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Abstract
In this paper, we propose a new recommenda-
tion algorithm for addressing the problem of two-
sided online matching markets with complemen-
tary preferences and quota constraints, where
agents’ preferences are unknown a priori and
must be learned from data. The presence of
mixed quota and complementary preferences con-
straints can lead to instability in the matching pro-
cess, making this problem challenging to solve.
To overcome this challenge, we formulate the
problem as a bandit learning framework and pro-
pose the Multi-agent Multi-type Thompson Sam-
pling (MMTS) algorithm. The algorithm com-
bines the strengths of Thompson Sampling for
exploration with a new double matching tech-
nique to provide a stable matching outcome. Our
theoretical analysis demonstrates the effective-
ness of MMTS as it can achieve stability and
has a total Õ(Q

√
KmaxT )-Bayesian regret with

high probability, which exhibits linearity with re-
spect to the total firm’s quota Q, the square root
of the maximum size of available type workers√
Kmax and time horizon T . In addition, simula-

tion studies also demonstrate MMTS’ effective-
ness in various settings. We provide code used
in our experiments https://github.com/
Likelyt/Double-Matching.

1. Introduction
Two-sided matching markets have been a mainstay of the-
oretical research and real-world applications for several
decades since the seminal work by Gale & Shapley (1962).
Matching markets are used to allocate indivisible “goods”
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to multiple decision-making agents based on mutual com-
patibility as assessed via sets of preferences. We consider
the setting of matching markets with recommender systems,
where preferences are usually unknown in the recommenda-
tion process due to the large volume of participants. One of
the key concepts that contribute to the success of matching
markets is stability, which criterion ensures that all partic-
ipants have no incentive to block a prescribed matching
(Roth, 1982). Matching markets often consist of partici-
pants with complementary preferences that can lead to in-
stability (Che et al., 2019). Examples of complementary
preferences in matching markets include: firms seeking
workers with skills that complement their existing work-
force, sports teams forming teams with players that have
complementary roles, and colleges admitting students with
diverse backgrounds and demographics that complement
each other. Studying the stability issue in the context of com-
plementary preferences is crucial in ensuring the successful
functioning of matching markets with complementarities.

In this paper, we propose a novel algorithm and present an in-
depth analysis of the problem of complementary preferences
in matching markets. Specifically, we focus on a many-to-
one matching scenario and use the job market as an example.
In our proposed model, there is a set of agents (e.g., firms),
each with a limited quota, and a set of arms (e.g., workers),
each of which can be matched to at most one agent. Each
arm belongs to a unique type, and each agent wants to
match with a minimum quota of arms for each type and
a maximum quota of arms from all types. This leads to
complementarities in agents’ preferences. Additionally, the
agents’ preference of arms from each type is unknown a
priori and must be learned from data, which we refer to as
the competing matching under complementary preference
recommendation problem (CMCPR).

The main contributions can be summarized as follows. Our
first result is the formulation of CMCPR into a bandit learn-
ing framework as described in Lattimore & Szepesvári
(2020). Using this framework, we propose a new algorithm,
the Multi-agent Multi-type Thompson Sampling (MMTS),
to solve CMCPR. Our algorithm builds on the strengths of
Thompson Sampling (TS) (Thompson, 1933; Agrawal &
Goyal, 2012; Russo et al., 2018) in terms of exploration and
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further enhances it by incorporating a new double match-
ing technique to find a stable solution for CMCPR, shown
in Section 4.2. Unlike the upper confidence bound (UCB)
algorithm, the TS method can achieve sufficient exploration
by incorporating a deterministic, non-negative bias inversely
proportional to the number of matches into the observed em-
pirical means. Furthermore, the introduced double matching
technique uses two stages of matching to satisfy both the
type quota and total quota requirements. These two stages’
matching mainly consists of using the deferred-acceptance
(DA) algorithm from Gale & Shapley (1962).

Secondly, we provide the theoretical analysis of the pro-
posed MMTS algorithm. Our analysis shows that MMTS
achieves stability and enjoys incentive compatibility (IC).
The proof of stability is obtained through a two-stage design
of the double matching technique, and the proof of incentive
compatibility is obtained through the regret lower bound. To
the best of our knowledge, MMTS is the first algorithm to
achieve stability and incentive compatibility in the CMCPR.

