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Abstract

Positive and Unlabeled (PU) learning refers to a
special case of binary classification, and techni-
cally, it aims to induce a binary classifier from a
few labeled positive training instances and loads
of unlabeled instances. In this paper, we derive a
theorem indicating that the probability boundary
of the asymmetric disambiguation-free expected
risk of PU learning is controlled by its asym-
metric penalty, and we further empirically eval-
uated this theorem. Inspired by the theorem and
its empirical evaluations, we propose an easy-to-
implement two-stage PU learning method, namely
Positive and Unlabeled Learning with Controlled
Probability Boundary Fence (PUL-CPBF). In the
first stage, we train a set of weak binary classifiers
concerning different probability boundaries by
minimizing the asymmetric disambiguation-free
empirical risks with specific asymmetric penalty
values. We can interpret these induced weak bi-
nary classifiers as a probability boundary fence.
For each unlabeled instance, we can use the pre-
dictions to locate its class posterior probability
and generate a stochastic label. In the second
stage, we train a strong binary classifier over la-
beled positive training instances and all unlabeled
instances with stochastic labels in a self-training
manner. Extensive empirical results demonstrate
that PUL-CPBF can achieve competitive perfor-
mance compared with the existing PU learning
baselines.
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1. Introduction
The traditional binary classification, a.k.a., Positive and
Negative (PN) learning, is a common case of supervised
learning, whose goal, as its name suggests, is to induce a
binary classifier from a set of labeled positive and nega-
tive training instances (Bekker & Davis, 2020). However,
manually annotating sufficient numbers of positive training
instances is often costly and even impractical in many real-
world scenarios, therefore the datasets consisting of a few
labeled positive training instances and loads of unlabeled
ones can be available only (Yang et al., 2012; Ren et al.,
2014; Hsieh et al., 2015). Take the diagnosis of Alzheimer’s
disease for example. Due to the infrequency and long in-
cubation of Alzheimer’s disease, one can only access a
few diagnosed patients (positive) and loads of undiagnosed
individuals (unlabeled), which can be either diseased or
healthy. Learning with such kind of datasets refers to the
paradigm of Positive and Unlabeled (PU) learning, which
has drawn increasing interest recently to meet the urgent
practical demands (Bekker & Davis, 2020).

Many PU learning methods have been developed during the
past decade (Chen et al., 2020a; Li et al., 2022; Zhao et al.,
2022; Zhu et al., 2023). Naturally, a straightforward method-
ology is to induce the binary classifier by minimizing the
disambiguation-free empirical risk, where all unlabeled in-
stances are directly treated as pseudo-negative instances.
However, it empirically suffers from a disambiguation-
free boundary deviation phenomenon, where the boundary
learned by the disambiguation-free empirical risk tends to
deviate from the supervised boundary towards the positive
side (Li et al., 2022), resulting in worse performance. To
promote the disambiguation-free setting, some PU learning
studies formulate a variety of unbiased risk estimators of PN
learning, and the representatives include uPU (du Plessis
et al., 2014; 2015), nnPU (Kiryo et al., 2017), and Dist-
PU (Zhao et al., 2022) etc. In parallel, another branch of
PU learning concentrates on estimating pseudo-labels for
unlabeled instances, and using them to induce the binary
classifier in a self-training manner (Liu et al., 2002; Zhang
& Zuo, 2009; Chaudhari & Shevade, 2012; Luo et al., 2021;
Wang et al., 2023).

Our motivation and contribution. Our motivation be-
gins with an interest in the disambiguation-free boundary
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deviation phenomenon presented in (Li et al., 2022). Our
original goal is to investigate whether this phenomenon can
be supported by a certain theory. We analyzed it from the
perspective of the Bayes optimal classifier expressed by the
probability boundary. We derive a theorem indicating that
the probability boundary of the asymmetric disambiguation-
free expected risk is controlled by the asymmetric penalty.
We conducted several preliminary experiments to evaluate
this theorem, and the empirical results indicated that we can
roughly control the probability boundary by adjusting the
asymmetric penalty values, as presented in Fig.1.

Inspired by the theorem and its empirical evaluations,
we propose a novel two-stage PU learning method,
namely Positive and Unlabeled Learning with Controlled
Probability Boundary Fence (PUL-CPBF). Specifically, in
the first stage, we train a set of weak binary classifiers con-
cerning different probability boundaries by minimizing the
asymmetric disambiguation-free empirical risks with spe-
cific asymmetric penalty values. We can interpret these
induced weak binary classifiers as a probability boundary
fence, and use them to predict each unlabeled instance, lo-
cate its class posterior probability, and generate a stochastic
label. In the second stage, we train a strong binary classifier
over labeled positive training instances and all unlabeled
instances with stochastic labels in a self-training manner.
Generally, PUL-CPBF is easy-to-implement, where any well-
established tricks can be directly applied in the second stage.
We conduct extensive experiments to evaluate the effec-
tiveness of PUL-CPBF on benchmark datasets. Empirical
results indicate that PUL-CPBF can achieve competitive per-
formance compared with the existing PU learning baselines.

