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Abstract

In this paper, we propose a new recommenda-
tion algorithm for addressing the problem of two-
sided online matching markets with complemen-
tary preferences and quota constraints, where
agents’ preferences are unknown a priori and
must be learned from data. The presence of
mixed quota and complementary preferences con-
straints can lead to instability in the matching pro-
cess, making this problem challenging to solve.
To overcome this challenge, we formulate the
problem as a bandit learning framework and pro-
pose the Multi-agent Multi-type Thompson Sam-
pling MMTS) algorithm. The algorithm com-
bines the strengths of Thompson Sampling for
exploration with a new double matching tech-
nique to provide a stable matching outcome. Our
theoretical analysis demonstrates the effective-
ness of MMTS as it can achieve stability and
has a total O(Q+/KnaxT)-Bayesian regret with
high probability, which exhibits linearity with re-
spect to the total firm’s quota (), the square root
of the maximum size of available type workers
v/ K max and time horizon 7. In addition, simula-
tion studies also demonstrate MMTS’ effective-
ness in various settings. We provide code used
in our experiments https://github.com/
Likelyt/Double-Matching.

1. Introduction

Two-sided matching markets have been a mainstay of the-
oretical research and real-world applications for several
decades since the seminal work by Gale & Shapley (1962).
Matching markets are used to allocate indivisible “goods”
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to multiple decision-making agents based on mutual com-
patibility as assessed via sets of preferences. We consider
the setting of matching markets with recommender systems,
where preferences are usually unknown in the recommenda-
tion process due to the large volume of participants. One of
the key concepts that contribute to the success of matching
markets is stability, which criterion ensures that all partic-
ipants have no incentive to block a prescribed matching
(Roth, 1982). Matching markets often consist of partici-
pants with complementary preferences that can lead to in-
stability (Che et al., 2019). Examples of complementary
preferences in matching markets include: firms seeking
workers with skills that complement their existing work-
force, sports teams forming teams with players that have
complementary roles, and colleges admitting students with
diverse backgrounds and demographics that complement
each other. Studying the stability issue in the context of com-
plementary preferences is crucial in ensuring the successful
functioning of matching markets with complementarities.

In this paper, we propose a novel algorithm and present an in-
depth analysis of the problem of complementary preferences
in matching markets. Specifically, we focus on a many-to-
one matching scenario and use the job market as an example.
In our proposed model, there is a set of agents (e.g., firms),
each with a limited quota, and a set of arms (e.g., workers),
each of which can be matched to at most one agent. Each
arm belongs to a unique type, and each agent wants to
match with a minimum quota of arms for each type and
a maximum quota of arms from all types. This leads to
complementarities in agents’ preferences. Additionally, the
agents’ preference of arms from each type is unknown a
priori and must be learned from data, which we refer to as
the competing matching under complementary preference
recommendation problem (CMCPR).

The main contributions can be summarized as follows. Our
first result is the formulation of CMCPR into a bandit learn-
ing framework as described in Lattimore & Szepesvari
(2020). Using this framework, we propose a new algorithm,
the Multi-agent Multi-type Thompson Sampling (MMTS),
to solve CMCPR. Our algorithm builds on the strengths of
Thompson Sampling (TS) (Thompson, 1933; Agrawal &
Goyal, 2012; Russo et al., 2018) in terms of exploration and
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further enhances it by incorporating a new double match-
ing technique to find a stable solution for CMCPR, shown
in Section 4.2. Unlike the upper confidence bound (UCB)
algorithm, the TS method can achieve sufficient exploration
by incorporating a deterministic, non-negative bias inversely
proportional to the number of matches into the observed em-
pirical means. Furthermore, the introduced double matching
technique uses two stages of matching to satisfy both the
type quota and total quota requirements. These two stages’
matching mainly consists of using the deferred-acceptance
(DA) algorithm from Gale & Shapley (1962).

Secondly, we provide the theoretical analysis of the pro-
posed MMTS algorithm. Our analysis shows that MMTS
achieves stability and enjoys incentive compatibility (IC).
The proof of stability is obtained through a two-stage design
of the double matching technique, and the proof of incentive
compatibility is obtained through the regret lower bound. To
the best of our knowledge, MMTS is the first algorithm to
achieve stability and incentive compatibility in the CMCPR.