Finally, our theoretical results indicate that MMTS achieves
a Bayesian regret that scales Õ(

√
T ) and is near linear in

terms of the total quota of all firms (Q). Besides, we find
that the Bayesian regret only depends on the square root
of the maximum number of workers (Kmax) in one type
rather than the square root of the total number of workers
(
∑
mKm) in all types, which is important for the large mar-

ket. This is a more challenging setting than that considered
in previous works such as Liu et al. (2020) and Jagadeesan
et al. (2021), which only considers a single type of worker
and a quota of one for each firm. To address these chal-
lenges, we use the eluder dimension (Russo & Van Roy,
2013) to measure the uncertainty set widths and bound the
instantaneous regret for each firm, and use the concentration
results to measure the probability of bad events occurring to
get the final regret. Bounding the uncertainty set width is
the key step for deriving the regret upper bound of MMTS.

The rest of this paper is organized as follows. Section 2
introduces basic concepts of CMCPR. Section 3 presents
the challenges of this problem. Section 4 provides MMTS
algorithm, its comparison with UCB-family algorithms,
and shows the incapable exploration of the UCB algorithm
in CMCPR. Section 5 provides the stability, regret upper
bound, and the incentive-compatibility of MMTS. Section
6 shows the application of MMTS in simulations, including
the distribution of learning parameters, and demonstrates
the robustness of MMTS in large markets. Finally, Section
7 discusses related works.

2. Problem
We now describe the problem formulation of the
Competing Matching under Complementary Preferences

Firm Preference 
  { ̂r m

i (t)}N,M
i=1,m=1
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{Km}M
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Firm N
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Figure 1. MMTS Algorithm for CMCPR with its application in
the job market, including five stages: preference learning, ranking
construction, matching, recommendation, feedback collection.

Recommendation problem (CMCPR).

Notations. We define T as the time horizon and assume it
is known in advance1. We denote [N ] = [1, 2, ..., N ] where
N ∈ N+. Define the bold x ∈ Rd be a d-dimensional
vector.

2.1. Environment

The matching of workers and firms will be our running ex-
ample throughout the paper. The organizer is the centralized
platform, and the overall goal of the platform is to recom-
mend the best-fit worker and match two-sided participants
with their ideal objects over time. We first introduce seven
elements in CMCPR.

(I) Participants. In the centralized platform, there are
N firms (agents), denoted by N = {p1, p2, ..., pN},
and M types of workers (arms), represented Km =
{am1 , am2 , ...amKm},m ∈ [M ], where Km is the number of
m-th type workers and M is the total types.

(II) Quota. Agent pi has a minimum quota qmi for m-type
workers, and a maximum total quota Qi (e.g., seasonal
headcount in a company) and we assume

∑M
i=1 q

m
i ≤ Qi.

Define the total market quota for all companies as Q =∑N
i=1 Qi and the total number of available workers in the

market as K =
∑M
m=1 Km. We assume that Q ≪ K and

T is relatively large.

(III) Two-sided Complementary Preferences. There are
two kinds of preferences: workers to firms’ preferences and
firms to workers’ preferences.

a. Preferences of m-type workers towards firms �m :
Km 7→ N . We assume that there exist fixed preferences
from workers to firms, and these preferences are known
for the platform. For instance, workers submit their prefer-

1The unknown T can be handled with the doubling trick (Auer
et al., 1995).
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ences for different �rms on the platform.� m
j;i represents the

rank forpi from the view ofam
j , and we assume that there

are no ties in the rank orders,� m
j � f � m

j; 1; :::; � m
j;N g. In

other words,� m
j is a subset of the permutation of[N ]. And

� m
j;i < � m

j;i 0 implies thatm� type workeram
j prefers �rm pi

over �rm pi 0 and as a shorthand, denoted aspi < m
j pi 0. This

known worker-to-�rm preference is a mild and common
assumption in matching market literature (Liu et al., 2020;
2021; Li et al., 2022).

b. Preferences of �rms towardsm� type workersr m : N 7!
Km . The preferences of �rms towards workers are �xed,
but unknown. The goal of the platform is to infer these
unknown preferences through historical matching data. We
denoter m

i;j as the true rank of workeram
j in the preference

list of �rm pi , and assume there are no ties.pi 's preferences
towards workers is represented byr m

i , which is a subset of
the permutation of[Km ]. r m

i;j < r m
i;j 0 implies that �rm pi

prefers workeram
j over workeram

j 0 .

