EPRSTMT XSum LCSTS

PanGu-π-1B Ori 14.64G 38.05 37.86 34.96 30.42 58.62 43.75 62.02 56.25 55.62 16.00 14.60 40.74
Ours 0.59G 36.71 38.65 37.13 31.87 59.30 42.66 61.10 55.00 56.25 16.31 14.14 40.83

PanGu-π-7B Ori 98.59G 59.91 59.97 61.84 54.04 64.59 56.88 77.31 63.12 90.00 19.59 16.61 56.71
Ours 4.10G 61.32 60.14 62.37 55.11 68.44 52.90 77.91 63.75 90.00 19.24 16.77 57.09

Figure 4. Comparison of training loss and checkpoint size between original models and our methods.

Table 5. Ablation study of our methods. Applying residual, joint-
prune and quantization together achieves the best size while the
average accuracy is almost lossless.

method Size Avg Acc
residual prune quant

4070M 43.11
X 3484M 43.11

X 324M 29.95
X 492M 40.17

X X 276M 42.92
X X 493M 42.94
X X X 61M 42.93

indoors and gives a better answer. It proves that our com-
pressed model perfroms even better than the original one in
some cases. More results are shown in the Appendix B.

4.4. Ablation Studies

We also do some ablation studies to show that every method
in our compression pipeline is of vital importance. The
results are shown in Table 5. Although calculating the resid-
ual of adjacent models cannot bring a significant storage
reduce, it plays an important role in the whole pipeline. Di-
rectly pruning weights may harm the accuracy largely, while
the residual of adjacent models does not have this problem.
Joint-pruning and quantization on residual checkpoint sep-
arately compress the model by 15× and 8×, respectively.
Combining these two methods brings a large improvement
to about 70×.

We explore the influence of different quantization bins.
From Table 6, we can find that quantization below 4 bit
cannot bring a significant storage reduce, so we choose 4 bit

Table 6. Ablation study of different quantization bins. We choose
4 bit in all other experiments since it achieves better performance-
size trade-off.

Quant bins Size Avg Acc

2 bit 43M 42.46
4 bit 61M 42.93
8 bit 87M 42.90

Table 7. Comparison of different compression algorithms. We
choose 7zip in all other experiments since it outperforms other
algorithms.

zip rar rar4 bz2 7z

size 73M 70M 69M 64M 61M

which achieves better performance-size trade-off. In some
cases which extreme small checkpoint size is required, 2 bit
could be used to further compress the checkpoints a little
bit more.

We also evaluate different compression algorithms to com-
pact the final checkpoint files. The results are shown in
Table 7. The 7zip compression with LZMA2 algorithm
achieves the best compression ratio, which leads to about
20% less storage, and we apply 7zip with the ultra compres-
sion ratio on all other experiments.

5. Conclusion
In this paper, we discuss the extreme compression of
LLM checkpoint. We propose a checkpoint compression
framework which contains residual calculation, weights-
momentum joint pruning and non-uniform quantization. We
derive the criterion for weight-momentum joint-pruning
and prove the convergence of the pruned momentum states.

8



ExCP: Extreme LLM Checkpoint Compression via Weight-Momentum Joint Shrinking

Question: What kind of exercise do you suggest I do indoors?

Original PanGu-π-1B: If you are looking for a way to do some exercise in the comfort of your own home,
there are several great exercises you can try. Some suggestions are: Squats: This is a great exercise for all
levels, from beginner to advanced. You can do them by sitting on a chair with a squat rack at the back.
Slowly lower your hips until your thighs are parallel to the ground, then push it back up. 2. Plank: Planks
are a great core-strengthening exercise that can help improve your posture and lower your heart rate. Start
by getting into a pushup, then a plank, and finally a layover. 3. Mountain climbers: Mountain climbers are a
fun and challenging exercise that can help improve your strength and endurance. Start by bringing a heavy
object, like a bag or bottle, into a vertical position. Climb the object up to the ceiling, then bring it back down
to the ground. 4. Mountain climbers: Mountain climbers are a challenging and exciting exercise that can
help improve your upper body strength. Start by bringing a heavy object, like a bag or bottle, into a vertical
position. Climb the object up to the ceiling, then bring it back down to the ground. 5. Yoga: Yoga is a great
way to improve your flexibility, strength, and balance. There are many online videos and apps that you can
use to learn. Remember, it’s important to start slowly and gradually increase the intensity of your workouts. If
you feel uncomfortable with any of these exercises, you can always turn back to doing them at your own pace.