In a nutshell, the contributions of this paper are outlined as
follows:

• We derive a theorem indicating that the probability
boundary of the asymmetric disambiguation-free risk is
controlled by the asymmetric penalty, and empirically
evaluate the theorem.

• Inspired by the theorem, we propose a novel two-stage
PU learning method named PUL-CPBF, which assigns
stochastic labels for unlabeled instances by using the
probability boundary fence.

• We conduct extensive experiments to evaluate PUL-
CPBF on benchmark datasets, and the empirical results
indicate that PUL-CPBF can be competitive with the
existing PU learning baselines.

2. Formulation and Analysis
In this section, we introduce the problem formulations and
analyze the asymmetric disambiguation-free expected risk
of PU learning.

2.1. Problem Formulation

Formulation of PN learning. Broadly speaking, PN
learning aims to induce a binary classifier from a set of
labeled positive and negative training instances. Formally,
let X ⊂ Rd and Y = {−1,+1} be the d-dimensional fea-
ture space and label space, respectively. Consider a positive
dataset Dp and a negative dataset Dn drawn from the class
conditional distributions over positive and negative data,
respectively:

Dp := {(xp
i ∈ X ,+1)}np

i=1, xp
i

i.i.d.∼ pp(x);

Dn := {(xn
i ∈ X ,−1)}nn

i=1, xn
i

i.i.d.∼ pn(x),

where pp(x) = p(x|y = +1), pn(x) = p(x|y = −1),
and p(x|y) is the conditional distribution of x given y; xp

and xn denote the labeled positive and negative training in-
stances, respectively; np and nn are the numbers of labeled
positive and negative training instances, respectively. Let
π denote the positive class prior p(y = +1). PN learning
induces a binary classifier f : Rd → Y from Dp∪Dn. Its ex-
pected risk with respect to the data distribution is formulated
as follows:

Rℓ0−1
pn (f) = πEp[ℓ0−1(f(x

p))]+(1−π)En[ℓ0−1(−f(xn))],
(1)

where ℓ0−1(z) = − 1
2 sign(z) + 1

2 is the zero-one loss; Ep[·]
and En[·] are the expectations with respect to pp(x) and
pn(x), respectively. One can minimize the expected risk in
Eq.1 to achieve the Bayes optimal classifier of PN learning,
formulated below:

f∗
Bayes(x) = sign

[
pπ(y = +1|x)− 0.5

]
. (2)

where pπ(y = +1|x) = πpp(x)
p(x) is the class posterior proba-

bility, and p(x) = πpp(x) + (1− π)pn(x).

Formulation of PU learning. PU learning refers to a spe-
cial case of binary classification, and it aims to induce a
binary classifier from a few labeled positive training in-
stances and loads of unlabeled instances. In this work, we
concentrate on the selected completely at random assump-
tion and the two-sample problem setting (Niu et al., 2016),
also known as the case-control scenario (Bekker & Davis,
2020). Denote by np and nu the sizes of labeled positive
and unlabeled datasets. Note that as two random variables,
np and nu are fully independent in the two-sample prob-
lem setting (Niu et al., 2016). Without loss of generality,
we assume that np and nu are independently drawn from
two Binomial distributions B(N, πp) and B(N, πu) respec-
tively, where {N, πp, πu} are the parameters of Binomial
distributions. And consider a labeled positive dataset Dp
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and an unlabeled dataset Du independently drawn as:

np ∼ B(N, πp), nu ∼ B(N, πu),

Dp := {(xp
i ∈ X ,+1)}np

i=1, xp
i

i.i.d.∼ pp(x);

Du := {xu
i ∈ X}nu

i=1, xu
i

i.i.d.∼ p(x),

where xu denotes the unlabeled instance; and nu is the
number of unlabeled instances. The aim of PU learning is
to induce a binary classifier f : Rd → Y from Dp ∪ Du,
however, it is intractable due to the lack of labeled negative
training instances. A straightforward solution is to treat all
unlabeled instances as pseudo-negative instances, rewritten
as Du := {(xu

i ∈ X ,−1)}nu
i=1, and formulate the following

disambiguation-free expected risk:

Rℓ0−1
pu (f) = π̂Ep[ℓ0−1(f(x

p))]+(1−π̂)Eu[ℓ0−1(−f(xu))],
(3)

where π̂ =
πp

πp+πu
; and Eu[·] is the expectation with respect

to p(x).

To handle the asymmetric error, an asymmetric extension
of disambiguation-free expected risk can be formulated as
follows (Scott, 2012):

Rℓ0−1
apu (f) = (1− β)π̂Ep[ℓ0−1(f(x

p))]

+ β(1− π̂)Eu[ℓ0−1(−f(xu))], (4)

where β ∈ (0, 1) denotes the asymmetric penalty.

