
RL-CFR: Improving Action Abstraction for Imperfect Information
Extensive-Form Games with Reinforcement Learning

Boning Li 1 Zhixuan Fang 1 2 Longbo Huang 1

Abstract
Effective action abstraction is crucial in tackling
challenges associated with large action spaces
in Imperfect Information Extensive-Form Games
(IIEFGs). However, due to the vast state space
and computational complexity in IIEFGs, existing
methods often rely on fixed abstractions, result-
ing in sub-optimal performance. In response, we
introduce RL-CFR, a novel reinforcement learn-
ing (RL) approach for dynamic action abstraction.
RL-CFR builds upon our innovative Markov De-
cision Process (MDP) formulation, with states
corresponding to public information and actions
represented as feature vectors indicating specific
action abstractions. The reward is defined as the
expected payoff difference between the selected
and default action abstractions. RL-CFR con-
structs a game tree with RL-guided action abstrac-
tions and utilizes counterfactual regret minimiza-
tion (CFR) for strategy derivation. Impressively,
it can be trained from scratch, achieving higher
expected payoff without increased CFR solving
time. In experiments on Heads-up No-limit Texas
Hold’em, RL-CFR outperforms ReBeL’s replica-
tion and Slumbot, demonstrating significant win-
rate margins of 64 ± 11 and 84 ± 17 mbb/hand,
respectively.

1. Introduction
The Imperfect Information Extensive-Form Game (IIEFG)
model provides a comprehensive framework for analyzing
multi-player turn-taking games represented in tree structures
(Burch, 2017). This model encompasses diverse games such
as Poker (Brown & Sandholm, 2019a), Mahjong (Li et al.,
2020), and Scotland Yard (Schmid et al., 2023). Resolving

1Tsinghua University, IIIS, Beijing, China 2Shanghai Qi Zhi
Institute, Shanghai, China. Correspondence to: Longbo Huang
<longbohuang@tsinghua.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

IIEFGs involves determining Nash equilibrium (Nash Jr,
1950), particularly in scenarios featuring two-person zero-
sum conditions. The popular method for tackling large
IIEFGs is to approximate Nash equilibrium using iterative al-
gorithms (Nesterov, 2005; Zinkevich et al., 2007; Chaudhuri
et al., 2009). Among these iterative algorithms, Counterfac-
tual Regret Minimization (CFR) (Zinkevich et al., 2007) and
its variants (Lanctot et al., 2009; Tammelin, 2014; Brown
et al., 2019; Brown & Sandholm, 2019b; Xu et al., 2024)
have been the predominant methods for addressing large
IIEFGs, yielding low-exploitability mixed strategies.

However, numerous IIEFGs exhibit a vast array of actions,
leading to an exponential growth in the size of the game
tree with the increasing number of actions (Schnizlein et al.,
2009). This poses a significant computational challenge
when applying CFR-based solutions directly. To address
this, action abstraction, involving the selection of a limited
number of actions from the available set (Aceto, 1991), has
been widely employed to substantially reduce the size of
the game tree, facilitating more efficient CFR solving.

Nevertheless, in the realm of IIEFGs, existing results pre-
dominantly focus on fixed action abstractions (Moravčı́k
et al., 2017; Brown et al., 2020). The adoption of fixed
action abstractions unavoidably leads to sub-optimality
(Waugh et al., 2009). While methods for dynamic action
abstraction exist (Hawkin et al., 2011; 2012; Brown & Sand-
holm, 2014), these approaches often suffer from poor con-
vergence and limited applicability (Brown, 2020). Conse-
quently, identifying strategies capable of achieving dynamic
action abstractions with manageable computational com-
plexity remains an outstanding challenge (Sandholm, 2015).

Reinforcement Learning (RL) (Humphreys, 1997; Sutton
& Barto, 1998) has emerged as a revolutionary method in
various games such as Go (Silver et al., 2017), StarCraft II
(Lee et al., 2018), and Dota 2 (Berner et al., 2019). However,
its application to IIEFGs presents distinctive challenges, pri-
marily arising from two critical features. Firstly, the optimal
strategy for an IIEFG typically involves a mixed strategy
on its support (Neyman, 2008). RL algorithms, however,
are primarily designed for learning deterministic policies
(Lillicrap et al., 2016), making them less suitable for di-
rectly handling the probabilistic nature of mixed strategies

1

RL-CFR: Improving Action Abstraction for Imperfect Information Extensive-Form Games with Reinforcement Learning

in IIEFGs. Secondly, the value of an information set in
IIEFGs may depend on the chosen strategy (Brown et al.,
2018). However, in RL, the value function is generally as-
sumed to be independent of the agent’s policy (Watkins &
Dayan, 1992), posing a challenge in modeling scenarios
where the value of an information set is contingent on the
specific strategy being employed. Addressing these chal-
lenges requires specialized adaptations of RL techniques or
exploration of alternative approaches tailored to the unique
characteristics of IIEFGs.

