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Abstract

Modern compression methods can summarize a
target distribution P more succinctly than i.i.d.
sampling but require access to a low-bias input
sequence like a Markov chain converging quickly
to P. We introduce a new suite of compression
methods suitable for compression with biased
input sequences. Given n points targeting the
wrong distribution and quadratic time, Stein Ker-
nel Thinning (SKT) returns

√
n equal-weighted

points with Õ(n−1/2) maximum mean discrep-
ancy (MMD) to P. For larger-scale compression
tasks, Low-rank SKT achieves the same feat in
sub-quadratic time using an adaptive low-rank
debiasing procedure that may be of independent
interest. For downstream tasks that support sim-
plex or constant-preserving weights, Stein Re-
combination and Stein Cholesky achieve even
greater parsimony, matching the guarantees of
SKT with as few as poly-log(n) weighted points.
Underlying these advances are new guarantees
for the quality of simplex-weighted coresets, the
spectral decay of kernel matrices, and the cov-
ering numbers of Stein kernel Hilbert spaces.
In our experiments, our techniques provide suc-
cinct and accurate posterior summaries while
overcoming biases due to burn-in, approximate
Markov chain Monte Carlo, and tempering.

1. Introduction
Distribution compression is the problem of summarizing
a target probability distribution P with a small set of rep-
resentative points. Such compact summaries are particu-
larly valuable for tasks that incur substantial downstream
computation costs per summary point, like organ and tissue

1MIT CSAIL 2Cornell Tech 3Microsoft Research New
England. Correspondence to: Lingxiao Li <lingxiao@mit.edu>,
Raaz Dwivedi <dwivedi@cornell.edu>, Lester Mackey
<lmackey@microsoft.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024
by the author(s).

modeling in which each simulation consumes thousands of
CPU hours (Niederer et al., 2011).

Remarkably, modern compression methods can summarize
a distribution more succinctly than i.i.d. sampling. For ex-
ample, kernel thinning (KT) (Dwivedi and Mackey, 2021;
2022), Compress++ (Shetty et al., 2022), recombination
(Hayakawa et al., 2023), and randomly pivoted Cholesky
(Epperly and Moreno, 2024) all provide Õ(1/m) approx-
imation error using m points, a significant improvement
over the Ω(1/

√
m) approximation provided by i.i.d. sam-

pling from P. However, each of these constructions relies
on access to an accurate input sequence, like an i.i.d. sam-
ple from P or a Markov chain converging quickly to P.

Much more commonly, one only has access to n biased
sample points approximating a distribution Q ̸= P. Such
biases are a common occurrence in Markov chain Monte
Carlo (MCMC)-based inference due to tempering (where
one targets a less peaked and more dispersed distribution to
achieve faster convergence, Gramacy et al., 2010), burn-in
(where the initial state of a Markov chain biases the dis-
tribution of chain iterates, Cowles and Carlin, 1996), or
approximate MCMC (where one runs a cheaper approxi-
mate Markov chain to avoid the prohibitive costs of an ex-
act MCMC algorithm, e.g., Ahn et al., 2012). The Stein
thinning (ST) method of Riabiz et al. (2022) was devel-
oped to provide accurate compression even when the input
sample sequence provides a poor approximation to the tar-
get. ST operates by greedily thinning the input sample to
minimize the maximum mean discrepancy (MMD, Gretton
et al., 2012) to P. However, ST is only known to provide an
O(1/

√
m) approximation to P; this guarantee is no better

than that of i.i.d. sampling and a far cry from the Õ(1/m)
error achieved with unbiased coreset constructions.

In this work, we address this deficit by developing new, ef-
ficient coreset constructions that provably yield better-than-
i.i.d. error even when the input sample is biased. For P on
Rd, our primary contributions are fourfold and summarized
in Tab. 1. First, for the task of equal-weighted compres-
sion, we introduce Stein Kernel Thinning (SKT, Alg. 1),
a strategy that combines the greedy bias correction prop-
erties of ST with the unbiased compression of KT to pro-
duce

√
n summary points with error Õ(n−1/2) in O(n2)

time. In contrast, ST would require Ω(n) points to guaran-
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Table 1: Methods for debiased distribution compression. For each method, we report the smallest coreset size m and
running time, up to logarithmic factors, sufficient to guarantee Õ(n−1/2) MMDkP to P given a LOGGROWTH kernel kP
and n slow-growing input points Sn = (xi)

n
i=1 from a fast-mixing Markov chain targeting Q with tails no lighter than P

(see Thm. 1 and Def. 3). For generic slow-growing Sn, identical guarantees hold for excess MMDkP (2) relative to the best
simplex reweighting of Sn.

Method Compression Type Coreset Size m Runtime Source

Stein Thinning (Riabiz et al., 2022) equal-weighted n dkPn
2 App. D.1

Stein Kernel Thinning

{
Greedy
Low-rank

(Alg. 1)
(Alg. 3)

equal-weighted
√
n

dkPn
2

dkPn
1.5

Thm. 3
Thm. 5

Stein Recombination

{
Greedy
Low-rank

(Alg. 5) simplex-weighted poly-log(n)
dkPn

2

dkPn+ n1.5
Thm. 6

Stein Cholesky

{
Greedy
Low-rank

(Alg. 7) constant-preserving poly-log(n)
dkPn

2

dkPn+ n1.5
Thm. 7

tee this error. Second, for larger-scale compression prob-
lems, we propose Low-rank SKT (Alg. 3), a strategy that
combines the scalable summarization of Compress++ with
a new low-rank debiasing procedure (Alg. 2) to match the
SKT guarantees in sub-quadratic o(n2) time.

Third, for the task of simplex-weighted compression, in
which summary points are accompanied by weights in the
simplex, we propose greedy and low-rank Stein Recombi-
nation (Alg. 5) constructions that match the guarantees of
SKT with as few as poly-log(n) points. Finally, for the task
of constant-preserving compression, in which summary
points are accompanied by real-valued weights summing
to 1, we introduce greedy and low-rank Stein Cholesky
(Alg. 7) constructions that again match the guarantees of
SKT using as few as poly-log(n) points.

Underlying these advances are new guarantees for the qual-
ity of simplex-weighted coresets (Thms. 1 and 2), the spec-
tral decay of kernel matrices (Cor. B.1), and the covering
numbers of Stein kernel Hilbert spaces (Prop. 1) that may
be of independent interest. In Sec. 5, we employ our new
procedures to produce compact summaries of complex tar-
get distributions given input points biased by burn-in, ap-
proximate MCMC, or tempering.

Notation We assume Borel-measurable sets and functions
and define [n] ≜ {1, . . . , n}, ∆n−1 ≜ {w ∈ Rn : w ≥
0,1⊤w = 1}, ∥x∥0 ≜ |{i : xi ̸= 0}|, and ∥x∥pp ≜

∑
i |xi|p

for x ∈ Rd and p ≥ 1. For x ∈ Rd, δx denotes the delta
measure at x. We let Hk denote the reproducing kernel
Hilbert space (RKHS) of a kernel k : Rd×Rd → R (Aron-
szajn, 1950) and ∥f∥k denote the RKHS norm of f ∈ Hk.
For a measure µ and separately µ-integrable k and f , we
write µf ≜

∫
f(x)dµ(x) and µk(x) ≜

∫
k(x, y)dµ(y).

The divergence of a differentiable matrix-valued function
A is (∇x · A(x))j =

∑
i ∂xi

Aij(x). For random variables

(Xn)n∈N, we say Xn =O(f(n, δ)) holds with probability
≥ 1− δ if Pr(Xn≤Cf(n, δ)) ≥ 1− δ for a constant C
independent of (n, δ) and all n sufficiently large. When us-
ing this notation, we view all algorithm parameters except
δ as functions of n. For A ∈Rn×n and v ∈ Rn, diag(A)
and diag(v) are n × n diagonal matrices with Aii and vi
respectively as the i-th diagonal entry.

2. Debiased Distribution Compression
Throughout, we aim to summarize a fixed target distribu-
tion P on Rd using a sequence Sn ≜ (xi)

n
i=1 of potentially

biased candidate points in Rd.1 Correcting for unknown bi-
ases in Sn requires some auxiliary knowledge of P. For us,
this knowledge comes in the form of a kernel function kP
with known expectation under P. Without loss of general-
ity, we can take this kernel mean to be identically zero.2

Assumption 1 (Mean-zero kernel). For some p ≥ 1/2,
Ex∼P[kP(x, x)

p] <∞ and PkP ≡ 0.

Given a target compression size m, our goal is to output an
weight vector w ∈ Rn with ∥w∥0 ≤ m, 1⊤

nw = 1, and
o(m−1/2) (better-than-i.i.d.) maximum mean discrepancy
(MMD) to P:

MMDkP(
∑n

i=1wiδxi ,P) ≜
√∑n

i,j=1wiwjkP(xi, xj).

We consider three standard compression tasks with
∥w∥0 ≤ m. In equal-weighted compression one selects
m possibly repeated points from Sn and assigns each a
weight of 1

m ; because of repeats, the induced weight vector

1Our coreset constructions will in fact apply to any sample
space, but our analysis will focus on Rd.

2For PkP ̸≡ 0, the kernel kP
′(x, y) = kP(x, y) − PkP(x) −

PkP(y) + PPkP satisfies PkP
′ ≡ 0 and MMDkP′ = MMDkP .
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over Sn satisfies w ∈ ∆n−1 ∩ (N0

m )n. In simplex-weighted
compression we allow any w ∈ ∆n−1, and in constant-
preserving compression we simply enforce 1⊤

nw = 1. All
three coreset types exactly preserve constants and hence
satisfy standard coherence constraints.

When making big-O statements, we will treat Sn as the pre-
fix of an infinite sequence S∞ ≜ (xi)i∈N. We also write
kP(Sn[J],Sn[J]) ≜ [kP(xi, xj)]i,j∈J for the principal ker-
nel submatrix with indices J ⊆ [n].

2.1. Kernel assumptions

Many practical Stein kernel constructions are available for
generating mean-zero kernels for a target P (Chwialkowski
et al., 2016; Liu et al., 2016; Gorham and Mackey, 2017;
Gorham et al., 2019; Barp et al., 2019; Yang et al., 2018;
Afzali and Muthukumarana, 2023). We will use the most
prominent of these Stein kernels as a running example:

Definition 1 (Stein kernel). Given a differentiable base
kernel k and a symmetric positive semidefinite matrix M ,
the Stein kernel kp : Rd × Rd → R for P with positive
differentiable Lebesgue density p is defined as

kp(x, y) ≜ 1
p(x)p(y)∇x · ∇y · (p(x)Mk(x, y)p(y)).

While our algorithms apply to any mean zero kernel, in-
cluding the aforementioned Stein kernels, the Sobolev ker-
nels used in quasi-Monte Carlo (Kuo, 2003), and the pop-
ular centered Gaussian kernel (Chen et al., 2010; Lacoste-
Julien et al., 2015), our guarantees adapt to the underlying
smoothness of the kernel. Our next definition and assump-
tion make this precise.

Definition 2 (Covering number). For a kernel k : Rd ×
Rd → R with Bk ≜ {f ∈ Hk : ∥f∥k ≤ 1}, a set A ⊂ Rd,
and ε > 0, the covering number Nk(A, ε) is the minimum
cardinality of all sets C ⊂ Bk satisfying

Bk ⊂
⋃

h∈C{g ∈ Bk : supx∈A |h(x)− g(x)| ≤ ε}.

Assumption (α,β)-kernel. For some Cd > 0, all r > 0
and ε ∈ (0, 1), and B2(r) ≜ {x ∈ Rd : ∥x∥2 ≤ r}, a
kernel k is either POLYGROWTH(α, β), i.e.,

logNk(B2(r), ε) ≤ Cd(1/ε)
α(r + 1)β ,

with α < 2 or LOGGROWTH(α, β), i.e.,

logNk(B2(r), ε) ≤ Cd log(e/ε)
α
(r + 1)β .

In Cor. B.1 we show that the eigenvalues of kernel matrices
with POLYGROWTH and LOGGROWTH kernels have poly-
nomial and exponential decay respectively. Dwivedi and
Mackey (2022, Prop. 2) showed that all sufficiently differ-
entiable kernels satisfy the POLYGROWTH condition and

that bounded radially analytic kernels are LOGGROWTH.
Our next result, proved in App. B.2, shows that a Stein ker-
nel kp can inherit the growth properties of its base kernel
even if kp is itself unbounded and non-smooth.
Proposition 1 (Stein kernel growth rates). A Stein kernel
kp with sup∥x∥2≤r ∥∇ log p(x)∥2 = O(rdℓ) for dℓ ≥ 0 is

(a) LOGGROWTH(d+1, 2d+ δ) for any δ > 0 if the base
kernel k is radially analytic (Def. B.3) and

(b) POLYGROWTH( d
s−1 , (1+

dℓ

s )d) if the base kernel k is
s-times continuously differentiable (Def. B.2) for s>1.

Notably, the popular Gaussian (Ex. B.1) and inverse
multiquadric (Ex. B.2) base kernels satisfy the LOG-
GROWTH preconditions, while Matérn, B-spline, sinc,
sech, and Wendland’s compactly supported kernels satisfy
the POLYGROWTH precondition (Dwivedi and Mackey,
2022, Prop. 3). To our knowledge, Prop. 1 and Cor. B.1
provide the first covering number bounds and eigenvalue
decay rates for the typically unbounded Stein kernels kp.

2.2. Input point desiderata

Our primary desideratum for the input points is that they
can be debiased into an accurate estimate of P. Indeed, our
high-level strategy for debiased compression is to first use
kP to debias the input points into a more accurate approx-
imation of P and then compress that approximation into a
more succinct representation. Fortunately, even when the
input Sn targets a distribution Q ̸= P, effective debiasing
is often achievable via simplex reweighting, i.e., by solving
the convex optimization problem

wOPT ∈ argminw∈∆n−1

∑n
i,j=1 wiwjkP(xi, xj) (1)

with MMDOPT ≜ MMDkP(
∑n

i=1wOPTiδxi
,P).

For example, Hodgkinson et al. (2020, Thm. 1b) showed
that simplex reweighting can correct for biases due to off-
target i.i.d. or MCMC sampling. Our next result (proved in
App. C.2) significantly relaxes their conditions.
Theorem 1 (Debiasing to i.i.d. quality via simplex
reweighting). Consider a kernel kP satisfying Assum. 1
with HkP separable, and suppose (xi)

∞
i=1 are the iter-

ates of a homogeneous ϕ-irreducible geometrically er-
godic Markov chain (Gallegos-Herrada et al., 2023,
Thm. 1) with stationary distribution Q and initial dis-
tribution absolutely continuous with respect to P. If
Ex∼P[

dP
dQ (x)

2q−1kP(x, x)
q] < ∞ for some q > 1 then

MMDOPT = O(n−1/2) in probability.

Remark 1. HkP is separable whenever kP is continuous
(Steinwart and Christmann, 2008, Lem. 4.33).

Since n points sampled i.i.d. from P have Θ(n−1/2) root
mean squared MMD (see Prop. C.1), Thm. 1 shows that
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a debiased off-target sample can be as accurate as a direct
sample from P. Moreover, Thm. 1 applies to many prac-
tical examples. The simplest example of a geometrically
ergodic chain is i.i.d. sampling from Q, but geometric er-
godicity has also been established for a variety of popular
Markov chains including random walk Metropolis (Roberts
and Tweedie, 1996, Thm. 3.2), independent Metropolis-
Hastings (Atchadé and Perron, 2007, Thm. 2.2), the un-
adjusted Langevin algorithm (Durmus and Éric Moulines,
2017, Prop. 8), the Metropolis-adjusted Langevin algo-
rithm (Durmus and Moulines, 2022, Thm. 1), Hamiltonian
Monte Carlo (Durmus et al., 2020, Thm. 10 and Thm. 11),
stochastic gradient Langevin dynamics (Li et al., 2023,
Thm. 2.1), and the Gibbs sampler (Johnson, 2009). More-
over, for Q absolutely continuous with respect to P, the im-
portance weight dP

dQ is typically bounded or slowly growing
when the tails of Q are not much lighter than those of P.

Remarkably, under more stringent conditions, Thm. 2
(proved in App. C.3) shows that simplex reweighting can
decrease MMD to P at an even-faster-than-i.i.d. rate.

Theorem 2 (Better-than-i.i.d. debiasing via simplex
reweighting). Consider a kernel kP satisfying Assum. 1
with p = 2 and points (xi)

∞
i=1 drawn i.i.d. from a distri-

bution Q with dP
dQ bounded. If E[kP(x1, x1)

q] < ∞ for
some q > 3, then E[MMD2

OPT] = o(n−1).

The work of Liu and Lee (2017, Thm. 3.3) also established
o(n−1/2) MMD error for simplex reweighting but only un-
der a uniformly bounded eigenfunctions assumption that is
often violated (Minh, 2010, Thm. 1, Zhou, 2002, Ex. 1) and
difficult to verify (Steinwart and Scovel, 2012).

We highlight that our remaining results make no particular
assumption about the input points but rather upper bound
the excess MMD

∆MMDkP(w) ≜ MMDkP(
∑

i∈[n]wiδxi
,P) (2)

−MMDOPT

of a candidate weighting w in terms of the input point ra-
dius Rn ≜ maxi∈[n] ∥xi∥2 ∨ 1 and kernel radius ∥kP∥n ≜
maxi∈[n] kP(xi, xi). While these results apply to any in-
put points, we consider the following running example of
slow-growing input points throughout the paper.

Definition 3 (Slow-growing input points). We say Sn is γ-
slow-growing if Rn = O((log n)γ) for some γ ≥ 0 and
∥kP∥n = Õ(1).

Notably, Sn is 1-slow-growing with probability 1 when
kP(x, x) is polynomially bounded by ∥x∥2 and the input
points are drawn from a homogeneous ϕ-irreducible ge-
ometrically ergodic Markov chain with a sub-exponential
target Q, i.e., E[ec∥x∥2 ] < ∞ for some c > 0 (Dwivedi
and Mackey, 2021, Prop. 2). For a Stein kernel kp (Def. 1),

by Prop. B.3, kp(x, x) is polynomially bounded by ∥x∥2
if k(x, x), ∥∇x∇yk(x, x)∥2, and ∥∇ log p(x)∥2 are all
polynomially bounded by ∥x∥2. Moreover, ∥∇ log p(x)∥2
is automatically polynomially bounded by ∥x∥2 when
∇ log p is Lipschitz or, more generally, pseudo-Lipschitz
(Erdogdu et al., 2018, Eq. (2.5)).

2.3. Debiased compression via Stein Kernel Thinning

Off-the-shelf solvers based on mirror descent and Frank
Wolfe can solve the convex debiasing program (1) in O(n3)
time by generating weights with O(n−1/2∥kP∥n) excess
MMD (Liu and Lee, 2017). We instead employ a more
efficient, greedy debiasing strategy based on Stein thinning
(ST). After n rounds, ST outputs an equal-weighted coreset
of size n with O(n−1/2∥kP∥n) excess MMD (Riabiz et al.,
2022, Thm. 1). Moreover, while the original implemen-
tation of Riabiz et al. (2022) has cubic runtime, our imple-
mentation (Alg. D.1) based on sufficient statistics improves
the runtime to O(n2dkP) where dkP denotes the runtime of
a single kernel evaluation.3

The equal-weighted output of ST serves as the perfect input
for the kernel thinning (KT) algorithm which compresses
an equal-weighted sample of size n into a coreset of any
target size m ≤ n in O(n2dkP) time. We adapt the tar-
get KT algorithm slightly to target MMD error to P and
to include a baseline ST coreset of size m in the KT-SWAP
step (see Alg. D.3). Combining the two routines we obtain
Stein Kernel Thinning (SKT), our first solution for equal-
weighted debiased distribution compression:

Algorithm 1 Stein Kernel Thinning (SKT)

Input: mean-zero kernel kP, points Sn, output size m, KT
failure probability δ

n′ ← m 2⌈log2
n
m ⌉

w ← SteinThinning(kP,Sn, n′)
wSKT ← KernelThinning(kP,Sn, n′, w,m, δ)
Return: wSKT ∈∆n−1 ∩ (N0

m )n ▷ hence ∥wSKT∥0 ≤ m

Our next result, proved in App. D.3, shows that SKT yields
better-than-i.i.d. excess MMD whenever the radii (Rn and
∥kP∥n) and kernel covering number exhibit slow growth.
Theorem 3 (MMD guarantee for SKT). Given a kernel kP
satisfying Assums. 1 and (α,β)-kernel, Stein Kernel Thin-
ning (Alg. 1) outputs wSKT in O(n2dkP) time satisfying

∆MMDkP(wSKT)=O
(√∥kP∥nℓδ·logn·Rβ

nGα
m

min(m,
√
n)

)
with probability at least 1− δ, where ℓδ ≜ log2( eδ ) and

Gm≜

{
1+logm LOGGROWTH(α, β),

m POLYGROWTH(α, β).

3Often, dkP = Θ(d) as in the case of Stein kernels (App. I.1).
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Example 1. Under the assumptions of Thm. 3 with γ-slow-
growing input points (Def. 3), LOGGROWTH kP, and a
coreset size m ≤ √n, SKT with high probability delivers
Õ(m−1) excess MMD, a nearly minimax optimal rate for
equal-weighted coresets (Phillips and Tai, 2020, Thm. 3.1)
and a significant improvement over the Ω(m−1/2) error
rate of i.i.d. sampling.

Remark 2. When m<
√
n, we can uniformly subsample

or, in the case of MCMC inputs, standard thin (i.e., keep
only every n

m2 -th point of) the input sequence down to size
m2 before running SKT to reduce runtime from O(n2) to
O(m4) while incurring only O(m−1) excess error. A simi-
lar remark applies to LSKT algorithm introduced in Sec. 3.

3. Accelerated Debiased Compression
To enable larger-scale debiased compression, we next in-
troduce a sub-quadratic-time version of SKT built via a new
low-rank debiasing scheme and the near-linear-time com-
pression algorithm of Shetty et al. (2022).

3.1. Fast bias correction via low-rank approximation

At a high level, our approach to accelerated debiasing in-
volves four components. First, we form a rank-r approx-
imation FF⊤ of the kernel matrix K = kP(Sn,Sn) in
O(nrdkP+nr2) time using a weighted extension (Weighte-
dRPCholesky, Alg. F.1) of the randomly pivoted Cholesky
algorithm of Chen et al. (2022, Alg. 2.1). Second, we cor-
rect the diagonal to form K ′ = FF⊤ + diag(K − FF⊤).
Third, we solve the reweighting problem (1) with K ′ sub-
stituted for K using T iterations of accelerated entropic
mirror descent (AMD, Wang et al., 2023, Alg. 14 with
ϕ(w) =

∑
i wi logwi). The acceleration ensures O(1/T 2)

suboptimality after T iterations, and each iteration takes
only O(nr) time thanks to the low-rank plus diagonal ap-
proximation. Finally, we repeat this three-step procedure
Q times, each time using the weights outputted by the prior
round to update the low-rank approximation K̂. On these
subsequent adaptive rounds, WeightedRPCholesky approx-
imates the leading subspace of a weighted kernel matrix
diag(

√
w̃)K diag(

√
w̃) for w̃ ∈ ∆n−1 before undoing the

row and column reweighting. Since each round’s weights
are closer to optimal, this adaptive updating has the effect
of upweighting more relevant subspaces for subsequent de-
biasing. For added sparsity, we prune the weights out-
putted by the prior round using stratified residual resam-
pling (Resample, Alg. E.3, Douc and Cappé, 2005). Our
complete Low-rank Debiasing (LD) scheme, summarized
in Alg. 2, enjoys o(n2) runtime whenever r = o(n1/2),
T = O(n1/2), and Q = O(1).

Moreover, our next result, proved in App. F.1, shows that
LD provides i.i.d.-level precision whenever T ≥ √n, Q =

Algorithm 2 Low-rank Debiasing (LD)

Input: mean-zero kernel kP, points Sn = (xi)
n
i=1, rank r,

AMD steps T , adaptive rounds Q
w(0) ← ( 1n , . . . ,

1
n ) ∈ Rn

for q = 1 to Q do
w̃ ← Resample(w(q−1), n)
I, F ←WeightedRPCholesky(kP,Sn, w̃, r)
K ′ ← FF⊤ + diag(kP(Sn,Sn))− diag(FF⊤)
w(q)←AMD(K ′, T, w̃,AGG = 1q>1)
if (w(q))⊤K ′w(q) > w̃⊤K ′w̃ then w(q) ← w̃

end for
Return: wLD ← w(Q) ∈∆n−1

O(1), and r grows appropriately with the input radius and
kernel covering number.
Assumption (α,β)-params. The kernel kP satisfies As-
sums. 1 and (α,β)-kernel, the output size and rank m, r≥
(
CdR

β
n+1√

log 2
+ 2
√
log 2)2, the AMD step count T ≥√n, and

the adaptive round count Q=O(1).4

Theorem 4 (Debiasing guarantee for LD). Under As-
sum. (α,β)-params, Low-rank Debiasing (Alg. 2) takes
O((dkP+r+T )nr) time to output wLD satisfying

∆MMDkP(wLD)=O

(√
∥kP∥n max(logn,1/δ)

n +
√

nHn,r

δ

)
with probability at least 1− δ, for any δ ∈ (0, 1) and Hn,r

defined in (46) that satisfies

Hn,r=

O
(√

r(
R2β

n

r )
1
α

)
POLYGROWTH(α, β),

O
(√

r exp(−
(0.83√r−2.39

CdR
β
n

)1
α)
)

LOGGROWTH(α, β).

Example 2. Under the assumptions of Thm. 4 with γ-slow-
growing input points (Def. 3), LOGGROWTH kP, T =
Θ(
√
n), and r = (log n)2(α+βγ)+ϵ for any ϵ > 0, LD

delivers Õ(n−1/2) excess MMD with high probability in
Õ(n1.5) time.