2.2. Policy

(IV) Matching Policy. um
t (pi ) : N 7! K m is a recommen-

dation mapping function frompi to m � type workers at
time t.

(V) Stable Matching and Optimal Matching. We intro-
duce key concepts in matching �elds (Roth, 2008).

De�nition 1 (Blocking pair). A matchingu is blocked by
�rm pi if pi prefers being single to being matched with
u(pi ), i.e. pi > i u(pi ). A matchingu is blocked by a
pair of �rm and worker (pi ; aj ) if they each prefer each
other to the partner they receive atu, i.e. aj > i u(pi ) and
pi > j u� 1(aj ):

De�nition 2 (Stable Matching). A matchingu is stable if it
isn't blocked by any individual or pair of workers and �rms.

De�nition 3 (Valid Match). With true preferences from both
sides, armaj is called a valid match of agentpi if there
exists a stable matching according to those rankings such
thatai andpj are matched.

De�nition 4 (Agent Optimal Match). Arm aj is an optimal
match of agentpi if it is the most preferred valid match.

Given two-sided true preferences, the deferred-acceptance
(DA) algorithm (Gale & Shapley, 1962) will provide a stable
matching outcome. The matching result by the DA algo-
rithm is always optimal for members of the proposing side,
and we denote the agent-optimal policy asf um

i gM
m =1 .

In CMCPR, it is worth mentioning that each �rm has a
minimum quota constraintq i = [ q1

i ; :::; qM
i ] for all type

workers to �ll and total quota cap isQi . Therefore, we
de�ne the concept of stability as the absence of “blocking
pairs" across all types of workers and �rms.2

2The discussion of the feasibility of the stable matching in

(VI) Matching Score. If pi is matched witham
j at timet,

pi provides a noisy rewardym
i;j (t) which is assumed to be

thetrue matching score� m
i;j plus a noise term� m

i;j (t),

ym
i;j (t) = � m

i;j + � m
i;j (t); (1)

8i; j; m; t 2 [N ]; [K m ]; [M ]; [T ], where we assume that
� m

i;j (t)'s are independently drawn from a sub-Gaussian ran-
dom variable with parameter� . That is, for every� 2 R, it
is satis�ed thatE[exp(�� m

i;j (t))] � exp(� 2� 2=2).

(VII) Regret. Based on model (1), we denote the matching
score forpi asy m

i (t) := y i;u m
t (pi ) (t) in short. De�ne the

�rm-optimal regret withm-type workerfor pi as

Rm
i (T; � ) :=

TX

t =1

[� i; u m
i

� � i;u m
t (pi ) (t)j � ]; (2)

where denote� as the sampled problem instance from the
distribution� . Rm

i (T; � ) represents the total expected score
difference between the policyum

i := f um
t (pi )gT

t =1 and the
optimal policyum

i in hindsight.

As each �rm have to recruitM types workers with total
quotaQi , thetotal �rm-optimal stable regretfor pi is de-
�ned as

Ri (T; � ) :=
MX

m =1

Rm
i (T; � ): (3)

Finally, de�ne theBayesian social welfare gap(BSWG)
R(T) as the expected regret over all �rms and problem
instance,

R(T) := E� 2 �

"
NX

i =1

Ri (T; � )

#

: (4)

The goal of the centralized platform is to design a learning
algorithm that achieves stable matchings through learning
the �rms' complementary preferences for multiple types
of workers preciously from the previous matchings for a
better recommendation. This is equivalent to designing an
algorithm that minimizes BSWGR(T).

3. Challenges and Solutions

When preferences are unknown a priori in matching markets,
the stability issue while satisfying complementary prefer-
ences and quota requirements is a challenging problem due
to the interplay of multiple factors.