Compressed PanGu-π-1B: There are a lot of great exercises you can do indoors to help improve your
fitness, such as: 1. Yoga: Yoga is a great way to improve flexibility, strength, and balance. There are many
online videos and classes available that can help you learn the basics. 2. Bodyweight exercises: You can
do bodyweight exercises such as push-ups, squats, lunges, and planks to build strength and improve your
overall fitness. 3. Dancing: Dancing is a fun way to improve your cardiovascular fitness, coordination, and
balance. There are many online tutorials and classes available that can help you learn the basics. 4. Yoga
for beginners: If you’re new to yoga, there are many beginner classes available that can help you learn the
basics. 5. Pilates: Pilates is a great way to improve your core strength, flexibility, and balance. There are
many online videos and classes available that can help you learn the basics. Remember to start slow and
gradually increase the intensity and duration of your workouts as you get stronger and more confident.

Figure 5. Q&A example to show the difference between our compressed model and the original model.

Experimental results show the effectiveness of our meth-
ods. We compress Pythia-410M by ∼ 70× while achieving
nearly lossless results on down-stream evaluations.

In the future, we would try to extend the experiments to
different tasks such as multi-modal large models and visual
large models. And different types of neural networks in-
cluding transformers, CNNs and RNNs would be taken into
consideration.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Agrawal, A., Reddy, S., Bhattamishra, S., Nookala, V. P. S.,

Vashishth, V., Rong, K., and Tumanov, A. Dynaquant:
Compressing deep learning training checkpoints via dy-
namic quantization. arXiv preprint arXiv:2306.11800,

2023.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley,
H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., et al. Pythia: A suite for ana-
lyzing large language models across training and scaling.
In International Conference on Machine Learning, pp.
2397–2430. PMLR, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chen, X., Zhang, Y., and Wang, Y. Mtp: multi-task pruning
for efficient semantic segmentation networks. In 2022
IEEE International Conference on Multimedia and Expo
(ICME), pp. 1–6. IEEE, 2022.

Chen, Y., Liu, Z., Ren, B., and Jin, X. On efficient construc-
tions of checkpoints. arXiv preprint arXiv:2009.13003,
2020.

9



ExCP: Extreme LLM Checkpoint Compression via Weight-Momentum Joint Shrinking

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research,
24(240):1–113, 2023.

Contributors, O. Opencompass: A universal evaluation
platform for foundation models. https://github.
com/open-compass/opencompass, 2023.
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A. Convergence Analysis.
Theorem A.1. According the convergence analysis in Adam (Kingma & Ba, 2014), assume that the function ft has bounded
gradients, ‖∇ft(θ)‖2 ≤ G, ‖∇ft(θ)‖∞ ≤ G∞ for all θ ∈ Rd and distance between any θt generated by Adam is bounded,

‖θn − θm‖2 ≤ D, ‖θm − θn‖∞ ≤ D∞ for any m,n ∈ {1, . . . , T}, and β1, β2 ∈ [0, 1) satisfy β2
1√
β2
< 1. Let αt = α√

t
and

β1,t = β1λ
t−1, λ ∈ (0, 1). If we prune the moments with a maskMo ∈ {0, 1} at iteration τ , Adam could also achieves the

following guarantee, for all T ≥ 1.

R̃(T ) ≤ D2

2α (1− β1)

d∑
i=1

√
T v̂T,i +

α (1 + β1)G∞

(1− β1)
√

1− β2(1− γ)2

d∑
i=1

‖g1:T,i‖2 +
D2

∞G∞
√

1− β2
2α

d∑
i=1

t∑
t=1

β1,t
(1− β1,t)

√
t

+
D2

2α (1− β1)

d∑
i=1

(
√
T v̂τ,i −

√
T v̂τ,iMo)

(11)

Proof. According the convergence analysis in Adam (Kingma & Ba, 2014), assume that the function ft has bounded
gradients, ‖∇ft(θ)‖2 ≤ G, ‖∇ft(θ)‖∞ ≤ G∞ for all θ ∈ Rd and distance between any θt generated by Adam is bounded,

‖θn − θm‖2 ≤ D, ‖θm − θn‖∞ ≤ D∞ for any m,n ∈ {1, . . . , T}, and β1, β2 ∈ [0, 1) satisfy β2
1√
β2
< 1. Let αt = α√

t
and

β1,t = β1λ
t−1, λ ∈ (0, 1). Adam achieves the following guarantee, for all T ≥ 1.