2.2. Analysis of Asymmetric Disambiguation-free Risk

We can expand and rearrange the risk of Eq.4 as follows:

Rℓ0−1
apu (f) = (1− β)π̂Ep[ℓ0−1(f(x))]

+ β(1− π̂)Ep̂n(x)[ℓ0−1(−f(x))]

= ((1− β)π̂ − βπ(1− π̂))Ep[ℓ0−1(f(x))]

+ β(1− π)(1− π̂)En[ℓ0−1(−f(x))]

+ βπ(1− π̂). (5)

The derivation depends on the fact ℓ0−1(z)+ℓ0−1(−z) = 1.
Note that the term βπ(1− π̂) is a constant given a specific
PU data distribution. Minimizing this risk is equivalent to
minimizing a homogeneous form of the expected risk of PN
learning. Accordingly, we can analyze its corresponding
Bayes optimal classifier and present the following theorem.

Theorem 2.1. Given π̂ and the positive class prior π in
the asymmetric disambiguation-free expected risk in Eq.(5),
and 0 < β < π̂

π̂+π−π̂π , the following equation holds:

f∗
Bayes-apu = sign

[
pπ(y = +1|x)− α

]
,

where α = βπ(1−π̂)
(1−β)π̂ , and accordingly β = απ̂

απ̂+π−ππ̂ .

Proof. We first constrain the coefficients ((1−β)π̂−βπ(1−
π̂)) and β(1−π)(1−π̂) in Eq.(5) to be positive, and then de-
rive the result in Theorem 2.1 by employing the asymmetric
expected risk of PN learning.

Firstly, by constraining the coefficients ((1−β)π̂−βπ(1−
π̂)) > 0 and β(1− π)(1− π̂) > 0 in Eq.(5) with β, π, π̂ ∈
(0, 1), we have

0 < β <
π̂

π̂ + π − π̂π
. (6)

Secondly, consider the asymmetric expected risk of PN
learning suggested in (Scott, 2012):

Rℓ0−1
apn = (1− α)πEp[ℓ0−1(f(x

p))]

+ α(1− π)En[ℓ0−1(−f(xn))]. (7)

Normalizing γ = ((1−β)π̂−βπ(1− π̂))+β(1−π)(1− π̂)
and (1− α)π + α(1− π) to one and equating the expected
risks of Eq.(7) and Eq.(5), we have

(1− β)π̂ − βπ(1− π̂)

γ
=

(1− α)π

(1− α)π + α(1− π)
. (8)

And by solving the above equation based on the given la-
beled positive proportion π̂ of the PU data and the positive
class prior π, the Bayes optimal classifier is given by:

f∗
Bayes-apu(x) = sign

[
πpp(x)

p(x)
−α

]
, α =

βπ(1− π̂)

(1− β)π̂
. (9)

Combining Eqs.(6) and (9), the final conclusion of Theorem
2.1 is given.

Discussion. According to Theorem 2.1, we can interpret
α as the probability boundary of the corresponding Bayes
optimal classifier. And we can control α by adjusting β in
the asymmetric disambiguation-free risk.

2.3. Empirical Evaluation of Theorem 2.1

To evaluate whether we can control α by adjusting β, we
conducted several preliminary experiments on 2 benchmark
PU datasets, i.e., CIFAR-10-1 and F-MNIST-1. We employ
a binary classifier f consisting of a pre-trained backbone
and a classification layer. More setting details can be found
in the experiment part.

Given any dataset Dp ∪ Du, we can specify the asymmetric
disambiguation-free expected risk of Eq.4 as the following
empirical risk:

Lβ(Dl,Du) =
(1− β)π̂

nl

nl∑
i=1

ℓlog(f(x
p
i ))

+
β(1− π̂)

nu

nu∑
i=1

ℓlog(−f(xu
i )), (10)
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Figure 1: Rates of training instances Predicted as Positive (PP Rate), computed by the binary classifiers trained by the
asymmetric disambiguation-free empirical risks with different α values and the empirical risk of PN learning. Best viewed
in color.

Figure 2: Empirical classification accuracy scores predicted by the binary classifiers trained by the asymmetric
disambiguation-free empirical risks with different α values and the empirical risk of PN learning. Best viewed in color.

where ℓlog(z) = log(1+ exp(−z)) is the logistic loss, used
as the surrogate one for ℓ0−1 since it is intractable to min-
imize. For datasets whose class prior π is unknown, we
apply the well-established KM2 method (Ramaswamy et al.,
2016) to estimate their π. And because πp and πu are un-
known, we can approximate π̂ with the proportion of labeled
positive instances np

np+nu
in practice. Then we can adjust the

values of β to vary α from the range {0.1, 0.3, 0.5, 0.7, 0.9}.
For each synthetic PU dataset, we independently minimize
these 5 asymmetric disambiguation-free empirical risks with
the corresponding values of β. To evaluate different risks in
the same feature space, we freeze the pre-trained backbone
and optimize the parameter of the classification layer only.
Additionally, to build reference results, we also optimize the
classification layer by minimizing the empirical risk of PN
learning over the same datasets with ground-truth labels.

The empirical results are presented in Fig.1. We present the
rate of training instances Predicted as Positive (PP rate) for
the binary classifier concerning different values of α. We
can observe that the order of PP rate is strictly consistent
with the order of α. That is to say, higher values of α

imply less number of training instances can be predicted as
positive. These empirical results suggest empirical support
for Theorem 2.1.