Finally, our theoretical results indicate that MMTS achieves
a Bayesian regret that scales O(v/T)) and is near linear in
terms of the total quota of all firms (Q). Besides, we find
that the Bayesian regret only depends on the square root
of the maximum number of workers (K ,,x) in one type
rather than the square root of the total number of workers
(> Km) in all types, which is important for the large mar-
ket. This is a more challenging setting than that considered
in previous works such as Liu et al. (2020) and Jagadeesan
et al. (2021), which only considers a single type of worker
and a quota of one for each firm. To address these chal-
lenges, we use the eluder dimension (Russo & Van Roy,
2013) to measure the uncertainty set widths and bound the
instantaneous regret for each firm, and use the concentration
results to measure the probability of bad events occurring to
get the final regret. Bounding the uncertainty set width is
the key step for deriving the regret upper bound of MMTS.

The rest of this paper is organized as follows. Section 2
introduces basic concepts of CMCPR. Section 3 presents
the challenges of this problem. Section 4 provides MMTS
algorithm, its comparison with UCB-family algorithms,
and shows the incapable exploration of the UCB algorithm
in CMCPR. Section 5 provides the stability, regret upper
bound, and the incentive-compatibility of MMTS. Section
6 shows the application of MMTS in simulations, including
the distribution of learning parameters, and demonstrates
the robustness of MMTS in large markets. Finally, Section
7 discusses related works.

2. Problem

We now describe the problem formulation of the
Competing Matching under Complementary Preferences
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Figure 1. MMTS Algorithm for CMCPR with its application in
the job market, including five stages: preference learning, ranking
construction, matching, recommendation, feedback collection.

Recommendation problem (CMCPR).

Notations. We define 1" as the time horizon and assume it
is known in advance'. We denote [N] = [1,2, ..., N| where
N € NT. Define the bold x € RY be a d-dimensional
vector.

2.1. Environment

The matching of workers and firms will be our running ex-
ample throughout the paper. The organizer is the centralized
platform, and the overall goal of the platform is to recom-
mend the best-fit worker and match two-sided participants
with their ideal objects over time. We first introduce seven
elements in CMCPR.

(I) Participants. In the centralized platform, there are
N firms (agents), denoted by N = {p1,p2,...,DN}+
and M types of workers (arms), represented Ky, =
{a,al, ...a },m € [M], where K, is the number of
m-th type workers and M is the total types.

(II) Quota. Agent p; has a minimum quota ¢{" for m-type
workers, and a maximum total quota Qj (e'\./%., seasonal
headcount in a company) and we assume » ;_,; ¢i" < Q;.
Define the total market quota for all companies as ) =
Z:\I:1 (i and the total number of available workers in the
market as K = Zmzl Km. We assume that Q < K and
T is relatively large.

(III) Two-sided Complementary Preferences. There are
two kinds of preferences: workers to firms’ preferences and
firms to workers’ preferences.

a. Preferences of m-type workers towards firms ™ :

Km — N. We assume that there exist fixed preferences
from workers to firms, and these preferences are known
for the platform. For instance, workers submit their prefer-

'"The unknown T can be handled with the doubling trick (Auer
et al., 1995).
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ences for different rms on the platform.j represents the (VI) Matching Score. If p; is matched withg" at timet,
rank forp; from the view ofajm , and we assume that there p; provides a noisy rewar}z\'fj‘ (t) which is assumed to be

are no ties in the rank orders," f " 1y g In thetrue matching score (] plus a noise term(j (t),
other words, M is a subset of the permutation [ ]. And
m < m,implies thatm type workera™ prefers rmp, v (0= 1§ + () 1)

over rm pjo and as a shorthand, denoteqaagjm pio. This o ) ) ]
known worker-to- rm preference is a mild and common gimit 2 [NJ[Km] [M][T], where we assume that

assumption in matching market literature (Liu et al., 2020; 1j (t)'S are independently drawn from a sub-Gaussian ran-
2021: Li et al., 2022). dom variable with parameter. That is, for every 2 R, it

is satis ed thatE[exp( 7 (t))] exp( 2 2=2).
b. Preferences of rms towards type workesr™ : N 7! ,
K. The preferences of rms towards workers are xed, (V! Regret. Based on model (1), we denote the matching