R(T ) ≤ D2

2α (1− β1)

d∑
i=1

√
T v̂T,i +

α (1 + β1)G∞

(1− β1)
√

1− β2(1− γ)2

d∑
i=1

‖g1:T,i‖2 +

d∑
i=1

D2
∞G∞

√
1− β2

2αβ1(1− λ)2
, (12)

where R(T ) is the regret:

R(T ) =

T∑
t=1

[ft(θt)− ft(θ∗)] (13)

This theorem could be obtained by the following:

R(T ) ≤
d∑
i=1

1

2α1 (1− β1)

(
θ1,i − θ∗,i

)2√
v̂1,i +

d∑
i=1

T∑
t=2

1

2 (1− β1)

(
θt,i − θ∗,i

)2(√v̂t,i
αt

−
√
v̂t−1,i

αt−1

)

+
β1αG∞

(1− β1)
√

1− β2(1− γ)2

d∑
i=1

‖g1:T,i‖2 +
αG∞

(1− β1)
√

1− β2(1− γ)2

d∑
i=1

‖g1:T,i‖2

+
d∑
i=1

T∑
t=1

β1,t
2αt (1− β1,t)

(
θ∗,i − θt,i

)2√
v̂t,i

(14)

R(T ) ≤ D2

2α (1− β1)

d∑
i=1

√
T v̂T,i +

α (1 + β1)G∞

(1− β1)
√

1− β2(1− γ)2

d∑
i=1

‖g1:T,i‖2 +
D2
∞

2α

d∑
i=1

t∑
t=1

β1,t
(1− β1,t)

√
tv̂t,i

≤ D2

2α (1− β1)

d∑
i=1

√
T v̂T,i +

α (1 + β1)G∞

(1− β1)
√

1− β2(1− γ)2

d∑
i=1

‖g1:T,i‖2

+
D2
∞G∞

√
1− β2

2α

d∑
i=1

t∑
t=1

β1,t
(1− β1,t)

√
t

(15)

In our method, we prune some variables for the momentum, i.e., a maskMo is applied for m and v. Assume that we prune
the momentum at iteration τ , the convergence is the same as original optimization process for iteration 1 to iteration τ .
However, the first and second moment vectors vτ and mτ become vτMo and mτMo at iteration τ .
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From Eq. 14, we have:

R̃(T ) ≤
d∑
i=1

1

2α1 (1− β1)

(
θ1,i − θ∗,i

)2√
v̂1,i +

d∑
i=1

τ−1∑
t=2

1

2 (1− β1)

(
θt,i − θ∗,i

)2(√v̂t,i
αt

−
√
v̂t−1,i

αt−1

)
d∑
i=1

1

2 (1− β1)
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)2(√Mov̂τ,i
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−
√
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ατ−1
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T∑
t=τ+1

1

2 (1− β1)

(
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)2(√v̂t,i
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√
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)
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1− β2(1− γ)2

d∑
i=1

‖g1:T,i‖2

+

d∑
i=1
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(
θ∗,i − θt,i

)2√
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(16)
Under similar assumption as Eq. 17, we could have the following regret bound:

R̃(T ) ≤ D2

2α (1− β1)

d∑
i=1
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T v̂T,i +

α (1 + β1)G∞
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2α
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√
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√
T v̂τ,i −

√
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(17)

B. More Visualization of Compressed LLM.
Here we show more visualization results in Figure 6 and Figure 7.

Question: What is the area of a circle with a radius of two meters?

Original PanGu-π-1B: The formula for the area of a circle is A = πr2, where r is the radius.
Substituting r = 2 meters, we get:
A = π(2)2

A = 4π square meters
Therefore, the area of a circle with a radius of 2 meters is approximately 4π square meters or approximately
12.57 square meters.

Compressed PanGu-π-1B: The formula for the area of a circle is A = πr2, where r is the radius. To find
the area of a circle with a radius of two meters, we can use the formula:
A = π(2)2

A = π(4)
A ≈ 12.57 square meters
So, the area of a circle with a radius of two meters is approximately 12.57 square meters.

Question: What are the seven continents on Earth?