3.2. Fast debiased compression via Low-rank Stein KT

To achieve debiased compression in sub-quadratic time,
we next propose Low-rank SKT (Alg. 3). LSKT debi-
ases the input using LD, converts the LD output into an
equal-weighted coreset using Resample, and finally com-
bines KT with the divide-and-conquer Compress++ frame-
work (Shetty et al., 2022) to compress n equal-weighted
points into

√
n in near-linear time.

Our next result (proved in App. F) shows that LSKT can
provide better-than-i.i.d. excess MMD in o(n2) time.

4To unify the presentation of our results, Assum. (α,β)-
params constrains all common algorithm input parameters with
the understanding that the conditions are enforced only when the
input is relevant to a given algorithm.
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Algorithm 3 Low-rank Stein Kernel Thinning (LSKT)

Input: mean-zero kernel kP, points Sn = (xi)
n
i=1, rank r,

AGM steps T , adaptive rounds Q, oversampling param-
eter g, failure prob. δ

w ← Low-rankDebiasing(kP,Sn, r, T,Q)
n′ ← 4⌈log4 n⌉,m←

√
n′ ▷ output size

√
n ≤ m < 2

√
n

w ← Resample(w, n′)
wLSKT ← KT-Compress++(kP,Sn, n′, w, g, δ

3 )

Return: wLSKT ∈∆n−1 ∩ (N0

m )n ▷ hence ∥wLSKT∥0 ≤ m

Theorem 5 (MMD guarantee for LSKT). Under As-
sum. (α,β)-params, Low-rank SKT (Alg. 3) with g ∈
[log2 log(n+ 1) + 3.1, log4(

√
n/ log n)] and δ ∈ (0, 1)

outputs wLSKT in O((dkP +r+T )nr+dkPn
1.5) time sat-

isfying, with probability at least 1− δ,

∆MMDkP(wLSKT)

= O

(√
∥kP∥n max(1/δ, ℓδ(logn)nγβGα√

n
)

n +
√

nHn,r

δ

)
,

for Gm, Hn,r as in Thms. 3 and 5.

Example 3. Under the assumptions of Thm. 5 with γ-
slow-growing input points (Def. 3), LOGGROWTH kP, T =
Θ(
√
n), and r = (log n)2(α+βγ)+ϵ for any ϵ > 0, LSKT

delivers, with high probability, Õ(n−1/2) excess MMD in
Õ(n1.5) time using a coreset of size m ∈ [

√
n, 2
√
n).

4. Weighted Debiased Compression
The prior sections developed debiased equal-weighted
coresets with better-than-i.i.d. compression guarantees.
Equal-weighted coresets are typically chosen for their com-
patibility with unweighted downstream tasks and easy vi-
sualization. For downstream tasks that support weights,
we next match the equal-weighted guarantees with sig-
nificantly smaller simplex-weighted or constant-preserving
coresets.

4.1. Simplex-weighted coresets via Stein Recombination

Simplex-weighted coresets automatically preserve the con-
straints of convex integrands, support straightforward di-
rect sampling, and, when compared with schemes involv-
ing negative weights, offer improved numerical stability
in the presence of integral evaluations errors (Karvonen
et al., 2019). Inspired by the coreset constructions of
Hayakawa et al. (2022; 2023), we first introduce a simplex-
weighted compression algorithm, RecombinationThinning
(RT, Alg. 4), suitable for summarizing a debiased input
sequence. To produce a coreset given input weights w ∈
∆n−1, RT first prunes small weights using Resample and
then uses WeightedRPCholesky to identify m−1 test vec-
tors that capture most of the variability in the weighted

Algorithm 4 Recombination Thinning (RT)

Input: mean-zero kernel kP, points Sn = (xi)
n
i=1,

weights w ∈ ∆n−1, output size m
w̃ ← Resample(w, n)
I, F ←WeightedRPCholesky(kP,Sn, w̃,m− 1)
w′ ← Recombination([F,1n]

⊤, w̃) ▷ [F,1n]
⊤∈ Rm×n

▷ F⊤w̃ = F⊤w′, w′ ∈ ∆n−1 , and ∥w′∥0 ≤ m
w′′←KT-Swap-LS(kP,Sn, w′,SPLX); J←{i : w′′

i > 0}
w′′[J] ← argminw′∈∆|J|−1

w′⊤kP(Sn[J],Sn[J])w′ ▷ use

any O(|J|3) quadratic programming solver
Return: wRT ← w′′ ∈ ∆n−1 with ∥wRT∥0 ≤ m

kernel matrix. Next, Recombination (Alg. G.1) (Tcherny-
chova, 2016, Alg. 1) identifies a sparse simplex vector w′

with ∥w′∥0 ≤ m that exactly matches the inner product
of its input with each of the test vectors. Then, we run
KT-Swap-LS (Alg. G.2), a new, line-search version of KT-
SWAP (Dwivedi and Mackey, 2021, Alg. 1b) that greedily
improves MMD to P while maintaining both the sparsity
and simplex constraint of its input. Finally, we optimize the
weights of the remaining support points using any cubic-
time quadratic programming solver.

In Prop. G.1 we show that RT runs in time O((dkP +
m)nm + m3 log n) and nearly preserves the MMD of its
input whenever m grows appropriately with the kernel cov-
ering number. Combining RT with SteinThinning or Low-
rankDebiasing in Alg. 5, we obtain Stein Recombination
(SR) and Low-rank SR (LSR), our approaches to debiased
simplex-weighted compression. Remarkably, SR and LSR
can match the MMD error rates established for SKT and
LSKT using substantially fewer coreset points, as our next
result (proved in App. G.2) shows.

Algorithm 5 (Low-rank) Stein Recombination (SR / LSR)

Input: mean-zero kernel kP, points Sn, output size m,
rank r, AGM steps T , adaptive rounds Q

w ←
{

Low-rankDebiasing(kP,Sn, r, T,Q) if low-rank
SteinThinning(kP,Sn) otherwise

wSR ← RecombinationThinning(kP,Sn, w,m)
Return: wSR ∈ ∆n−1 with ∥wSR∥0 ≤ m

Theorem 6 (MMD guarantee for SR/LSR). Under As-
sum. (α,β)-params, Stein Recombination (Alg. 5) takes
O(dkPn

2+(dkP+m)nm+m3 log n) to output wSR, and Low-
rank SR takes O((dkP+r+T )nr+(dkP+m)nm+m3 log n)
time to output wLSR. Moreover, for any δ ∈ (0, 1) and Hn,r

as in Thm. 4, each of the following bounds holds (sepa-
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rately) with probability at least 1− δ:

∆MMDkP(wSR)=O
(√

∥kP∥n(logn∨ 1
δ )

n +
nHn,m

δ

)
and

∆MMDkP(wLSR)=O
(√

∥kP∥n(logn∨ 1
δ )

n +
n(Hn,m+Hn,r)

δ

)
.

Example 4. Instantiate the assumptions of Thm. 6 with γ-
slow-growing input points (Def. 3), LOGGROWTH kP, and
a heavily compressed coreset size m = (log n)2(α+βγ)+ϵ

for any ϵ > 0. Then SR delivers Õ(n−1/2) excess MMD
with high probability in O(n2) time, and LSR with r=m

and T = Θ(
√
n) achieves the same in Õ(n1.5) time.

4.2. Constant-preserving coresets via Stein Cholesky

For applications supporting negative weights, constant-
preserving coresets offer the possibility of higher accuracy
at the cost of potential numerical instability and poorer ro-
bustness to errors in integral evaluation (Karvonen et al.,
2019). We introduce a constant-preserving compression
algorithm, CholeskyThinning (CT, Alg. 6), suitable for
summarizing a debiased input sequence. CT first ap-
plies WeightedRPCholesky to a constant-regularized ker-
nel kP(x, y) + c to select an initial coreset and then uses
a combination of KT-Swap-LS and closed-form optimal
constant-preserving reweighting to greedily refine the sup-
port and weights. The regularized kernel ensures that the
coreset output by WeightedRPCholesky is of high qual-
ity when paired with the best constant-preserving weights,
and our CT standalone analysis (Prop. H.1) improves upon
the runtime and error guarantees of RT. In Alg. 7, we
combine CT with SteinThinning or Low-rankDebiasing
to obtain Stein Cholesky (SC) and Low-rank SC (LSC),
our approaches to debiased constant-preserving compres-
sion. Our MMD guarantees for SC and LSC (proved in
App. H.2) improve upon the rates of Thm. 6.

Algorithm 6 Cholesky Thinning (CT)

Input: mean-zero kernel kP, points Sn = (xi)
n
i=1,

weights w ∈ ∆n−1, output size m
c← AVERAGE(Largest m entries of (kP(xi, xi))

n
i=1)

I, F ←WeightedRPCholesky(kP+c,Sn, w,m); w ← 0n

w[I]← argminw′∈R|I|:
∑

i w
′
i=1 w

′⊤kP(Sn[I],Sn[I])w′

w ← KT-Swap-LS(kP,Sn, w,CP); I← {i : wi ̸= 0}
w[I]← argminw′∈R|I|:

∑
i w

′
i=1 w

′⊤kP(Sn[I],Sn[I])w′

Return: wCT ← w ∈ Rn with ∥wCT∥0 ≤ m, 1⊤
nwCT = 1

Theorem 7 (MMD guarantee for SC / LSC). Under
Assum. (α,β)-params, Stein Cholesky (Alg. 7) takes
O(dkPn

2+(dkP+m)nm+m3) time to output wSC, and Low-
rank SC takes O((dkP+r+T )nr+(dkP+m)nm+m3) time to
output wLSC. Moreover, for any δ ∈ (0, 1), with probability
at least 1− δ, each of the following bounds hold:

Algorithm 7 (Low-rank) Stein Cholesky (SC / LSC)

Input: mean-zero kernel kP, points Sn, output size m,
rank r, AGM steps T , adaptive rounds Q

w ←
{

Low-rankDebiasing(kP,Sn, r, T,Q) if low-rank
SteinThinning(kP,Sn) otherwise

wSC ← CholeskyThinning(kP,Sn, w,m)
Return: wSC ∈ Rn with ∥wSC∥0 ≤ m and 1⊤

nwSC = 1

∆MMDkP(wSC) = 2MMDOPT

+O
(√∥kP∥n logn

δn +
Hn,m′

δ

)
and

∆MMDkP(wLSC) = 2MMDOPT

+O
(√∥kP∥n(logn∨1/δ)

δn +
Hn,m′

δ +
nHn,r

δ2

)
for Hn,r as in Thm. 4 and m′ ≜ m+log 2−2√m log 2 + 1.

Example 5. Instantiate the assumptions of Thm. 7 with γ-
slow-growing input points (Def. 3), LOGGROWTH kP, and
a heavily compressed coreset size m = (log n)2(α+βγ)+ϵ

for any ϵ > 0. Then SC delivers Õ(n−1/2) excess MMD
with high probability in O(n2) time, and LSC with r=m

and T = Θ(
√
n) achieves the same in Õ(n1.5) time.

Remark 3. While we present our results for a target pre-
cision of 1/

√
n, a coarser target precision of 1/

√
n0 for

n0 < n can be achieved more quickly by random sub-
sampling/standard thinning the input sequence down to size
n0 before running SR, LSR, SC, or LSC.

5. Experiments
We next evaluate the practical utility of our procedures
when faced with three common sources of bias: (1)
burn-in, (2) approximate MCMC, and (3) tempering. In
all experiments, we use a Stein kernel kp with an in-
verse multiquadric (IMQ) base kernel k(x, y) = (1 +
∥x−y∥2M/σ2)−1/2 for σ equal to the median pairwise
∥·∥M distance amongst 1000 points standard thinned from
the input. To vary output MMD precision, we first standard
thin the input to size n0 ∈ {210, 212, 214, 216, 218, 220} be-
fore applying any method, as discussed in Rems. 2 and 3.
For low-rank or weighted coreset methods, we show re-
sults for m = r = nτ . When comparing weighted core-
sets, we optimally reweight every coreset. We report the
median over 5 independent runs for all error metrics. We
implement our algorithms in JAX (Bradbury et al., 2018)
and refer the reader to App. I for additional experiment de-
tails (including runtime comparison in Tab. I.1). Our open-
source code is available as part of the GoodPoints Python
library at https://github.com/microsoft/goodpoints.

Correcting for burn-in The initial iterates of a Markov
chain are biased by its starting point and need not accu-
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Figure 1: Correcting for burn-in. Left: Before selecting coresets (orange), the burn-in oracle uses 6 independent Markov
chains to discard burn-in (red) while LSKT identifies the same high-density region (blue) with 1 chain. Right: Using only
one chain, our methods consistently outperform the Stein and standard thinning baselines and match the 6-chain oracle.

rately reflect the target distribution P. Classical burn-in
corrections use convergence diagnostics to detect and dis-
card these iterates but typically require running multiple
independent Markov chains (Cowles et al., 1999). Alterna-
tively, our proposed debiased compression methods can be
used to correct for burn-in given just a single chain.

We test this claim using an experimental setup from Ri-
abiz et al. (2022, Sec. 4.1) and the 6-chain “burn-in ora-
cle” diagnostic of Vats and Knudson (2021).5 We aim to
compress a posterior P over the parameters in the Good-
win model of oscillatory enzymatic control (d = 4) us-
ing n= 2×106 points from a preconditioned Metropolis-
adjusted Langevin algorithm (P-MALA) chain. We repeat
this experiment with three alternative MCMC algorithms in
App. I.3. Our primary metric is MMDkP to P with M = I ,
but, for external validation, we also measure the energy dis-
tance (Riabiz et al., 2022, Eq. 11) to an auxiliary MCMC
chain of length n. Trajectory plots of the first two coordi-
nates (Fig. 1, left) highlight the substantial burn-in period
for the Goodwin chain and the ability of LSKT to mimic
the 6-chain burn-in oracle using only a single chain. In
Fig. 1 (right), for both the MMD metric and the auxiliary
energy distance, our proposed methods consistently outper-
form Stein thinning and match the quality of 6-chain burn-
in removal paired with unbiased compression. The spike

5The Vats and Knudson diagnostic is an improvement on the
popular Gelman and Rubin (1992) diagnostic (GRD). The GRD
was designed to diagnose MCMC convergence rather than burn-in
but is commonly used to identify and discard burn-in points auto-
matically through packages like coda (Plummer et al., 2006).

in baseline energy distance for the constant-preserving task
can be attributed to the selection of overly large weight val-
ues due to poor matrix conditioning; the simplex-weighted
task does not suffer from this issue due to its regularizing
nonnegativity constraint.

Correcting for approximate MCMC In posterior in-
ference, MCMC algorithms typically require iterating over
every datapoint to draw each new sample point. When
datasets are large, approximating MCMC using datapoint
mini-batches can reduce sampling time at the cost of persis-
tent bias and an unknown stationary distribution that pro-
hibits debiasing via importance sampling. Our proposed
methods can correct for these biases during compression by
computing full-dataset scores on a small subset of n0 stan-
dard thinned points. To evaluate this protocol, we compress
a Bayesian logistic regression posterior conditioned on the
Forest Covtype dataset (d=54) using n=224 approximate
MCMC points from the stochastic gradient Fisher scoring
sampler (Ahn et al., 2012) with batch size 32. Follow-
ing Wang et al. (2024), we set M = −∇2log p(xmode) at
the sample mode xmode and use 220 surrogate ground truth
points from the No U-turn Sampler (Hoffman and Gelman,
2014) to evaluate energy distance. We find that our pro-
posals improve upon standard thinning and Stein thinning
for each compression task, not just in the optimized MMD
metric (Fig. 2, top) but also in the auxiliary energy distance
(Fig. 2, middle) and when measuring integration error for
the mean (Fig. I.4).

Correcting for tempering Tempering, targeting a less-
peaked and more dispersed distribution Q, is a popular
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Figure 2: Correcting for approximate MCMC (top) and tempering (bottom). For posterior inference over the param-
eters of Bayesian logistic regression (d = 54, top) and a cardiac calcium signaling model (d = 38, bottom), our concise
coreset constructions correct for approximate MCMC and tempering biases without need for explicit importance sampling.

technique to improve the speed of MCMC convergence.
One can correct for the sample bias using importance sam-
pling, but this requires knowledge of the tempered den-
sity and can introduce substantial variance (Gramacy et al.,
2010). Alternatively, one can use constructions of this work
to correct for tempering during compression; this requires
no importance weighting and no knowledge of Q. To test
this proposal, we compress the cardiac calcium signaling
model posterior (d = 38) of Riabiz et al. (2022, Sec. 4.3)
with M = I and n = 3 × 106 tempered points from
a Gaussian random walk Metropolis-Hastings chain. As
discussed by Riabiz et al., compression is essential in this
setting as the ultimate aim is to propagate posterior uncer-
tainty through a human heart simulator, a feat which re-
quires over 1000 CPU hours for each summary point re-
tained. Our methods perform on par with Stein thinning
for equal-weighted compression and yield substantial gains
over Stein (and standard) thinning for the two weighted
compression tasks.

6. Conclusions and Future Work
We have introduced and analyzed a suite of new proce-
dures for compressing a biased input sequence into an accu-
rate summary of a target distribution. For equal-weighted
compression, Stein kernel thinning delivers

√
n points with

Õ(n−1/2) MMD in O(n2) time, and low-rank SKT can im-
prove this running time to Õ(n3/2). For simplex-weighted
and constant-preserving compression, Stein recombination
and Stein Cholesky provide enhanced parsimony, matching
these guarantees with as few as poly-log(n) points. Recent
work has identified some limitations of score-based dis-
crepancies, like Stein kernel MMDs, and developed modi-
fied objectives that are more sensitive to the relative density
of isolated modes (Liu et al., 2023; Bénard et al., 2024).
A valuable next step would be to extend our constructions
to provide compression guarantees for these modified dis-
crepancy measures. Other opportunities for future work in-
clude marrying the better-than-i.i.d. guarantees of this work
with the non-myopic compression of Teymur et al. (2021),
the control-variate compression of Chopin and Ducrocq
(2021), and the online compression of Koppel et al. (2024).
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Appendix Contents

A. Appendix Notation
For the point sequence Sn = (xi)i∈[n], we use Sn ≜ 1

n

∑
i∈[n] δxi to denote the empirical distribution. For a weight vector

w ∈ Rn, we define the support supp(w) ≜ {i ∈ [n] : wi ̸= 0} and the signed measure Swn ≜
∑

i∈[n] wiδxi . For a matrix
K ∈ Rn×n and w ∈ ∆n−1, we define the weighted matrix Kw ≜ diag(

√
w)K diag(

√
w). For positive semidefinite

(PSD) matrices (A,B), we use A ⪰ B (resp. A ⪯ B) to mean A−B (resp. B−A) is PSD. For a symmetric PSD (SPSD)
matrix M , we let M1/2 denote a symmetric matrix square root satisfying M = M1/2M1/2. For A ∈ Rn×m, we denote
∥A∥p ≜ supx ̸=0

∥Ax∥p

∥x∥p
. We will use 1E to denote the indicator function for an event E.

Notation used only in a specific section will be introduced therein.

B. Spectral Analysis of Kernel Matrices
The goal of this section is to develop spectral bounds for kernel matrices.

From covering numbers of kernels to eigenvalues of kernel matrices In App. B.1, we transfer the bounds on covering
numbers from the definition of POLYGROWTH or LOGGROWTH kernels to bounds on the eigenvalues of the kernel matri-
ces. This sets the theoretical foundation for the algorithms in later sections as their error guarantees rely on the fast decay
of eigenvalues of kernel matrices.

Covering numbers and eigenvalues of Stein kernels In App. B.2, we show that Stein kernels are POLYGROWTH (resp.
LOGGROWTH) provided that their base kernels are differentiable (resp. radially analytic). Putting the results together from
App. B.1, we obtain spectral bounds for a wide range of Stein kernels.

Notation For a normed space E, we use ∥·∥E to denote its norm, BE(p, r) ≜ {x ∈ E : ∥x− p∥E ≤ r} to denote the
closed ball of radius r centered at p in E with the shorthand BE(r) ≜ BE(0, r) and BE ≜ BE(1). When E is an RKHS
with kernel k, for brevity we use k in place of E in the subscript. Let F(X ,Y) denote the space of functions from X to
Y , and B(E,F ) denote the space of bounded linear functions between normed spaces E,F . For a set A, we use ℓ∞(A)
to denote the space of bounded R-valued functions on A equipped with the sup-norm ∥f∥∞,A ≜ supx∈A |f(x)|. We use
E ↪→ F to denote the inclusion map. e use λℓ(T ) to denote the ℓ-th largest eigenvalue of an operator T .

B.1. From covering numbers of kernels to eigenvalues of kernel matrices

We first introduce the general Mercer representation theorem from Steinwart and Scovel (2012), which shows the existence
of a discrete spectrum of the integral operator associated with a continuous square-integrable kernel. The theorem also
provides a series expansion of the kernel, i.e., the Mercer representation, in terms of the eigenvalues and eigenfunctions.

Lemma B.1 (General Mercer representation (Steinwart and Scovel, 2012)). Consider a kernel k : Rd × Rd → R that is
jointly continuous in both inputs and a probability measure µ such that

∫
k(x, x)dµ(x) <∞. Then the following holds.

(a) The inclusionHk ↪→ L2(µ) is a compact operator, i.e., Bk is a compact subset of L2(µ). In particular, this inclusion
is continuous.

(b) The Hilbert-space adjoint of the inclusionHk ↪→ L2(µ) is the compact operator Sk,µ : L2(µ)→ Hk defined as

Sk,µf ≜
∫
k(·, x)f(x)dµ(x). (3)

We also have S∗
k,µ ≜ Hk ↪→ L2(µ). Hence the operator

Tk,µ ≜ S∗
k,µSk,µ : L2(µ)→ L2(µ) (4)

is also compact.
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(c) There exist {λℓ}∞ℓ=1 with λ1 ≥ λ2 ≥ · · · ≥ 0 and {ϕℓ}∞ℓ=1 ⊂ Hk such that {ϕℓ}∞ℓ=1 is an orthonormal system in
L2(µ) and {λℓ}∞ℓ=1 (resp. {ϕℓ}∞ℓ=1) consists of the eigenvalues (resp. eigenfunctions) of Tk,µ with eigendecomposi-
tion, for f ∈ L2(µ),

Tk,µf =
∑∞

ℓ=1 λℓ⟨f, ϕℓ⟩L2(µ)ϕℓ

with convergence in L2(µ).

(d) We have the following series expansion

k(x, x′) =
∑∞

ℓ=1 λiϕℓ(x)ϕℓ(x
′), (5)

where the series convergence is absolute and uniform in x, x′ on all A×A ⊂ suppµ× suppµ.

Proof of Lem. B.1. Part (a) and (b) follow respectively from Steinwart and Scovel (2012, Lem. 2.3 and 2.2). Part (c)
follows from part (a) and Steinwart and Scovel (2012, Lem. 2.12). Finally, part (d) follows from Steinwart and Scovel
(2012, Cor. 3.5).

We will use the following lemma regarding the restriction of covering numbers.

Lemma B.2 (Covering number is preserved in restriction). For a kernel k : Rd × Rd → R and a set A ⊂ Rd, we have
Nk(A, ϵ) = Nk|A(A, ϵ), for k|A, the restricted kernel of k to A (Paulsen and Raghupathi, 2016, Sec. 5.4).

Proof of Lem. B.2. It suffices to show that a (k, A, ϵ) cover can be converted to a cover of (k|A, A, ϵ) of the same cardinality
and vice versa.

Let C ⊂ Bk|A be a (k|A, A, ϵ) cover. For any f ∈ C, we have ∥f∥k|A = inf
{
∥f̃∥k : f̃ ∈ Hk, f̃ |A = f

}
≤ 1 (Paulsen and

Raghupathi, 2016, Corollary 5.8). Moreover, the infimum is attained by some f̃ ∈ Hk such that ∥f̃∥k = ∥f∥k|A ≤ 1 and
f̃ |A = f . Now form C̃ = {f̃ : f ∈ C}. For any h̃ ∈ Bk, there exists f ∈ C such that∥∥∥h̃|A − f

∥∥∥
∞,A
≤ ϵ =⇒ =

∥∥∥h̃− f̃
∥∥∥
∞,A
≤ ϵ,

so C̃ is a (k|A, A, ϵ) cover.

For the other direction, let C̃ ⊂ Bk be a (k, A, ϵ) cover. Define C = {f̃ |A : f̃ ∈ C̃} ⊂ Hk|A . Since ∥f̃ |A∥k|A ≤ ∥f̃∥k, we
have C ⊂ Bk|A . For any h ∈ BkA], again by Paulsen and Raghupathi (2016, Corollary 5.8), there exists h̃ ∈ Hk such that
∥h̃∥k = ∥h∥k|A ≤ 1, so there exists f̃ ∈ C̃ such that∥∥∥h̃− f̃

∥∥∥
∞,A
≤ ϵ =⇒

∥∥∥h− f̃ |A
∥∥∥
∞,A
≤ ϵ,

Hence C is a (k, A, ϵ) cover.

The goal for the rest of this section is to transfer the bounds of the covering number in the definition of a POLYGROWTH
or LOGGROWTH kernel from Assum. (α,β)-kernel to bounds on entropy numbers (Steinwart and Christmann, 2008,
Def. 6.20) that are closely related to eigenvalues of the integral operator (4).

Definition B.1 (Entropy number of a bounded linear map). For a bounded linear operator S : E → F between normed
spaces E,F , for ℓ ∈ N, the ℓ-th entropy number of S is defined as

eℓ(S) ≜ inf
{
ϵ > 0 : ∃s1, . . . , s2ℓ−1 ∈ S(BE) such that S(BE) ⊂

⋃2ℓ−1

i=1 BF (si, ϵ)
}
.