- m = i

but unknown The goal of the platform is to infer these SCOre forpi asy(" (t) := iy m (p,) (1) in short. De ne the
unknown preferences through historical matching data. we'™M-0ptimal regret withm-type workerfor p; as
denoter{] as the true rank of worke" in the preference X
listof rm py, and'assumethere are no t.iBSS' preferences R™(T; ):= [ iom wr ey M 1 (2)
towards workers is represented iy, which is a subset of t=1
the permutation ofKn ]. rij < r o implies that rm p;

prefers worke" over workeral’ where denote as the sampled problem instance from the
J .

distribution . R"(T; ) represents the total expected score

2.2. Policy difference between the poligy” := fu (pi)g/-; and the
o optimal policyt™ in hindsight.

(IV) Matching Policy. uf"(p;) : N 7! K 1, is a recommen-

: 4 X As each rm have to recruiM types workers with total
dation mapping function fronp; to m type workes at

qguotaQ;, thetotal rm-optimal stable regrefor p; is de-

timet.
ned as
(V) Stable Matching and Optimal Matching. We intro- R (T: )= X! RM(T: ): 3
duce key concepts in matching elds (Roth, 2008). (T3 = . P (T (3)
m=

De nition 1 (Blocking pair) A matchingu is blocked by
rm p; if p; prefers being single to being matched with
u(p), i.e. pi >; u(pi). A matchingu is blocked by a
pair of rm and worker (p;; a;) if they each prefer each . #
other to the partner they receive ati.e.a >; u(p;) and X

pi>ju H(a): R(T) = E» Ri(T; ) 4)
De nition 2 (Stable Matching) A matchingu is stable if it i=1

isn't blocked by any individual or pair of workers and rms. The goal of the centralized platform is to design a learning
De nition 3 (Valid Match). With true preferences from both algorithm that achieves stable matchings through learning
sides, armg; is called a valid match of agem if there  the rms' complementary preferences for multiple types
exists a stable matching according to those rankings suclbf workers preciously from the previous matchings for a
thata; andp; are matched. better recommendation. This is equivalent to designing an
De nition 4 (Agent Optimal Match) Arma; is an optimal ~ algorithm that minimizes BSW® (T).

match of agenp; if it is the most preferred valid match.

Finally, de ne theBayesian social welfare gafBSWG)
R(T) as the expected regret over all rms and problem
instance,

Given two-sided true preferences, the deferred-acceptan(:?’e' Challenges and Solutions

(DA) algorithm (Gale & Shapley, 1962) will provide a stable When preferences are unknown a priori in matching markets,
matching outcome. The matching result by the DA algothe stability issue while satisfying complementary prefer-
rithm is always optimal for members of the proposing sideences and quota requirements is a challenging problem due
and we denote the agent-optimal policyfas'gM_; . to the interplay of multiple factors.

In CMCPR it is worth mentioning that each rm has a Challenge 1: How to design a stable matching algorithm
minimum quota constraird; = [g';::;g" ] for all type  to solve complementary preferences?This is a preva-
workers to Il and total quota cap iQi. Therefore, we |entissue in real-world applications such as hiring workers
de ne the concept of stability as the absence of “blockingwith complementary skills in hospitals and high-tech rms
pairs" across all types of workers and rms. or admitting students with diverse backgrounds in college

2The discussion of the feasibility of the stable matching in CMCPR is in Appendix A.
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admissions. Despite its importance, no implementable algdlgorithm 1 Multi-agent Multi-type Thompson Sampling
rithm is currently available to solve this challenge. In thisAlgorithm (MMTS)

paper, we propose a novel approach to resolving this issu@gput : Time horizon T; rms'  priors
by utilizing a novel designedouble matchingAlgorithm 3) m 0. m %:8;m 2 [N];[M]; workers'
to marginalize complementary preferences and achieve sta- preference M;8m 2 [M].

bility. Our algorithm can ef ciently learn a stable matching for t 2 f 1;::;; Tgdo

result using historical matching data, providing a practical | STEP 1: PREFERENCE LEARNING STAGE

solution to CMCPR. Sample estimated mean rewasfi (t) over all types
of workers (Algo. 2)

STEP 2: RANKING CONSTRUCTION STAGE
Construct  all rms'  estimated rankings
b (t)g'h =1 accordingb” (t).

STEP 3: DOUBLE MATCHING STAGE

Get the matching result!" (p;); 8i 2 [N];m 2 [M]
from thedouble matchingn Algo 3.