To further clarify these challenges and the motivation for em-
ploying RL, consider the simplified poker example (Burch,
2017) depicted in Figure 1. In this scenario, Player 1 has
an equal chance of being dealt J or K, while Player 2 is
always dealt Q. Both players contribute 1 chip to the pot,
resulting in a total of 2 chips, and each player has 2 chips re-
maining. Player 1 acts first. The Nash equilibrium strategy
for Player 1 involves going all-in with K and committing
50% of J , while checking the other 50% of J . If Player 1
declares all-in, the Nash equilibrium strategy for Player 2
is to call and fold with equal probabilities, ensuring that,
regardless of Player 1’s strategy, Player 2’s expected payoff
is not reduced. In this equilibrium, Player 1’s K expects to
win 2 chips, J expects to lose 1 chip, and Player 2 expects
to lose 0.5 chips. In contrast, if Player 1 goes all-in with
100% probability, and Player 2’s best response strategy is
to call with 100% probability, Player 1’s K expects to win
3 chips, J expects to lose 3 chips, and player 2 expects to
win 0 chips. This example vividly demonstrates the intri-
cate nature of strategies in IIEFGs, where the strategy is
likely a mixed strategy, and the chosen strategy impacts the
expected values for all players involved.

To surmount the aforementioned challenges and harness the
power of RL in sequential decision making, we introduce
RL-CFR, a two-phase framework that ingeniously integrates
Deep Reinforcement Learning (DRL) (Arulkumaran et al.,
2017) with CFR. In the initial phase, we formulate a novel
Markov Decision Process (MDP) (van Otterlo & Wiering,
2012) to identify the action abstraction with the highest
expected payoff. Within this MDP, the state encapsulates
the public information of the game, each control action is
represented as a feature vector denoting a specific action
abstraction, and action rewards are determined as the payoff
differences calculated by CFR between the selected action
abstractions and a default fixed action abstraction.

Expanding upon this MDP, we construct a game tree based
on the action abstraction chosen by the actor-critic DRL
method (Konda & Tsitsiklis, 1999), ultimately solving the
strategy for the selected action abstraction through CFR. RL-
CFR offers a principled approach to harness the strengths of
both RL and CFR, adeptly addressing challenges related to
mixed-strategy and probability-dependent reward scenarios.

50%50%

J/Q K/Q

-1/+1

J/Q K/Q

check all-in all-in

+1/-1 -3/+3 +1/-1 +3/-3

fold call fold call

J/Q

check

chance player

player 1

player 2

payoff

chance state non-terminal state

terminal state information set

Figure 1. The game starts with a chance state where Player 1
faces an equal probability of receiving either J or K, and Player
2 is consistently dealt Q. If Player 1 is dealt K, an automatic
all-in is initiated. When Player 1 holds J , a pivotal decision
arises between opting for a cautious check or committing to an
all-in strategy. Subsequently, if Player 1 opts for an all-in action,
Player 2 is confronted with the dilemma of whether to fold or call.
Importantly, Player 2 remains uninformed about the specific cards
held by Player 1, resulting in an information set that encompasses
two states. Upon reaching the terminal state, payoffs are assigned
to both players in accordance with a predefined assignment rule.

Importantly, for every state in IIEFG, RL-CFR enhances
the expected payoff by selecting a superior dynamic action
abstraction compared to a fixed action abstraction without
an increase in the CFR solving time or a decrease in conver-
gence. Furthermore, RL-CFR is capable of being trained
from scratch with only the rules of the IIEFG. This capa-
bility is crucial as it allows the algorithm to dynamically
adapt to the unique dynamics and intricacies inherent in
IIEFGs, mitigating the risk of biases introduced by existing
knowledge or inherent biases in the initial model.

To demonstrate the effectiveness of RL-CFR in addressing
large IIEFGs, we conducted an evaluation using the chal-
lenging Heads-up No-limit Texas Hold’em (HUNL) poker
game.1 Our results show that RL-CFR outperforms the fixed
action abstraction-based HUNL agent ReBeL’s replication
(Brown et al., 2020) with a win-rate margin of 64 milli-big
blinds per hand (mbb/hand) in a test of over 600, 000 hands.
Furthermore, RL-CFR surpasses the well-known HUNL
agent Slumbot (Jackson, 2013) by a substantial win-rate
margin of 84 mbb/hand in a test of over 250, 000 hands.
These substantial win-rate margins underscore the effec-
tiveness of our innovative RL-CFR solution in tackling the

1Heads-up No-limit Texas Hold’em is a two-player variant of
Texas Hold’em and serves as a crucial version for exploring mixed
strategy two-player zero-sum IIEFGs (Bard et al., 2013). It is
chosen for its intricate nature (Rubin & Watson, 2011) and an
exceedingly vast decision space (Johanson, 2013).