Discussion on the results of the optimal β. In theory,
the asymmetric disambiguation-free expected risk with the
specific β (i.e., optimal β) leading to α = 0.5 is equiv-
alent to the expected risk of PN learning. However, our
preliminary empirical results (partially shown in Fig.2) in-
dicated that the binary classifiers trained by their empirical
risks showed a significant performance gap in most cases.
Besides, the empirical results also showed that the binary
classifier trained with the optimal β was not always optimal
compared with the ones trained with other β. For example,
α = 0.5 performs worse than α = 0.3 on FashionMNIST-1.
This phenomenon may be caused by various reasons, such
as the surrogate loss of the zero-one loss and less accurate
estimations of π and π̂, resulting in the difference between
theory and practice. Therefore we argue that inducing binary
classifiers with the optimal β can be an efficient candidate
of PU learning but not a stable one.
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3. Proposed PUL-CPBF Method
In this section, we introduce the proposed PUL-CPBF
method for PU learning.

3.1. Overview of PUL-CPBF

Inspired by Theorem 2.1 and its empirical evaluations, given
any PU dataset, we can efficiently train a set of weak bi-
nary classifiers concerning different α values, denoted by
fα, by minimizing the asymmetric disambiguation-free em-
pirical risks with specific values of β. Given these trained
weak binary classifiers, we can apply them to form a prob-
ability boundary fence. For example, given the trained
ones f0.9 and f0.7, an unlabeled instance xu predicted by
f0.9(x

u) = −1 and f0.7(x
u) = +1 must locate between

their classification boundaries, so its class posterior proba-
bility pπ(y = +1|xu) locates in the probability boundary
range (0.7, 0.9). Accordingly, we can assign xu a stochas-
tic label uniformly drawn from (0.7, 0.9). With labeled
positive training instances and all unlabeled instances with
stochastic labels, we can then train a strong binary classifier
in a self-training manner.

Upon the aforementioned ideas, we develop PUL-CPBF
consisting of two stages, named generating stochastic la-
bels with probability boundary fence and self-training with
stochastic labels. In the following subsections, we will
introduce the two stages in more detail.

3.2. Generating Stochastic Labels with Probability
Boundary Fence

Given a PU dataset Dp ∪ Du, we independently train a set
of weak binary classifiers {fαj

}mj=1 with different values
of {αj}mj=1. To induce these weak binary classifiers in
the same feature space, they share the same pre-trained
backbone parameterized by Θ and use specific classification
layers parameterized by {Wj}mj=1. In this stage, we freeze
Θ for efficiency. In terms of each fαj , we optimize Wj by
minimizing the asymmetric disambiguation-free empirical
risk with the specific value of βj computed by Theorem 2.1
based on αj :

Lβj
(Dl,Du;Wj) =

(1− βj)π̂

nl

nl∑
i=1

ℓlog(fαj
(xp

i ))

+
βj(1− π̂)

nu

nu∑
i=1

ℓlog(−fαj
(xu

i )).

(11)

We can use all trained weak binary classifiers {f∗
αj
}mj=1 to

express the probability boundary fence. For each unlabeled
instance xu

i , we use {f∗
αj
}mj=1 to generate its stochastic label

ysi ∈ (0, 1). To be specific, we predict xu
i by leveraging

each one of {f∗
αj
}mj=1, and then use the predictions to judge

the probability boundary range (pli, p
r
i ), where its class

posterior probability pπ(y = +1|xu
i ) is located:

(pli,p
r
i ) = (12)
(0, α1), if f∗

α1
(xu

i ) = −1;

(αj , αj+1), if f∗
αj
(xu

i ) = +1, f∗
αj+1

(xu
i ) = −1;

(αm, 1), if f∗
αm

(xu
i ) = +1.

We can then uniformly draw ysi from (pli, p
r
i ). Perform-

ing this process for all unlabeled instances, we can re-
form Du as a dataset with stochastic labels, denoted by
D̂u := {(xu

i , y
s
i )}

nu
i=1.

3.3. Self-training with Stochastic Labels

In this stage, we train a strong binary classifier fs over
Dp ∪ D̂u in a self-training manner. Specifically, fs consists
of the same pre-trained backbone parameterized by Θ and
a classification layer parameterized by W. we optimize
{Θ,W} by minimizing the following empirical risk:

L(Dl, D̂u;Θ,W) =
1

nl

nl∑
i=1

ℓce(f
s(xp

i ),+1)

+
1

nu

nu∑
i=1

ℓce(f
s(xu

i ), y
s
i ) +R, (13)

where ℓce(z1, z2) = −z2 log(z1) − (1 − z2) log(1 − z1)
denotes the cross-entropy loss; and R is the regularization
term. Due to the stochastic labels of unlabeled instances may
be imprecise, we iteratively refine each stochastic label ysi
by leveraging the sharpened prediction score of the current
classifier as follows:

ysi = (1−η)ysi+ηqi, qi =
(fs(xu

i ))
T

(fs(xu
i ))

T + (1− fs(xu
i ))

T
,

(14)
where fs(xu

i ) ∈ (0, 1) denotes the prediction score of the
current classifier for xu

i ; η is a smoothing parameter; and T
is the temperature parameter.