The following lemma shows the relation between covering numbers and entropy numbers.

Lemma B.3 (Relation between covering number and entropy number). Suppose a kernel k is jointly continuous and
A ⊂ Rd is bounded. Then for any ϵ > 0,

e⌈log2 Nk(A,ϵ)⌉+1(Hk|A ↪→ ℓ∞(A)) ≤ ϵ.
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Proof of Lem. B.3. First, the assumption implies k|A is a bounded kernel, so by Steinwart and Christmann (2008, Lemma
4.23), the inclusion Hk|A ↪→ ℓ∞(A) is continuous. By the definition of Nk|A(A, ϵ), by adding arbitrary elements into the
cover if necessary, there exists a (k|A, A, ϵ) cover of Bk|A of cardinality 2⌈log2(Nk|A (A,ϵ))⌉ ≥ Nk|A(A, ϵ). Hence

e⌈log2 Nk|A (A,ϵ)⌉+1(Hk|A ↪→ ℓ∞(A)) ≤ ϵ.

The claim follows since Nk|A(A, ϵ) = Nk(A, ϵ) by Lem. B.2.

Proposition B.1 (ℓ∞-entropy number bound for POLYGROWTH or LOGGROWTH k). Suppose a kernel k satisfies As-
sum. (α,β)-kernel. Let Cd > 0 denote the constant that appears in the Assum. (α,β)-kernel. Define

Lk(r) ≜
Cd

log 2r
β . (6)

Then for any r > 0 and ℓ ∈ N that satisfies ℓ > Lk(r + 1) + 1, we have

eℓ(Hk|B2(r)
↪→ ℓ∞(B2(r))) ≤


(

Lk(r+1)
ℓ−1

) 1
α

if k is POLYGROWTH(α, β), and

exp

(
1−

(
ℓ−1

Lk(r+1)

) 1
α

)
if k is LOGGROWTH(α, β).

Proof of Prop. B.1. By Lem. B.3 and the fact that eℓ is monotonically decreasing in ℓ by definition, if ℓ ≥
log2Nk(B2(r), ϵ) + 1 for some ϵ > 0, then

eℓ(Hk|B2(r)
↪→ ℓ∞(B2(r))) ≤ e⌈log2 Nk(B2(r),ϵ)⌉+1(Hk|B2(r)

↪→ ℓ∞(B2(r))) ≤ ϵ. (7)

For the POLYGROWTH case, by its definition, the condition ℓ ≥ log2Nk(B2(r), ϵ) + 1 is met if ϵ ∈ (0, 1) and

ℓ ≥ Cd

log 2 (1/ϵ)
α(r + 1)β + 1⇐⇒ ϵ ≤

(
Lk(r+1)

ℓ−1

) 1
α

.

Hence (7) holds with ϵ =
(

Lk(r+1)
ℓ−1

) 1
α

, as long as ϵ ∈ (0, 1), so ℓ needs to satisfy

1 >
(

Lk(r+1)
ℓ−1

) 1
α ⇐⇒ ℓ > Lk(r + 1) + 1.

Similarly, for the LOGGROWTH case, the condition ℓ ≥ log2Nk(B2(r), ϵ) + 1 is met if ϵ ∈ (0, 1) and

ℓ ≥ Cd

log 2 (log(1/ϵ) + 1)α(r + 1)β + 1⇐⇒ ϵ ≤ exp

(
1−

(
ℓ−1

Lk(r+1)

) 1
α

)
.

Hence (7) holds with ϵ = exp

(
1−

(
ℓ−1

Lk(r+1)

) 1
α

)
, as long as ϵ ∈ (0, 1), so ℓ needs to satisfy

1 > exp

(
1−

(
ℓ−1

Lk(r+1)

) 1
α

)
⇐⇒ ℓ > Lk(r + 1) + 1.

Next, we show that we can transfer bounds on entropy numbers to obtain bounds for the eigenvalues of kernel matrices,
which will become handy when we develop sub-quadratic-time algorithms in Sec. 3. We rely on the following lemma,
which summarizes the relevant facts from Steinwart and Christmann (2008, Appendix A).

Lemma B.4 (Eigenvalue is bounded by entropy number). Let k be a jointly continuous kernel and P be a distribution such
that Ex∼P[k(x, x)] <∞, and recall that λℓ(·) denotes the ℓ-th largest eigenvalue of a linear operator. Then, for all ℓ ∈ N,

λℓ(Tk,P) ≤ 4e2ℓ(Hk ↪→ L2(P)).
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Proof of Lem. B.4. For any bounded linear operator S : H1 → H2 between Hilbert spaces H1 and H2, we have aℓ(S) ≤
2eℓ(S), where aℓ is the ℓ-th approximation number defined in Steinwart and Christmann (2008, (A.29)). Recall the operator
S∗
k,P = Hk ↪→ L2(P) from (3), which is compact (in particular bounded) by Lem. B.1(a). Thus

sℓ(S
∗
k,P) = aℓ(S

∗
k,P) ≤ 2eℓ(S

∗
k,P),

where the first equality follows from the paragraph below Steinwart and Christmann (2008, (A.29))) and sℓ is ℓ-th singular
number of an operator (Steinwart and Christmann, 2008, (A.25)). Then using the identities mentioned under Steinwart and
Christmann (2008, (A.25)) and Steinwart and Christmann (2008, (A.27)) and that all operators involved are compact by
Lem. B.1(b), we have

λℓ(Tk,P) = λℓ(S
∗
k,PSk,P) = sℓ(S

∗
k,PSk,P) = s2ℓ(S

∗
k,P) ≤ 4e2ℓ(S

∗
k,P).

The previous lemma allows us to bound eigenvalues of kernel matrices by ℓ∞-entropy numbers.

Proposition B.2 (Eigenvalue of kernel matrix is bounded by ℓ∞-entropy number). Let k be a jointly continuous kernel.
Define K ≜ k(Sn,Sn) for the sequence of points Sn = (x1, . . . , xn) ⊂ Rd. For any w ∈ ∆n−1, recall the notation
Swn =

∑
i∈[n] wiδxi

, Kw = diag(
√
w)K diag(

√
w), and Rn = 1 + supi∈[n] ∥xi∥2. Then for all ℓ ∈ N,

λℓ(K
w)

(i)
= λℓ(Tk,Swn )

(ii)

≤ 4e2ℓ(Hk|B2(Rn−1)
↪→ ℓ∞(B2(Rn − 1))). (8)

Proof of Prop. B.2. Without loss of generality, we assume wi > 0 for all i ∈ [n], since otherwise, we can consider a
smaller set of points by removing the ones with zero weights.

Proof of equality (i) from display (8) Note that L2(Swn ) is isometric to Rn. Let K ≜ k(Sn,Sn) denote the kernel matrix.
The action of Tk,Swn is given by, for i ∈ [n],

Tk,Swn f(xi) =
∑

j∈[n] wjk(xi, xj)f(xj),

so in matrix form, Tk,Swn f = K diag(w)f , and hence Tk,Swn = K diag(w). If λℓ is an eigenvalue of K diag(w) with
eigenvector vℓ, then

K diag(w)vℓ = λℓvℓ ⇐⇒ diag(
√
w)K diag(w)vℓ = λℓ diag(

√
w)vℓ

⇐⇒ diag(
√
w)K diag(

√
w)(diag(

√
w)vℓ) = λℓ diag(

√
w)vℓ,

where we used wi > 0 for all i ∈ [n]. Hence the eigenspectrum of Tk,Swn agrees with that of diag(
√
w)K diag(

√
w).

Proof of bound (ii) from display (8) By Lem. B.4, we have λℓ(Tk,Swn ) ≤ 4e2ℓ(Hk|B2(Rn−1)
↪→ L2(Swn )). Finally, using

Def. B.1, we have eℓ(Hk|B2(Rn−1)
↪→ L2(Swn )) ≤ eℓ(Hk|B2(Rn−1)

↪→ ℓ∞(B2(Rn − 1))) because Swn is supported in
B2(Rn − 1) and the fact that ∥·∥L2(P) ≤ ∥·∥∞ for any P.

Combining the tools developed so far, we have the following corollary for bounding the eigenvalues of POLYGROWTH and
LOGGROWTH kernel matrices.

Corollary B.1 (Eigenvalue bound for POLYGROWTH or LOGGROWTH kernel matrix). Suppose a kernel k satisfies As-
sum. (α,β)-kernel. Let Sn = (x1, . . . , xn) ⊂ Rd be a sequence of points. For any w ∈ ∆n−1, using the notation Lk from
(6), for any ℓ > Lk(Rn) + 1, we have

λℓ(K
w) ≤


4
(

Lk(Rn)
ℓ−1

) 2
α

POLYGROWTH(α, β) and

4 exp

(
2− 2

(
ℓ−1

Lk(Rn)

) 1
α

)
LOGGROWTH(α, β).

Proof of Cor. B.1. The claim follows by applying Prop. B.2 and Prop. B.1.
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B.2. Covering numbers and eigenvalues of Stein kernels

The goal of this section is to show that a Stein kernel kp satisfies Assum. (α,β)-kernel provided that the base kernel is
sufficiently smooth and to derive the parameters α, β for POLYGROWTH and LOGGROWTH cases. Such results when put
together with results from App. B.1 imply spectral decay rates for Stein kernel matrices.

For a Stein kernel kp with preconditioning matrix M , we define

Sp(r) ≜ max
(
1, sup∥x∥2≤r

∥∥M1/2∇ log p(x)
∥∥
2

)
. (9)

We start by noting a useful alternative expression for a Stein kernel where we only need access to the density via the score
∇ log p.

Proposition B.3 (Alternative expression for Stein kernel). The Stein kernel kp has the following alternative form:

kp(x, y) = ⟨∇ log p(x),M∇ log p(y)⟩k(x, y) + ⟨∇ log p(x),M∇yk(x, y)⟩+
⟨∇ log p(y),M∇xk(x, y)⟩+ tr(M∇x∇yk(x, y)),

(10)

where ∇x∇yk(x, y) denotes the d× d matrix (∂xi
∂yj

k(x, y))i,j∈[d].

Proof of Prop. B.3. We compute

(∇x · (p(x)Mk(x, y)p(y)))j =
∑

i∈[d] Mij (∂xip(x)k(x, y)p(y) + p(x)∂xik(x, y)p(y)) .

∇y · ∇x · (p(x)Mk(x, y)p(y)) =
∑

i,j∈[d] Mij

(
∂xi

p(x)∂yj
p(y)k(x, y) + ∂xi

p(x)∂yj
k(x, y)p(y)

)
+
∑

i,j∈[d] Mij

(
p(x)∂yj

p(y)∂xi
k(x, y) + p(x)∂xi

∂yj
k(x, y)p(y)

)
.

The four terms in the last equation correspond to the four terms in (10).

In what follows, we will make use of a matrix-valued kernel K : Rd × Rd → Rd×d which generates an RKHS HK of
vector-valued functions. See Carmeli et al. (2006) for an introduction to vector-valued RKHS theory.

Our next goal is to build a Hilbert-space isometry between the direct sum Hilbert space Hk
⊕d and Hkp

to represent
functions inHkp

using functions fromHk.

Lemma B.5 (Preconditioned matrix-valued RKHS from a scalar kernel). Let k : Rd × Rd → R be kernel and Hk be
the corresponding RKHS. Let M ∈ Rd×d be an SPSD matrix. Consider the map ι : Hk

⊕d → F(Rd,Rd) defined by
(f1, . . . , fd) 7→ [x 7→ M1/2(f1(x), . . . , fd(x))], where Hk

⊕d is the direct-sum Hilbert space of d copies of Hk Then ι
is a Hilbert-space isometry onto a vector-valued RKHS HK with matrix-valued reproducing kernel given by K(x, y) =
k(x, y)M .

Proof of Lem. B.5. Define γ : Rd → F(Rd,Hk
⊕d) via

γ(x)(α) ≜ k(x, ·)M1/2α.

We have

∥γ(x)(α)∥Hk
⊕d ≤ ∥k(x, ·)∥k

∥∥M1/2
∥∥
2
∥α∥2 ,

so γ(x) is bounded. Since γ(x) is also linear, we have γ(x) ∈ B(Rd,Hk
⊕d). Let γ(x)∗ : Hk

⊕d → Rd denote the
Hilbert-space adjoint of γ(x). Then for any (f1, . . . , fd) ∈ Hk

⊕d, α ∈ Rd, we have

⟨γ(x)∗(f1, . . . , fd), α⟩ = ⟨(f1, . . . , fd), γ(x)(α)⟩Hk
⊕d

= ⟨(f1, . . . , fd),k(x, ·)M1/2α⟩Hk
⊕d

= ⟨(f1(x), . . . , fd(x)),M1/2α⟩
= ⟨M1/2(f1(x), . . . , fd(x)), α⟩.
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Hence γ(x)∗(f1, . . . , fd) = M1/2(f1(x), . . . , fd(x)), so ι(f1, . . . , fd)(x) = γ(x)∗(f1, . . . , fd). By Carmeli et al. (2006,
Proposition 2.4), we see that ι is a partial isometry fromHk

⊕d onto a vector-valued RKHS space withv reproducing kernel
K(x, y) = γ(x)∗γ(y) : Rd → Rd. For α ∈ Rd, previous calculation implies

γ(x)∗γ(y)(α) = γ(x)∗(k(y, ·)M1/2α) = M1/2k(y, x)M1/2α = k(x, y)M.

Lemma B.6 (Stein operator is an isometry). Consider a Stein kernel kp with base kernel k and preconditioning matrix
M . Then, the Stein operator Sp defined by Sp(v) ≜ 1

p∇ · (pv) is an isometry fromHK with K ≜ kM toHkp
.

Proof. This follows from Barp et al. (2022, Theorem 2.6) applied to K.

The previous two lemmas show that Sp◦ι is a Hilbert space isometry fromHk
⊕d toHkp

. Note that Sp(v) = ⟨∇ log p, h⟩+
∇ · h. Hence, we immediately have

Hkp
=
{
⟨∇ log p,M1/2f⟩+∇ · (M1/2f) : f = (f1, . . . , fd) ∈ Hk

⊕d
}
. (11)

We next build a divergence RKHS which is one of the summands used to formHkp .

Lemma B.7 (Divergence RKHS). Let k : Rd × Rd → R be a continuously differentiable kernel. Let M be an SPSD
matrix. Define∇⊗2 · (Mk) : Rd × Rd → R via

∇⊗2 · (Mk)(x, y) ≜ ∇y · ∇x · (Mk(x, y)) = tr(M∇x∇yk(x, y)). (12)

Then ∇⊗2 · (Mk) is a kernel, and its RKHSH∇⊗2·(Mk) has the following explicit form

H∇⊗2·(Mk) = ∇ · HK =
{
∇ · (M1/2f) : f = (f1, . . . , fd) ∈ Hk

⊕d
}
, (13)

where K = Mk. Moreover, ∇· : HK → H∇⊗2·(Mk) is an isometry.

Proof of Lem. B.7. First of all, by Steinwart and Christmann (2008, Corollary 4.36), every f ∈ Hk is continuously differ-
entiable, so ∂xif exists. By Lem. B.5,∇ · HK is well-defined and the right equality in (13) holds.

Define γ : Rd → F(R,HK) via

γ(x)(t) ≜ t
∑d

i=1 ∂xi
K(x, ·)ei,

where ei ∈ Rd is the ith standard basis vector in Rd; by Barp et al. (2022, Lemma C.8) we have ∂xiK(x, ·)ei ∈ HK . Note
that

∥γ(x)(t)∥K = |t|
∥∥∥∑d

i=1 ∂xi
K(x, ·)ei

∥∥∥
K

,

so γ(x) ∈ B(R,HK). The adjoint γ(x)∗ ∈ B(HK ,R) must satisfy, for any h ∈ HK ,

tγ(x)∗h = ⟨h, γ(x)(t)⟩K =
〈
h, t
∑d

i=1 ∂xi
K(x, ·)ei

〉
K

= t∇ · h,

where we used the fact (Barp et al., 2022, Lemma C.8) that, for c ∈ Rd, h ∈ HK , ⟨∂xiK(x, ·)c, h⟩ = c⊤∂xih(x). So
we find γ(x)∗(h) = ∇ · h(x). By Carmeli et al. (2006, Proposition 2.4), the map A : HK → F(Rd,R) defined by
A(h)(x) = γ∗(x)(h) = ∇·h(x), i.e., A = ∇·, is a partial isometry fromHK to an RKHSH∇·K with reproducing kernel

γ(x)∗γ(y) = ∇ ·
(∑d

i=1 ∂xiK(x, ·)ei
)
(y) = ∇y · ∇x ·K(x, y) = ∇⊗2 · (Mk)(x, y).

The following lemma shows that we can project a covering of Bk consisting of arbitrary functions to a covering using
functions only in Bk while inflating the covering radius by at most 2.
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Lemma B.8 (Projection of coverings into RKHS balls). Let k be a kernel, A ⊂ Rd be a set, and ϵ > 0. Let C be a set of
functions such that for any f ∈ Bk, there exists g ∈ C such that ∥f − g∥∞,A ≤ ϵ. Then

Nk(A, 2ϵ) ≤ |C|.

Proof. We will build a (k, A, 2ϵ) covering C′ as follows. For any h ∈ C, if there exists h′ ∈ Bk with ∥h′ − h∥∞,A ≤ ϵ,
then we include h′ in C′. By construction, |C′| ≤ |C|. Then, for any f ∈ Bk, by assumption, there exists g ∈ C such that
∥f − g∥∞,A ≤ ϵ. By construction, there exists g′ ∈ C′ such that ∥g′ − g∥∞,A ≤ ϵ. Thus

∥f − g′∥∞,A ≤ ∥f − g∥∞,A + ∥g − g′∥∞,A ≤ 2ϵ.

Hence C ′ is a (k, A, 2ϵ) covering.

We are now ready to bound the covering numbers of kp by those of k and∇⊗2 · (Mk). Our key insight towards this end is
that any element inHkp

can be decomposed as a sum of functions originated fromHk and a function from the divergence
RKHSH∇⊗2·(Mk).
Lemma B.9 (Upper bounding covering number of Stein kernel with that of its base kernel). Let kp be a Stein kernel with
density p and preconditioning matrix M . For any A ⊂ Rd, ϵ1, ϵ2 > 0,

Nkp(A, ϵ) ≤ Nk(A, ϵ1)
dN∇⊗2·(Mk)(A, ϵ2),

for ϵ = 2(
√
dϵ1 supx∈A

∥∥M1/2∇ log p(x)
∥∥+ ϵ2).

Proof of Lem. B.9. Let Ck be a (k, A, ϵ1) covering and C∇⊗2·(Mk) be a (∇⊗2 · (Mk), A, ϵ2) covering. Define b ≜
M1/2∇ log p. Form

C ≜
{
⟨b, f̃⟩+ g̃ : f̃ = (f̃1, . . . , f̃d) ∈ (Ck)d, g̃ ∈ C∇⊗2·(Mk)

}
⊂ F(Rd,R).

Then |C| ≤ |Ck|d
∣∣C∇⊗2·(Mk)

∣∣. Let K ≜ kM . For any h ∈ Bkp
, by (11), we can find f = (f1, . . . , fd) ∈ Hk

⊕d with
fi ∈ Hk such that

h = Sp ◦ ι(f) = ⟨∇ log p,M1/2f⟩+∇ · (M1/2f) = ⟨b, f⟩+∇ · (M1/2f).

Since ι and Sp are isometries, we have f ∈ BHk
⊕d . Since, for each i,

∥fi∥k ≤
√∑d

j=1 ∥fj∥
2
k = ∥f∥Hk

⊕d ≤ 1,

we have fi ∈ Bk. By Lem. B.7, ∇· : HK → H∇⊗2·(Mk) is also an isometry, so ∇ · (M1/2f) ∈ B∇⊗2·(Mk). Thus there
exist f̃i ∈ Ck for each i and g̃ ∈ C∇⊗2·(Mk) such that∥∥∥fi − f̃i

∥∥∥
∞,A
≤ ϵ1,

∥∥∇ · (M1/2f)− g̃
∥∥
∞,A
≤ ϵ2.

Let

h̃(x) ≜ ⟨b, f̃⟩+ g̃ ∈ C.
Then for x ∈ A, ∣∣∣h(x)− h̃(x)

∣∣∣ = ∣∣∣⟨b(x), f(x)− f̃(x)⟩+∇ · (M1/2f(x))− g̃(x)
∣∣∣

≤ ∥b(x)∥
√∑d

i=1(fi(x)− f̃i(x))2 +
∣∣∇ · (M1/2f(x))− g̃(x)

∣∣
≤
√
dϵ1 ∥b(x)∥+ ϵ2.

Hence ∥∥∥h− h̃
∥∥∥
∞,A
≤
√
dϵ1 supx∈A ∥b(x)∥+ ϵ2 ≜ ϵ3.

Note that C that we constructed is not necessarily contained in Bkp . By Lem. B.8, we can get a (kp, A, 2ϵ3) covering and
we are done.
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Corollary B.2 (Log-covering number bound for Stein kernel). Let kp be a Stein kernel and A ⊂ Rd. For any r > 0,
ϵ > 0,

logNkp(A, ϵ) ≤ d logNk

(
A, ϵ

4
√
dSp(r)

)
+ logN∇⊗2·(Mk)

(
A, ϵ

4

)
,

where Sp is defined in (9).

Proof. This is direct from Lem. B.9 with ϵ1 = ϵ
4
√
dSp(r)

, ϵ2 = ϵ
4 .

B.2.1. CASE OF DIFFERENTIABLE BASE KERNEL

Definition B.2 (s-times continuously differentiable kernel). A kernel k is s-times continuously differentiable for s ∈ N if
all partial derivatives ∂α,αk exist and are continuous for all multi-indices α ∈ Nd

0 with |α| ≤ s.

Proposition B.4 (Covering number bound for kp with differentiable base kernel). Suppose kp is a Stein kernel with an
s-times continuously differentiable base kernel k for s ≥ 2. Then there exist a constant Cd > 0 depending only on
(s, d,k,M) such that for any r > 0, ϵ ∈ (0, 1),

logNkp
(B2(r), ϵ) ≤ Cdr

dS
d/s
p (r)(1/ϵ)d/(s−1).

Proof of Prop. B.4. Since k is s-times continuously differentiable, the divergence kernel ∇⊗2 · (Mk) is (s − 1)-times
continuously differentiable. By Dwivedi and Mackey (2022, Proposition 2(b)), there exists constants c1, c2 depending only
on (s, d,k,M) such that, for any r > 0, ϵ1, ϵ2 > 0,

logNk (B2(r), ϵ1) ≤ c1r
d(1/ϵ)d/s,

logN∇⊗2·(Mk) (B2(r), ϵ2) ≤ c2r
d(1/ϵ)d/(s−1).

By Cor. B.2 with A = B2(r), we have, for any r > 0 and ϵ ∈ (0, 1),

logNkp
(B2(r), ϵ) ≤ c1dr

d(4
√
dSp(r))

d/s(1/ϵ)d/ϵ + c2r
d(4/ϵ)d/(s−1)

≤ Cdr
dS

d/s
p (r)(1/ϵ)d/(s−1)

for some Cd > 0 depending only on (s, d,k,M).

B.2.2. CASE OF RADIALLY ANALYTIC BASE KERNEL

For a symmetric positive definite M ∈ Rd×d, we define, for x ∈ Rd,

∥x∥M ≜
√
x⊤M−1x.

Definition B.3 (Radially analytic kernel). A kernel k is radially analytic if k satisfies k(x, y) = κ(∥x− y∥2M ) for a
symmetric positive definite matrix M ∈ Rd×d and a function κ : R≥0 → R real-analytic everywhere with convergence
radius Rκ > 0 such that there exists a constant Cκ > 0 for which∣∣∣ 1j!κ(j)

+ (0)
∣∣∣ ≤ Cκ(2/Rκ)

j , for all j ∈ N0, (14)

where κ
(j)
+ indicates the j-th right-sided derivative of κ.

Example B.1 (Gaussian kernel). Consider the Gaussian kernel k(x, y) = κ(∥x− y∥2M ) with κ(t) = e−
t

2σ2 where σ > 0.

Note the exponential function is real-analytic everywhere, and so is κ. Since κ(t) =
∑∞

j=0
(−t/2σ2)j

j , we find 1
j!κ

(j)(0) =
(−1)j

j(2σ2)j . Hence (14) holds with Cκ = 1 and Rκ = 2 infj≥0(j(2σ
2)j)1/j = 4σ2.

Example B.2 (IMQ kernel). Consider the inverse multiquadric kernel k(x, y) = κ(∥x− y∥2M ) with κ(t) = (c2 + t)−β

where c, β > 0. By Sun and Zhou (2008, Example 3), κ is real-analytic everywhere with Cκ = c−2β(2β + 1)β+1 and
Rκ = c2.
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A simple calculation yields the following lemma.

Proposition B.5 (Expression for kp with a radially analytic base kernel). Suppose a Stein kernel kp has a symmetric
positive definite preconditioning matrix and a base kernel k(x, y) = κ(∥x− y∥2M ) where κ is twice-differentiable. Then

kp(x, y) = ⟨∇ log p(x),M∇ log p(y)⟩κ(∥x− y∥2M )−
2κ′

+(∥x− y∥2M )⟨x− y,∇ log p(x)−∇ log p(y)⟩−
4κ′′

+(∥x− y∥2M ) ∥x− y∥2M − 2dκ′
+(∥x− y∥2M ).

(15)

In particular,

kp(x, x) =
∥∥M1/2∇ log p(x)

∥∥2
2
κ(0)− 2dκ′

+(0).