2

RL-CFR: Improving Action Abstraction for Imperfect Information Extensive-Form Games with Reinforcement Learning

challenges posed by large IIEFGs. To extend the assessment
of RL-CFR beyond HUNL, we devised a new poker variant
named PREFLOP43. In the PREFLOP43 poker game, RL-
CFR significantly outperformed the fixed action abstraction
method in action abstraction evaluation, exploitability evalu-
ation, and heads-up evaluation, with statistical significance.

The main contributions of our work are as follows.

• Innovative MDP Formulation for IIEFGs: We present
a pioneering Markov Decision Process (MDP) formu-
lation designed specifically for Imperfect Information
Extensive-Form Games (IIEFGs). This formulation
meticulously defines states based on public informa-
tion, represents actions as feature vectors denoting
action abstractions, and establishes rewards as value
differences between selected action abstractions and
default fixed action abstractions. The dynamic adjust-
ment of action abstractions at different states is facili-
tated by our MDP formulation, enhancing adaptability.

• RL-CFR Framework Integration: Building upon our
novel MDP, we introduce the RL-CFR framework—a
novel fusion of Deep Reinforcement Learning (DRL)
with Counterfactual Regret Minimization (CFR). This
framework achieves a harmonious balance between
computation and optimism, and can be trained from
scratch with only the rules of the IIEFG. RL-CFR
adeptly addresses the challenges posed by the large
decision space and computational complexity inherent
in IIEFGs, offering a customizable tradeoff mechanism
between CFR-related computational complexity and
RL-driven performance improvement.

• Evaluation on HUNL Poker Game: We evaluate the
performance of RL-CFR on the widely recognized
Heads-up No-limit Texas Hold’em (HUNL) poker
game. Our results showcase the superiority of RL-
CFR by achieving significant win-rate advantages over
ReBeL’s replication, one of the leading fixed action
abstraction-based HUNL algorithms, and Slumbot, a
robust publicly available HUNL AI for online com-
parisons. Specifically, RL-CFR outperforms ReBeL’s
replication and Slumbot by substantial win-rate mar-
gins of 64± 11 and 84± 17 mbb/hand, respectively.

2. Related Work on Extensive-Form Games
Action Abstraction in IIEFGs. The action abstraction tech-
nique expedites strategy computation in IIEFGs, providing
solutions with theoretical bounds (Kroer & Sandholm, 2014;
2015; 2018). In IIEFGs with a multitude of actions, such as
poker games, the impact of action abstraction on strategy
quality can be surprisingly significant (Chen & Ankenman,
2007; Waugh et al., 2009). Parametric methods proposed

by Hawkin et al. (2011; 2012) aim to find optimal action
abstraction for early states of IIEFGs, while an iterative
algorithm (Brown & Sandholm, 2014) has been introduced
to adjust action abstraction during iteration. However, it is
worth noting that these methods, altering action abstraction
during CFR iteration, tend to converge more slowly com-
pared to fixed action abstraction methods (Brown, 2020).

Reinforcement Learning (RL) Approaches for IIEFGs.
Various methodologies inspired by RL have emerged to
solve IIEFGs. Noteworthy contributions include regres-
sion counterfactual regret minimization (Waugh et al., 2015;
D’Orazio et al., 2020), neural fictitious self-play (Heinrich
& Silver, 2016), and ReBeL (Brown et al., 2020). Further-
more, Pérolat et al. (2021) introduced a regularization-based
reward adaptation technique, ensuring robust convergence
guarantees when addressing two-player zero-sum IIEFGs.
In addition, Liu et al. (2023) delved into RL regularization
techniques for IIEFGs, proposing a regularization-based
payoff function. To tackle the challenge of inaccurate state
value estimation in large IIEFGs, Meng et al. (2023) pre-
sented an efficient deep reinforcement learning method. Ad-
ditionally, Xu et al. (2024) enhanced the DCFR algorithm
(Brown & Sandholm, 2019b) by replacing the fixed dis-
count parameter with a dynamic discount parameter using
RL selection, resulting in improved outcomes. These ap-
proaches collectively underscore the diverse applications of
RL methodologies in addressing various challenges within
the domain of IIEFGs.