Challenge 1: How to design a stable matching algorithm
to solve complementary preferences?This is a preva-
lent issue in real-world applications such as hiring workers
with complementary skills in hospitals and high-tech �rms
or admitting students with diverse backgrounds in college

CMCPR is in Appendix A.
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admissions. Despite its importance, no implementable algo-
rithm is currently available to solve this challenge. In this
paper, we propose a novel approach to resolving this issue
by utilizing a novel designeddouble matching(Algorithm 3)
to marginalize complementary preferences and achieve sta-
bility. Our algorithm can ef�ciently learn a stable matching
result using historical matching data, providing a practical
solution to CMCPR.

Challenge 2: How to balance exploration and exploita-
tion to achieve the sublinear regret?The platform must
�nd a way to recommend the most suitable workers to �rms
to establish credibility among workers and �rms to stay at
the platform towards achieving optimal matching. Com-
pared to traditional matching algorithms, the CMCPR is
not a one-time recommendation algorithm but arecycled
online recommendation matching algorithm with supply
and demand consideration (workers and �rms), which is
more challenging as it requires more time to balance this
trade-off. In addition, the classic UCB bandit methods could
not function well in exploration and suffer sublinear regret
demonstrated in Section 4.2. To overcome this challenge,
we propose the use of a sampling algorithm, which allows
for better exploration and achieves sublinear regret.

4. Algorithms

In this section, we propose the Multi-agent Multi-type
Thompson Sampling algorithm (MMTS), which aims to
learn the true preferences of all �rms over all types of work-
ers, achieve stable matchings, and minimize �rms' Bayesian
regret. We provide a description ofMMTS and demonstrate
the bene�ts of using the sampling method. The overall
MMTS algorithm procedure is in Figure 1. The computa-
tional complexity of MMTS is in Appendix B.

4.1. Algorithm Description

TheMMTS (Algorithm 1) is composed of �ve stages,pref-
erence learning stage, ranking construction stage, double
matching stage, collecting feedback stage, andupdating
belief stage. At each matching stept, MMTS iterates these
�ve steps.

Step 1: Preference Learning Stage.(Algorithm 2). For
agentpi , platform samples the mean feedback (reward)
b� i;j (t) of arm am

j from distributionPm
j with estimated

parameters(� m;t � 1
i;j ; � m;t � 1

i;j ) from the historical matching
data.

Step 2: Ranking Construction Stage.Then the platform
sorts these workers within each type accordingf b� i;j (t)g
in descending order and gets the estimated rankbr m (t) =
f br m

i (t)gN;M
i =1 ;m =1 where we denotebr m

i (t) = f br m
i;j (t)gK m

j =1 .

Step 3: Double Matching Stage.(Algorithm 3). With sam-

Algorithm 1 Multi-agent Multi-type Thompson Sampling
Algorithm (MMTS)
Input : Time horizon T; �rms' priors

(� m; 0
i ; � m; 0

i ); 8i; m 2 [N ]; [M ]; workers'
preference� m ; 8m 2 [M ].

for t 2 f 1; :::; Tg do
STEP 1: PREFERENCE LEARNING STAGE

Sample estimated mean rewardb� m
i (t) over all types

of workers (Algo. 2)
STEP 2: RANKING CONSTRUCTION STAGE

Construct all �rms' estimated rankings
f br m

i (t)gN;M
i =1 ;m =1 accordingb� m

i (t).
STEP 3: DOUBLE M ATCHING STAGE

Get the matching resultum
t (pi ); 8i 2 [N ]; m 2 [M ]

from thedouble matchingin Algo 3.
STEP 4: RECOMMENDING AND COLLECTING

FEEDBACK STAGE

Each �rm receives its corresponding rewards from
recommended all types of workersy m

i (t).
STEP 5: UPDATING BELIEF STAGE

Based on received rewards, the platform updates �rms'
posterior belief.

end

pled mean rewardb� (t) := f b� m
i;j (t)gN;K m ;M

i =1 ;j =1 ;m =1 , estimated
ranksf br m (t)gM

m =1 , quota constraintsf Qi gN
i =1 , the double

matching algorithm provides the �nal matching result with
two-stage matchings.