In this work, we specify R in Eq.13 by the consistency
regularization term with data augmentation. Due to the
space limit, we refer the readers to more details in (Sohn
et al., 2020).

4. Related Works
Weakly-supervised learning surveyed by (Zhou, 2018) is
classified into three kinds of weak supervision, including
incomplete labels (van Engelen & Hoos, 2020; Li et al.,
2021a; Pei et al., 2020; 2024; Yang et al., 2023b;a), inac-
curate labels (Li et al., 2020b; Nguyen et al., 2020), and
inexact labels (Feng et al., 2020a;b; Li & Wang, 2020; Li
et al., 2020a; 2021b). Generally, PU learning belongs to the
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Table 1: Specification of datasets and corresponding backbones. #Train: the number of training instances. #Test: the number
of test instances.

Dataset #Train #Test Input size Backbone

F-MNIST 60,000 10,000 28×28 LeNet-5
CIFAR-10 50,000 10,000 3×32×32 7-layer CNN

STL-10 105,000 8,000 3×96×96 7-layer CNN
Alzheimer 5,121 1,279 3×224×224 ResNet-50

learning paradigm with incomplete labels, since no labeled
negative instances are available. To the best of our knowl-
edge, the existing PU learning methods can be grouped
into two branches, including cost-sensitive methods and
pseudo-labeling methods.

The cost-sensitive methods treat all unlabeled instances as
noisy negative instances and propose various empirical risks
of PU learning to correct the estimation bias. The straightfor-
ward methodology is the naive disambiguation-free empiri-
cal risk, however, it is a bias risk estimator of the empirical
risk of PN learning. uPU rearranges the disambiguation-
free empirical risk to formulate an unbiased risk estimator
(du Plessis et al., 2014; 2015). nnPU, i.e., the non-negative
extension of uPU, further tackles the negative risk problem
caused by overfitting, especially when applying deep learn-
ing backbones (Kiryo et al., 2017). Dist-PU drives the label
distribution consistency between the predicted and ground-
truth label distributions to mitigate the negative-prediction
preference issue (Zhao et al., 2022). There are some other
representative methods such as self-PU promoted by three
self-supervision techniques (Chen et al., 2020c), PULD with
margin-based label disambiguation (Zhang et al., 2019), and
LLSVM performing label refinement by using a hat loss
(Gong et al., 2019).

In parallel, the pseudo-labeling methods generate pseudo-
labels for unlabeled instances before training the binary
classifiers. Some early studies generate pseudo-labels by
leveraging heuristic strategies based on traditional machine
learning methods, such as Naı̈ve Bayes (Liu et al., 2002), 1-
DNF (Yu et al., 2002; 2004; Peng et al., 2008), kNN (Zhang
& Zuo, 2009), and k-means (Chaudhari & Shevade, 2012),
etc. Some recent methods promote the precision of pseudo-
labels by further exploiting the well-established techniques.
For example, PULNS formulates PU learning under the re-
inforcement learning framework, which incorporates a neg-
ative instance selector to generate pseudo-labels (Luo et al.,
2021). Based on the observation that the predictive trends of
unlabeled positive and negative instances present different
patterns, HolisticPU transforms the pseudo-labeling process
into an interesting predictive trend detection problem (Wang
et al., 2023).

Besides the PU learning methods mentioned above, there

are several other interesting methods. Some PU learning
methods are built on the framework of adversarial genera-
tive networks (Hou et al., 2018; Chiaroni et al., 2018; Guo
et al., 2020; Na et al., 2020; Hu et al., 2021), generating
negative instances with the generator and then training the
binary classifier with them. Additionally, some other PU
learning methods (Wei et al., 2020; Li et al., 2022) turn to
data augmentation techniques such as mixup (Zhang et al.,
2018). For example, P3Mix enriches and promotes the
precise supervision of unlabeled instances by using a heuris-
tic mixup partner selection method based on the observed
disambiguation-free boundary deviation phenomenon (Li
et al., 2022).

Orthogonal to the existing PU learning methods, in this
work we suggest a new concept of probability boundary
fence expressed by a set of weak binary classifiers trained
with the asymmetric disambiguation-free empirical risks
with specific asymmetric penalty values. We can use them
to generate stochastic labels for unlabeled instances. The
idea is supported by a proven theorem, and the proposed
PUL-CPBF method can be easy-to-implement since any well-
established tricks can be directly applied to promote PU
learning with stochastic labels.