3. Background and Notation
Imperfect Information Extensive-Form Games. An
Imperfect Information Extensive-Form Game (IIEFG)
models the sequential interaction of one or more play-
ers (Burch, 2017), and can be represented by G =
⟨H,Z,A,N ,P, σc, u, I⟩. Let N = {1, · · · , N} be the
set of players, and H be the set of states (histories). A
state h ∈ H is defined by all historical actions from the
initial game state ∅. The state h · a ∈ H is a child of the
state h, and h ⊑ h′ implies that h is an ancestor of h′. Z
is the set of terminal states. For each non-terminal state
h, A(h) is the set of available actions, AA(h) ⊆ A(h)
is an action abstraction for A(h), and P(h) ∈ N ∪ {c}
determines the acting player, where c denotes the “chance
player”, representing random events players in N cannot
control. σc(h, a) is the probability that chance player will
act a at state h. Hp is the set of all states h where P(h) = p.
For every terminal state z ∈ Z , u(z) = ⟨up(z)⟩p∈N gives
the payoff for each players. While the work presented in
this paper focuses on two-player zero-sum games, where
N = {1, 2} and u1(z) = −u2(z) for all terminal states z,
many of the ideas and techniques developed can be extended
to the general-sum and multi-player scenarios as well.

3

RL-CFR: Improving Action Abstraction for Imperfect Information Extensive-Form Games with Reinforcement Learning

The information-partition I = (Ip)p∈N describes the im-
perfect information of the IIEFG, where Ip is a partition of
Hp for each player p. A set I ∈ Ip is called an informa-
tion set, and all states in I are indistinguishable for player
p. We denote I(h) as the unique information set that con-
tains h. A behaviour strategy σp ∈ Σp is a function where
σp(I, a) ∈ R determines the probability distribution over
available actions a ∈ A(I) for every information set I ∈ Ip.
We denote σ(I, a) = σP(I)(I, a). σ = ⟨σp⟩p∈N is a strat-
egy profile. πσ(h) is the probability of reaching state h if
players follow σ, calculated as πσ(h) =

∏
h′·a⊑h σ(h

′, a).
πσ
−p(h) is the probability of reaching state h if player p

takes actions to reach h and other players follow σ.

The counterfactual value (CFV) (Zinkevich et al., 2007)
of an information set I ∈ Ip is the expected utility for
player p given that I has been reached, calculated as
vσp (I) =

∑
h∈I(π

σ
−p(h)

∑
z∈Z,h⊑z(π

σ(z|h)up(z))). The
exploitability ep(σ) of a strategy profile σ and a player p
in a two-player zero-sum game describes how much worse
the strategy does versus a best response strategy. Formally,
ep(σ) = uσ

p −minσ∗
−p∈Σ−p

u
⟨σp,σ

∗
−p⟩

p (Cesa-Bianchi & Lu-
gosi, 2006). If no player has exploitability higher than ε
under σ, then σ is an ε-Nash equilibrium strategy.

Counterfactual Regret Minimization. Counterfactual Re-
gret Minimization (CFR) is an algorithm tailored for large
IIEFGs, aimed at minimizing regret independently within
each information set (Zinkevich et al., 2007). It is capable of
finding ε-Nash equilibrium in two-player zero-sum IIEFGs.

Let σt represent the strategy profile at iteration t. The instan-
taneous regret for taking action a at information set I ∈ Ip
in iteration t is denoted as rt(I, a) = vσ

t

p (I, a) − vσ
t

p (I).
The counterfactual regret for choosing action a at I in it-
eration T is defined as RT (I, a) =

∑T
t=1 r

t(I, a). This
counterfactual regret is used in regret matching (RM) (Hart
& Mas-Colell, 1997), a no-regret learning algorithm em-
ployed for solving imperfect-information games.

For an information set I , on each iteration t+ 1, an action
a ∈ AA(I) is chosen based on probabilities σt+1(I, a) =

Rt
+(I,a)∑

a′∈AA(I) R
t
+(I,a′)

where Rt
+(I, a) = max{0, Rt(I, a)}.

If
∑

a′∈AA(I) R
t
+(I, a

′) = 0, an arbitrary strategy can
be chosen. Generally, the upper bound on regret values
for CFR or its variants (Lanctot et al., 2009; Tammelin,
2014; Brown et al., 2019; Brown & Sandholm, 2019b) is
O(L

√
|AA(I)|

√
T), where L is the payoff range, |AA(I)|

is the size of action abstraction for information set I and T
is the number of iterations (Cesa-Bianchi & Lugosi, 2006).

Discounted CFR (DCFR) (Brown & Sandholm, 2019b)
stands out as a prominent equilibrium-finding algorithm
for large IIEFGs (Brown, 2020). DCFR is a variant of CFR
with parameters α, β, γ (DCFRα,β,γ). Specifically, accu-

mulated positive regrets are multiplied by tα

tα+1 , negative

regrets by tβ

tβ+1
, and contributions to the average strategy σ

by (t
t+1)

γ on each iteration t. In our experiments, we use
the DCFR algorithm and set α = 3

2 , β = 0, and γ = 2,
denoted as DCFR 3

2 ,0,2
.