The goal of the �rst match is to allow all �rms to satisfy their
minimum type-speci�c quotaqm

i �rst followed by sanitizing
the status quo as a priori. The second match is to �ll the
left-over positionseQi (de�ned below) for each �rm and
match �rms and workers without type consideration.

a). First Match: The platform implements the type-
speci�c DA (Algo. 4 in Appendix) given quota constraints
f qm

i gN;M
i =1 ;m =1 . The matching road map starts from match-

ing all �rms with type from 1 toM and returns the matching
result f eum

t (pi )gm 2 [M ]. This step can be implemented in
parallel.

b). Sanitize Quota: After the �rst match, the centralized
platform sanitizes each �rm's left-over quotaeQi = Qi �P M

m =1 qm
i . If there exists a �rmpi ; s:t:; eQi > 0, then the

platform will step into the second match. For those �rms
like pi whose leftover quota is zeroeQi = 0 , they and their
matched workers will skip the second match.

c). Second Match: When rest �rms and workers con-
tinue to join in the second match, the centralized platform
implements the standard DA in Algorithm 5 without type
consideration. That is, the platform re-ranks the restM
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Algorithm 2 Preference Learning Stage

Input : Time horizonT; �rms' priors (� m; 0
i ; � m; 0

i ); 8i 2
[N ]; 8m 2 [M ].

Sample: Sample mean reward b� m
i;j (t) �

P(� m;t � 1
i;j ; � m;t � 1

i;j ), 8i; m; j 2 [N ]; [M ]; [Km ].
Sort: Sort estimated mean feedbackb� m

i;j (t) in descending
order and get the estimated rankbr m

i (t).
Output : The estimated rankbr m

i (t) and the estimated
mean feedbackb� m

i (t), 8i; m 2 [N ]; [M ].

Algorithm 3 Double Matching

Input : Estimated rankbr (t), estimated meanb� m
i (t), type

quotaqm
i ; 8m 2 [M ]; i 2 [N ] and total quota

Qi ; 8i 2 [N ]; workers' preferencef � m gm 2 [M ].
STEP 1: FIRST M ATCH

Given estimated ranksbr (t) and all workers' preferences
� m , the platform operates the �rm-propose DA Algo and
return the matchingf eum

t (pi )g
N;M
i =1 ;m .

STEP 2: SANITIZE QUOTA

Sanitize whether all �rms' positions have been �lled. For
each companypi , if Qi �

P M
m =1 qm

i > 0, set the left quota
as eQi  Qi �

P M
m =1 qm

i for �rm pi .
STEP 3: SECOND M ATCH

if eQ 6= 0 then
Given left quotaf eQi gi 2 [N ], estimated meansb� (t), and
workers' preferencesf � m gm 2 [M ], the platform runs
the �rm-propose DA and return the matching�ut (pi ).

else
Set the matching�ut (pi ) = ; .

Output : The matchingum
t (pi )  Merge(eum

t (pi ); �ut (pi ))
for all �rms.

types of workers who do not have a match in the �rst match
for �rms, and �ll available vacant positions. It is worth
noting that in Algorithm 5, each �rm will not propose to the
previous workers who rejected him/her already or matched
in Step 1. Then �rmpi gets the corresponding matched
workers�ut (pi ) in the second match. Finally, the platform
merges the �rst and second results to obtain a �nal matching
um

t (pi ) = Merge(eum
t (pi ); �ut (pi )) ; 8i; m 2 [N ]; [M ].

Step 4: Recommending and Collecting Feedback Stage.
When the platform broadcasts the matching resultum

t (pi ) to
all �rms, each �rm then receives its corresponding stochastic
rewardy m

i (t); 8i 2 [N ]; m 2 [M ].

Step 5: Updating Belief Stage. After receiving
these noisy rewards, the platform updates �rms' be-
lief (posterior) parameters as follows:(� m;t

i ; � m;t
i ) =

Update(� m;t � 1
i ; � m;t � 1

i ; y m
i (t)) ; 8i 2 [N ]; 8m 2 [M ]:

Figure 2.A comparison of centralized UCB and TS that demon-
strates the incapable exploration of UCB.

4.2. Incapable Exploration

We show why the sampling method has an advantage over
the UCB method in estimating worker ranks. We �nd that
centralized UCB suffers linear �rm-optimal stable regret
in some cases and show it in Appendix C with detailed
experimental setting and analysis.