5. Experiments
In this section, we present the empirical results on bench-
mark PU learning settings.

5.1. Experimental Settings

Datasets In the experiments, we employ 3 prevalent
benchmark datasets, including FashionMNIST (F-MNIST)
(Xiao et al., 2017),1 CIFAR-10 (Krizhevsky, 2016),2 and
STL-10 (Coates et al., 2011),3 and a real-world dataset on
Alzheimer diagnosis (Alzheimer).4 The statistics of those

1https://github.com/zalandoresearch/fashi
on-mnist

2http://www.cs.toronto.edu/˜kriz/cifar.ht
ml

3https://cs.stanford.edu/˜acoates/stl10
4Dubey, S. Alzheimer’s Dataset. Available online: https:

//www.kaggle.com/tourist55/alzheimers-datas
et-4-class-of-images
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Table 2: Positive and negative label groups of datasets and the statistics of those PU training sets. #Valid: the number of
validation instances.

Dataset Positive Class Negative Class π nl nu #Valid

F-MNIST-1 0, 2, 4, 6 1, 3, 5, 7, 8, 9 0.4 1,000 59,500 500
F-MNIST-2 1, 3, 5, 7, 8, 9 0, 2, 4, 6 0.6 1,000 59,500 500
CIFAR-10-1 airplane, truck, automobile, ship bird, cat, deer, dog, frog, horse 0.4 1,000 49,500 500
CIFAR-10-2 bird, cat, deer, dog, frog, horse airplane, truck, automobile, ship 0.6 1,000 49,500 500

STL-10-1 0, 2, 3, 8, 9 1, 4, 5, 6, 7 – 1,000 104,500 500
STL-10-2 1, 4, 5, 6, 7 0, 2, 3, 8, 9 – 1,000 104,500 500
Alzheimer Demented Non-Demented 0.5 1,000 5,121 –

datasets are described in Table 1. Note that some of them
contain multiple category labels, therefore following the pro-
cessing of conventions (Kato et al., 2019), we pre-process
them as binary classification datasets by grouping those cat-
egory labels into two disjoint sets as positive and negative,
respectively. For the training set of each dataset, we form its
PU version(s) composed of a few labeled positive instances
drawn from its positive dataset, a certain number of valida-
tion instances drawn from the full dataset, and unlabeled
instances, i.e., the remaining instances eliminating their la-
bels. The statistics of those PU training sets are described
in Table 2.

Baseline methods In the experiments, we employ 10 ex-
isting PU learning methods as baselines. They include uPU
(du Plessis et al., 2014), nnPU (Kiryo et al., 2017), Self-PU
(Chen et al., 2020c), VPU (Chen et al., 2020a), PULNS
(Luo et al., 2021), PAN (Hu et al., 2021), Dist-PU (Zhao
et al., 2022), P3Mix (Li et al., 2022), Robust-PU (Zhu et al.,
2023), and HolisticPU (Wang et al., 2023). In terms of
P3Mix, its two versions named P3Mix-E and P3Mix-C are
all employed. Besides, we also use the PN learning method
as a special baseline. In terms of all comparing methods,
we apply the backbones for different datasets as follows:
LeNet-5 for F-MNIST, 7-layer CNN for CIFAR-10 and
STL-10, and ResNet-50 for Alzheimer. The details are pre-
sented in Table 1. Additionally, the positive class prior π
is required by uPU, nnPU, Self-PU, and PUL-CPBF. There-
fore, in terms of STL-10 whose π is unknown, we apply the
well-established KM2 method (Ramaswamy et al., 2016)
to estimate its π before training uPU, nnPU, Self-PU, and
PUL-CPBF.

In terms of Robust-PU,5 HolisticPU,6 and PUL-CPBF, we
run their source codes 5 times for each dataset and report
the average results. Besides the three methods mentioned
above, the results of all other comparing methods are from
the public literature.

5https://github.com/woriazzc/robust-pu
6https://github.com/wxr99/HolisticPU

Evaluation metrics We employ the classification accu-
racy as the main criterion. And for the biasedly selected
Alzheimer dataset, we also provide additional metrics, in-
cluding F1 score, Recall, Precision, and Area Under ROC
Curve (AUC) for a more comprehensive comparison. All
metrics are calculated by using the Scikit-Learn tool (Pe-
dregosa et al., 2011).7

Implementation details. We implement in-house code for
PUL-CPBF by using Pytorch (Paszke et al., 2019). We em-
ploy the stochastic gradient descent optimizer and select the
learning rate from {0.001, 0.0015, 0.002, 0.0025, 0.003}
and weight decay from {5e−5, 1e−4, 5e−4, 1e−3, 5e−3}.
The probability boundary range is set to α ∈
{0.1, 0.3, 0.5, 0.7, 0.9}, and the positive class prior of the
PU data π̂ is estimated by the proportion of labeled posi-
tive training instances. Given specific π, π̂, and α, we then
compute the corresponding value of β for each case. The
epoch numbers of the first and second stages of PUL-CPBF
are all set to 25. The batch sizes of the first and second
stages are set to 32 and 16, respectively. We also clamp
the logits between −10 and 10 to avoid the potantial NaN
error in Eqs.(11) and (13) following (Zhao et al., 2022). Be-
sides, the backbones for each dataset are all pre-trained by
contrastive learning (Chen et al., 2020b).