Proof of Prop. B.5. From k(x, y) = κ(∥x− y∥2M ) = κ((x− y)⊤M−1(x− y)), we compute, using (12),

∇yk(x, y) = −2κ′
+(∥x− y∥2M )M−1(x− y)

∇x∇yk(x, y) = −2κ′
+(∥x− y∥2M )M−1 − 4κ′′

+(∥x− y∥2M )M−1(x− y)((x− y)M−1)⊤

∇⊗2 · (Mk)(x, y) = tr(M∇x∇yk(x, y)) = −4κ′′
+(∥x− y∥2M ) ∥x− y∥2M − 2dκ′

+(∥x− y∥2M ). (16)

The form (15) then follows from applying Prop. B.3.

We next show that the divergence kernel ∇⊗2 · (Mk) is radially analytic given that k is.

Lemma B.10 (Convergence radius of divergence kernel). Let k be a radially analytic kernel with the corresponding real-
analytic function κ, convergence radius Rκ with constant Cκ, and a symmetric positive definite matrix M . Then

∇⊗2 · (Mk)(x, y) = κ∇⊗2·(Mk)(∥x− y∥2M ),

where κ∇⊗2·(Mk) : R≥0 → R is the real-analytic function defined as

κ∇⊗2·(Mk)(t) ≜ −4κ′′
+(t)t− 2dκ′

+(t).

Moreover, κ∇⊗2·(Mk) has convergence radius with constant

Rκ∇⊗2·(Mk)
= Rκ

4d+8 , Cκ∇⊗2·(Mk)
= 4dCκ/Rκ.

Proof of Lem. B.10. The first statement regarding the form of κ∇⊗2·(Mk) directly follows from (16). Next, iterative differ-
entiation yields, for j ∈ N0,

κ
(j)
∇⊗2·(Mk)(t) = −(2d+ 4j)κ

(j+1)
+ (t)− 4κ

(j+2)
+ (t)t.

Thus ∣∣∣ 1j!κ(j)
∇⊗2·(Mk)(0)

∣∣∣ = 2d+4j
j! κ

(j+1)
+ (0)

= (2d+4j)(j+1)
(j+1)! κ

(j+1)
+ (0)

≤ (2d+ 4j)(j + 1)Cκ(2/Rκ)
j+1. (17)

For j ≥ 1, ∣∣∣ 1j!κ(j)
∇⊗2·(Mk)(0)

∣∣∣ ≤ (2Cκ/Rκ)
(
((2d+ 4j)(j + 1))1/j2/Rκ

)j
≤ (2Cκ/Rκ) ((2(2d+ 4) · 2/Rκ)

j
.

where we used the fact that ((2d+4j)(j+1))1/j is decreasing in j. For j = 0, (17) is just 2dCκ ·2/Rκ. Hence κ∇⊗2·(Mk)

is analytic with Cκ∇⊗2·(Mk)
= 4dCκ/Rκ and Rκ∇⊗2·(Mk)

= Rκ

4d+8 .
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We will use the following lemma repeatedly.

Lemma B.11 (Covering number of radially analytic kernel with M -metric). Let k0 be a radially analytic kernel with
k0(x, y) = κ(∥x− y∥22). For any symmetric positive definite M ∈ Rd×d, consider the radially analytic kernel k(x, y) ≜
κ(∥x− y∥2M ). Then for any A ⊂ Rd and ϵ > 0, we have

Nk(M
−1/2(A), ϵ) = Nk0(A, ϵ).

In particular, for any r > 0,

Nk(B2(r), ϵ) ≤ Nk0
(B2(r∥M1/2∥2), ϵ).

Proof. Note that k(x, y) = k0(M
−1/2x,M−1/2y). By Paulsen and Raghupathi (2016, Theorem 5.7),Hk = {f ◦M−1/2 :

f ∈ Hk0
}, and moreover Bk = {f ◦M−1 : f ∈ Bk0

}. Let C0 be a (k0, A, ϵ) covering. Form C = {h ◦M−1/2 : h ∈
C0} ⊂ Bk. For any element f ◦M−1/2 ∈ Bk where f ∈ Bk0 , there exists h ∈ C0 such that ∥f − h∥∞,A ≤ ϵ. Thus∥∥f ◦M−1/2 − h ◦M−1/2

∥∥
∞,M−1/2(A)

= ∥f − h∥∞,A ≤ ϵ.

Thus Nk(M
−1/2(A), ϵ) ≤ Nk0

(A, ϵ). By considering M−1 in place of M , we get our desired equality.

For the second statement, by letting A = M1/2B2(r), we have

Nk(B2(r), ϵ) = Nk0
(M1/2B2(r), ϵ) ≤ Nk0

(B2(r∥M1/2∥2), ϵ),

where we use the fact that M1/2B2(r) ⊂ B2(r∥M1/2∥2).

In the next lemma, we rephrase the result from Sun and Zhou (2008, Theorem 2) for bounding the covering number of a
radially analytic kernel.

Lemma B.12 (Covering number bound for radially analytic kernel). Let k be a radially analytic kernel with k(x, y) =

κ(∥x− y∥22). Then, there exist a polynomial P (r) of degree 2d and a constant C depending only on (κ, d) such that for
any r > 0, ϵ ∈ (0, 1/2),

logNk(B2(r), ϵ) ≤ P (r)(log(1/ϵ) + C)d+1.

Proof of Lem. B.12. Let Rκ, Cκ denote the constants for κ as in (14). By and Sun and Zhou (2008, Theorem 2) with
R = 1, D = 2r, and Lem. B.2, for ϵ ∈ (0, 1/2), we have

logNk(B2(r), ϵ) ≤ N2(B2(r), r†/2)
(
4 log(1/ϵ) + 2 + 4 log

(
16
√
Cκ + 1

))d+1
,

where r† = min(
√
Rκ

2d ,
√

Rκ + (2r)2 − 2r), and N2(B2(r), r†/2) is the covering number of B2(r) as a subset of Rd,
which can be further bounded by (Wainwright, 2019, (5.8))

N2(B2(r), r†/2) ≤
(
1 + 4r

r†

)d
.

If r† =
√
Rκ + (2r)2− 2r, then r

r†
= r√

Rκ+(2r)2−2r
=

r(
√

Rκ+(2r)2+2r)

Rκ
≤ r(

√
Rκ+4r)
Rκ

which is a quadratic polynomial

in r. Hence for a constant C > 0 and a polynomial P (r) of degree 2d that depend only on (κ, d), we have the claim.

Proposition B.6 (Covering number bound for kp with radially analytic base kernel). Suppose kp is a Stein kernel with a
preconditioning matrix M and a radially analytic base kernel k based on a real-analytic function κ. Then there exist a
constant C > 0 and a polynomial P (r) of degree 2d depending only on (κ, d,M) such that for any r > 0, ϵ ∈ (0, 1),

logNkp
(B2(r), ϵ) ≤

(
log

Sp(r)
ϵ + C

)d+1

P (r). (18)
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Proof of Prop. B.6. Recall k(x, y) = κ(∥x− y∥2M ). Consider k0(x, y) ≜ κ(∥x− y∥22). For ϵ1 ∈ (0, 1/2), by Lem. B.11,
we have

logNk(B2(r/∥M1/2∥2), ϵ1) ≤ logNk0
(B2(r), ϵ1/2).

Thus by Lem. B.12, there exists a polynomial Pk(r) of degree 2d and a constant Ck depending only on (κ, d,M) such that

logNk(B2(r), ϵ1) ≤ Pk(r)(log(1/ϵ1) + Ck)
d+1

Similarly, for ϵ2 ∈ (0, 1/2), by Lem. B.10 and Lem. B.12, we have, for a constant C∇⊗2·(Mk) > 0 and a polynomial
P∇⊗2·(Mk)(r) of degree 2d that depend only on (κ, d,M),

logN∇⊗2·(Mk)(B2(r), ϵ2) ≤ P∇⊗2·(Mk)(r)(log(1/ϵ2) + C∇⊗2·(Mk))
d+1.

For a given ϵ ∈ (0, 1), let ϵ1 = ϵ
4
√
dSp(r)

and ϵ2 = ϵ
4 . Then since Sp ≥ 1, we have ϵ1, ϵ2 ∈ (0, 1/2). By Cor. B.2 with

A = B2(r), we obtain, for a constants C > 0 and a polynomial P (r) of degree 2d that depend only on (κ, d,M),

logNkp
(B2(r), ϵ) ≤ P (r)(log(1/ϵ) + logSp(r) + C)d+1.

Hence (18) is shown.

When logSp(r) grows polynomially in r, we apply Prop. B.6 to immediately obtain the following.

Corollary B.3. Under the assumption of Prop. B.6, suppose Sp(r) = O(poly(r)). Then for any δ > 0, there exists Cd > 0
such that

logNkp(B2(r), ϵ) ≤ Cd log(e/ϵ)
d+1

(r + 1)2d+δ.

Proof of Cor. B.3. This immediately follows from Prop. B.6 by using δ > 0 to absorb the logSp(r) = O(rδ) term.

B.2.3. PROOF OF PROP. 1: STEIN KERNEL GROWTH RATES

This follows from Prop. B.4 and Cor. B.3, and by noticing that if sup∥x∥2≤r ∥∇ log p(x)∥2 is bounded by a degree dℓ
polynomial, then so is

Sp(r) = sup∥x∥2≤r

∥∥M1/2∇ log p(x)
∥∥
2
≤
∥∥M1/2

∥∥
2
sup∥x∥2≤r ∥∇ log p(x)∥2 .

C. Analysis of Debiasing Benchmarks
We start with a result on the MMD quality of i.i.d. sample points in App. C.1, followed by the proofs of our i.i.d.-like and
better-than-i.i.d. guarantees for debiasing from Thms. 1 and 2 in Apps. C.2 and C.3 respectively.

C.1. MMD of unbiased i.i.d. sample points

We start by showing that sequence of n points sampled i.i.d. from P achieves Θ(n−1) squared MMDkP to P in expectation.

Proposition C.1 (MMD of unbiased i.i.d. sample points). Let kP be a kernel satisfying Assum. 1 with p ≥ 1. Let Sn =
(xi)i∈[n] be n i.i.d. samples from P. Then

E[MMDkP(Sn,P)2] =
Ex∼P[kP(x,x)]

n .

Proof of Prop. C.1. We compute

E[MMDkP(Sn,P)2] = E[
∑

i,j∈[n]
1
n2kP(xi, xj)] =

1
n2

∑
i,j∈[n] E[kP(xi, xj)] =

1
nE[kP(x1, x1)],

where we used the fact that kP is mean-zero with respect to P and the independence of xi, xj for i ̸= j.
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C.2. Proof of Thm. 1: Debiasing to i.i.d. quality via simplex reweighting

We make use of the self-normalized importance sampling weights wSNIS
j = dP

dQ (xj)/
∑

i∈[n]
dP
dQ (xi) for j ∈ [n] in our

proofs. Notice that (wSNIS
1 , . . . , wSNIS

n )⊤ ∈ ∆n−1 and hence

MMDOPT ≤ MMDkP(w
SNIS
i δxi ,P) =

∥
∑n

i=1
dP
dQ (xi)kP(xi,·)∥kP∑n
i=1

dP
dQ (xi)

=
∥ 1

n

∑n
i=1

dP
dQ (xi)kP(xi,·)∥kP

1
n

∑n
i=1

dP
dQ (xi)

.

Introduce the bounded in probability notation Xn = Op(gn) to mean Pr(|Xn/gn| > Cϵ) ≤ ϵ for all n ≥ Nϵ for any ϵ > 0.
Then we claim that under the conditions assumed in Thm. 1,

∥ 1n
∑n

i=1
dP
dQ (xi)kP(xi, ·)∥kP = Op(n

− 1
2 ) and 1

n

∑n
i=1

dP
dQ (xi)→ 1 almost surely, (19)

so that by Slutsky’s theorem (Wellner, 2013, Ex. 1.4.7), we have MMDOPT = Op(n
− 1

2 ) as desired. We prove the claims
in (19) in two main steps: (a) first, we construct a weighted RKHS and then (b) establish a central limit theorem (CLT) that
allows us to conclude both claims from (19)

Constructing a weighted and separable RKHS Define the kernel kQ(x, y) ≜ dP
dQ (x)kP(x, y)

dP
dQ (y) with Hilbert space

HkQ = dP
dQHkP and the elements ξi ≜ kQ(xi, ·) = dP

dQ (xi)kP(xi, ·) dP
dQ (·) ∈ HkQ for each i ∈ N. By Paulsen and

Raghupathi (2016, Prop. 5.20), any element in HkQ is represented by dP
dQf for some f ∈ HkP and moreover, f 7→ dP

dQf

preserves inner product between the two RKHSs, i.e., ⟨f, g⟩kP
= ⟨ dPdQf, dP

dQg⟩kQ for f, g ∈ HkP , which in turn implies
∥f∥kP = ∥ dPdQf∥kQ . As a result, we also have that

∥ 1n
∑n

i=1
dP
dQ (xi)kP(xi, ·)∥kP = ∥ 1n

∑n
i=1

dP
dQ (xi)kP(xi, ·) dP

dQ (·)∥kQ = ∥ 1n
∑n

i=1 ξi∥kQ . (20)

Since HkP is separable, there exists a dense countable subset (fn)n∈N ⊂ HkP . For any dP
dQf ∈ HkQ , there exists {nk}k∈N

such that limk→∞ ∥fnk
− f∥kP = 0. Since ∥ dPdQfnk

− dP
dQf∥kQ = ∥ dPdQ (fnk

− f)∥kQ = ∥fnk
− f∥kP

due to inner-product
preservation, we thus have limk→∞ ∥ dPdQfnk

− dP
dQf∥kQ = limk→∞ ∥fnk

− f∥kP0, so ( dP
dQfn)n∈N is dense in HkQ , show-

ing thatHkQ is separable.

Harris recurrence of the chain (xi)i∈N Let µ1 denote the distribution of x1. Since S∞ = (xi)
∞
i=1 is a homogeneous ϕ-

irreducible geometrically ergodic Markov chain with stationary distribution Q, it is also positive (Meyn and Tweedie, 2012,
Ch. 10) by definition and aperiodic by Douc et al. (2018, Lem. 9.3.9). Moreover, since S∞ is ϕ-irreducible, aperiodic, and
geometrically ergodic in the sense of Gallegos-Herrada et al. (2023, Thm. 1) and µ1 is absolutely continuous with respect
to P, we will assume, without loss of generality, that S∞ is Harris recurrent (Meyn and Tweedie, 2012, Ch. 9), since, by
Qin (2023, Lem. 9), S∞ is equal to a geometrically ergodic Harris chain with probability 1.

CLT for 1√
n

∑n
i=1 ξi We now show that 1√

n

∑n
i=1 ξi converges to a Gaussian random element taking values inHkQ . We

separate the proof in two parts: first when the initial distribution µ1 = Q and next when µ1 ̸= Q.

Case 1: µ1 = Q When µ1 = Q, S∞ is a strictly stationary chain. By Bradley (2005, Thm. 3.7 and (1.11)), since S∞ is
geometrically ergodic, its strong mixing coefficients (α̃i)i∈N satisfy α̃i ≤ Cρi for some C > 0 and ρ ∈ [0, 1) and all i ∈ N.
Since each ξi is a measurable function of xi, the strong mixing coefficients (αi)i∈N of (ξi)i∈N satisfy αi ≤ α̃i ≤ Cρi for
each i ∈ N. Consequently,

∑
i∈N i2/δαi <∞ for δ = 2q− 2 > 0. Note that we also have

Ez∼Q[∥kQ(z, ·)∥2+δ
kQ

] = Ez∼Q[kQ(z, z)
q] = Ez∼Q[

dP
dQ (z)

2qkP(z, z)
q] = Ex∼P[

dP
dQ (x)

2q−1kP(x, x)
q] <∞,

Exi∼Q[ξi] = Exi∼P[kP(xi, ·)] = 0 and that HkQ is separable. Since S∞ is a strictly stationary chain, we conclude that
(ξi)i∈N is a strictly stationary centered sequence ofHkQ -valued random variables satisfying the conditions needed to invoke
Merlevède et al. (1997, Cor. 1), and hence

∑n
i=1 ξi/

√
n converges in distribution to a Gaussian random element taking

values inHkQ .

Case 2: µ1 ̸= Q Since S∞ is positive Harris and
∑n

i=1 ξi/
√
n satisfies a CLT for the initial distribution µ1 = Q, Meyn

and Tweedie (2012, Prop. 17.1.6) implies that
∑n

i=1 ξi/
√
n also satisfies the same CLT for any initial distribution µ1.
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Putting the pieces together for (19) Since, for any initial distribution for x1, the sequence (
∑n

i=1 ξi/
√
n)n∈N con-

verges in distribution and that HkQ is separable and (by virtue of being a Hilbert space) complete, Prokhorov’s theorem
(Billingsley, 2013, Thm. 5.2) implies that the sequence is also tight, i.e., ∥∑n

i=1 ξi∥kQ/
√
n = Op(1). Consequently,

∥ 1n
∑n

i=1
dP
dQ (xi)kP(xi, ·)∥kP

(20)
= ∥ 1n

∑n
i=1 ξi∥kQ = 1√

n
· ∥
∑n

i=1 ξi√
n
∥kQ = Op(n

− 1
2 ),

as desired for the first claim in (19). Moreover, the strong law of large numbers for positive Harris chains (Meyn and
Tweedie, 2012, Thm. 17.0.1(i)) implies that 1

n

∑
i∈[n]

dP
dQ (xi) converges almost surely to Ez∼Q[

dP
dQ (z)] = 1 as desired for

the second claim in (19).

C.3. Proof of Thm. 2: Better-than-i.i.d. debiasing via simplex reweighting

We start with Thm. C.1, proved in App. C.4, that bounds MMDOPT in terms of the eigenvalues of the integral operator of
the kernel kP. Our proof makes use of a weight construction from Liu and Lee (2017, Theorem 3.2), but is a non-trivial
generalization of their proof as we no longer assume uniform bounds on the eigenfunctions, and instead leverage truncated
variations of Bernstein’s inequality (Lems. C.2 and C.3) to establish suitable concentration bounds.

Theorem C.1 (Debiasing via i.i.d. simplex reweighting). Consider a kernel kP satisfying Assum. 1 with p = 2. Let (λℓ)
∞
ℓ=1

be the decreasing sequence of eigenvalues of TkP,P defined in (4). Let Sn be a sequence of n ∈ 2N i.i.d. random variables
with law Q such that P is absolutely continuous with respect to Q and ∥ dPdQ∥∞ ≤M for some M > 0. Futhermore, assume
there exist constants δn, Bn > 0 such that Pr (∥kP∥n > Bn) < δn. Then for all L ∈ N such that λL > 0, we have

E[MMD2
kP
(SwOPT

n ,P)] ≤ 8M
n

(
2M
n

Ex∼P[k
2
P(x,x)]

λL
+
∑

ℓ>L λℓ

)
+ ϵnE[k2

P(x1, x1)], (21)

where

ϵ2n ≜ n exp
(

−3n
16MBn/λL

)
+ 2 exp

( −n
16M2

)
+ 2 exp

(
− n

64M2(Ex∼P[kP(x,x)]+Bn/12)/λL

)
+ δn. (22)

Given Thm. C.1, Thm. 2 follows, i.e., we have E[MMD2
kP
(SwOPT

n ,P)] = o(n−1), as long as we can show (i)
E[k2

P(x1, x1)] < ∞, which in turn holds when q > 3 as assumed in Thm. 2, and (ii) find sequences (Bn)
∞
n=1, (δn)∞n=1,

and (Ln)
∞
n=1 such that Pr(∥kP∥n > Bn) < δn for all n and the following conditions are met:

(a) Ex∼P[k
2
P(x,x)]

λLn
= o(n);

(b) Bn

λLn
= O(nβ), for some β < 1;

(c)
∑

ℓ>Ln
λℓ = o(1);

(d) δn = o(n−2).

We now proceed to establish these conditions under the assumptions of Thm. 2.

Condition (d) By the de La Vallée Poussin Theorem (Chandra, 2015, Thm. 1.3) applied to the Q-integrable function
x 7→ kP(x, x)

q (which is a uniformly integrable family with one function), there exists a convex increasing function G

such that limt→∞
G(t)
t =∞ and E[G(kP(x1, x1)

q)] <∞. Thus,

Pr
(
kP(x1, x1) > n3/q

)
= Pr

(
kP(x1, x1)

q > n3
)
= Pr

(
G(kP(x1, x1))

q > G(n3)
)

≤ E[G(kP(x1,x1))
q]

G(n3) = o(n−3),

where the last step uses limt→∞
G(t)
t =∞. Hence by the union bound,

Pr
(
∥kP∥n > n3/q

)
= Pr

(
maxi∈[n] kP(xi, xi) > n3/q

)
≤ nPr

(
kP(x1, x1) > n3/q

)
= o(n−2).

Hence if we set Bn = nτ for τ ≜ 3/q < 1, there exists (δn)
∞
n=1 such that δn = o(n−2). This fulfills (d) and that

Pr(∥kP∥n > Bn) < δn.
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To prove remaining conditions, without loss of generality, we assume that λℓ > 0 for all ℓ ∈ N, since otherwise we can
choose Ln to be, for all n, the largest ℓ such that λℓ > 0. Then

∑
ℓ>Ln

λLn = 0 and all other conditions are met.

Condition (c) If Ln →∞, then (c) is fulfilled since
∑

ℓ λℓ <∞, which follows from Lem. B.1(d) and that∑
ℓ λℓ =

∑∞
ℓ=1 λiEx∼P[ϕℓ(x)

2] =
∑∞

ℓ=1 λiEx∼P[ϕℓ(x)
2] = Ex∼P[

∑∞
ℓ=1 λiϕℓ(x)

2] = Ex∼P[kP(x, x)] <∞.

Conditions (a) and (b) Note that the condition (a) is subsumed by (b) since Ex∼P[k
2
P(x, x)] < ∞. It remains to choose

(Ln)
∞
n=1 to satisfy (b) such that limn→∞ Ln =∞. Define Ln ≜ max{ℓ ∈ N : λℓ ≥ n

τ−1
2 }. Then Ln is well-defined for

n ≥ ( 1
λ1
)

2
1−τ , since for such n we have λ1 ≥ n

τ−1
2 . Hence for n ≥ ( 1

λ1
)

2
1−τ , we have

Bn

λLn
≤ nτ

n
τ−1
2

= n
τ+1
2 ,

so (b) is satisfied with β = τ+1
2 < 1. Since τ < 1, Ln is non-decreasing in n and n

τ−1
2 decreases to 0. Since each λℓ > 0,

we therefore have limn→∞ Ln =∞.

C.4. Proof of Thm. C.1: Debiasing via i.i.d. simplex reweighting

We will slowly build up towards proving Thm. C.1. First notice Ex∼P[k
2
P(x, x)] < ∞ implies Ex∼P[kP(x, x)] < ∞, so

Lem. B.1 holds. Fix any L ∈ N satisfying λL > 0. Since n is even, we can define D0 ≜ [n/2] and D1 ≜ [n] \D0. We will
use SD0 and SD1 to denote the subsets of Sn with indices inD0 andD1 respectively. Let (ϕℓ)

∞
ℓ=1 ⊂ HkP be eigenfunctions

corresponding to the eigenvalues (λℓ)
∞
ℓ=1 by Lem. B.1(c), so that (ϕℓ)

∞
ℓ=1 is an orthonormal system of L2(P).

We start with a useful lemma.

Lemma C.1 (HkP consists of mean-zero functions). Let kP be a kernel satisfying Assum. 1. Then for any f ∈ HkP , we
have Pf = 0.

Proof. Fix f ∈ HkP . By Steinwart and Christmann (2008, Thm 4.26), f is P integrable. Consider the linear operator I
that maps f 7→ Pf . Since

|I(f)| = |Pf | ≤ P|f | =
∫
|⟨f,kP(x, ·)⟩kP |dP ≤

∫
∥f∥kP

√
kP(x, x)dP = ∥f∥kP

Ex∼P[kP(x, x)
1
2 ].

Hence I is a continuous linear operator, so by the Riez representation theorem (Steinwart and Christmann, 2008,
Thm. A.5.12), there exists g ∈ HkP such that I(h) = ⟨h, g⟩kP for any h ∈ HkP .

By Steinwart and Christmann (2008, Thm. 4.21), the set

Hpre ≜
{∑n

i=1 αikP(·, xi) : n ∈ N, (αi)i∈[n] ⊂ R, (xi)i∈[n] ⊂ Rd
}

is dense inHkP . Note that Hpre consists of mean zero functions under P by linearity. So there exists fn converging to f in
HkP where each fn has Pfn = I(fn) = ⟨fn, g⟩kP = 0. Since

limn→∞ |⟨f, g⟩kP − ⟨fn, g⟩kP | = limn→∞ |⟨f − fn, g⟩kP | ≤ limn→∞ ∥f − fn∥kP
∥g∥kP

= 0,

we have Pf = ⟨f, g⟩kP = 0.

In particular, the assumption Ex∼P[k
2
P(x, x)] <∞ of Thm. C.1 implies Ex∼P[kP(x, x)

1
2 ] <∞, so Lem. C.1 holds.

Step 1. Build control variate weights

Fix any L ≥ 1 and h ∈ HkP , and let ĥD0 denote the eigen-expansion truncated approximation of h based on D0,

ĥD0
(x) ≜

∑L
ℓ=1 β̂ℓ,0ϕℓ(x) for β̂ℓ,0 ≜ 2

n

∑
i∈D0

h(xi)ϕℓ(xi)ξ(xi).