Why sampling method is capable of avoiding the curse of
linear regret?By the property of sampling shown in Algo-
rithm 2. Firmpi 's initial prior over workerai is a uniform
random variable, and thusr j (t) > r i (t) with probability
b� j � � j , rather thanzero! This differs from the UCB
style method, which cannot updateai 's upper bound due
to lacking exploration overai . The bene�t of TS is that it
can occasionally explore different ranking patterns, espe-
cially when there exists such a previous example. In Figure
2, we show a quick comparison of centralized UCB (Liu
et al., 2020) in the settings shown above andMMTS when
M = 1 ; Q = 1 ; N = 3 ; K = 3 . The UCB method pro-
duces a linear regret for �rm 1 and �rm 2. However, the TS
method achieves a sublinear regret in �rm 1 and �rm 2.

5. Properties of MMTS: Stability and Regret

Section 5.1 demonstrates the double matching algorithm
can provide the stability property forCMCPR. Section 5.2
establishes the Bayesian regret upper bound for all �rms
when they follow theMMTS. Section 5.3 discusses the
incentive-compatibility property of the MMTS.

5.1. Stability

In the following theorem, we show the double matching
algorithm (Algo.3) provides a stable matching solution in
the following theorem.

Theorem 5.1. Given two sides' preferences from �rms and
M types of workers. The double-matching procedure can
provide a �rm-optimal stable matching solution8t 2 [T].
Proof. The sketch proof of the stability property ofMMTS
is two steps, naturally following the design ofMMTS. The
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�rst match is conducted in parallel, and the output is stable
and guaranteed by (Gale & Shapley, 1962). As the need
of MMTS, before the second match, �rms without leftover
quotas (~Q = 0) will quit the second round of matching,
which will not affect the stability. After the quota sanitizing
stage, �rms and leftover workers will continue to join in
the second matching stage, where �rms do not need to
consider the type of workers designed by double matching.
And the DA algorithm still provides a stable result based
on each �rm's sub-preferencelist. The reason is that for
�rm pi , all previous possible favorite workers have been
proposed in the �rst match. If they are matched in the �rst
match, they quit together, which won't affect the stability
property; otherwise, the worker has a better candidate (�rm)
and has already rejected the �rmpi . So for each �rmpi , it
only needs to consider a sub-preference list excluding the
already matched workers in the �rst match and the proposed
workers in the �rst match. It will provide a stable match in
the second match and won't be affected by the �rst match.
So, the overall double matching is a stable algorithm. The
detailed proof can be found in Appendix Section E.

5.2. Bayesian Regret Upper Bound

Next, we provideMMTS's Bayesian total �rm-optimal re-
gret upper bound.

Theorem 5.2. AssumeK max = max f K 1; :::; K M g; K =
P M

m =1 K m , with probability 1 � 1=QT, when all �rms
follow theMMTSalgorithm, �rms together will suffer the
Bayesian expected regret

R(T) � 8Q log(QT)
p

K max T + NK=Q:

Proof. The detailed proof can be found in Appendix F.
Remark. The derived Bayesian regret bound, which is depen-
dent on the square root of the time horizonT and a logarith-
mic term, is nearly rate-optimal. Additionally, we examine
the dependence of this regret bound on other key parame-
ters. The �rst of which is a near-linear dependency on the
total quotaQ. Secondly, the regret bound is dependent only
on thesquare rootof the maximum workerK max of one
type, as opposed to the total number of workers,

P M
m =1 K m

in previous literature (Liu et al., 2020; Jagadeesan et al.,
2021). This highlights the ability of our algorithm,MMTS,
to effectively capture the interactions of multiple types of
matching inCMCPRfor the adaptation to the large market
(K ). The second term in the regret is a constant, which is
only dependent on constantsN; K , and the total quotaQ.
Notably, if we assume that eachqi = 1 andQi = M , then
NK=Q will be reduced toNK= (NM ) = K=M , which is
an unavoidable regret term due to the exploration in bandits
(Lattimore & Szepesvári, 2020). This also demonstrates
that the Bayesian total cumulative �rm-optimal exploration
regret is only dependent on theaveragenumber of workers

of each type available in the market, as opposed to thetotal
number of workers or the maximum number of workers
available of all types. Additionally, if oneQi is dominant
over other �rms' Qi , then the regret will mainly be deter-
mined by that dominant quotaQi andK max , highlighting
the inter-dependence of this complementary matching prob-
lem.