5.2. Results and Analysis

The empirical results of all baseline methods across 7 bench-
mark PU datasets are presented in Tables 3 and 4. Overall
speaking, we can obverse that PUL-CPBF performs the high-
est scores compared with all PU learning baseline methods.
It can be seen that PUL-CPBF consistently outperforms the
recent competitor HolisticPU in all settings. For example,
in terms of STL-10-1 and STL-10-2, the accuracy improve-
ments of PUL-CPBF to HolisticPU are about 0.9 and 1.3,
respectively. These results imply that the stochastic labels
generated by PUL-CPBF are precise to the ground-truth ones.
Compared with other recent competitors such as P3Mix

7https://scikit-learn.org/stable/

7

https://github.com/woriazzc/robust-pu
https://github.com/wxr99/HolisticPU
https://scikit-learn.org/stable/


Positive and Unlabeled Learning with Controlled Probability Boundary Fence

Table 3: Results of classification accuracy (mean±std) on PU datasets formed by F-MNIST, CIFAR-10, and STL-10. The
highest scores among PU learning methods are indicated in bold.

Method F-MNIST-1 F-MNIST-2 CIFAR-10-1 CIFAR-10-2 STL-10-1 STL-10-2

uPU (du Plessis et al., 2015) 81.6±1.2 85.7±2.6 76.5±2.5 71.6±1.4 76.7±3.8 78.2±4.1
nnPU (Kiryo et al., 2017) 91.4±0.6 90.2±0.7 84.7±2.4 83.7±0.6 77.1±4.5 80.4±2.7

Self-PU (Chen et al., 2020c) 90.8±0.4 89.1±0.7 85.1±0.8 83.9±2.6 78.5±1.1 80.8±2.1
VPU (Chen et al., 2020a) 92.6±1.2 90.5±0.8 86.8±1.2 82.5±1.1 78.4±1.1 82.9±0.7
PULNS (Luo et al., 2021) 91.0±0.5 89.1±0.8 87.2±0.6 83.7±2.9 80.2±0.8 83.6±0.7

PAN (Hu et al., 2021) 87.7±2.4 89.9±3.2 87.0±0.3 82.8±1.0 77.7±2.5 79.8±1.4
Dist-PU (Zhao et al., 2022) 95.1±0.2 94.9±0.4 87.8±0.8 80.8±0.8 78.4±2.5 83.0±3.0
P3Mix-E (Li et al., 2022) 92.6±0.4 91.8±0.2 88.2±0.4 84.7±0.5 80.2±0.9 83.7±0.7
P3Mix-C (Li et al., 2022) 92.8±0.6 90.4±0.1 88.7±0.4 87.9±0.5 80.7±0.7 84.1±0.3

Robust-PU (Zhu et al., 2023) 90.0±0.5 85.5±0.7 80.0±0.6 85.2±1.1 79.6±0.9 80.4±0.8
HolisticPU (Wang et al., 2023) 96.2±0.1 96.0±0.3 91.0±0.3 90.4±0.5 82.5±0.5 84.0±1.2

PUL-CPBF (Ours) 96.7±0.3 96.5±0.2 91.4±0.2 91.0±0.3 83.4±0.7 85.4±1.2
PN learning 97.7±0.1 97.7±0.1 91.9±0.1 91.9±0.1 86.0±0.6 86.0±0.6

Table 4: The classification performance (mean±std) on the Alzheimer benchmark. The highest scores among PU learning
methods are indicated in bold.

Method F1 score Accuracy Recall Precision AUC

uPU (du Plessis et al., 2015) 67.6±2.8 68.5±2.2 66.1±6.1 69.7±3.5 73.8±2.9
nnPU (Kiryo et al., 2017) 68.6±3.2 68.3±2.1 69.5±7.2 68.0±2.3 72.9±2.8

Self-PU (Chen et al., 2020c) 72.1±1.1 70.9±0.7 75.4±5.1 69.3±2.5 75.9±1.8
VPU (Chen et al., 2020a) 70.2±1.1 67.4±0.7 76.7±3.6 64.7±1.1 73.1±0.9

Dist-PU (Zhao et al., 2022) 73.7±1.6 71.6±0.6 80.1±5.1 68.5±1.2 77.1±0.7
HolisticPU (Wang et al., 2023) 74.5±2.4 72.8±0.9 79.5±5.8 70.2±1.6 77.1±2.3

PUL-CPBF (Ours) 75.3±1.4 73.4±0.7 79.8±5.3 71.4±1.3 81.1±0.9
PN Learning 77.4±1.1 74.9±1.2 83.3±1.5 72.3±0.8 82.8±0.7

and Dist-PU, PUL-CPBF also significantly performs better
in all settings, where, for example, the improvements of
PUL-CPBF are achieved about 2.7 ∼ 10.2 across CIFAR-
10-1 and CIFAR-10-2. From the dataset perspective, we
can observe that PUL-CPBF is more stable than most PU
learning baselines across both balanced PU datasets formed
by STL-10 and relatively imbalanced ones formed by F-
MNIST and CIFAR-10. These empirical results indirectly
imply the robustness of PUL-CPBF supported by Theorem
2.1, which has taken the positive class prior into consider-
ation. Surprisingly, the accuracy scores of PUL-CPBF are
even approaching those of PN learning, where the perfor-
mance gap is only about 0.5 ∼ 2.6 across all benchmark PU
datasets. The competitive performance compared with PN
learning further indicates the effectiveness of PUL-CPBF.