Then

E[β̂ℓ,0] = E
[
2
n

∑
i∈D0

h(xi)ϕℓ(xi)ξ(xi)
]
= ⟨h, ϕℓ⟩L2(P). (23)
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Next, define the control variate

Ẑ0[h] =
2
n

∑
i∈D1

(
ξ(xi)(h(xi)− ĥD0

(xi))
)
. (24)

which satisfies

E[Ẑ0[h]] = Ex∼P

[
h(x)−∑L

ℓ=1 E[β̂ℓ,0]ϕℓ(x)
]
= 0, (25)

since functions in HkP have mean 0 with respect to P (Lem. C.1). Similarly, we define Ẑ1[h] by swapping D0 and D1.
Then we form Ẑ[h] ≜ Ẑ0[h]+Ẑ1[h]

2 . We can rewrite Ẑ[h] as a quadrature rule over Sn (Liu and Lee, 2017, Lemma B.6)

Ẑ[h] =
∑

i∈[n] wih(xi), (26)

where wi is defined as (whose randomness depends on the randomness in Sn)

wi ≜

{ 1
nξ(xi)− 2

n2

∑
j∈D1

ξ(xi)ξ(xj)⟨ΦL(xi),ΦL(xj)⟩,∀i ∈ D0,
1
nξ(xi)− 2

n2

∑
j∈D0

ξ(xi)ξ(xj)⟨ΦL(xi),ΦL(xj)⟩,∀i ∈ D1,
(27)

and ΦL(x) ≜ (ϕ1(x), . . . , ϕL(x)).

Step 2. Show E[MMD2
kP
(Swn ,P)] = o(n−1)

We first bound the variance of the control variate Ẑ0[h] for h = ϕℓ′ for ℓ′ ∈ N. Let us fix ℓ′ ∈ N. From (24), we compute

E[Ẑ0[h]
2] = 4

n2E
[(∑

i∈D1
ξ(xi)(h(xi)− ĥD0

(xi))
)2]

= 4
n2E

[∑
i∈D1

ξ(xi)
2(h(xi)− ĥD0

(xi))
2
]

= 2
nE[Ex∼Q[ξ(x)

2(h(x)− ĥD0(x))
2|SD0 ]]

= 2
nE[Ex∼P[ξ(x)(h(x)− ĥD0

(x))2|SD0
]]

≤ 2M
n E[Ex∼P[(h(x)− ĥD0

(x))2|SD0
]],

where in the second equality, the cross terms are zero due to the independence of points xi and the equality (25). By the
definition of ĥD0

, we compute

Ex∼P[(h(x)− ĥD0
(x))2|SD0

] = Ex∼P

[(
ϕℓ′(x)−

∑
ℓ≤L β̂ℓ,0ϕℓ(x)

)2∣∣∣∣SD0

]
= Ex∼P

[
ϕ2
ℓ′(x) +

∑
ℓ≤L β̂2

ℓ,0ϕ
2
ℓ(x)− 2ϕℓ′(x)

∑
ℓ≤L β̂ℓ,0ϕℓ(x)

∣∣∣SD0

]
= 1 +

∑
ℓ≤L β̂2

ℓ,0 − 2
∑

ℓ≤L β̂ℓ,01ℓ′=ℓ

= 1 +
∑

ℓ≤L β̂2
ℓ,0 − 2β̂ℓ′,01ℓ′≤L,

where we use the fact that (ϕℓ)
∞
ℓ=1 is an orthonormal system in L2(P). By (23) with h = ϕℓ′ , we have E[β̂ℓ′,0] = 1. On

the other hand, we can bound, again using the orthonormality of (ϕℓ)
∞
ℓ=1,

E[β̂2
ℓ,0] = E

[(
2
n

∑
i∈D0

ϕℓ(xi)ϕℓ′(xi)ξ(xi)
)2]

= 4
n2E

[∑
i∈D0

(ϕℓ(xi)ϕℓ′(xi)ξ(xi))
2
]
≤ 2M

n Ex∼P[(ϕℓ(x)ϕℓ′(x))
2].

Thus for all ℓ′ ∈ N,

E[Ẑ0[ϕℓ′ ]
2] ≤ 2M

n

(
1 + 2M

n

∑
ℓ≤L Ex∼P[(ϕℓ(x)ϕℓ′(x))

2]− 21ℓ′≤L

)
≤ 2M

n

(
2M
n

∑
ℓ≤L Ex∼P[(ϕℓ(x)ϕℓ′(x))

2] + 1ℓ′>L

)
.

Since Ẑ[h] = Ẑ0[h]+Ẑ1[h]
2 and (a+b

2 )2 ≤ a2+b2

2 for a, b ∈ R, and, by symmetry, E[Ẑ0[h]
2] = E[Ẑ1[h]

2], we have

E[Ẑ[ϕℓ′ ]
2] ≤ 2M

n

(
2M
n

∑
ℓ≤L Ex∼P[(ϕℓ(x)ϕℓ′(x))

2] + 1ℓ′>L

)
. (28)
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Now we have

E[MMD2
kP
(Swn ,P)] = E

[∑
i,j∈[n] wiwjkP(xi, xj)

]
= E

[∑
i,j∈[n] wiwj

∑∞
ℓ′=1 λℓ′ϕℓ′(xi)ϕℓ′(xj)

]
= E

[∑∞
ℓ′=1

∑
i,j∈[n] wiwjλℓ′ϕℓ′(xi)ϕℓ′(xj)

]
= E

[∑∞
ℓ′=1 λℓ′

(∑
i∈[n] wiϕℓ′(xi)

)2]
=
∑∞

ℓ′=1 λℓ′E
[(∑

i∈[n] wiϕℓ′(xi)
)2]

=
∑∞

ℓ′=1 λℓ′E[Ẑ[ϕℓ′ ]
2],

where the second and third equalities are due to the absolute convergence of the Mercer series (Lem. B.1(d)), the fourth
equality follows from Tonelli’s theorem (Steinwart and Christmann, 2008, Thm. A.3.10), and the last step is due to (26).
Plugging in (28), we have

E[MMD2
kP
(Swn ,P)] ≤ 2M

n

(
2M
n

∑∞
ℓ′=1

∑
ℓ≤L λℓ′Ex∼P[(ϕℓ(x)ϕℓ′(x))

2] +
∑

ℓ>L λℓ

)
.

Since the eigenvalues are nonnegative and non-increasing, we can write, by (5),

k2
P(x, x) =

(∑∞
ℓ=1 λℓϕℓ(x)

2
)2 ≥∑∞

ℓ′=1

∑
ℓ≤L λℓ′λℓ(ϕℓ(x)ϕℓ′(x))

2 ≥ λL

∑∞
ℓ′=1

∑
ℓ≤L λℓ′(ϕℓ(x)ϕℓ′(x))

2.

Thus by Tonelli’s theorem (Steinwart and Christmann, 2008, Thm. A.3.10),∑∞
ℓ′=1

∑
ℓ≤L λℓ′Ex∼P[(ϕℓ(x)ϕℓ′(x))

2] = Ex∼P

[∑∞
ℓ′=1

∑
ℓ≤L λℓ′(ϕℓ(x)ϕℓ′(x))

2
]
≤ Ex∼P[k

2
P(x,x)]

λL
.

Finally, we have

E[MMD2
kP
(Swn ,P)] ≤ 2M

n

(
2M
n

Ex∼P[k
2
P(x,x)]

λL
+
∑

ℓ>L λℓ

)
. (29)

Step 3. Meet the non-negative constraint

We now show that the weights (27) are nonnegative and sum close to one with high probability. For i ∈ D0, we have

wi =
1
nξ(xi) (1− Ti) for Ti ≜ 2

n

∑
j∈D1

ξ(xj)⟨ΦL(xi),ΦL(xj)⟩.
Our first goal is to derive an upper bound for Pr (mini∈D0 wi < 0). Define the event

En ≜ {∥kP∥n ≤ Bn} , (30)

so Pr(Ec
n) < δn by the assumption on ∥kP∥n. Then

Pr
(
mini∈[n] wi < 0, En

)
= Pr

(
maxi∈[n] Ti > 1, En

)
≤ nPr(T11En

> 1), (31)

where we applied the union bound and used the fact that Ti1En
has the same law for different i. To further bound

Pr(T11En
> 1), we will use the following lemma.

Lemma C.2 (Truncated Bernstein inequality). Let X1, . . . , Xn be i.i.d. random variables with E[X1] = 0 and E[X2
1 ] <

∞. For any B > 0, t > 0,

Pr
(

1
n

∑
i∈[n] Xi1Xi≤B > t

)
≤ exp

(
−nt2

2(E[X2
1 ]+

Bt
3 )

)
.

Proof of Lem. C.2. Fix any B > 0 and t > 0 and define, for each i ∈ [n], Yi ≜ Xi1Xi≤B . Then Yi ≤ B,

E[Yi] = E[Xi1Xi≤B ] ≤ E[Xi1Xi≤B ] + E[Xi1Xi>B ] = E[Xi] = 0, and
E[Y 2

i ] = E[X2
i 1Xi≤B ] ≤ E[X2

i ] = E[X2
1 ].

Now we can invoke the non-positivity of E[Yi], the one-sided Bernstein inequality (Wainwright, 2019, Prop. 2.14), and the
relation E[Y 2

i ] ≤ E[X2
1 ] to conclude that

Pr
(

1
n

∑
i∈[n] Yi > t

)
≤ Pr

(
1
n

∑
i∈[n] (Yi − E[Yi]) > t

)
≤ exp

(
−nt2

2( 1
n

∑
i∈[n] E[Y 2

i ]+Bt
3 )

)
≤ exp

(
−nt2

2(E[X2
1 ]+

Bt
3 )

)
.
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For j ∈ D1, define Xj ≜ ξ(xj)⟨ΦL(x1),ΦL(xj)⟩ and note that

E[Xj |x1] = Ex∼Q[ξ(x)⟨ΦL(x1),ΦL(x)⟩|x1] = Ex∼P[⟨ΦL(x1),ΦL(x)⟩|x1] = 0

E[X2
j |x1] = E[ξ(xj)

2⟨ΦL(x1),ΦL(xj)⟩2|x1] ≤MEx∼P[⟨ΦL(x1),ΦL(x)⟩2|x1]

= MEx∼P

[∑
ℓ,ℓ′≤L ϕℓ(x1)ϕℓ′(x1)ϕℓ(x)ϕℓ′(x)

∣∣∣x1

]
= M

∑
ℓ,ℓ′≤L ϕℓ(x1)ϕℓ′(x1)Ex∼P [ϕℓ(x)ϕℓ′(x)]

= M ∥ΦL(x1)∥22 .

Since λ1 ≥ λ2 ≥ · · · ≥ 0, for any x ∈ Rd, we can bound ∥ΦL(x)∥22 via

∥ΦL(x)∥22 =
∑

ℓ≤L ϕℓ(x)
2 ≤

∑
ℓ≤L λℓϕℓ(x)

2

λL
≤
∑∞

ℓ=1 λℓϕℓ(x)
2

λL
= kP(x,x)

λL
, (32)

where we applied Lem. B.1(d) for the last equality. Thus

|Xj | ≤M ∥ΦL(x1)∥2 ∥ΦL(xj)∥2 ≤M ∥ΦL(x1)∥2
√

kP(xj ,xj)
λL

,

so if we let B ≜
√

Bn

λL
M ∥ΦL(x1)∥2 , then

En =
{
supi∈[n] kP(xi, xi) ≤ Bn

}
⊂ ⋂j∈D1

{|Xj | ≤ B}.

Since T1 = 2
n

∑
j∈D1

Xj , we have inclusions of events

{T11En
> 1} = {T1 > 1} ∩ En ⊂

{
2
n

∑
j∈D1

Xj1Xj≤B > 1
}
.

Thus Lem. C.2 with t = 1 and conditioned on x1 implies

Pr (T11En
> 1|x1) ≤ Pr

(
2
n

∑
j∈D1

Xj1Xj≤B > 1
∣∣∣x1

)
≤ exp

(
−n

4(M∥ΦL(x1)∥2
2+
√

Bn
λL

M∥ΦL(x1)∥2/3)

)
.

On event {kP(x1, x1) ≤ Bn}, by (32), we have

∥ΦL(x1)∥2 ≤
√

Bn

λL
.

Hence

Pr (T11En > 1|x1)1kP(x1,x1)≤Bn
≤ exp

(
−n

16
3 M Bn

λL

)
.

On the other hand, {kP(x1, x1) > Bn} /∈ En, so

Pr (T11En
> 1|x1)1kP(x1,x1)>Bn

= 0

Thus

Pr(T11En
> 1) = E[Pr(T11En

> 1|x1)] ≤ exp

(
−n

16
3 M Bn

λL

)
.

Combining the last inequality with (31), we have:

Pr
(
mini∈[n] wi < 0, En

)
≤ n exp

(
−n

16
3 M Bn

λL

)
. (33)
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Step 4. Meet the sum-to-one constraint

Let

S ≜
∑

i∈D0
wi =

∑
i∈D0

1
nξ(xi)

(
1− 2

n

∑
j∈D1

ξ(xj)⟨ΦL(xi),ΦL(xj)⟩
)
.

We now derive a bound for Pr(S < 1/2− t/2) for t ∈ (0, 1). Let

S1 ≜ 1
n

∑
i∈D0

ξ(xi), S2 ≜ − 2
n2

∑
i∈D0

∑
j∈D1

ξ(xi)ξ(xj)⟨ΦL(xi),ΦL(xj)⟩,
so S = S1 + S2. Note that E[S1] = 1/2 and E[S2] = 0 since D0 and D1 are disjoint. Let En be the same event defined as
in (30). For t1 ∈ (0, t/2) to be determined later and t2 ≜ t/2− t1, we have, by the union bound

Pr(S < 1/2− t/2, En) ≤ Pr(S1 < 1/2− t1, En) + Pr(S2 < −t2, En).

By Hoeffding’s inequality and the assumption ξ(x) ≤M , we have

Pr(S1 < 1/2− t1, En) ≤ Pr
(

2
n

∑
i∈D0

ξ(xi)
2 − 1/2 < −t1

)
≤ exp

(
−2(n/2)t21
(M/2)2

)
= exp

(
−4nt21
M2

)
. (34)

To give a concentration bound for Pr(S2 < −t2, En), we will use the following lemma.
Lemma C.3 (U-statistic Bernstein’s inequality). Let h : X ×X → R be a function bounded above by b > 0. Assume n ∈
2N and let x1, . . . , xn be i.i.d. random variables taking values in X . Denote mh ≜ E[h(x1, x2)] and σ2

h ≜ Var[h(x1, x2)].
Let D0 = [n/2] and D1 = [n] \ [n/2]. Define

U ≜ 1
(n/2)2

∑
i∈D0

∑
j∈D1

h(xi, xj).

Then

Pr(U −mh > t) ≤ exp
(

−nt2

4(σ2
h+

bt
3 )

)
.

Proof of Lem. C.3. We adapt the proof from Pitcan (2017, Section 3) as follows. Let k ≜ n/2. Define V : Xn → R as

V (x1, . . . , xn) ≜ 1
k

∑
i∈[k] h(xi, xi+k).

Then note that

U = 1
k!

∑
σ∈perm(k) Vσ,

Vσ ≜ V (xσ1
, . . . , xσk

),

where perm(k) is the set of all permutations of [k]; this is because every h(xi, xj) term for i ∈ D0, j ∈ D1 will appear in
the summation an equal number of times. For a fixed σ ∈ perm(k), the random variable V (xσ1 , . . . , xσk

, xk+1, . . . , xn)
is a sum of k i.i.d. terms h(xσi , xi+k). Denote V = V (x1, . . . , xn). For any s > 0, we have, by independence,

E[es(V−mh)] = E
[
exp
(

s
k

∑
i∈[k](h(xi, xi+[k])−mh)

)]
=
(
E
[
exp
(
s
k (h(x1, x2)−mh)

)])k
By the one-sided Bernstein’s lemma Wainwright (2019, Prop. 2.14) applied to h(x1,x2)

k which is upper bounded by b
k with

variance σ2
h

k2 , we have

E
[
exp
(
sh(x1,x2)−mh

k

)]
≤ exp

(
s2σ2

h/2

k(k− bs
3 )

)
,

for s ∈ [0, 3k/b). Next, by Markov’s inequality and Jensen’s inequality,

Pr(U −mh > t) = Pr
(
es(U−mh) > est

)
≤ E[es(U−mh)]e−st

= E
[
exp
(

1
(n/2)!

∑
σ∈perm(n/2) s(Vσ −mh)

)]
e−st

≤ E
[

1
(n/2)!

∑
σ∈perm(n/2) exp(s(Vσ −mh))

]
e−st

= E[es(V−mh)]e−st.
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Therefore,

Pr(U −mh > t) ≤ exp
(

s2σ2
h

2(k− bs
3 )
− st

)
.

Now, we get the desired bound if we pick s = k2t
kσ2

h+
ktb
3

∈ [0, 3k/b) and simplify.

Let

h(x, x′) ≜ ξ(x)ξ(x′)⟨ΦL(x),ΦL(x
′)⟩

h̄(x, x′) ≜ h(x, x′)1h(x,x′)≤M2 Bn
λL

.

Then

Pr(S2 < −t2, En) = Pr
(

1
(n/2)2

∑
i∈D0

∑
j∈D1

h(xi, xj) > 2t2, En

)
≤ Pr

(
1

(n/2)2

∑
i∈D0

∑
j∈D1

h̄(xi, xj) > 2t2

)
, (35)

where the last inequality used the fact that, for i ∈ D0, j ∈ D1,

En ⊂ {max(kP(xi, xi),kP(xj , xj)) ≤ Bn} ⊂
{
h(xi, xj) ≤M2Bn

λL

}
,

using (32). We further compute

mh̄ = E[h̄(x1, x2)] ≤ E[h(x1, x2)] = E[ξ(x1)ξ(x2)⟨ΦL(x1),ΦL(x2)⟩]
=
∑

ℓ≤L E[ξ(x1)ξ(x2)ϕℓ(x1)ϕℓ(x2)]

=
∑

ℓ≤L(Ex∼P[ϕℓ(x)])
2 = 0,

and

σ2
h̄
= Var[h̄(x1, x2)] ≤ E[h̄(x1, x2)

2] ≤ E[h(x1, x2)
2]

= E
[
(ξ(x1)ξ(x2)⟨ΦL(x1),ΦL(x2)⟩)2

]
≤M2E(x,x′)∼P×P[⟨ΦL(x),ΦL(x

′)⟩2]
= M2E(x,x′)∼P×P

[∑
ℓ,ℓ′≤L ϕℓ(x)ϕℓ′(x)ϕℓ(x

′)ϕℓ′(x
′)
]

= M2
∑

ℓ,ℓ′≤L(E[ϕℓ(x)ϕℓ′(x)])
2 = LM2.

Since Ex∼P[kP(x, x)] =
∑

ℓ λℓ ≥ LλL, we have L ≤ ∥kP∥2
L2(P)

λL
, so that σ2

h̄
≤ M2∥kP∥2

L2(P)
λL

. Applying Lem. C.3 to h̄,
which is bounded by M2Bn

λL
and using the fact that mh̄ ≤ 0, we have

Pr
(

1
(n/2)2

∑
i∈D0

∑
j∈D1

h̄(xi, xj) > 2t2

)
≤ Pr

(
1

(n/2)2

∑
i∈D0

∑
j∈D1

h̄(xi, xj)−mh̄ > 2t2

)
≤ exp

 −n(2t2)
2

4

(
M2∥kP∥2

L2(P)
λL

+2M2 Bn
λL

t2/3

)
 . (36)

Thus combining (34), (35), (36), we get

Pr(S < 1/2− t/2, En) ≤ exp
(

−4nt21
M2

)
+ exp

 −nt22(
M2∥kP∥2

L2(P)
λL

+2M2 Bn
λL

t2/3

)
 .
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Finally, by symmetry and the union bound, for t ∈ (0, 1), t ∈ (0, t/2) and t2 = t/2− t1, we have

Pr
(∑

i∈[n] wi < 1− t, En

)
≤ Pr

(∑
i∈D0

wi < 1/2− t/2, En

)
+ Pr

(∑
i∈D1

wi < 1/2− t/2, En

)
= 2Pr(S < 1/2− t/2, En)

≤ 2

exp
(

−4nt21
M2

)
+ exp

 −nt22(
M2∥kP∥2

L2(P)
λL

+2M2 Bn
λL

t2/3

)

 . (37)

Step 5. Putting it all together

Define the event

Fn =
{
mini∈[n] wi ≥ 0,

∑
i∈[n] wi ≥ 1

2

}
.

Then, by the union bound,

Pr(F c
n) ≤ Pr

(
mini∈[n] wi < 0, En

)
+ Pr

(∑
i∈[n] wi <

1
2 , En

)
+ Pr(Ec

n).

Applying (33) and (37) to bound the last expression with t = 1/2, t1 = t2 = 1/8, we have Pr(F c
n) ≤ ϵ2n for ϵn defined in

(22). On the event Fn, if we define w+ ∈ ∆n−1 via

w+
i ≜ wi∑

i∈[n] wi
,

then w+
i = αwi for i ∈ [n] and α ≜ 1∑

i∈[n] wi
≤ 2. Let w̃ ∈ ∆n−1 be the weight defined by w̃1 = 1 and w̃i = 0 for i > 1.

Since wOPT is the best simplex weight, we have MMD2
kP
(SwOPT

n ,P) ≤ min(MMD2
kP
(Sw+

n ,P),MMD2
kP
(Sw̃n ,P)). Hence

E
[
MMD2

kP
(SwOPT

n ,P)
]
= E

[
MMD2

kP
(SwOPT

n ,P)1Fn

]
+ E

[
MMD2

kP
(SwOPT

n ,P)1F c
n

]
≤ E

[
MMD2

kP
(Sw+

n ,P)1Fn

]
+ E

[
MMD2

kP
(Sw̃n ,P)1F c

n

]
.

For the first term, we have the bound

E
[
MMD2

kP
(Sw+

n ,P)1Fn

]
= E

[∑
i,j∈[n] w

+
i w

+
j kP(xi, xj)1Fn

]
= E

[
α2
∑

i,j∈[n] wiwjkP(xi, xj)1Fn

]
≤ 4E

[∑
i,j∈[n] wiwjkP(xi, xj)

]
≤ 8M

n

(
2M
n

Ex∼P[k
2
P(x,x)]

λL
+
∑

ℓ>L λℓ

)
,

where we applied (29) for the last inequality. For the second term, by the Cauchy-Schwartz inequality,

E
[
MMD2

kP
(Sw̃n ,P)1F c

n

]
≤
√
Pr(F c

n)

√
E
[(∑

i,j∈[n] kP(xi, xj)w̃iw̃j

)2]
≤
√
Pr(F c

n)
√
E[kP(x1, x1)2].

Putting everything together we obtain (21).

D. Stein Kernel Thinning
In this section, we detail our Stein thinning implementation in App. D.1, our kernel thinning implementation and analysis
in App. D.2, and our proof of Thm. 3 in App. D.3.

D.1. Stein Thinning with sufficient statistics

For an input point set of size n, the original implementation of Stein Thinning of Riabiz et al. (2022) takes O(nm2) time
to output a coreset of size m. In Alg. D.1, we show that this runtime can be improved to O(nm) using sufficient statistics.
The idea is to maintain a vector g ∈ Rn such that g = 2kP(Sn,Sn)w where w is the weight representing the current
coreset.
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Algorithm D.1 SteinThinning (ST) with sufficient statistics

Input: kernel kP with zero-mean under P, input points Sn = (xi)i∈[n], output size m
w ← 0 ∈ Rn

j ← argmini∈[n] kP(xi, xi)
wj ← 1
g ← 2kP(Sn, xj) ▷ maintain sufficient statistics g = 2kP(Sn,Sn)w
for t = 1 to m− 1 do
j ← argmini∈[n]{tgi + kP(xi, xi)}
w ← t

t+1w + 1
t+1ej

g ← t
t+1g +

2
t+1kP(Sn, xj)

end for
Return: w

Algorithm D.2 KernelThinning (KT) (adapted from Dwivedi and Mackey (2022, Alg. 1))

Input: kernel kP with zero-mean under P, input points Sn = (xi)i∈[n], multiplicity n′ with log2
n′

m ∈ N, weight w ∈
∆n−1 ∩ (N0

n′ )
n, output size m with n′

m ∈ 2N, failure probability δ
S← index sequence where k ∈ [n] appears n′wk times
t← log2

n′

m ∈ N
(I(ℓ))ℓ∈[2t] ← KT-SPLIT(kP,Sn[S], t, δ/n′) ▷ KT-SPLIT is from Dwivedi and Mackey (2022, Algorithm 1a) and we set
δi = δ for all i

I(ℓ) ← S[I(ℓ)] for each ℓ ∈ [2t]
I← KT-Swap(kP,Sn, (I(ℓ))ℓ∈[2t])

wKT ← simplex weight corresponding to I ▷ wi =
number of occurrences of i in I

|I|
Return: wKT ∈ ∆n−1 ∩ (N0

m )n ▷ Hence ∥wKT∥0 ≤ m

D.2. Kernel Thinning targeting P

Our KernelThinning implementation is detailed in Alg. D.2. Since we are able to directly compute MMDkP(Swn ,P), we use
KT-Swap (Alg. D.3) in place of the standard KT-SWAP subroutine (Dwivedi and Mackey, 2022, Algorithm 1b) to choose
candidate points to swap in so as to greedily minimize MMDkP(Swn ,P). To facilitate our subsequent SKT analysis, we
restate the guarantees of KT-SPLIT (Dwivedi and Mackey, 2022, Theorem 2) in the sub-Gaussian format of (Shetty et al.,
2022, Definition 3).