Public Belief State. A Public Belief State (PBS) is an ex-
tended notion of history for IIEFGs based on the common
knowledge belief distribution over histories (Burch et al.,
2014; Sustr et al., 2019). Specifically, we define player p’s
observation-action history (infostate) (Burch et al., 2014)
as Op = (I1, a1, I2, a2, · · ·), which includes the informa-
tion sets visited and actions taken by player p. The unique
infostate corresponding to a state h ∈ Hp for player p is
Op(h). The set of states that correspond to Op is denoted
H(Op). We use ∼ to denote states indistinguishable by
some player, i.e., g ∼ h means

∨N
i=1 Oi(g) = Oi(h) (

∨
is

the OR operation on all expressions).

A public partition is any partition PS of H\Z whose ele-
ments are closed under ∼ and form a tree (Johanson et al.,
2011). An element PS ∈ PS is called a public state that
includes the public information that each player knows. The
unique public state for a state h and an infostate Op are
denoted by PS(h) and PS(Op), respectively. The set of
states that match the public information of PS is denoted
asH(PS).

In general, a PBS β is described by the joint probability
distribution of the possible infostates of the players (Nayyar
et al., 2013; Oliehoek, 2013; Dibangoye et al., 2013), and
can shed extraneous history to refine information (Brown
et al., 2020). Formally, given a public state PS, Op(PS) is
the set of infostates that player p may be in, and△Op(PS)
is a probability distribution over the elements of Op(PS).
Then, PBS β = (△O1(PS), · · · ,△ON (PS)). The public
state of PBS β is denoted as PS(β). The acting player at
PBS β is denoted P(β). The set of available actions for
acting player at PBS β is denoted A(β), and the action
abstraction at PBS β is denoted AA(β).

A subgame can be rooted at a PBS because PBS is a
state of the perfect-information belief-representation game
with well-defined values (Brown et al., 2020; Kovarı́k
et al., 2023). At the beginning of a subgame, a his-
tory is sampled from the probability distribution of the
PBS, and then the game plays as if it is the original
game. The value for player p of PBS β (PBS value) when
all players play according to σ is defined as vσp (β) =∑

h∈H(PS(β))(π
σ(h|β)vσp (h)). The value for an infostate

Op ∈ β when all players play according to σ is defined
as vσp (Op|β) =

∑
h∈H(Op)

(πσ(h|Op, β−p)v
σ
p (h)) where

πσ(h|Op, β−p) is the probability of reaching state h ac-
cording to σ, assuming Op is reached and the probability
distribution over infostates for players other than p is β−p.

4

RL-CFR: Improving Action Abstraction for Imperfect Information Extensive-Form Games with Reinforcement Learning

4. A Novel MDP Formulation for IIEFGs
In this section, we present our novel MDP formulation tai-
lored for IIEFGs. It is important to emphasize that our
formulation serves as an abstract MDP model, strategically
designed to determine the action abstraction of IIEFGs. This
action abstraction, once determined, becomes the basis for
executing a CFR algorithm, allowing us to solve for the
mixed strategy. In this MDP, states correspond to public
information, and actions are represented as feature vectors
indicating specific action abstractions. The reward is de-
fined as the expected payoff difference between the selected
and default action abstractions. Below, we delve into the
specific details of our MDP.

In general, a Markov Decision Process (MDP) (van Otterlo
& Wiering, 2012) comprises the tuple ⟨S,A, P, r, γ⟩, where
S is the set of states, A is the set of actions, r : S×A 7→
R is the reward function, P (s′|s,a) is the state transfer
function, and γ is the discount factor. The primary objective
is to find an optimal control policy π∗, which determines
at = π∗(st) at each time, aiming to maximize the expected
cumulative reward R = E{

∑∞
t=0 γ

tr(st,at)}.

Action Abstraction MDP for IIEFGs.

(State) State s = PS(β), where PS(β) is the public state of
the current PBS β. Our design offers two notable advantages
compared to using PBS β directly as a state:

1. Dimension Reduction. Our state effectively reduces the
dimensionality. In typical IIEFGs, the PBS typically has a
large dimensionality, as it needs to record the distribution of
all possible infostates. In contrast, the public state that we
use has a more moderate dimensionality, as it only captures
public information known to all players. For example, in
HUNL, a public state includes only essential information
like previous actions of the players, the public cards, the
chips in the pot, the remaining chips and the acting player.
In contrast, a PBS in HUNL would need to encompass
1, 326 different private hands for both players, resulting in a
significantly higher-dimensional representation.