5.3. Incentive-Compatibility

In this section, we discuss the incentive-compatibility prop-
erty of MMTS. That is if one �rm does not match the
worker thatMMTS (platform) recommended when all other
�rms follow MMTS recommended matching objects, which
is equivalent to that �rm submitting ranking preferences
different from the sampled ranking list fromMMTS, and
we know that �rm cannot bene�t (matched with a better
worker than his optimal stable matching worker) over a
sublinear order. As we know, (Dubins & Freedman, 1981)
discussed theMachiavelli �rm could not bene�t from in-
correctly stating their true preference when there exists a
unique stable matching. However, when one side's prefer-
ences are unknown and need to be learned through data, this
result no longer holds. Thus, the maximum bene�ts that can
be gained by the Machiavelli �rm are under-explored in the
setting of learning in matching. (Liu et al., 2020) discussed
the bene�ts that can be obtained by Machiavelli �rms when
other �rms follow the centralized-UCB algorithm with the
problem setting of one type of worker and quota equal one
in the market.

We now show inCMCPR, when all �rms except onepi

accept theirMMTS recommended workers from the match-
ing platform, the �rmpi has an incentive also to follow the
sampling rankings in along horizon, so long as the match-
ing result do not have multiple stable solutions. Now we
establish the following lemma, which is an upper bound of
the expected number of pulls that a �rmpi can match with
a m-type worker that is better than their optimalm-type
workers, regardless of what workers they want to match.

Let's useH m
i;l to de�ne the achievablesub-matchingset of

um when all �rms follow theMMTS, which represents �rm
pi andm� type workeram

l is matched such thatam
l 2 um

i .
Let � u m (T) be the number of times sub-matchingum is
played by timet. We also provide the blocking triplet in a
matching de�nition as follows.

De�nition 5 (Blocking triplet). A blocking triplet
(pi ; ak ; ak 0) for a matchingu is that there must exist a �rm
pi and workeraj that they both prefer to match with each
other than their current match. That is, ifak 0 2 ui , � i;k 0 <
� i;k and workerak is either unmatched or� k;i < � k;u � 1 (k ) .

The following lemma presents the upper bound of the num-
ber of matching times ofpi andam

l by timeT, wheream
l is
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asuper optimalm� type worker(preferred than all stable
optimalm� type workers under true preferences), when all
�rms follow the MMTS.

Lemma 5.1. Let � m
i;l (T) be the number of times a �rmpi

matched with am-type worker such that the mean reward
of am

l for �rm pi is greater thanpi 's optimal matchum
i ,

which is� m
i;a m

l
> max

am
j 2 u m

i

� m
i;j . Then the expected number of

matches betweenpi andam
l is upper bounded by

E[� m
i;l (T)] � min

Sm 2C (H m
i;l )

X

(pj ;a m
k ;a m

k 0)2 Sm

�
Cm

i;j;k 0(T) +
log(T)

d(� j; u m
i; min

; � j;k 0)

�
;

where um
i; min = argmin

am
k 2 u m

j

� m
i;k , and Cm

i;j;k 0 =

O((log(T)) � 1=3).

Then we show the bene�t (lower bound of the regret) of
Machiavelli �rm pi can gain by not following theMMTS
recommended workers. Let's de�ne thesuper reward gap
as�

m
i;l = max

am
j 2 u m

i

� m
i;j � � m

i;l , wheream
l =2 um

i .