STEP 4: RECOMMENDING AND COLLECTING
FEEDBACK STAGE

Each rm receives its corresponding rewards from
recommended all types of workey§' (t).

STEP 5: UPDATING BELIEF STAGE

Based on received rewards, the platform updates rms'
posterior belief.

Challenge 2: How to balance exploration and exploita-
tion to achieve the sublinear regret?The platform must

nd a way to recommend the most suitable workers to rms
to establish credibility among workers and rms to stay at
the platform towards achieving optimal matching. Com-
pared to traditional matching algorithms, the CMCPR is
not a one-time recommendation algorithm butaycled
online recommendation matching algorithm with supply
and demand consideration (workers and rms), which is
more challenging as it requires more time to balance this
trade-off. In addition, the classic UCB bandit methods could
not function well in exploration and suffer sublinear regret
demonstrated in Section 4.2. To overcome this challenge
we propose the use of a sampling algorithm, which allows
for better exploration and achieves sublinear regret. end

4. Algorithms NK M _
_ . _ _ pled mean rewardh(t) := f b (1)giZ; 1" 1 , €Stimated
In this section, we propose the Multi-agent Multi-type rgnksf ™ (g _, , quota constraintsQ; g, , the double

Thompson Sampling algorithmMMTS), which aims to  matching algorithm provides the nal matching result with
learn the true preferences of all rms over all types of work-yyo-stage matchings.

ers, achieve stable matchings, and minimize rms' Bayesian
the bene ts of using the sampling method. The overallMinimum type-speci c quotg™ rst followed by sanitizing

tional complexity of MMTS is in Appendix B. left-over positions®; (de ned below) for each rm and
match rms and workers without type consideration.

4.1. Algorithm Description . i

a). First Match: The platform implements the type-
TheMMTS (Algorithm 1) is composed of ve stagepref-  speci ¢ DA (Algo. 4 in Appendix) given quota constraints
erence learning stageanking construction stagelouble  fqgm giNz?g";m _, - The matching road map starts from match-
matching stagecollecting feedback stag@andupdating ing all rms with type from 1 toM and returns the matching
belief stage At each matching stefy MMTS iterates these  resultf @]" (Pi)9m2m - This step can be implemented in
ve steps. parallel.

Step 1: Preference Learning Stage(Algorithm 2). For

agentp;, platform samples the mean feedback (reward)b)' Sanitize Quota: After the rst match, the centralized

bij (t) of arma™ from distributionP™ with estimated platform sanitizes each rm's left-over quo® = Qi
q". If there exists a rmp;;s:t:; @ > 0, then the

mt 1, mt 1 ; i i m=1 . .
ggtrgmeter$ 1) T ) from the historical matching platform will step into the second match. For those rms

like p; whose leftover quota is ze®; = 0, they and their
Step 2: Ranking Construction Stage Then the platform  matched workers will skip the second match.
sorts these workers within each type accordifg (t)g

in descending order and gets the estimated Bhk) = c). Second Match: When rest rms and workers con-
fbim (t)gi,\l:;:'t/l'm -, Where we denotbim (t) = fbm (t)ng:ri . tinue to join in the second match, the centralized platform

implements the standard DA in Algorithm 5 without type

Step 3: Double Matching Stage(Algorithm 3). With sam- consideration. That is, the platform re-ranks the Mst
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Algorithm 2 Preference Learning Stage

Input : Time horizonT; rms' priors ( ™9, ™9);8i 2

[N;8m 2 [M].
Sample Sample mean reward b (t)
PCI 5 T, 8imj 2 NEIMT K]

Sort: Sort estimated mean feedbagk (t) in descending
order and get the estimated rajk(t).

Output: The estimated rank" (t) and the estimated
mean feedback" (t), 8i;m 2 [N];[M].

Algorithm 3 Double Matching

Input : Estimated rank(t), estimated meah" (t), type
quotag™;8m 2 [M];i 2 [N] and total quota
Qi;8i 2 [N]; workers' preferencé ™ gmam -
STEP 1: FIRST MATCH
Given estimated rank¥t) and all workers' preferences
M the platform operates the rm-propose DA Algo and
return the matchingef” (pi)g/oy, -
STEP 2: SANITIZE QUOTA
Sanitize whether all rms’ positions have been lled. For
each compang,, if Qi mzl q" > 0, setthe left quota
as® Q M g for rm pi.
STEP 3: SECOND MATCH
if © 8 0 then
Given left quotef @; gj> v, estimated mearis(t), and
workers' preferences ™ gm2 v, the platform runs
the rm-propose DA and return the matching(p;).
else
Set the matching;(p;) = ;.