2. Stability during CFR iterations. The public states of
the non-root nodes remain fixed during CFR iterations. In
the iterative process of CFR, PBS of the non-root nodes
may change at each iteration, while the public state remains
constant. Since the selection of the action abstraction is
based on the state, maintaining a fixed state during CFR
iterations is crucial. If the state changes at each iteration,
the action abstraction will also change, potentially leading
to poor convergence of CFR (Brown, 2020).

(Action) Action a = (x1, y1, · · · , xK , yK) is a 2K-
dimensional vector, where K corresponds to the number
of actions that can be selected in the chosen action abstrac-
tion. Each xi, yi have values between −1 and 1. In our

MDP, this action a is utilized to select an action abstraction
AAMDP(β,a) at PBS β. The subsequent game tree for CFR
solving is constructed based on this action abstraction. The
specifics are detailed below.

In an IIEFG, there are actions that are common and are
added to the action abstraction regardless of the PBS
β. We denote this set of actions as always-selected ac-
tion set AAalways, which may include some of the most
common actions available. Additionally, we define a de-
fault fixed action abstraction AAbase(β) at PBS β. Here,
AAbase(β) ⊆ A(β) is a set of actions solely related to
PBS β, and we have AAalways ⊆ AAbase(β). Typically,
AAbase(β) is pre-specified to a set of available actions re-
lated to crucial information of PBS β.

The choices for AAalways and AAbase(β) can be arbitrary
in any IIEFG. However, different choices can impact the
win-rate and running time, as demonstrated in Waugh et al.
(2009) and Moravčı́k et al. (2017). For examples, in HUNL
experiments, when AAalways = {F,C,A} (F,C,A refer to
fold, check/call and all-in respectively), Moravčı́k et al.
(2017) shows that the action abstraction AAbase(β) =
AAalways ∪ {0.5 × pot, 1 × pot, 2 × pot} (×pot means
the fraction of the size of the pot being bet) achieves a
win-rate of 96 mbb/hand compared to action abstraction
AAbase(β) = AAalways ∪ {1× pot}.

Formally at a PBS β, the action abstraction chosen by a =
(x1, y1, · · · , xK , yK) is

AAMDP(β,a) = AAalways ∪ AAoptional(β,a) (1)

Here, the optional action set AAoptional(β,a) is the set of
actions generated from PBS β and the chosen action vec-
tor a. Since the size of the game tree increases expo-
nentially with the number of available actions, we limit
the optional action set AAoptional(β,a) to have most K

actions. Precisely, AAoptional(β,a) =
⋃K

i=1 f(xi, yi, β),
where f(xi, yi, β) is a function that generates an available
action from all available actions except those in AAalways.
Notably, if f(xi, yi, β) = ∅, it means that there is no chosen
action in this dimension of the action abstraction. Since the
set of available actions of IIEFGs with numerous actions
tends to be continuous, we define the function f(xi, yi, β)
by correspondingly mapping continuous parameters xi and
yi to the set of available actions A(β) of PBS β.

Below, using HUNL as an example, we describe how to
choose K and define f(xi, yi, β). We set K = 3, which
means we can select up to 3 raising scales other than
all-in. We let AAalways = {F,C,A} and AAbase(β) =
{F,C,A, 0.5 × pot, 1 × pot, 2 × pot} (consistent with
Moravčı́k et al. (2017)). Based on human experience and in-
spired by prior studies (Hawkin et al., 2011; 2012), a reason-

5

RL-CFR: Improving Action Abstraction for Imperfect Information Extensive-Form Games with Reinforcement Learning

Figure 2. Training procedure for the RL-CFR framework. The labels in the figure correspond to the sampling steps for RL-CFR
framework. A sampling epoch starts from the initial PBS βinit.

able range for a raising scale other than all-in is [0, 5]× pot.
Thus, we define the f(xi, yi, β) function to be

f(xi, yi, β) =

{
CLIP(2.5(xi + 1)× pot), yi ≥ 0;

∅, yi < 0.
(2)

where CLIP is a function that corresponds the nearest avail-
able raising scale.

(Reward) The reward function r(s,a) in our MDP, is de-
fined as the difference in PBS values between the chosen
action abstraction AAMDP(β,a) and the default action ab-
straction AAbase(β).

For our abstract MDP, each action’s reward needs to be
obtained by solving two independently depth-limited sub-
games (Brown et al., 2018) using the CFR-based ReBeL
algorithm (Brown et al., 2020), as described in Appendix D.
Here is how we compute the reward r based on the PBS β,
the state vector s, and the action vector a:

1. Build Game Tree. Construct a game tree rooted at PBS
β with selected action abstraction AAMDP(β,a). Note that
this selected action abstraction is used only for the root.

2. Compute Strategy Profile σMDP. Utilize depth-limited
subgame solving method ReBeL to obtain a strategy profile
σMDP for the game tree. This profile provides state transfers
for all infostates corresponding to non-leaf nodes in the
subgame.