Original PanGu-π-1B: The seven continents are: 1. Asia 2. Africa 3. North America 4. South America 5.
Antarctica 6. Europe 7. Australia/Oceania

Compressed PanGu-π-1B: The seven continents are: 1. Asia 2. Africa 3. North America 4. South America
5. Antarctica 6. Europe 7. Australia

Figure 6. Q&A example to show the difference between our compressed model and the original model.
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Question: How to find a suitable picnic spot?
Original PanGu-π-1B: Finding a picnic spot can be a great way to unwind and enjoy a meal with friends or
family. Here are a few tips to help you find the perfect picnic spot: 1. Look for an outdoor space: Whether
it’s a park, a beach, or a forest, finding an outdoor space to set out a picnic can be a great way to enjoy the
outdoors. 2. Check for shady areas: A picnic should be a fun and enjoyable experience, so make sure to
check for shady areas where people might be hiding or eating. 3. Look for a busy area: If you’re picnicking
during the day, look for an area with a lot of people gathered, like a park or mall park. 4. Check for views:
A great picnic spot should have a great view, so think of a location that overlooks a large body of water
or a park entrance. 5. Look for a comfortable spot: A picnic should be a relaxing experience, so think of
a location that is comfortable and easy to lie down or sleep in. 6. Take into account seasonal weather: If
you’re picnicking in the spring or fall, look for a location that is shaded during those months, as those times
can be pleasant. 7. Ask locals: If you’re trying to find a picnic spot, don’t be afraid to ask locals. They may
have some of the best spots for picnicking and enjoying a good picnic.
Compressed PanGu-π-1B: There are several ways to find a suitable picnic spot: 1. Ask for recommenda-
tions: Ask family and friends for recommendations on a suitable spot for the picnic. They may know a place
that they have used or that they think is a good choice. 2. Check online: Check online for suggestions on
picnic spots in your area. Many websites have a section for finding suitable spots for picnics, or you can
search for them by using search engines. 3. Look for public spaces: Look for parks, gardens, or other public
spaces that are often free of trees and open spaces for picnics. 4. Check with local authorities: Contact your
local government to see if they have any upcoming events or festivals that require a picnic. They may be
able to provide you with some recommendations on a suitable spot. 5. Ask for a description: Ask the host or
hostess at the restaurant to provide a description of the picnic spot, including the number of people, the area,
and the amenities available. Remember to take necessary precautions to ensure the safety of yourself and
others while enjoying a picnic.
Question: How to take beautiful landscape photos?
Original PanGu-π-1B: 1. Understand your subject: landscape photos generally require some understanding
of the subject in order to accurately capture its beauty. Study the subject, including its culture, history, and
natural environment, to be able to anticipate its behavior and lighting conditions. 2. Use the right lighting:
Landscape photography often requires the use of artificial lighting to illuminate the subject. Experiment
with different lighting techniques, such as natural lighting, studio lighting, or table lamp lighting, to create
the desired effect. 3. Adjust camera settings: Most cameras have settings that can either adjust depth of field,
aperture, and ISO. Experiment with these settings to find the right balance of light and depth, and to get
the desired exposure ratio, depth, and color. 4. Take multiple shots: Taking multiple photos from different
angles can help to create a more dynamic and visually interesting landscape. Take advantage of vantage
points, such as bridges, buildings, and mountains, to increase the subject’s exposure and clarity. 5. Add
foreground elements: Adding a foreground element, such as trees, mountains, or buildings, can help to add
depth and context to your photo. Use the rule of thirds to create a pleasing balance between the foreground
and background. 6. Edit your photos: Once you’ve captured your landscape photos, take the time to edit
your photos. You can adjust brightness, contrast, and saturation, and add filters or editing tools to enhance
the subject. 7. Practice, practice, practice: The more you practice taking landscape photos, the better you’ll
get at capturing the beauty of the landscape. Keep experimenting with different lighting, camera settings,
and editing techniques to keep your photos looking their best.
Compressed PanGu-π-1B: 1. Understand your environment: Be sure to study your chosen location, the
time and weather, and the type of subject you are photographing. 2. Choose the right camera: Not all
cameras are created equal, so take the time to research and choose the camera that best suits your needs. 3.
Get the right lighting: The lighting can dramatically affect the mood and tone of your photos. Try to capture
the light sources that are most effective for your subject. 4. Experiment with composition: Composition is
an essential part of photography, so experiment with different angles, vantage points, and compositions to
see what works best for your subject. 5. Edit your photos: Once you have your compelling landscape photos,
it’s time to edit them. You can use software to add filters, adjust brightness and contrast, and enhance the
overall look of your photos. 6. Share your photos: Take a camera and post your photos on social media
platforms like Instagram, Facebook, and YouTube. This will allow others to view and appreciate your work,
and also help you gain more followers.

Figure 7. Q&A example to show the difference between our compressed model and the original model.
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