Output: The matchingu” (p;)
for all rms.

Mergg(a{" (pi); ut(pi))

Figure 2.A comparison of centralized UCB and TS that demon-
strates the incapable exploration of UCB.

4.2. Incapable Exploration

We show why the sampling method has an advantage over
the UCB method in estimating worker ranks. We nd that
centralized UCB suffers linear rm-optimal stable regret
in some cases and show it in Appendix C with detailed
experimental setting and analysis.

Why sampling method is capable of avoiding the curse of
linear regret?By the property of sampling shown in Algo-
rithm 2. Firmp;'s initial prior over workera; is a uniform
random variable, and thug(t) > r(t) with probability

bj i, rather tharzerd This differs from the UCB
style method, which cannot updaigs upper bound due

to lacking exploration oves;. The bene t of TS is that it
can occasionally explore different ranking patterns, espe-
cially when there exists such a previous example. In Figure
2, we show a quick comparison of centralized UCB (Liu
et al., 2020) in the settings shown above 8dTS when

M =1;Q=1;N =3;K =3. The UCB method pro-
duces a linear regret for rm 1 and rm 2. However, the TS
method achieves a sublinear regretin rm 1 and rm 2.

types of workers who do not have a match in the rst match5' Properties of MMTS: Stability and Regret

for rms, and |l available vacant positions. It is worth Section 5.1 demonstrates the double matching algorithm
noting that in Algorithm 5, each rm will not propose to the can provide the stability property f@MCPR Section 5.2
previous workers who rejected him/her already or matche@stablishes the Bayesian regret upper bound for all rms
in Step 1. Then rmp; gets the corresponding matched when they follow theMMTS. Section 5.3 discusses the
workersuy (p;) in the second match. Finally, the platform incentive-compatibility property of the MMTS.

merges the rst and second results to obtain a nal matching

u(pi) = Merge(e (pi); ug(pi)); 8i;m 2 [N];[M]. 5.1. Stability

Step 4: Recommending and Collecting Feedback Stage. |n the following theorem, we show the double matching

When the platform broadcasts the matching resflifp;) o aigorithm (Algo.3) provides a stable matching solution in
all rms, each rm then receives its corresponding stochasticthe following theorem.

m . Qi .
rewardy " (t); 8 2 [NJ;m 2 [M]. Theorem 5.1. Given two sides' preferences from rms and

Step 5. Updating Belief Stage. After receiving M types of workers. The double-matching procedure can
these noisy rewards, the platform updates rms' be-provide a rm-optimal stable matching solutid@t 2 [T].

lief (posterior) parameters as followg: [™; ™) =  Proof. The sketch proof of the stability property MMTS
Updatg ™ 1, ™ Lym(t)):8i 2 [N];8m 2 [M]: is two steps, naturally following the designMTS. The
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rst match is conducted in parallel, and the output is stableof each type available in the market, as opposed taodtad
and guaranteed by (Gale & Shapley, 1962). As the needumber of workers or the maximum number of workers
of MMTS, before the second match, rms without leftover available of all types. Additionally, if on®; is dominant
quotas Q = 0) will quit the second round of matching, over other rms'Q;, then the regret will mainly be deter-
which will not affect the stability. After the quota sanitizing mined by that dominant quo®; andK nax , highlighting
stage, rms and leftover workers will continue to join in the inter-dependence of this complementary matching prob-
the second matching stage, where rms do not need téem.

consider the type of workers designed by double matching.