3. Calculate PBS Value for Chosen Action Abstraction.
With the calculated strategy profile σMDP, compute the PBS
value vσMDP

P(β)(β) for the acting player. This represents the
expected payoff calculated for the acting player on PBS β
(details of the PBS value calculation are in the last paragraph
of Section 3).

4. Build Another Game Tree. Construct another game tree
rooted at PBS β, but this time using the default fixed action
abstraction AAbase(β) at the root. For the non-root nodes,
both game trees use either the default action abstraction or
the MDP-based action abstraction, depending on the training
stage. Further details about the choice of action abstraction
for non-root nodes can be found in Sections 5 and 6.

5. Compute Strategy Profile σbase. Similarly, obtain the
strategy profile σbase for this game tree based on ReBeL.

6. Calculate PBS Value for Default Action Abstraction.
Using the calculated strategy profile σbase, compute the PBS
value vσbase

P(β)(β) for the acting player.

7. Compute Reward. Finally, compute the reward r(s,a) =
vσMDP
P(β)(β)− vσbase

P(β)(β).

The state transition of the MDP depends on the mixed strat-
egy calculated by the CFR-based ReBeL algorithm, as de-
tailed in Section 5. The discount factor γ is set to 1 during
training.

6

RL-CFR: Improving Action Abstraction for Imperfect Information Extensive-Form Games with Reinforcement Learning

5. RL-CFR Framework
In this section, we introduce the RL-CFR framework, an
extension of ReBeL algorithm (Brown et al., 2020). The
ReBeL algorithm is known for its efficiency in solving depth-
limited subgames (Brown et al., 2018), allowing it to obtain
effective fixed action abstraction strategies for large IIEFGs
through a combination of self-play RL and CFR (see Ap-
pendix D). In contrast to ReBeL, which employs a fixed
action abstraction, RL-CFR takes a novel approach by dy-
namically selecting its action abstraction through RL, based
on our novel MDP.

As demonstrated in our experiments, this dynamic selec-
tion allows for the discovery of superior action abstractions,
resulting in significant performance improvements. It is
noteworthy that applying the DRL approach to IIEFGs is
a highly nontrivial task. The main challenge lies in deter-
mining a mixed strategy for all information sets (Burch,
2017; Brown, 2020), a computation that is intricate when
approached directly through RL methods. Despite this chal-
lenge, RL-CFR tackles the complexity by incorporating
dynamic action abstraction, showcasing its capability to
navigate the intricacies of IIEFGs and deliver enhanced
performance outcomes.

The RL-CFR framework constitutes an end-to-end self-
training reinforcement learning process, as illustrated in
Figure 4. We now elucidate the sampling steps for RL-CFR
framework:2

Step 1⃝ Compressing PBS. Starting from the initial PBS
of the game, each handling of a PBS β involves several
stages. If we encounter a chance PBS where the acting
player is a chance player, we allow the chance player to act
randomly and update the PBS. If we encounter a terminal
PBS, the epoch of sampling ends. Moving on to a non-
chance and non-terminal PBS β, we proceed to compress
the high-dimensional PBS β into a low-dimensional public
state s using the method described in Section 4.

Step 2⃝ Action Abstraction Selection. Passing through the
action network and adding a Gaussian noise (for increased
exploration) yields an action vector a, which is then mapped
to a specified action abstraction AAMDP(β,a).

Step 3⃝ Building Depth-Limited Subgames. Constructing
two depth-limited subgames rooted at β according to the
default action abstraction AAbase(β) and selected action
abstraction AAMDP(β,a), respectively.

Step 4⃝ ReBeL Algorithm. Utilizing the ReBeL algorithm
to solve the strategies and values of the two subgames.

2Here, “Sampling” refers to the process of selecting and gen-
erating instances or experiences that are used for training and
updating the RL model.

Step 5⃝ Calculating Reward and Updating RL Data. Calcu-
lating the PBS value difference as a reward r, and adding
RL data {s, a, r} to the training data (denoted as DataRL)
for the action and critic network.

Step 6⃝ State Transition. Randomly choosing a subgame
and following the corresponding strategy σ(β) for state
transition to a child PBS β′ next. Setting β = β′, and
repeating Step 1⃝.

Algorithm 1 shows the formal procedure of the sampling
process. These steps collectively form the foundation of
the RL-CFR sampling process, driving the iterative learning
and optimization within the framework.