Lemma D.1 (Sub-Gaussian guarantee for KT-SPLIT). Let Sn be a sequence of n points and k a kernel. For any δ ∈ (0, 1)
and m ∈ N such that log2

n
m ∈ N, consider the KT-SPLIT algorithm (Dwivedi and Mackey, 2022, Algorithm 1a) with

ksplit = k, thinning parameter t = log2
n
m , and δi =

δ
n to compress Sn to 2t coresets {S(i)out}i∈[2t] where each S(i)out has m

points. Denote the signed measure ϕ(i) ≜ 1
n

∑
x∈Sn

δx − 2t

n

∑
x∈S(i)

out
δx. Then for each i ∈ [2t], on an event E(i)equi with

P(E(i)equi) ≥ 1− δ
2 , ϕ(i) = ϕ̃(i) for a random signed measure ϕ̃(i)6 such that, for any δ′ ∈ (0, 1),

Pr

(∥∥∥ϕ̃(i)k
∥∥∥
Hk

≥ an,m + vn,m

√
log
(

1
δ′

))
≤ δ′,

where

an,m ≜ 1
m

(
2 +

√
8
3∥k∥n log

(
6(log2

n
m )m

δ

)
log(4Nk(B2(Rn),m−1))

)
,

vn,m ≜ 1
m

√
8
3∥k∥n log

(
6(log2

n
m )m

δ

)
.

6This is the signed measure returned by repeated applications of self-balancing Hilbert walk (SBHW) (Dwivedi and Mackey, 2021,
Algorithm 3). Although SBHW returns an element of Hk, by tracing the algorithm, the returned output is equivalent to a signed measure
via the correspondence

∑
i∈[n] cik(xi, ·) ⇔

∑
i∈[n] ciδxi . The usage of signed measures is consistent with Shetty et al. (2022).
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Algorithm D.3 KT-Swap (modified Dwivedi and Mackey (2022, Alg. 1b) to minimize MMD to P)

Input: kernel kP with zero-mean under P, input points Sn = (xi)i∈[n], candidate coreset indices (I(ℓ))ℓ∈[L]

m←
∣∣I(0)∣∣ ▷ all candidate coresets are of the same size

I← I(ℓ
∗) for ℓ∗ ∈ argminℓ∈[L] MMDkP(Sn[I(ℓ)],P) ▷ select the best KT-SPLIT coreset

IST ← index sequence of SteinThinning(kP,Sn,m)▷ add Stein thinning baseline
C = {I, IST} ▷ shortlisted candidates
for I ∈ C do

g ← 0 ∈ Rn ▷ maintain sufficient statistics g =
∑

j∈[m] kP(xIj ,Sn)
Kdiag← (kP(xi, xi))i∈[n]

for j = 1 to m do
g ← g + kP(xIj ,Sn)

end for
for j = 1 to m do
∆ = 2(g − kP(xIj ,Sn)) + Kdiag ▷ this is the change in MMD2

kP
(Sn[I],P) if we were to replace Ij

k ← argmini∈[n] ∆i

g = g − kP(xIj ,Sn) + kP(xk,Sn)
Ij ← k

end for
end for
Return: I = argminI∈CMMDkP(Sn[I],P)

Proof of Lem. D.1. Fix i ∈ [2t], δ ∈ (0, 1) and n,m ∈ N such that t = log2
n
m ∈ N. Define ϕ ≜ ϕ(i). By the proof of

Dwivedi and Mackey (2022, Thms. 1 and 2), there exists an event Eequi with Pr
(
Ecequi

)
≤ δ

2 such that, on this event, ϕ = ϕ̃

where ϕ̃ is a signed measure such that, for any δ′ ∈ (0, 1), with probability at least 1− δ′,

∥∥∥ϕ̃k∥∥∥
Hk

≤ infϵ∈(0,1),A:Sn⊂A 2ϵ+ 2t

n

√
8
3∥k∥n log

(
6tn
2tδ

) [
log 4

δ′ + logNk(A, ϵ)
]
.

Note that on Eequi,
∥∥∥ϕ̃k∥∥∥

Hk

= ∥ϕk∥Hk
. We choose A = B2(Rn) and ϵ = 2t

n = m−1, so that, with probability at least

1− δ′, using the fact that
√
a+ b ≤ √a+

√
b for a, b ≥ 0,

∥∥∥ϕ̃k∥∥∥
Hk

≤ 2t+1

n + 2t

n

√
8
3∥k∥n log

(
6tn
2tδ

) [
log 4

δ′ + logNk(B2(Rn),m−1)
]

(38)

≤ 2t+1

n + 2t

n

√
8
3∥k∥n log

(
6tn
2tδ

) [√
log 1

δ′ +
√
log 4Nk(B2(Rn),m−1)

]
≤ an,m + vn,m

√
log
(

1
δ′

)
,

for an,m, vn,m in Lem. D.1.

Corollary D.1 (MMD guarantee for KT-SPLIT). Let S∞ be an infinite sequence of points in Rd and k a kernel. For any
δ ∈ (0, 1) and n,m ∈ N such that log2

n
m ∈ N, consider the KT-SPLIT algorithm (Dwivedi and Mackey, 2022, Algorithm

1a) with parameters ksplit = k and δi = δ
n to compress Sn to 2t coresets {S(i)out}i∈[2t] where t = log2

n
m , each with m

points. Then for any i ∈ [2t], with probability at least 1− δ,

MMDk(Sn,S(i)out) ≤ 1
m

(
2 +

√
8
3∥k∥n log

(
6(log2

n
m )m

δ

) (
logNk(B2(Rn),m−1) + log 8

δ

))
. (39)
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Proof of Cor. D.1. Fix i ∈ [2t]. By taking δ′ = δ
2 in (38), we obtain (39). This occurs with probability

Pr
(
MMDk(Sn,S(i)out) < an,m + vn,m

√
log
(

1
δ′

))
=1− Pr

(
MMDk(Sn,S(i)out) ≥ an,m + vn,m

√
log
(

1
δ′

))
≥1− Pr

(
E(i)equi,MMDk(Sn,S(i)out) ≥ an,m + vn,m

√
log
(

1
δ′

))
− Pr

(
E(i)equi

c)
≥1− Pr

(∥∥∥ϕ̃(i)k
∥∥∥
Hk

≥ an,m + vn,m

√
log
(

1
δ′

))
− Pr

(
E(i)equi

c)
≥1− δ

2 − δ
2 = 1− δ.

D.3. Proof of Thm. 3: MMD guarantee for SKT

Thm. 3 follows directly from Assum. (α,β)-kernel and the following result for a kernel with generic covering number.

Theorem D.1. Let kP be a kernel satisfying Assum. 1. Let S∞ be an infinite sequence of points. Then for a prefix sequence
Sn of n points, m ∈ [n], and n′ ≜ m2⌈log2

n
m⌉, SKT outputs wSKT in O(n2dkP) time that satisfies, with probability at least

1− δ,

∆MMDkP(wSKT) ≤
√(

1+logn′

n′

)
∥kP∥n + 1

m

(
2 +

√
8
3∥k∥n log

(
6(log2

n′
m )m

δ

) (
logNk(B2(Rn),m−1) + log 8

δ

))
.

Proof of Thm. D.1. The runtime of SKT comes from the fact that all of SteinThinning (with output size n), KT-SPLIT, and
KT-Swap take O(dkPn

2) time.

By Riabiz et al. (2022, Theorem 1), SteinThinning (which is a deterministic algorithm) from n points to n′ points has the
following guarantee

MMD2
kP
(Sw†

n ,P) ≤ MMD2
kP
(SwOPT

n ,P) +
(

1+logn′

n′

)
∥kP∥n,

where we denote the output weight of SteinThinning as w†. Using
√
a+ b ≤ √a+

√
b for a, b ≥ 0, we have

MMDkP(Sw
†

n ,P) ≤ MMDkP(SwOPT
n ,P) +

√(
1+logn′

n′

)
∥kP∥n.

Fix δ ∈ (0, 1). By Cor. D.1 with k = kP and t = log2
n′

m , with probability at least 1− δ, we have, for any i ∈ [2t],

MMDkP(Sw
†

n ,S(i)out) ≤ 1
m

(
2 +

√
8
3∥k∥n log

(
6(log2

n′
m )m

δ

) (
logNk(B2(Rn),m−1) + log 8

δ

))
,

where S(i)out is the i-th coreset output by KT-SPLIT. Since KT-Swap can only decrease the MMD to P, we have, by the
triangle inequality of MMDkP ,

MMDkP(SwSKT
n ,P) ≤ MMDkP(S

(1)
out ,P) ≤ MMDkP(S

(1)
out ,Sw

†

n ) +MMDkP(Sw
†

n ,P),

which gives the desired bound.

Thm. 3 now follows from Thm. D.1, the kernel growth definitions in Assum. (α,β)-kernel, n ≤ n′ ≤ 2n, and that
log2(

n′

m )m ≤ n′.
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E. Resampling of Simplex Weights
Integral to many of our algorithms is a resampling procedure that turns a simplex-weighted point set of size n into an
equal-weighted point set of size m while incurring at most O(1/

√
m) MMD error. The motivation for wanting an equal-

weighted point set is two-fold: First, in LSKT, we need to provide an equal-weighted point set to KT-Compress++, but the
output of LD is a simplex weight. Secondly, we can exploit the fact that non-zero weights are bounded away from zero in
equal-weighted point sets to provide a tighter analysis of WeightedRPCholesky. While i.i.d. resampling also achieves the
O(1/

√
m) goal, we choose Resample (Alg. E.3), a stratified residual resampling algorithm (Douc and Cappé, 2005, Sec.

3.2, 3.3). In this section, we derive an MMD bound for Resample and show that it is better in expectation than using i.i.d.
resampling or residual resampling alone.

Let Dinv
w be the inverse of the cumulative distribution function of the multinomial distribution with weight w, i.e.,

Dinv
w (u) ≜ min

{
i ∈ [n] : u ≤∑i

j=1 wj

}
.

Algorithm E.1 i.i.d. resampling

Input: Weights w ∈ ∆n−1, output size m
w′ ← 0 ∈ Rn

for j = 1 to m do
Draw Uj ∼ Uniform([0, 1))
Ij ← Dinv

w (Uj)
w′
Ij
← w′

Ij
+ 1

m
end for
Return: w′ ∈ ∆n−1 ∩ (N0

m )n

Algorithm E.2 Residual resampling

Input: Weights w ∈ ∆n−1, output size m

w′
i ← ⌊mwi⌋

m , ∀i ∈ [n]
r ← m−∑i∈[n]⌊mwi⌋ ∈ N
ηi ← mwi−⌊mwi⌋

r , ∀i ∈ [n]
for j = 1 to r do

Draw Uj ∼ Uniform([0, 1))
Ij ← Dinv

η (Uj)

w′
Ij
← w′

Ij
+ 1

m
end for
Return: w′ ∈ ∆n−1 ∩ (N0

m )n

Algorithm E.3 Stratified residual resampling (Resample)

Input: Weights w ∈ ∆n−1, output size m

w′
i ← ⌊mwi⌋

m , ∀i ∈ [n]
r ← m−∑i∈[n]⌊mwi⌋ ∈ N
ηi ← mwi−⌊mwi⌋

r , ∀i ∈ [n]
for j = 1 to r do

Draw Uj ∼ Uniform([ jr ,
j+1
r ))

Ij ← Dinv
η (Uj)

w′
Ij
← w′

Ij
+ 1

m
end for
Return: w′ ∈ ∆n−1 ∩ (N0

m )n
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Proposition E.1 (MMD guarantee of resampling algorithms). Consider any kernel k, points Sn = (x1, . . . , xn) ⊂ Rd,
and a weight vector w ∈ ∆n−1.

(a) Using the notation from Alg. E.1, let X,X ′ be independent random variables with law Swn . Then, the output weight
vector wi.i.d. ≜ w′ of Alg. E.1 satisfies

E[MMD2
k(Sw

i.i.d.

n ,Swn )] =
Ek(X,X)−Ek(X,X′)

m . (40)

(b) Using the notation from Alg. E.2, let R,R′ be independent random variables with law Sηn. Then, the output weight
vector wresid ≜ w′ of Alg. E.2 satisfies

E[MMD2
k(Sw

resid

n ,Swn )] =
r(Ek(R,R)−Ek(R,R′))

m2 . (41)

(c) Using the notation from Alg. E.3, let Rj ≜ xIj and R′
j be an independent copy of Rj . Let R be an independent

random variable with law Sηn. Then, the output weight vector wsr ≜ w′ of Alg. E.3 satisfies

E[MMD2
k(Sw

sr

n ,Swn )] =
rEk(R,R)−

∑
j∈[r] Ek(Rj ,R

′
j)

m2 . (42)

Proof of Prop. E.1(a). Let Xi ≜ xIi . As random signed measures, we have

Sw′

n − Swn = 1
m

∑
i∈[m] δXi

−∑i∈[n] wiδxi
.

Hence

MMD2
k(Sw

′

n ,Swn ) = ((Sw′

n − Swn )× (Sw′

n − Swn ))k
= 1

m2

∑
i,i′∈[m] k(Xi, Xi′)− 2

m

∑
i∈[m],i′∈[n] wi′k(Xi, xi′) +

∑
i,i′∈[n] wiwi′k(xi, xi′).

Since each Xi is distributed to Swn and Xi and Xi′ are independent for i ̸= i′, taking expectation, we have

E[MMD2
k(Sw

′

n ,Swn )] = 1
mEk(X,X) + m−1

m Ek(X,X ′)− 2Ek(X,X ′) + Ek(X,X ′).

This gives the bound (40).

Proof of Prop. E.1(b). Let Rj ≜ xIj . As random signed measures, we have

Sw′

n − Swn =
(∑

i∈[n]
⌊mwi⌋

m δxi +
1
m

∑
j∈[r] δRj

)
−∑i∈[n] wiδxi

= 1
m

∑
j∈[r] δRj −

∑
i∈[n]

(
wi − ⌊mwi⌋

m

)
δxi

= 1
m

∑
j∈[r] δRj

− r
m

∑
i∈[n] ηiδxi

.

Hence

MMD2
k(Sw

′

n ,Swn ) = ((Sw′

n − Swn )× (Sw′

n − Swn ))k

= 1
m2

∑
j,j′∈[r] k(Rj , Rj′)− 2r

m2

∑
j∈[r],i∈[n] ηik(Rj , xi) +

r2

m2

∑
i,i′∈[n] ηiηjk(xi, xj). (43)

Since each Rj is distributed to Sηn and Rj and Rj′ are independent for j ̸= j′, taking expectation, we have

E[MMD2
k(Sw

′

n ,Swn )] = r
m2Ek(R,R) + r(r−1)

m2 Ek(R,R′)− 2r2

m2 Ek(R,R′) + r2

m2Ek(R,R′).

This gives the bound (41).
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Proof of Prop. E.1(c). We repeat the same steps from the previous part of the proof to get (43). In the case of (c), Rj’s are
not identically distributed so the analysis is different. Let R′ be an independent copy of R. Taking expectation of (43), we
have

m2E[MMD2
k(Sw

′

n ,Swn )] =
∑

j∈[r] Ek(Rj , Rj) +
∑

j∈[r]

∑
j′∈[r]\{j} Ek(Rj , Rj′)− 2r

∑
j∈[r] Ek(Rj , R) + r2Ek(R,R′).

Note∑
j∈[r] Ek(Rj , Rj) =

∑
j∈[r] r

∫
[ jr ,

j+1
r )

k(xDinv
η (u), xDinv

η (u))du = r
∫ 1

0
k(xDinv

η (u), xDinv
η (u))du = rEk(R,R),

where we used the fact that xDinv
η (U)

D
= R for U ∼ Uniform([0, 1]). Similarly, we deduce∑

j∈[r]

∑
j′∈[r]\{j} Ek(Rj , Rj′) =

∑
j∈[r]

(∑
j′∈[r] Ek(Rj , R

′
j′)− Ek(Rj , R

′
j)
)

=
∑

j∈[r](rEk(Rj , R
′)− Ek(Rj , R

′
j))

= r2Ek(R,R′)−∑j∈[r] Ek(Rj , R
′
j),

and also ∑
j∈[r] Ek(Rj , R) = rEk(R,R′).

Combining terms, we get

m2EMMD2
k(Sw

′

n ,Swn ) = rEk(R,R) + r2Ek(R,R′)−∑j∈[r] Ek(Rj , R
′
j)− 2r2Ek(R,R′) + r2Ek(R,R′)

= rEk(R,R)−∑j∈[r] Ek(Rj , R
′
j),

which yields the desired bound (42).

The next proposition shows that stratifying the residuals always improves upon using i.i.d. sampling or residual resampling
alone. We need the following convexity lemma.
Lemma E.1 (Convexity of squared MMD). Let k be a kernel. Let Sn = (x1, . . . , xn) be an arbitrary set of points. The
function Ek : Rn → R defined by

Ek(w) ≜ ∥Swnk∥2Hk
=
∑

i,j∈[n] wiwjk(xi, xj)

is convex on Rn.

Proof of Lem. E.1. Since k is a kernel, the Hessian∇2Ek = 2k(Sn,Sn) is PSD, and hence Ek is convex.

Proposition E.2 (Stratified residual resampling improves MMD). Under the assumptions of Prop. E.1, we have

E[MMD2
k(Sw

i.i.d.

n ,Swn )] ≥ E[MMD2
k(Sw

resid

n ,Swn )] ≥ E[MMD2
k(Sw

sr

n ,Swn )].

Proof of Prop. E.2. Let K ≜ k(Sn,Sn). To show the first inequality, note that since η = mw−⌊mw⌋
r , by Prop. E.1,

E[MMD2
k(Sw

resid

n ,Swn )] =
r(Ek(R,R)−Ek(R,R′))

m2

=
r(
∑

i∈[n] Kiiηi−
∑

i,j∈[n] Kijηiηj)

m2

= 1
m

(∑
i∈[n] Kii

(
wi − ⌊mwi⌋

m

)
− m

r

(
w − ⌊mw⌋

m

)⊤
K
(
w − ⌊mw⌋

m

))
.

Hence

E[MMD2
k(Sw

i.i.d.

n ,Swn )]− E[MMD2
k(Sw

resid

n ,Swn )]

= 1
m

(∑
i∈[n] Kii

⌊mwi⌋
m + m

r

(
w − ⌊mw⌋

m

)⊤
K
(
w − ⌊mw⌋

m

)
− w⊤Kw

)
= 1

m

(
(1− θ)

∑
i∈[n] Kiiξi + θη⊤Kη − w⊤Kw

)
,
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where we let ξ ≜ m
m−r

⌊mw⌋
m and θ ≜ r

m . Note that w = θη + (1− θ)ξ. By Lem. E.1 and Jensen’s inequality, we have

w⊤Kw = Ek(w) ≤ θEk(η) + (1− θ)Ek(ξ) = θη⊤Kη + (1− θ)ξ⊤Kξ ≤ θη⊤Kη + (1− θ)
∑

i∈[n] Kiiξi,

where the last inequality follows from Prop. E.1(a) with w = ξ and the fact that MMD is nonnegative. Hence we have
shown

E[MMD2
k(Sw

i.i.d.

n ,Swn )]− E[MMD2
k(Sw

resid

n ,Swn )] ≥ 0,

as desired.

For the second inequality, by Prop. E.1, we compute

E[MMD2
k(Sw

resid

n ,Swn )]− E[MMD2
k(Sw

sr

n ,Swn )] = r
m2

(
1
r

∑
j∈[r] Ek(Rj , R

′
j)− Ek(R,R′)

)
.

Note that

Ek(R,R′) =
∫
[0,1)

∫
[0,1)

k(xDinv
η (u), xDinv

η (v))dudv = Ek

(
(Dinv

η )#Uniform[0, 1)
)
,

where we used T#µ to denote the pushforward measure of µ by T . Similarly,

1
r

∑
j∈[r] Ek(Rj , R

′
j) =

1
r

∑
j∈[r]

∫
[ jr ,

j+1
r )

∫
[ jr ,

j+1
r )

k(xDinv
η (u), xDinv

η (v))dudv

= 1
r

∑
j∈[r] Ek

(
(Dinv

η )#Uniform
[
j
r ,

j+1
r

))
≤ Ek

(
(Dinv

η )#Uniform[0, 1)
)
= Ek(R,R′),

where in the last inequality we applied Jensen’s inequality since Ek is convex by Lem. E.1. Hence we have shown

E[MMD2
k(Sw

resid

n ,Swn )]− E[MMD2
k(Sw

sr

n ,Swn )] ≥ 0

and the proof is complete.

F. Accelerated Debiased Compression
In this section, we provide supplementary algorithmic details and deferred analyses for LSKT (Alg. 3). In WeightedRPC-
holesky (Alg. F.1), we provide details for the weighted extension of Chen et al. (2022, Alg. 2.1) that is used extensively in
our algorithms. The details of AMD (Wang et al., 2023, Alg. 14) are provided in Alg. F.2. In App. F.1, we give the proof
of Thm. 4 for the MMD error guarantee of LD (Alg. 2). In App. F.2, we provide details on KT-Compress++ modified from
Compress++ (Shetty et al., 2022) to minimize MMD to P. Finally, Thm. 5 is proved in App. F.3.

Algorithm F.1 Weighted Randomly Pivoted Cholesky (WeightedRPCholesky) (extension of Chen et al. (2022, Alg. 2.1))

Input: kernel k, points Sn = (xi)
n
i=1, simplex weights w ∈ ∆n−1, rank r

k̃(i, j) ≜ k(xi, xj)
√
wi
√
wj ▷ reweighted kernel matrix function

F ← 0n×r, S← {}, d← (k̃(i, i))i∈[n]

for i = 1 to r do
Sample s ∼ d/

∑
j∈[n] dj

S← S ∪ {s}
g ← k̃(:, s)− F (:, 1 : i− 1)F (s, 1 : i− 1)⊤

F (:, i)← g/
√
gs

d← d− F (:, i)2 ▷ F (:, i)2 denotes a vector with entry-wise squared values of F (:, i)
d← max(d, 0) ▷ numerical stability fix, helpful in practice

end for
F ← diag((1/

√
wi)i∈[n])F ▷ undo weighting; treat 1/

√
wi = 0 if wi = 0

Return: S ⊂ [n] with |S| = r and F ∈ Rn×r
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Algorithm F.2 Accelerated Entropic Mirror Descent (AMD) (modification of Wang et al. (2023, Alg. 14))

Input: kernel matrix K ∈ Rn×n, number of steps T , initial weight w0 ∈ ∆n−1, aggressive flag AGG
η ← 1

8w⊤
0 diag(K)

if AGG else 1
8maxi∈[n] Kii

v0 ← w0

for t = 1 to T do
βt ← 2

t+1
zt ← (1− βt)wt−1 + βtvt−1

g ← 2tηKzt ▷ this is γt∇f(zt) in Wang et al. (2023, Alg. 14) for f(w) = w⊤Kw
vt ← vt−1 · exp(−g) ▷ component-wise exponentiation and multiplication
vt ← vt/ ∥vt∥1 ▷ vt = argminw∈∆n−1

⟨g, w⟩+Dϕ
vt−1

(w) for ϕ(w) =
∑

i∈[n] wi logwi

wt ← (1− βt)wt−1 + βtvt
end for
Return: wT ∈ ∆n−1

F.1. Proof of Thm. 4: Debiasing guarantee for LD

We start with a useful lemma that bounds w⊤(K − K̂)w by tr
(
K − K̂

)
for any simplex weights w.

Lemma F.1. For any PSD matrix A ∈ Rn×n and w ∈ ∆n−1, we have

w⊤Aw ≤ tr(Aw) ≤ maxi∈[n] Aii ≤ λ1(A),

where λ1(A) denotes the largest eigenvalue of A.

Proof of Lem. F.1. Note that

w⊤Aw =
√
w

⊤
diag(

√
w)A diag(

√
w)
√
w =

√
w

⊤
Aw
√
w.

The condition that w ∈ ∆n−1 implies ∥√w∥2 = 1, so that

√
w

⊤
Aw
√
w ≤ λ1(A

w) ≤ tr(Aw).

To see tr(Aw) ≤ max i ∈ [n]Aii, note that tr(Aw) =
∑

i∈[n] Aiiwi ≤ maxi∈[n] Aii since w ∈ ∆n−1..

Since λ1(A) = supx:∥x∥2=1 x
⊤Ax, if we let i∗ ≜ argmini∈[n] Aii, then the simplex weight with 1 on the i∗-th entry has

two-norm 1, so we see that maxi∈[n] Aii ≤ λ1(A).

Our next lemma bounds the suboptimality of surrogate optimization of a low-rank plus diagonal approximation of K.

Lemma F.2 (Suboptimality of surrogate optimization). Let kP be a kernel satisfying Assum. 1. Let Sn = (x1, . . . , xn) ⊂
Rd be a sequence of points. Define K ≜ kP(Sn,Sn) ∈ Rn×n. Suppose K̂ ∈ Rn×n is another PSD matrix such that K ⪰
K̂. Define D ≜ diag(K − K̂), the diagonal part of K − K̂, and form K ′ ≜ K̂ +D. Let w′ ∈ argminw∈∆n−1

w′⊤K ′w′.
Then for any w ∈ ∆n−1,

MMD2
kP
(Swn ,P) ≤ MMD2

kP
(SwOPT

n ,P) + tr
(
(K − K̂)w

)
+maxi∈[n](K − K̂)ii + (w⊤K ′w − w′⊤K ′w′). (44)

Proof of Lem. F.2. Since K = K ′ + (K − K̂)−D by construction, we have

w⊤Kw = w⊤K ′w + w⊤(K − K̂)w − w⊤Dw

≤ w⊤K ′w + w⊤(K − K̂)w

= (w⊤K ′w − w′⊤K ′w′) + w′⊤K ′w′ + w⊤(K − K̂)w

≤ (w⊤K ′w − w′⊤K ′w′) + w′⊤K ′w′ + tr
(
(K − K̂)w

)
,
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where we used the fact that D ⪰ 0 and Lem. F.1. Next, by the definition of w′, we have

w′⊤K ′w′ ≤ (wOPT)
⊤K ′wOPT = (wOPT)

⊤(K ′ −K)wOPT + (wOPT)
⊤KwOPT

= (wOPT)
⊤(D − (K − K̂))wOPT + (wOPT)

⊤KwOPT

≤ (wOPT)
⊤DwOPT + (wOPT)

⊤KwOPT

≤ maxi∈[n](K − K̂)ii + (wOPT)
⊤KwOPT,

where we used the fact K ⪰ K̂ in the penultimate step and Lem. F.1 in the last step. Hence we have shown our claim.