And the DA algorithm still provides a stable result baseds.3. Incentive-Compatibility

on each rm'ssub-preferencdist. The reason is that for ) ) . ) ) o

rm pi, all previous possible favorite workers have been!N this section, we discuss the incentive-compatibility prop-

proposed in the rst match. If they are matched in the rst €' of MMTS. Thatis if one rm does not match the
match, they quit together, which won't affect the stability worker thatMMTS (platform) recommended when all other

property; otherwise, the worker has a better candidate ( rm)™M$ follow MMTS recommended matching objects, which
and has already rejected the mm. So for each rmp, it is equivalent to that rm submlt'glng _ranklng preferences
only needs to consider a sub-preference list excluding théifferent from the sampled ranking list froMMTS, and
already matched workers in the rst match and the proposed/® know that rm cannot bene t (matched with a better
workers in the rst match. It will provide a stable match in Worker than his optimal stable matching worker) over a
the second match and won't be affected by the rst matchSublinear order. As we know, (Dubins & Freedman, 1981)

So, the overall double matching is a stable algorithm. Théliscussed théfachiavelli rm could not bene t from in-
detailed proof can be found in Appendix Section E. [J correctly stating their true preference when there exists a
unique stable matching. However, when one side's prefer-

ences are unknown and need to be learned through data, this
result no longer holds. Thus, the maximum bene ts that can
Next, we provideMMTS's Bayesian total rm-optimal re- be gained by the Machiavelli rm are under-explored in the
gret upper bound. setting of learning in matching. (Liu et al., 2020) discussed
the bene ts that can be obtained by Machiavelli rms when
other rms follow the centralized-UCB algorithm with the
problem setting of one type of worker and quota equal one
in the market.

5.2. Bayesian Regret Upper Bound

Eheorem 5.2. AssumeK nax = maxfKyq;:i Ky g, K =
M Km, with probabilityl 1=QT, when all rms
follow theMMTSalgorithm, rms together will suffer the

Bayesian expected regret
p We now show inCMCPR when all rms except onegy,
R(T) 8QIlog(QT) Kmax T+ NK=Q: accept theiMMTS recommended workers from the match-
ing platform, the rmp; has an incentive also to follow the

Proof. The detailed proof can be found in Appendix HJ  sampling rankings in #ng horizon so long as the match-
Remark The derived Bayesian regret bound, which is depenind result do not have multiple stable solutions. Now we
dent on the square root of the time horizbrand a logarith- ~ establish the following lemma, which is an upper bound of
mic term, is nearly rate-optimal. Additionally, we examine the expected number of pulls that a rpa can match with
the dependence of this regret bound on other key param@.M-type worker that is better than their optinrattype
ters. The rst of which is a near-linear dependency on thevorkers, regardless of what workers they want to match.

total quotaQ. Secondly, the regret bound is dependent only| g'g useH™ to de ne the achievablsub-matchinget of
on thesquare rootof the maximum workeKpax of one  ym \when ali rms follow theMMTS, which represents rm
type, as opposed to the total number of worker%’,I -1 Km pi andm  type workera™ is matched such thaf" 2 u.
in previous literature (Liu et al., 2020; Jagadeesan et alj,gt (T) be the number of times sub-matchin is

2021). This highlights the ability of our algorithiIMTS, played by timet. We also provide the blocking triplet in a
to effectively capture the interactions of multiple types Ofmatching de nition as follows.

matching inCMCPRfor the adaptation to the large market

(K). The second term in the regret is a constant, which i®e nition 5 (Blocking triplet) A blocking triplet
only dependent on constasK , and the total quot®.  (Pi; a; axo) for a matchingu is that there must exista rm
Notably, if we assume that eagh= 1 andQ; = M, then  pi and workerg; that they both prefer to match with each
NK=Q will be reduced tatNK=(NM ) = K=M , whichis  other than their current match. Thatis,ago 2 uj, ko<

an unavoidable regret term due to the exploration in bandits ik and workeray is either unmatched or;; < .y 1(k)-
(Lattimore & Szepesvari, 2020). This also demonstrates

that the Bayesian total cumulative rm-optimal exploration The following lemma presents the upper bound of the num-
regret is only dependent on theeragenumber of workers  ber of matching times qgfi anda™ by time T, wherea" is

6
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asuper optimam type worker(preferred than all stable 6. Experiments

optimalm type workes under true preferences), when all hi ) imulati | q
rms follow the MMTS. In this section, we present simulation results to demonstrate

) the effectiveness dfIMTS in learning rms' unknown pref-
Lemma5.1. Let i (T) be the number oftimesa r  grences. The detailed experiment setup and the result can
matched with an-type worker such that the mean reward pe found in Appendix Section I. Section 6.1 presents two
of a" for rm p; is greater thanp;'s optimal matchi™,  examples to analyze the underlying causes of the novel phe-
whichis {3 > a]nrqnz?(m fj - Then the expected number of omenon of negative regregdin bene t by matching with

matches betweem anda" is upper bounded by over—.optimal workersand Iarge mar_ket effect. Appendix
Section 1.1 showcases the distribution of learning parame-
E[ T(T)] min ters and provides insight into reasons for non-optimal stable
' Sm2C(H matchings. Additionally, we demonstrate the robustness of
X m log(T) ] MMTS in large markets in Appendix 1.2. All simulation
Cijix o(T) + m ' results are run in 100 trials.