Theorem 5.3. Suppose all �rms other than �rmpi follow
the preferences according to theMMTSto the centralized
platform. Then the following upper bound on �rmpi 's
optimal regret form-type workers holds:

Rm
i (T; � ) �

X

l :� m
i;l < 0

�
m
i;l

"

min
Sm 2C (H m

i;l )

X

(pj ;a m
k ;a m

k 0)2 Sm

�
Cm

i;j;k 0 +
log(T)

d(� j; u m
i; min

; � j;k 0)

� #

:

This result can be directly derived from Lemma 5.1. The-
orem 5.3 demonstrates that there is no sequence of pref-
erences that a �rm can manipulate and does not follow
MMTS recommended workers that would achieve negative
optimal regret and its absolute value greater thanO(log T).
Considering M types together for �rmpi , this magnitude re-
mainsO(M logT). Theorem 5.3 con�rms that when there
is a unique stable matching, �rms cannot gain a signi�-
cant advantage in terms of �rm-optimal stable regret due to
incorrect estimated preferences if others follow MMTS.

An example is provided in Section 6.1 to illustrate this
incentive compatibility property. Figure 3(a) illustrates the
total regret, with solid lines representing the aggregate regret
over all types for each �rm and dashed lines representing
each type's regret. It is observed that the type I regret of
p1 is negative, owing to the inaccuracies in the rankings
estimated for bothp1 andp2. A detailed analysis of this
negative regret pattern is given in Appendix Section I.1.

6. Experiments

In this section, we present simulation results to demonstrate
the effectiveness ofMMTS in learning �rms' unknown pref-
erences. The detailed experiment setup and the result can
be found in Appendix Section I. Section 6.1 presents two
examples to analyze the underlying causes of the novel phe-
nomenon of negative regret (gain bene�t by matching with
over-optimal workers) and large market effect. Appendix
Section I.1 showcases the distribution of learning parame-
ters and provides insight into reasons for non-optimal stable
matchings. Additionally, we demonstrate the robustness of
MMTS in large markets in Appendix I.2. All simulation
results are run in 100 trials.

6.1. Two Examples

Example 1.There areN = 2 �rms, M = 2 types of work-
ers, and there areK m = 5 ; 8m 2 [M ]. The quotaqm

i for
each type and each �rmpi is 2, and the total quota/capacity
for each �rm isQi = 5 . The time horizon isT = 2000.

Preferences.True preferences from workers to �rms and
from �rms to workers are all randomly generated. Pref-
erences from workers to �rms'f � m gM

m =1 are �xed and
known. We use the data scientist (D or DS) and software
developer engineer (Sor SDE) as our example. The follow-
ing are true preferences:D1 : p1 � p2; D2 : p1 � p2; D3 :
p2 � p1; D4 : p1 � p2; D5 : p2 � p1; S1 : p1 � p2; S2 :
p1 � p2; S3 : p2 � p1; S4 : p2 � p1; S5 : p1 � p2; and

� 1
1 : D4 � D2 � D3 � D5 � D1;

� 2
1 : S1 � S4 � S5 � S2 � S3;

� 1
2 : D2 � D3 � D1 � D5 � D4;

� 2
2 : S4 � S2 � S5 � S1 � S3:

The true matching scores of each worker for �rms are sam-
pled fromU([0; 1]) and are available in Appendix Table 1.
In addition, feedbackym

i;j (t) (0 or 1) provided by �rms
is generated byBernoulli(� m

i;j (t)) . If two sides' prefer-
ences are known, the �rm optimal stable matching is�u1 =
f [D2; D4]; [S5; S1; S3]g, �u2 = f [D3; D1; D5]; [S4; S2]g by
the double matching algorithm. However, if �rms' prefer-
ences are unknown,MMTS can learn these unknown prefer-
ences and attain the optimal stable matching while achieving
a sublinear regret for each �rm.

MMTS Parameters. We set priors� m; 0
i;j = � m; 0

i;j =
0:1; 8i 2 [N ]; 8j 2 [K m ]; 8m 2 [M ] to limit the strong im-
pact of the prior belief. The update formula for each �rmpi

at timet of the m-type workeram
j : � m;t +1

i;j = � m;t
i;j + 1

if the worker am
j is matched with the �rmpi , that is

am
j 2 um

t (pi ), and the provided score isym
i;j (t) = 1 ; other-

wise � m;t +1
i;j = � m;t

i;j ; � m;t +1
i;j = � m;t

i;j + 1 if the provided

score isym
i;j (t) = 0 , otherwise� m;t +1

i;j = � m;t
i;j . For other
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