Lem. F.2 shows that to control MMD2
kP
(Swn ,P), it suffices to separately control the approximation error in terms of

tr
(
K − K̂

)
and the optimization error (w⊤K ′w − w′⊤K ′w′). The next result establishes that using WeightedRPC-

holesky, we can obtain polynomial and exponential decay bounds for tr
(
K − K̂

)
in expectation depending on the kernel

growth of kP.

Proposition F.1 (Approximation error of WeightedRPCholesky). Let k be a kernel satisfying Assum. (α,β)-kernel. Let
S∞ be an infinite sequence of points in Rd. For any w ∈ ∆n−1, let F be the low-rank approximation factor output by
WeightedRPCholesky(k,Sn, w, r). Define K ≜ k(Sn,Sn). If r ≥ (

CdR
β
n+1√

log 2
+
√
log 2)2− 1

log 2 , then, with the expectation
taken over the randomness in WeightedRPCholesky,

E
[
tr
(
(K − FF⊤)w

)]
≤ Hn,r, (45)

where Hn,r is defined as

Hn,r ≜

{
8
∑n

ℓ=U(r)(
Lk(Rn)

ℓ )
2
α POLYGROWTH(α, β),

8
∑n

ℓ=U(r) exp
(
1− ( ℓ

Lk(Rn)
)

1
α

)
LOGGROWTH(α, β),

(46)

for Lk defined in (6) and

U(r) ≜

⌊√
r+ 1

log 2

log 2 − 1
log 2

⌋
. (47)

Moreover, Hn,r satisfies the bounds in Thm. 4.

Proof of Prop. F.1. Recall the notation Lk(Rn) =
CdR

β
n

log 2 from (6). Define q ≜ U(r) so that q is the biggest integer for
which r ≥ 2q + q2 log 2. The lower bound assumption of r is chosen such that q > Lk(Rn) > 0. By Chen et al. (2022,
Theorem 3.1) with ϵ = 1, we have

E
[
tr
(
(K − FF⊤)w

)]
≤ 2

∑n
ℓ=q+1 λℓ(K

w). (48)

Since q > Lk(Rn), we can apply Cor. B.1 to bound λℓ(K
w) for ℓ ≥ q + 1 and obtain (45) since Hn,r (46) is constructed

to match the bounds when applying Cor. B.1 to (48). It remains to justify the bounds for Hn,r in Thm. 4.

If k is POLYGROWTH(α, β), by Assum. (α,β)-kernel we have α < 2. Hence

Hn,r = 8
∑n

ℓ=q

(
Lk(Rn)

ℓ

) 2
α ≤ 8Lk(Rn)

2
α

∫∞
q−1

ℓ−
2
α dℓ = 8Lk(Rn)

2
α (q − 1)1−

2
α = O

(√
r(

R2β
n

r )
1
α

)
,

where we used the fact that
∫∞
q−1

ℓ−
2
α dℓ = (q − 1)1−

2
α for α < 2, Lk(Rn) = O(Rβ

n), and q = Θ(
√
r).

If k is LOGGROWTH(α, β), then

Hn,r = 8
∑n

ℓ=q exp

(
1−

(
ℓ

Lk(Rn)

) 1
α

)
= 8e

∑n
ℓ=q c

ℓ1/α ≤ 8e
∫∞
ℓ=q−1

cℓ
1/α

,
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where c ≜ exp
(
−Lk(Rn)

−1/α
)
∈ (0, 1). Defining m ≜ − log c > 0 and q′ = q − 1, we have∫∞

x=q′
cx

1/α

dx =
∫∞
x=q′

exp
(
−mx1/α

)
dx = αq′(mq′1/α)−αΓ(α,mq′1/α) = αm−αΓ(α,mq′1/α), (49)

where Γ(α, x) ≜
∫∞
x

tα−1e−tdt is the incomplete gamma function. Since α > 0, by Pinelis (2020, Thm. 1.1), we have

Γ(α,mq′1/α) ≤ (mq′1/α+b)α−(mq′1/α)α

αb e−mq′1/α ,

where b is a known constant depending only on α. By the equivalence of norms on R2, there exists Cα > 0 such that
(x+ y)α ≤ Cα(x

α + yα) for any x, y > 0. Hence

Γ(α,mq′1/α) ≤ (mq′1/α+b)α

αb e−mq′1/α ≤ Cα(mαq′+bα)
αb e−mq′1/α .

Hence from (49) we deduce ∑∞
ℓ=q′ c

ℓ1/α ≤ Cα(q
′b−1 + bα−1m−α)e−mq′1/α . (50)

Since m = − log c = Lk(Rn)
−1/α, we can bound the exponent by

−mq′1/α = −(Lk(Rn)
−1q′)1/α = −( q′ log 2

CdR
β
n
)1/α ≤ −( 0.83

√
r−2.39

CdR
β
n

)1/α,

where we used the fact that q′ log 2 = (q − 1) log 2 ≥ (

√
r+ 1

log 2

log 2 − 1
log 2 − 2) log 2 ≥ 0.83

√
r − 2.39. On the other hand,

since q′ = q− 1 ≥ L(Rn) = m−α, we can absorb the bα−1m−1 term in (50) into q and finally obtain the bounds for Hn,r

in Thm. 4.

The last piece of our analysis involves bounding the optimization error (w⊤K ′w − w′⊤K ′w′) in (44).

Lemma F.3 (AMD guarantee for debiasing). Let K ∈ Rn×n be an SPSD matrix. Let f(w) ≜ w⊤Kw. Then the final
iterate xT of Nesterov’s 1-memory method (Wang et al., 2023, Algorithm 14) after T steps with objective function f(w),
norm ∥·∥ = ∥·∥1, distance-generating function ϕ(x) =

∑n
i=1 xi log xi, and initial point w0 = ( 1n , . . . ,

1
n ) ∈ ∆n−1

satisfies

f(wT )− f(wOPT) ≤ 16 lognmaxi∈[n] Kii

T 2 ,

where wOPT ∈ argminx∈Rn f(x).

Proof of Lem. F.3. We apply Wang et al. (2023, Theorem 14). Hence it remains to determine the smoothness constant
L > 0 such that, for all x, y ∈ ∆n−1,

∥∇f(x)−∇f(y)∥∞ ≤ L ∥x− y∥1 ,

and an upper bound for the Bregman divergence Dϕ
w0

(wOPT) =
∑n

i=1 wOPTi log
wOPTi

(w0)i
=
∑n

i=1 wOPTi log nwOPTi. To
determine L, note ∇f(w) = 2Kw, so we have, for any x, y ∈ ∆n−1,

∥∇f(x)−∇f(y)∥∞ = 2 ∥K(x− y)∥∞ = 2maxi∈[n] |Ki,:(x− y)|
≤ 2maxi∈[n] ∥Ki,:∥∞ ∥x− y∥1 = 2

(
maxi∈[n] Kii

)
∥x− y∥1 = 2

(
maxi∈[n] Kii

)
∥x− y∥1 ,

where we used the fact that the largest entry in an SPSD matrix appears on its diagonal. Thus we can take the smoothness
constant to be

L = 2maxi∈[n] Kii.

To bound Dϕ
w0

(wOPT), note that by Jensen’s inequality,

Dϕ
w0

(w) =
∑n

i=1 wi log nwi ≤ log
(∑n

i=1 nw
2
i

)
= log n+ log ∥w∥22 ≤ log n,

where we used the fact that ∥w∥22 ≤ ∥w∥1 = 1 for w ∈ ∆n−1.
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With these tools in hand, we turn to the proof of Thm. 4. For the runtime of LD, it follows from the fact that WeightedRP-
Cholesky takes O((dkP + r)nr) time and one step of AMD takes O(nr) time.

The error analysis is different for the first adaptive iteration and the ensuing adaptive iterations. Roughly speaking, we will
show that the first adaptive iteration brings the MMD gap to the desired level, while the ensuing iterations do not introduce
an excessive amount of error.

Step 1. Bound ∆MMDkP(w
(1))

Let K ≜ kP(Sn,Sn) and F denote the low-rank approximation factor generated by WeightedRPCholesky. Denote
K̂ ≜ FF⊤. Then K ′ = K̂ + diag(K − K̂). First, note that since w(0) = ( 1n , . . . ,

1
n ), Resample returns w̃ = w(0)

with probability one. By Lem. F.2, we have, using
√
a+ b ≤ √a +

√
b for a, b ≥ 0 repeatedly and Lem. F.1 that

tr
(
(K − K̂)w

)
≤ λ1(K − K̂) and maxi∈[n](K − K̂)ii ≤ λ1(K − K̂),

MMDkP(Sw
(1)

n ,P) ≤ MMDkP(SwOPT
n ,P) +

√
2λ1(K − K̂) +

√
w(1)⊤K ′w(1) − w′⊤K ′w′

≤ MMDkP(SwOPT
n ,P) +

√
2λ1(K − K̂) +

√
16 logn∥kP∥n

T 2 ,

where we applied Lem. F.1 and Lem. F.3 in the last inequality. Fix δ ∈ (0, 1). By Markov’s inequality, we have

Pr

(√
λ1(K − K̂) >

√
E[λ1(K−K̂)]

δ

)
≤ δ.

This means that with probability at least 1− δ, we have

MMDkP(Sw
(1)

n ,P) ≤ MMDkP(SwOPT
n ,P) +

√
2E[λ1(K−K̂)]

δ +
√

16 logn∥kP∥n

T 2 .

Note that the lower bound condition on r in Assum. (α,β)-params implies the lower bound condition in Prop. F.1. Hence,
by Prop. F.1 with w = ( 1n , . . . ,

1
n ) and using the identity λ1(K − K̂) ≤ tr

(
K − K̂

)
while noting that a factor of n

appears, we have

MMDkP(Sw
(1)

n ,P) ≤ MMDkP(SwOPT
n ,P) +

√
2nHn,r

δ +
√

16∥kP∥n logn
T 2 .

Step 2. Bound the error of the remaining iterations

Fix δ > 0. The previous step shows that, with probability at least 1− δ
2 ,

MMDkP(Sw
(1)

n ,P) ≤ MMDkP(SwOPT
n ,P) +

√
4nHn,r

δ +
√

16∥kP∥n logn
T 2 .

Fix q > 1, and let w̃ be the resampled weight defined in the q-th iteration in Alg. 2. Without loss of generality, we assume
w̃i > 0 for all i > 0, since if wi = 0 then index i is irrelevant for the rest of the algorithm. Thus, thanks to Resample, we
have w̃i ≥ 1/n for all i ∈ [n]. Let a/b denote the entry-wise division between two vectors. As in the previous step of the
proof, we let K ≜ kP(Sn,Sn), F be the low-rank factor output by WeightedRPCholesky(kP,Sn, w̃, r), and K̂ = FF⊤.
For any w ∈ ∆n−1, recall the notation Kw ≜ diag(

√
w)K diag(

√
w). Then we have

w⊤Kw = (w/
√
w̃)⊤ diag(Kw̃)(w/

√
w̃)

= (w/
√
w̃)⊤(diag(

√
w̃)K̂ diag(

√
w̃)) + diag(

√
w̃)(K − K̂) diag(

√
w̃)))(w/

√
w̃)

= w⊤K̂w + (w/
√
w̃)⊤(diag(

√
w̃)(K − K̂) diag(

√
w̃)))(w/

√
w̃)

≤ w⊤K̂w +maxi∈[n](1/w̃i) tr
(
diag(

√
w̃)(K − K̂) diag(

√
w̃)
)

≤ w⊤K̂w + n tr
(
(K − K̂)w̃

)
. (51)

Note that

K ′ = K̂ + diag(K − K̂) = K + (K̂ −K) + diag(K − K̂).
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Since K ′ ⪰ K̂, we have

w(q)⊤K̂w(q) ≤ w(q)⊤K ′w(q) ≤ w̃⊤K ′w̃, (52)

where the last inequality follows from the if conditioning at the end of Alg. 2. In addition,

w̃⊤K ′w̃ = w̃⊤(K + (K̂ −K) + diag(K − K̂))w̃

≤ w̃⊤Kw̃ + w̃⊤ diag(K − K̂)w̃

= w̃⊤Kw̃ +
√
w̃

⊤
diag((K − K̂)w̃)

√
w̃

≤ w⊤Kw̃ + tr
(
(K − K̂)w̃

)
,

where we used the fact that K ⪰ K̂ and
∥∥∥√w̃∥∥∥

2
= 1. Plugging the previous inequality into (52) and then into (51) with

w = w(q), we get

w(q)⊤Kw(q) ≤ w̃⊤Kw̃ + (n+ 1) tr
(
(K − K̂)w̃

)
. (53)

Taking square-root on both sides using
√
a+ b ≤ √a+

√
b for a, b ≥ 0 and the triangle inequality, we get

MMDkP(Sw
(q)

n ,P) ≤ MMDkP(Sw̃n ,P) +
√

(n+ 1) tr
(
(K − K̂)w̃

)
≤ MMDkP(Sw

(q−1)

n ,P) +MMDkP(Sw
(q−1)

n ,Sw̃n ) +
√
(n+ 1) tr

(
(K − K̂)w̃

)
.

By Markov’s inequality, we have

Pr

(
MMDkP(Sw

(q−1)

n ,Sw̃n ) >

√
4QE

[
MMD2

kP
(Sw(q−1)

n ,Sw̃n )
]

δ

)
≤ δ

4Q

Pr

(√
tr
(
(K − K̂)w̃

)
>

√
4QE[tr((K−K̂)w̃)]

δ

)
≤ δ

4Q .

By Prop. E.1(c), we have

E
[
MMD2

kP
(Sw(q−1)

n ,Sw̃n )
]
= E

[
E
[
MMD2

kP
(Sw(q−1)

n ,Sw̃n )
∣∣∣w(q−1)

]]
≤ ∥kP∥n

n .

Thus by the union bound, with probability at least 1 − δ
2Q , using Prop. F.1 (recall low-rank approximation K̂ is obtained

using w̃), we have

MMDkP(Sw
(q)

n ,P) ≤ MMDkP(Sw
(q−1)

n ,P) +
√

4Q∥kP∥n

nδ +
√

4Q(n+1)Hn,r

δ . (54)

Finally, applying union bound and summing up the bounds for q = 1, . . . , Q, we get, with probability at least 1− δ,

∆MMDkP(w
(q)) ≤

√
2nHn,r

δ +
√

16∥kP∥n logn
T 2 + (Q− 1)

(√
4Q∥kP∥n

nδ +
√

4Q(n+1)Hn,r

δ

)
.

This matches the stated asymptotic bound in Thm. 4.

F.2. Thinning with KT-Compress++

For compression with target distribution P, we modify the original KT-Compress++ algorithm of (Shetty et al., 2022, Ex. 6):
in HALVE and THIN of Compress++, we use KT-SPLIT with kernel kP without KT-SWAP (so our version of Compress++
outputs 2g coresets, each of size

√
n), followed by KT-Swap to obtain a size

√
n coreset. We call the resulting thinning

algorithm KT-Compress++. We show in Lem. F.4 and Cor. F.1 that KT-Compress++ satisfies an MMD guarantee similar
to that of quadratic-time kernel thinning.
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Algorithm F.3 KT-Compress++ (modified Shetty et al. (2022, Alg. 2) to minimize MMD to P)

Input: kernel kP with zero-mean under P, input points Sn = (xi)i∈[n], multiplicity n′ with n′ ∈ 4N, weight w ∈
∆n−1 ∩ (N0

n′ )
n, thinning parameter g, failure probability δ

S← index sequence where k ∈ [n] appears n′wk times
(I(ℓ))ℓ∈[2g] ← Compress++(g,Sn[S]) ▷ Shetty et al. (2022, Ex. 6) with KT substituted with KT-SPLIT in HALVE and THIN.
I(ℓ) ← S[I(ℓ)] for each ℓ ∈ [2g]
I← KT-Swap(kP,Sn, (I(ℓ))ℓ∈[2g])

wC++ ← simplex weights corresponding to I ▷ wi =
number of occurrences of i in I

|I|
Return: wC++ ∈ ∆n−1 ∩ ( N0√

n
)n ▷ Hence ∥wC++∥0 ≤

√
n

Lemma F.4 (Sub-gaussian guarantee for Compress++). Let Sn be a sequence of n points with n ∈ 4N. For any δ ∈ (0, 1)
and integer g ≥ ⌈log2 log(n+ 1) + 3.1⌉, consider the Compress++ algorithm (Shetty et al., 2022, Algorithm 2) with
thinning parameter g, halving algorithm HALVE(k) ≜ symmetrized7(KT-SPLIT(k, ·, 1, n2

k

4n2g(g+(βn+1)2g)δ)) for an input

of nk ≜ 2g+1+k
√
n points and βn ≜ log2

(
n
n0

)
, and with thinning algorithm THIN ≜ KT-SPLIT(k, ·, g, g

g+(βn+1)2g δ).

Then this instantiation of Compress++ compresses Sn to 2g coresets (S(i)out )i∈[2g] of
√
n points each. Denote the signed

measure ϕ(i) ≜ 1
n

∑
x∈Sn

δx − 1√
n

∑
x∈S(i)

out
δx. Then for each i ∈ [2g], on an event E(i)equi with Pr

(
E(i)equi

)
≥ 1 − δ

2 ,

ϕ(i) = ϕ̃(i) for a random signed measure ϕ̃(i) such that, for any δ′ ∈ (0, 1),

Pr

(∥∥∥ϕ̃(i)k
∥∥∥
Hk

≥ a′n

(
1 +

√
log
(

1
δ′

)))
≤ δ′,

where

a′n = 4√
n

(
2 +

√
8
3∥k∥n log

(
6
√
n(g+(

log2 n
2 −g)2g)

δ

)
log
(
4Nk

(
B2(Rn), n−1/2

)))
.

Proof of Lem. F.4. This proof is similar to the one for Shetty et al. (2022, Ex. 6) but with explicit constant tracking and
is self-contained, invoking only Shetty et al. (2022, Thm. 4) which gives MMD guarantees for Compress++ given the
sub-Gaussian parameters of HALVE and THIN.

Recall that nk is the number of input points for the halving subroutine at recursion level k in Compress++, and βn is the
total number of recursion levels. Let SC denote the output of COMPRESS (Shetty et al., 2022, Alg. 1) of size 2g

√
n. Fix

δ, δ′ ∈ (0, 1). Suppose we use HALVE(k) ≜ symmetrized(KT-SPLIT(k, ·, 1, γkδ)) for an input of nk points for γk to be
determined. Suppose we use THIN ≜ KT-SPLIT(k, ·, g, γ′δ) for γ′ to be determined; this is the kernel thinning stage that
thins 2g

√
n points to 2g coresets, each with

√
n points. Since the analysis is the same for all coresets, we will fix an

arbitrary coreset without superscript in the notation.

By Lem. D.1, with notation t ≜ log 1
δ′ , there exist events Ek,j , ET, and random signed measures ϕk,j , ϕ̃k,j , ϕT, ϕ̃T for

0 ≤ k ≤ βn and j ∈ [4k] such that

(a) Pr
(
Eck,j

)
≤ γkδ

2 and Pr(EcT) ≤ γ′δ
2 ,

(b) 1Ek,j
ϕk,j = 1Ek,j

ϕ̃k,j and 1ETϕT = 1ET ϕ̃T,

(c) We have

Pr

(∥∥∥ϕ̃k,jk
∥∥∥
Hk

≥ ank
+ vnk

√
t

∣∣∣∣{ϕ̃k′,j′}k′>k,j′≥1, {ϕ̃k′,j′}k′,j′<j

)
≤ e−t

Pr

(∥∥∥ϕ̃Tk
∥∥∥
Hk

≥ a′n + v′n
√
t

∣∣∣∣SC

)
≤ e−t,

7Any halving algorithm can be converted into an unbiased one by symmetrization, i.e., returning either the output half or its comple-
ment with equal probability (Shetty et al., 2022, Remark 3).
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where, by Lem. D.1, and by increasing the sub-Gaussian constants if necessary, we have

ank
≜ vnk

≜ ank,nk/2 = 2
nk

(
2 +

√
8
3∥k∥n log

(
3nk

γkδ

)
log
(
4Nk

(
B2(Rn),

2
nk

)))
,

a′n ≜ v′n ≜ a2g
√
n,

√
n = 1√

n

(
2 +

√
8
3∥k∥n log

(
6g

√
n

γ′δ

)
log
(
4Nk

(
B2(Rn), n−1/2

)))
, and

(d) E
[
ϕ̃k,jk

∣∣∣{ϕ̃k′,j′}k′>k,j′≥1, {ϕ̃k′,j′}k′,j′<j

]
= 0.

Hence on the event E =
⋂

k,j Ek,j ∩ ET, these properties hold simultaneously. We will choose {γk}k and γ′ such that
Pr(Ec) ≤ δ

2 . By the union bound,

Pr(Ec) ≤ Pr(EcT) +
∑βn

k=0

∑4k

j=1 Pr
(
Eck,j

)
≤ γ′δ

2 +
∑βn

k=0 4
k γkδ

2 . (55)

On the event E , we apply Shetty et al. (2022, Thm. 4, Rmk. 7) to get a sub-Gaussian guarantee for MMDk(Sn,Sout). We
want to choose γk, γ′ such that the rescaled quantities ζ̃H ≜ n0

2 an0 and ζ̃T ≜
√
na′n satisfy ζ̃H = ζ̃T (Shetty et al., 2022,

Eq. (13)), which implies that we need

3n0

γ0δ
= 6g

√
n

γ′δ ⇐⇒
γ0

γ′ = 2g

g . (56)

Hence if we take γ′ = g
g+(βn+1)2g and γk =

n2
k

4n2g(g+(βn+1)2g) , then (56) holds and the upper bound in (55) becomes δ
2 .

Note that nkank
is non-decreasing in nk, so by Shetty et al. (2022, Theorem 4, Remark 7), Compress++(δ, g) outputs a

signed measure ϕ that, on the event E with Pr(Ec) ≤ δ
2 , equals another signed measure ϕ̃ that satisfies, for any δ′ ∈ (0, 1),

Pr

(∥∥∥ϕ̃k∥∥∥
Hk

≥ ân + v̂n

√
log
(

1
δ′

))
≤ δ′,

where ân, v̂n satisfy max(ân, v̂n) ≤ 4a′n whenever g ≥ ⌈log2 log(n+ 1) + 3.1⌉.
Corollary F.1 (MMD guarantee for Compress++). Let S∞ be an infinite sequence of points in Rd and k a kernel. For
any δ ∈ (0, 1) and n ∈ N such that n ∈ 4N, consider the Compress++ with the same parameters as in Lem. F.4 with
g ≥ ⌈log2 log(n+ 1) + 3.1⌉. Then for any i ∈ [

√
n], with probability at least 1− δ,

MMDk(Sn,S(i)out) ≤ 4√
n

(
2 +

√
8
3∥k∥n log

(
6
√
n(g+(

log2 n
2 −g)2g)

δ

)
log
(
4Nk

(
B2(Rn), n−1/2

)))(
1 +

√
log 2

δ

)
.

Proof. After applying Lem. F.4 with δ′ = δ
2 and following the same argument as in the proof of Cor. D.1, we have, with

probability at least 1− δ,

MMDk(Sn,S(i)out) ≤ a′n

(
1 +

√
log 2

δ

)
.

Plugging in the expression of a′n from Lem. F.4 gives the claimed bound.

F.3. Proof of Thm. 5: MMD guarantee for LSKT

First of all, the claimed runtime follows from the runtime of LD (Thm. 4), the O(dkP4
gn log n) runtime of Compress++,

and the O(dkPn
1.5) runtime of KT-Swap.

Without loss of generality assume n ∈ 4N. Fix δ ∈ (0, 1). Let w⋄ denote the output of LD, and wsr denote the output of
Resample, both regarded as random variables. By Thm. 4, we have, with probability at least 1− δ

3 ,

MMDkP(Sw
⋄

n ,P) = MMDkP(SwOPT
n ,P) +O

(√
nHn,r

δ

)
+O

(√
∥kP∥n max(logn,1/δ)

n

)
. (57)
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By Prop. E.1(c) with k = kP, we have the upper bound

E
[
MMD2

kP
(Swsr

n ,Sw⋄

n )
]
= E

[
E
[
MMD2

kP
(Swsr

n ,Sw⋄

n )
∣∣w⋄]] ≤ ∥kP∥n

n .

Thus, by Markov’s inequality,

Pr

(
MMDkP(Sw

sr

n ,Sw⋄

n ) ≥
√

3∥kP∥n

nδ

)
≤ δ

3 .

Hence, with probability at least 1− δ
3 , we have

MMDkP(Sw
sr

n ,Sw⋄

n ) ≤
√

3∥kP∥n

nδ . (58)

Let S(i)out denote the i-th coreset output by THIN in KT-Compress++ (Alg. F.3). By Cor. F.1 with k = kP, we have, with
probability at least 1− δ

3 ,

MMDkP(Sw
sr

n ,S(i)out) = O

(√
∥kP∥n logn log(eNkP (B2(Rn),n−1/2)))

n log e
δ

)
.