(pjsay ;ap)2Sm
where U, = argmin %, and Cl, , = 6.1. Two Examples
1=3 a2y Example 1.There areN =2 rms, M = 2 types of work-
O((log(T)) ). ers, and there afé, =5;8m 2 [M]. The quotag™ for
each type and each rip; is 2, and the total quota/capacity

Then we show the bene t (lower bound of the regret) offor each rmisQ, = 5. The time horizon i§ = 2000.

Machiavelli rm p; can gain by not following th&4MTS
re@nrpmended workers. Let's de ne teaper reward gap Preferences.True preferences from workers to rms and
as j = i, wherea™ 2T". from rms to workers are all randomly generated. Pref-
erences from workers to rmst ™gM_, are xed and
Theorem 5.3. Suppose all rms other than rnp; follow  known. We use the data scienti§t 6r DS) and software
the preferences according to ttMTSto the centralized  developer engineeS(or SDE) as our example. The follow-
platform. Then the following upper bound on rm's ing are true preference®; :p1 pP2;D2:p1 p2;D3:
optimal regret form-type workers holds: P pu;Ds:pr P2;Ds:ip2 puSiipr PSSy
" Pr P2;S3iP2 P1;Saip2 P1;Ssipr Pz and

max 1
a 2u]

X
R™(T; ) I”f min

T <o Sm2C(H T i :Ds D, Dz Ds Dy;

X ' # 1:S1 S4 S5 S Ss
Coy o+ d('ogm) }:D, Ds D; Ds Du

(py 2] 1) 2 8™ B0 o K 2:s, S, S5 S; Sa

This result can be directly derived from Lemma 5.1. The- e true matching scores of each worker for rms are sam-

orem 5.3 demonstrates that there is no sequence of preHJ—ed fromU([0; 1]) and are available in Appendix Table 1.

erences that a rm can manipulate and does not follow" addition, feedbaclyi;”j‘_(t)m(o or 1) prov@ed Py rms
MMTS recommended workers that would achieve negativéS generated bBernoulli jj (.t))' If two S|des_ pr(_efer-
optimal regret and its absolute value greater tB4log T). ences are known, the rm optimal stable matchingjs=

Considering M types together for rm;, this magnitude re- f[D2; D4l [Ss: S1: Slg, U2 = f[D3; D1; Dsl: [Sa; Sp]g by

mainsO(M log T). Theorem 5.3 con rms that when there the double mkatchlgﬂ?\ﬁlgonth? Hovr;/ever, Ifk rms' preffer-
is a unigue stable matching, rms cannot gain a signi - €nces are unknowiy can learm these unknown prefer-

cant advantage in terms of rm-optimal stable regret due toences and attain the optimal stable matching while achieving

incorrect estimated preferences if others follow MMTS. a sublinear regret for each rm.
;0 m; 0

MMTS Parameters. We set priors lm = o=

An example is provided in Section 6.1 to illustrate this ) . W o
0:1;8i 2 [N];8) 2 [Km];8m 2 [M]to limit the strong im-

incentive compatibility property. Figure 3(a) illustrates the
b y property. g @) act of the prior belief. The update formula for each pn

total regret, with solid lines representing the aggregate regre‘f : 4o ;

over all types for each rm and dashed lines representingialt timet of thern?-pre workeraj" I S 1

each type's regret. It is observed that the type | regret ofmthe vr\Tllorkera]- is matched with the mep:, .that IS
p1 is negative, owing to the inaccuracies in the rankings 2 Ut ('ii)' and the provllded scoreyg] () = 1; other-
estimated for bothp, andp,. A detailed analysis of this Wise "~ = {'; I = ' +1 if the provided
negative regret pattern is given in Appendix Section I.1.  score isyf7 (t) = 0, otherwise i’;‘:‘ o= ir;*j“‘ . For other
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