Furthermore, as illustrated in Table 4, our PUL-CPBF also
consistently outperforms other methods in most cases and
achieves comparable performance on the Alzheimer dataset
to the SOTA baselines DistPU and HolisticPU, in which var-

ious regularization techniques and data augmentation strate-
gies are employed. The balanced good performance of our
PUL-CPBF on the biasedly selected real-world Alzheimer
dataset across all evaluation metrics further demonstrates its
effectiveness.

5.3. Evaluation of Probability Boundary Range

We empirically evaluate different probability boundary
ranges of α across 6 benchmark PU datasets. The em-
pirical results are presented in Table 5. Overall speak-
ing, we can observe that our PUL-CPBF is insensitive to
the probability boundary range of α, while the accuracy
scores of dense probability boundary ranges are slightly
higher than those of sparse ones. For example, the ac-
curacy scores of {0.1, 0.3, 0.5, 0.7, 0.9} are consistently
higher than those of {0.2, 0.5, 0.8} and {0.1, 0.5, 0.9}. Con-
sidering the trade-off between efficiency and effectiveness,
we suggest that the probability boundary range of α is set
to {0.1, 0.3, 0.5, 0.7, 0.9} in practice.

8
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Table 5: Classification accuracy results of different probability boundary ranges of α (mean±std) on PU datasets formed by
F-MNIST, CIFAR-10, and STL-10. The highest scores are indicated in bold.

Probability boundary range F-MNIST-1 F-MNIST-2 CIFAR-10-1 CIFAR-10-2 STL-10-1 STL-10-2
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} 96.6±0.2 96.6±0.3 91.2±0.1 91.1±0.3 83.5±0.6 85.3±0.9

{0.1, 0.3, 0.5, 0.7, 0.9} 96.7±0.3 96.5±0.2 91.4±0.2 91.0±0.3 83.4±0.7 85.4±1.2
{0.2, 0.5, 0.8} 96.5±0.4 96.1±0.3 91.3±0.1 90.8±0.4 83.1±0.6 85.2±0.9
{0.1, 0.5, 0.9} 96.1±0.2 96.0±0.3 90.7±0.2 90.6±0.2 82.8±0.7 84.7±0.8

Table 6: Real running time (seconds) on PU datasets formed by F-MNIST, CIFAR-10, and STL-10.

Method F-MNIST-1 F-MNIST-2 CIFAR-10-1 CIFAR-10-2 STL-10-1 STL-10-2
PUL-CPBF 213.47 214.34 333.28 333.53 421.39 428.77
HolisticPU 414.72 419.94 450.72 450.12 761.47 777.84

Dist-PU 47.97 47.47 298.84 299.05 386.05 397.36

5.4. Time Efficiency

We compare the running time between a cost-sensitive
method Dist-PU,8 a pseudo-labeling method HolisticPU,
and our PUL-CPBF. For each comparing method, we inde-
pendently perform 50 epochs in total regardless of classifi-
cation results. Specifically, for HolisticPU and PUL-CPBF,
the epoch numbers of the first and second stages are all set
to 25, and for Dist-PU, the epoch numbers of the warmup
and training stages are all set to 25. All experiments are
performed on a server with one Nvidia RTX4090 GPU.

We show the running time in Table 6. It can be clearly seen
that PUL-CPBF is more efficient than HolisticPU, while only
costs a little more time compared with Dist-PU due to em-
ploying data augmentation. We consider that although in
PUL-CPBF we induce several weak binary classifiers, we
freeze the pre-trained backbones but optimize the classifica-
tion layers only. Therefore we consider that PUL-CPBF is
an efficient and practical candidate for PU learning.

6. Conclusion
In this paper, we analyze the asymmetric disambiguation-
free expected risk of PU learning, and indicate the probabil-
ity boundary can be controlled by the asymmetric penalty.
In the preliminary experiments, we observed the consistency
between the analysis and empirical results. Inspired by these
findings, we propose to build a probability boundary fence
expressed by a set of weak binary classifiers, trained with
the asymmetric disambiguation-free empirical risks with
specific asymmetric penalty values. We can then assign
each unlabeled instance a stochastic label by using the pre-
dictions of these weak binary classifiers. Finally, we can

8https://github.com/Ray-rui/Dist-PU-Posit
ive-Unlabeled-Learning-from-a-Label-Distr
ibution-Perspective

train a strong binary classifier with these stochastic labels
in a self-training manner. Upon these ideas, we suggest an
easy-to-implement PU learning method named PUL-CPBF.
We comprehensively evaluate PUL-CPBF by comparing with
the existing PU learning baselines on benchmark datasets.
The experimental results indicate the effectiveness and effi-
ciency of PUL-CPBF.
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