Since KT-Swap can never increase MMDkP(·,P), we have, by the triangle inequality,

MMDkP(SwLSKT
n ,P) ≤ MMDkP(S

(1)
out ,P) ≤ MMDkP(S

(1)
out ,Sw

sr

n ) +MMDkP(Sw
sr

n ,Sw⋄

n ) +MMDkP(Sw
⋄

n ,P). (59)

By the union bound, with probability at least 1− δ, the bounds (57), (58), (59) hold, so that the claim is shown by adding
together the right-hand sides of these bounds and applying Assum. (α,β)-kernel.

G. Simplex-Weighted Debiased Compression
In this section, we provide deferred analyses for RT and SR/LSR, as well as the algorithmic details of Recombination
(Alg. G.1) and KT-Swap-LS (Alg. G.2).

G.1. MMD guarantee for RT

We start by stating the MMD guarantee of RT, a result that might be of independent interest.

Proposition G.1 (RT guarantee). Under Assums. 1 and (α,β)-kernel, given w ∈ ∆n−1 and that m ≥ (
CdR

β
n+1√

log 2
+√

log 2)2 − 1
log 2 + 1, RecombinationThinning (Alg. 4) outputs wRT ∈ ∆n−1 with ∥wRT∥0 ≤ m in O((dkP + m)nm +

m3 log n) time such that with probability at least 1− δ,

MMDkP(SwRT
n ,P) ≤ MMDkP(Swn ,P) +

√
2∥kP∥n

nδ +
√

2nHn,m−1

δ , (60)

where Hn,r is defined in (46).

Proof of Prop. G.1. The runtime follows from the O((dkP + m)nm) runtime of WeightedRPCholesky, the O(dkPnm)
runtime of KT-Swap-LS, and the O(m3 log n) runtime of Recombination (Tchernychova, 2016) which dominates the
O(m3) weight optimization step.

Recall w′ ∈ ∆n−1 from RT. The formation of F in Alg. 4 is identical to the formation of F (with r = m− 1) in Alg. 2 for
q > 1. Thus by (51) with w = w′, K = kP(Sn,Sn),

w′⊤Kw′ ≤ w′⊤FF⊤w′ + n tr
(
(K − FF⊤)w̃

)
,

where K = kP(Sn,Sn). By construction of w′ using Recombination, we have F⊤w̃ = F⊤w′. Since K ⪰ FF⊤, we have

w′⊤Kw′ ≤ w̃⊤FF⊤w̃ + n tr
(
(K − FF⊤)w̃

)
≤ w̃⊤Kw̃ + n tr

(
(K − FF⊤)w̃

)
.

We recognize the right-hand side is precisely the right-hand side of (53) aside from having a multiplier of n instead of
n+ 1 in front of the trace and that F is rank m− 1. Now applying (54) with Q = 1

2 , w(q) = w′, w(q−1) = w, r = m− 1,
and noticing that KT-Swap-LS and the quadratic-programming solve at the end cannot decrease the objective, we obtain
(60) with probability at least 1− δ. Note that the lower bound of m in Assum. (α,β)-params makes r = m− 1 satisfy the
lower bound for r in Prop. F.1.
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Algorithm G.1 Recombination (rephrasing of Tchernychova (2016, Alg. 1) that takes O(m3 log n) time)

Input: matrix A ∈ Rm×n with m < n and one row of A all positive, a nonnegative vector x0 ∈ Rn
≥0.

function FindBFS(A, x0)
▷ The requirement of A and x0 are the same as the input. This subroutine takes O(n3) time.
x← x0

U, S, V ⊤ ← SVD(A) ▷ any O(n3)-time SVD algorithm that gives USV ⊤ = A
V ← (V ⊤)m+1:n ▷ V ∈ R(n−m)×n so that the null space of A is spanned by the rows of V
for i = 1 to n−m do

v ← Vi

k ← argminj∈[n]:vj>0
xj

vj
▷ This must succeed because Av = 0 and A has an all-positive row, so one of the

coordinates of v must be positive.
x← x− xk

vk
v ▷ This zeros out the k-th coordinate of x while still ensuring x is nonnegative.

for j = i+ 1 to n−m do
Vj ← Vj − Vj,k

vk
v ▷ {Vj}n−m

j=i+1 remain independent and have 0 on the k-th coordinate.
end for

end for
return: x ∈ Rn

≥0 such that Ax = Ax0 and ∥x∥0 ≤ m.
end function
x← x0

while ∥x∥0 > 2m do
Divide {i ∈ [n] : xi > 0} into 2m index blocks I1, . . . , I2m, each of size at most

⌊
∥x∥0

2m

⌋
.

Ai ← A:,IixIi ∈ Rm,∀i ∈ [2m]

Form Â to be the m× 2m matrix with columns Ai ▷ Hence, one row of A contains all positive entries.
x̂← FindFBS(Â,12m) ▷ ∥x̂∥0 ≤ n and Âx̂ =

∑
Aix̂i =

∑
Ai =

∑
A:,IixIi = Ax.

for i = 1 to 2m do
xIi ← x̂i · xIi if x̂i > 0 else 0

end for
▷ After the update, the support of x shrinks by 2 while it maintains that Ax = Ax0.

end while
if ∥x∥0 ≥ m+ 1 then
I← {i ∈ [n] : xi > 0}
xI = FindBFS(A:,I, xI)

end if
Return: x ∈ Rn

≥0 such that Ax = Ax0 and ∥x∥0 ≤ m.

G.2. Proof of Thm. 6: MMD guarantee for SR/LSR

The claimed runtime follows from the runtime of SteinThinning (Alg. D.1) or LD (Thm. 4) plus the runtime of RT
(Prop. G.1).

Note the lower bound for m in Assum. (α,β)-params implies the lower bound condition in Prop. G.1. For the case of SR,
we proceed as in the proof of Thm. 3 and use Prop. G.1. For the case of LSR, we proceed as in the proof of Thm. 5 and
use Thm. 4 and Prop. G.1.

H. Constant-Preserving Debiased Compression
In this section, we provide deferred analyses for CT and SC/LSC.

H.1. MMD guarantee for CT

Proposition H.1 (CT guarantee). Under Assums. 1 and (α,β)-kernel, given w ∈ ∆n−1 and m ≥ (
CdR

β
n+1√

log 2
+ 2√

log 2
)2 −

1
log 2 , CT outputs wCT ∈ Rn with 1⊤

nwCT = 1 and ∥wCT∥0 ≤ m in O((dkP + m)nm + m3) time such that, for any
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Algorithm G.2 KT-Swap with Linear Search (KT-Swap-LS)

Input: kernel kP with zero-mean under P, input points Sn = (xi)i∈[n], weights w ∈ ∆n−1, fmt ∈ {SPLX,CP}
S← {i ∈ [n] : wi ̸= 0}
▷ Maintain two sufficient statistics: g = Kw and D = w⊤Kw.
function Add(g,D, i, t)
g ← g + tkP(Sn, xi)
D ← D + 2tgi + t2kP(xi, xi)
return: (g,D)

end function
function Scale(g,D, α)
g ← αg
D ← α2D
return: (g,D)

end function
Kdiag← kP(Sn,Sn)
g ← 0 ∈ Rn

D ← 0
for i in S do
(g,D)← Add(g,D, i, wi)

end for
for i in S do

if wi = 1 then continue; ▷ We cannot swap i out if
∑

j ̸=i wj = 0!
▷ First zero out wi.
(g,D)← Add(g,D, i,−wi)
(g,D)← Scale(g,D, 1

1−wi
)

wi = 0
▷ Next perform line search to add back a point.
α = (D − g)./(D − 2g + Kdiag); ▷ αi = argmint MMD2

kP
(Stei+(1−t)w

n ,P) = argmint(1 − t)2D + 2t(1 − t)g +
t2Kdiag

if fmt = SPLX then
α = clip(α, 0, 1); ▷ Clipping α to [0, 1]. This corresponds to argmint∈[0,1] MMD2

kP
(Stei+(1−t)w

n ,P).
end if
D′ ← (1− α)2D + 2α(1− α)g + α2Kdiag ▷ multiplications are element-wise
k ← argmini D

′
i

(g,D)← Scale(g,D, 1− αk)
(g,D)← Add(g,D, k, αk)

end for
Return: w ∈ ∆n−1

δ ∈ (0, 1), with probability 1− δ,

MMDkP(SwCT
n ,P) ≤ 2MMDkP(Swn ,P) +

√
4Hn,m′

δ ,

where Hn,m is defined in (46) and m′ ≜ m+ log 2− 2
√
m log 2 + 1.

Proof of Prop. H.1. The runtime follows from the O((dkP+m)nm) runtime of WeightedRPCholesky, the O(nm) runtime
of KT-Swap-LS, and the O(m3) runtime of matrix inversion in solving the two minimization problems using (64).

To improve the clarity of notation, we will use w⋄ to denote the input weight w to CT. For index sequences I, J ⊂ [n]
and a kernel k, we use k(I, J) to indicate the matrix k(Sn[I],Sn[J]) = [k(xi, xj)]i∈I,j∈J, and similarly for a function
f : Rn → R, we use f(I) to denote the vector (f(xi))i∈I.

Recall the regularized kernel is kc ≜ kP + c. Suppose for now that c > 0 is an arbitrary constant. Let I denote the indices

50



Debiased Distribution Compression

output by WeightedRPCholesky in CT. Let

wc ≜ argminw:supp(w)⊂IMMD2
kc
(Swn ,Sw

⋄

n ).

Note that wc is not a probability vector and may not sum to 1.

Step 1. Bound MMD2
kc
(Swc

n ,Sw⋄

n ) in terms of WeightedRPCholesky approximation error

We start by using an argument similar to that of Epperly and Moreno (2024, Prop. 3) to exploit the optimality condition of
wc. Since

argminw:supp(w)⊂IMMD2
kc
(Swn ,Sw

⋄

n ) = argminw:supp(w)⊂I w
⊤
I kc(I, I)wI − 2w⋄⊤kc(Sn, I)wI,

by optimality, wc satisfies,

kc(I, I)w
c
I = Sw⋄

n kc(I).

We comment that the index sequence I returned by WeightedRPCholesky makes kc(I, I) invertible with probability 1:
by the Guttman rank additivity formula of Schur complement (Zhang, 2006, Eq. (6.0.4)), each iteration of WeightedRPC-
holesky chooses a pivot with a non-zero diagonal and thus increases the rank of the low-rank approximation matrix, which
is spanned by the columns of pivots, by 1. Hence

Swc

n kc(·) = kc(·,Sn)wc = kc(·, I)wc
I = kc(·, I)kc(I, I)

−1kc(I, I)w
c
I

= kc(·, I)kc(I, I)
−1Sw⋄

n kc(I) = Sw⋄

n kcI(·),

where kcI(x, y) ≜ kc(x, I)kc(I, I)
−1kc(I, y). Then

MMD2
kc
(Swc

n ,Sw⋄

n ) =
∥∥Sw⋄

n kc − Swc

n kc

∥∥2
kc

=
∥∥Sw⋄

n kc − Sw⋄

n kcI

∥∥2
kc

= w⋄⊤(kc − kcI)(Sn,Sn)w⋄.

Recall the index set I consists of the m pivots selected by WeightedRPCholesky on the input matrix

K⋄
c ≜ kc(Sn,Sn)w

⋄
.

Define

K̂⋄
c ≜ kcI(Sn,Sn)w

⋄
.

Thus, by Lem. F.1,

MMD2
kc
(Swc

n ,Sw⋄

n ) = w⋄⊤(kc − kcI)(Sn,Sn)w⋄ =
√
w⋄⊤(K⋄

c − K̂⋄
c )
√
w⋄ ≤ λ1(K

⋄
c − K̂⋄

c ) ≤ tr
(
K⋄

c − K̂⋄
c

)
.

Step 2. Bound tr
(
K⋄

c − K̂⋄
c

)
using the trace bound of the unregularized kernel

Let JAKr denote the best rank-r approximation of an SPSD matrix A ∈ Rn×n in the sense that

JAKr ≜ argmin X∈Rn×n

X=X⊤

A⪰X⪰0
rank(X)≤r

tr(A−X). (61)

By the Eckart-Young-Mirsky theorem applied to symmetric matrices (Dax, 2014, Theorem 19), the solution to (61) is given
by r-truncated eigenvalue decomposition of A, so that

tr(A− JAKr) =
∑n

ℓ=r+1 λℓ(A).

Let q ≜ U(m) where U is defined in (47), so that by Chen et al. (2022, Thm. 3.1) with ϵ = 1, we have

E
[
tr
(
K⋄

c − K̂⋄
c

)]
≤ 2 tr

(
K⋄

c − JK⋄
c Kq
)
.
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We know one specific rank-q approximation of K⋄
c :

K̃⋄
c ≜ JK⋄Kq−1 + diag(

√
w⋄)c1n1

⊤
n diag(

√
w⋄),

which satisfies

K⋄
c − K̃⋄

c = K⋄ + diag(
√
w⋄)c1n1

⊤
n diag(

√
w⋄)− K̃⋄

c = K⋄ − JK⋄Kq−1.

Thus by the variational definition in (61), we have

tr
(
K⋄

c − JK⋄
c Kq
)
≤ tr

(
K⋄

c − K̃⋄
c

)
= tr

(
K⋄ − JK⋄Kq−1

)
=
∑n

ℓ=q λℓ(K
⋄).

Note the last bound does not depend on c. The tail sum of eigenvalues in the last expression is the same (up to a constant
multiplier) as the one in (48) except for an off-by-1 difference in the summation index. A simple calculation shows that
for m′ ≜ m + log 2 − 2

√
m log 2 + 1, we have U(m′) = U(m) − 1. Another simple calculation shows that m ≥

(
CdR

β
n+1√

log 2
+ 2√

log 2
)2− 1

log 2 implies that m′ satisfies the lower bound requirement of r in Prop. F.1. Thus, arguing as in the
proof that follows (48), we get

E
[
tr
(
K⋄

c − K̂⋄
c

)]
≤ Hn,m′ .

Thus so far we have shown

E[MMD2
kc
(Swc

n ,Sw⋄

n )] ≤ E
[
tr
(
K⋄

c − K̂⋄
c

)]
≤ Hn,m′ .

By Markov’s inequality, with probability at least 1− δ, we have

MMDkc(Sw
c

n ,Sw⋄

n ) ≤
√

Hn,m′

δ .

Recall that MMDk(µ, ν) = ∥(µ− ν)k∥k for signed measures µ, ν. By the triangle inequality, we have

MMDkc(Sw
c

n ,P) ≤ MMDkc(Sw
c

n ,Sw⋄

n ) +MMDkc(Sw
⋄

n ,P)
= MMDkc

(Swc

n ,Sw⋄

n ) +MMDkP(Sw
⋄

n ,P),

where we used that fact that
∑

i∈[n] w
⋄
i = 1 to get the identity MMDkc(Sw

⋄
,P) = MMDkP(Sw

⋄
,P). Hence, with

probability at least 1− δ,

MMDkc
(Swc

n ,P) ≤ MMDkP(Sw
⋄

n ,P) +
√

Hn,m′

δ . (62)

Step 3. Incorporating sum-to-one constraint

We now turn wc into a constant-preserving weight while not inflating the MMD by much. Define

w1 ≜ argminw:supp(w)⊂I,
∑

i∈[n] wi=1 MMD2
kP
(Swn ,P). (63)

Note w1 is the weight right before KT-Swap-LS step in CT. Let KI = kP(I, I). Let 1I denote the |I|-dimensional all-one
veector. The Karush-Kuhm-Tucker condition (Ghojogh et al., 2021, Sec. 4.7) applied to (63) implies that, the solution w1

is a stationary point of the Lagrangian function

L(wI, λ) ≜ w⊤
I KIwI + λ(1⊤

I wI − 1).

Then ∇wI
L(w1

I , λ) = 0 implies 2KIw
1
I − λ1I = 0, so w1

I =
λK−1

I 1I

2 . The Lagrangian multiplier λ is determined by the
constraint 1⊤

I wI = 1, so we find

w1
I =

K−1
I 1I

1⊤
I K−1

I 1I
. (64)
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Define

wc,P ≜ argminw:supp(w)⊂IMMD2
kc
(Swn ,P).

Since wc,P is optimized to minimize MMDkc to P on the same support as wc, we have

MMDkc
(Swc,P

n ,P) ≤ MMDkc
(Swc

n ,P).

The optimality condition for wc,P is

(KI + c1I1
⊤
I )w − c1I = 0,

and hence by the Sherman–Morrison formula,

wc,P
I = (KI + c1I1

⊤
I )

−1c1I =
(
K−1

I − cK−1
I 1I1

⊤
I K−1

I

1+c1⊤
I K−1

I 1I

)
c1I =

K−1
I 1I

1/c+1⊤
I K−1

I 1I
.

Let ρc ≜ 1⊤
I K−1

I 1I

1/c+1⊤
I K−1

I 1I
, so that wc,P

I = ρcw
1
I . In particular, w1 and wc,P are scalar multiples of one another. To relate

MMDkP(Sw
1

n ,P) and MMDkc
(Swc,P

n ,P), note that

MMD2
kP
(Sw1

n ,P) = w1
I
⊤
KIw

1
I =

wc,P
I

⊤
KIw

c,P
I

ρ2
c

=
wc,P

I

⊤
(KI+c1I1

⊤
I )wc,P

I −c(1⊤
I wc

I )
2

ρ2
c

=
MMD2

kc
(Sw

c,P
n ,P)+2c1⊤

I wc
I−c−c(1⊤

I wc
I )

2

ρ2
c

=
MMD2

kc
(Sw

c,P
n ,P)−c(ρc−1)2

ρ2
c

.

So far the argument does not depend on any particular choice of c > 0. Let us now discuss how to choose c. Note that

1⊤
I K

−1
I 1I = m 1I√

m

⊤
K−1

I
1I√
m
≥ mλm(K−1

I ) ≥ m
λ1(KI)

≥ m
tr(KI)

≥ m∑
i∈[m] diag(K)↓i

,

where diag(K)↓ denote the diagonal entries of K = kP(Sn,Sn) sorted in descending order. Thus

ρc =
1

1

c1⊤
I K

−1
I 1I

+1
≥ 1∑

i∈[m] diag(K)
↓
i

mc +1

.

Hence we can choose c to make sure ρc is bounded from below by a positive value. Recall in CT, we take

c =
∑

i∈[m] diag(K)↓i
m ,

so that ρc ≥ 1
2 and

MMD2
kP
(Sw1

n ,P) = MMD2
kc

(Sw
c,P

n ,P)−c(ρc−1)2

ρ2
c

≤ 4MMD2
kc
(Swc,P

n ,P).

Hence by (62) and the fact that KT-Swap-LS and the final reweighting in CT only improves MMD, we have, with proba-
bility at least 1− δ,

MMDkP(SwCT
n ,P) ≤ MMDkP(Sw

1

n ,P) ≤ 2MMDkc
(Swc,P

n ,P) ≤ 2MMDkc
(Swc

n ,P) ≤ 2MMDkP(Sw
⋄

n ,P) + 2

√
Hn,m′

δ ,

where we use (62) in the last inequality.

H.2. Proof of Thm. 7: MMD guarantee for SC / LSC

The claimed runtime follows from the runtime of SteinThinning (Alg. D.1) or LD (Thm. 4) plus the runtime of CT
(Prop. H.1).

Note the lower bound for m in Assum. (α,β)-params implies the lower bound condition in Prop. H.1. For the case of SC,
we proceed as in the proof of Thm. 3 and use Prop. H.1. For the case of LSC, we proceed as in the proof of Thm. 5 by
invoking Thm. 4 and Prop. H.1.
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I. Implementation and Experimental Details
In this section, we collect experimental details that were deferred from Sec. 5.

I.1. O(d)-time Stein kernel evaluation

In this section, we show that for Sn = (xi)i∈[n], each Stein kernel evaluation kp(xi, xj) for a radially analytic base kernel
(Def. B.3) can be done in O(d) time after computing certain sufficient statistics in O(nd2 + d3) time. Let M ∈ Rd×d be
a positive definite preconditioning matrix for kp. Let L be the Cholesky decomposition of M which can be done in O(d3)

time so that M = LL⊤. From the expression (15), we can achieve O(d) time evaluation if we can compute ∥x− y∥2M and
M∇ log p(x) in O(d) time. For M∇ log p(x), we can simply precompute M∇ log p(xi) for all i ∈ [n]. For ∥x− y∥2M ,
we have

∥x− y∥2M = (x− y)⊤M−1(x− y) = (x− y)⊤(LL⊤)−1(x− y) =
∥∥L−1(x− y)

∥∥2
2
.

Hence it suffices to precompute L−1xi for all i ∈ [n], and we can precompute the inverse L−1 in O(d3) time.

I.2. Default parameters for algorithms

For LD, we always use Q = 3. To ensure that the guarantees of Lem. F.3 and Thm. 4 hold while achieving fast convergence
in practice, we take the step size of AMD to be 1/(8∥kP∥n) in the first adaptive round and 1/(8

∑
i∈[n] w

(q−1)
i kP(xi, xi))

in subsequent adaptive rounds. We use T = 7
√
n0 for AMD in all experiments.

We implemented our modified versions of KernelThinning and KT-Compress++ in JAX (Bradbury et al., 2018) so that
certain subroutines can achieve a speedup using just-in-time compilation and the parallel computation power of GPUs. For
Compress++, we use g = 4 in all experiments as in Shetty et al. (2022). For both KernelThinning and KT-Compress++,
we use choose δ = 1/2 as in the goodpoints library.

Each experiment was run with a single NVIDIA RTX 6000 GPU and an AMD EPYC 7513 32-Core CPU.

I.3. Correcting for burn-in details

We use the four MCMC chains provided by Riabiz et al. (2022) that include both the sample points and their scores. The
reference chain used to compute the energy distance is the same one used in Riabiz et al. (2022) for the energy distance
and was kindly provided by the authors.

In Tab. I.1, we collect the runtime for the burn-in correction experiments.

Fig. I.1, Fig. I.2, Fig. I.3, display the results of the burn-in correction experiment of Sec. 5 repeated with three other MCMC
algorithms: MALA without preconditioning, random walk (RW), and adaptive random walk (ADA-RW). The results of
P-MALA from Sec. 5 are also included for completeness. For all four chains, our methods reliably achieve better quality
coresets when compared with the baseline methods.

n0 ST LD (0.5) LD (0.4) KT KT-Compress++ RT (0.5) RT (0.4) CT (0.5) CT (0.4)

214 2.50 13.22 12.88 7.31 3.49 0.79 0.60 2.06 1.96

216 8.48 16.15 15.82 20.77 5.90 2.59 1.68 3.66 3.04

218 111.06 32.14 20.60 193.03 11.73 11.16 2.63 6.48 3.67

220 - 314.67 131.31 - 35.99 113.71 11.06 51.14 8.42

Table I.1: Breakdown of runtime (in seconds) for the burn-in correction experiment (d = 4) of Sec. 5. n0 is the input
size after standard thinning from the length n = 2 × 106 chain (Rem. 2). Each runtime is the median of 3 runs. KT and
KT-Compress++ output m =

√
n0 equal-weighted points. RT and CT respectively output m = nτ

0 points with simplex or
constant-preserving weights for τ shown in parentheses. In addition, LD, RT, and CT use the rank nτ

0 . ST and KT took
longer than 30 minutes for n0 = 220 and hence their numbers are not reported.
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Figure I.1: Correcting for burn-in with equal-weighted compression. For each of four MCMC algorithms and using
only one chain, our methods consistently outperform the Stein and standard thinning baselines and match the 6-chain
oracle.

I.4. Correcting for approximate MCMC details

Surrogate ground truth Following Liu and Lee (2017), we took the first 10,000 data points and generated 220 surrogate
ground truth sample points using NUTS (Hoffman and Gelman, 2014) for the evaluation. To generate the surrogate ground
truth using NUTS, we used numpyro (Phan et al., 2019). It took 12 hours to generate the surrogate ground truth points
using the GPU implementation, and we estimate it would have taken 200 hours using the CPU implementation.

SGFS For SGFS, we used batch size 32 and the step size schedule η/(1 + t)0.55 where t is the step count and η is
the initial step size. We chose η from {10.0, 5.0, 1.0, 0.5, 0.1, 0.05, 0.01}, found η = 1.0 gave the best standard thinning
MMD to get a coreset size of m = 210 , and hence we fixed η = 1.0 in all experiments. We used the version of SGFS
(Ahn et al., 2012, SGFS-f) that involves inversion of d × d matrices — we found the faster version (SGFS-d) that inverts
only the diagonal resulted in significantly worse mixing. We implemented SGFS in numpy and ran it on the CPU.

Runtime The SGFS chain of length 224 took approximately 2 hours to generate using the CPU. Remarkably, all of
our low-rank methods finish within 10 minutes for n0 = 220, which is orders of magnitude faster than the time taken to
generate the NUTS surrogate ground truth.

Additional results In Fig. I.4, we plot the posterior mean mean-squared error (MSE) for each compression method in the
approximate MCMC experiment of Sec. 5.

I.5. Correcting for tempering details

In the data release of Riabiz et al. (2020), we noticed there were 349 sample points for which the provided scores were
NaNs, so we removed those points at the recommendation of the authors.
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Figure I.2: Correcting for burn-in with simplex-weighted compression. For each of four MCMC algorithms and using
only one chain, our methods consistently outperform the Stein and standard thinning baselines and match the 6-chain
oracle.
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Figure I.3: Correcting for burn-in with constant-preserving compression. For each of four MCMC algorithms and
using only one chain, our methods consistently outperform the Stein and standard thinning baselines and match the 6-chain
oracle.
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Figure I.4: Posterior mean mean-squared error (MSE) for the approximate MCMC compression experiment of Sec. 5.
MSE is computed as ∥ÊPZ −

∑
i∈[n0]

wixi∥2M/d where ÊPZ is the mean of the surrogate ground truth NUTS sample.

57