Algorithm 1 RL-CFR framework: Sampling (s, a, r) data
Input: θα, noise, η, ϵ ▷ noise = 0.15, η = 0.33, ε = 0.25

during training
β ← βinit ▷ A sampling epoch starts from the initial PBS
DataRL ← {}
while !IsTerminal(β) do

while P (β) = c do
β ← TakeChance(β) ▷ Random chance event

end while
σbase(β), v

σbase
P(β)(β)←ReBeL(β,AAbase(β)) ▷ Com-

pute the strategy and value for default action abstraction
s← PS(β) ▷ Use public state as the state in MDP
a←ActionNetwork(s, θα) +N (0, noise) ▷ Sample

an action abstracion
σMDP(β), v

σMDP
P(β)(β)←ReBeL(β,AAMDP(β,a)) ▷

Compute the strategy and value for selected action ab-
straction

r ← vσMDP
P(β)(β)− vσbase

P(β)(β) ▷ Calculating the reward
Add {s, a, r} to DataRL

c ∼ unif[0, 1]
d ∼ unif[0, 1]
if c < η then ▷ State transition

if d < ϵ then
anext ∼ AAbase(β)

else
anext ∼ σbase(β)

end if
β ← NextPBS(β, σbase(β), anext)

else
if d < ϵ then

anext ∼ AAMDP(β,a)
else

anext ∼ σMDP(β)
end if
β ← NextPBS(β, σMDP(β), anext)

end if
end while

Output: DataRL

7

RL-CFR: Improving Action Abstraction for Imperfect Information Extensive-Form Games with Reinforcement Learning

After each epoch, a trajectory (s1,a1, r1, · · · , st,at, rt) is
sampled based on the current action network, where t is
the length of the game, contingent on the player actions.
Upon collecting RL data DataRL = {(s,a, r)} over sev-
eral epochs, the Actor-Critic algorithm (Konda & Tsitsiklis,
1999) is employed, along with Mean Squared Error (MSE)
Loss to train both the action network and critic network (re-
fer to Section 6 for network structures). The loss functions
are defined as follows:

L(θc) = E(s,a,r)∼DataRL [(rθc(s,a)− r)2], (3)

L(θa) = E(s,a,r)∼DataRL [−rθc(s,aθa(s))], (4)

where θc, θa represent the parameters of the critic network
and action network, respectively.

During the initial epochs of training, the action network
may tend to select sub-optimal action abstractions com-
pared to the default fixed action abstraction AAbase(β). To
address this, we initiate training by utilizing the default ac-
tion abstraction for non-root nodes when constructing the
depth-limited subgame. As training progresses, the action
network becomes more adept at selecting superior action
abstractions. Consequently, we transition to choosing the
action abstraction for non-root nodes based on the output
of the action network when building the depth-limited sub-
game. Simultaneously, to enhance the accuracy of PBS
values, we can retrain the PBS value network according to
the action abstraction selected by the action network. The
iterative process of updating the PBS value network and the
action network can theoretically be repeated for ongoing
training, allowing the framework to adapt and improve its
decision-making capabilities over time.

6. Experiment
To demonstrate the effectiveness of our RL-CFR framework
in handling large IIEFGs with numerous actions, we con-
ducted experiments on Heads-up No-limit Texas Hold’em
(HUNL) and PREFLOP43 (see Appendix A for specific
rules). Similar to prior studies on large IIEFGs (Brown
et al., 2019; 2020; Zarick et al., 2020), we chose HUNL due
to its representative nature and inherent complexity. During
HUNL evaluation, players start with 200 big blinds, switch-
ing positions every two hands, akin to the annual computer
poker competition (ACPC) (Bard et al., 2013). During PRE-
FLOP43 evaluation, players start with 10 to 100 big blinds,
switching positions every two hands.

Experiments were executed on a server with 8 NVIDIA
PH402 SKU 200 GPUs and an 80-core Intel(R) Xeon(R)
Gold 6145 2.00GHz CPU. Neural networks in our imple-
mentation, including the PBS value network, action network,
and critic network, are Multi-Layer Perceptrons (MLPs)
with ReLU activation functions. The networks are trained
with the Adam optimizer (Kingma & Ba, 2015). In the CFR

iteration to solve a PBS, we use the discounted CFR (DCFR)
algorithm (Brown & Sandholm, 2019b), with the number of
iterations T = 250 during training and evaluation.3

We initiated our experiments by training a PBS value net-
work, comprising approximately 18 million parameters (as
detailed in Appendix D). It is worth noting that all PBS
value networks used in our experiments, including those
employed in RL-CFR, were trained based on the default ac-
tion abstraction. This deliberate setting aims to emphasize
that any performance enhancements achieved by RL-CFR
are solely attributed to the action abstraction chosen by the
action network.

The action network and the critic network both have 3 layers
and 2× 104 parameters, with hidden layers of dimensions
128 and 96. The training process has 2× 106 epochs, each
sampling approximately 10 RL data.4 Random sampling
from the entire RL data set was conducted, utilizing a learn-
ing rate of 1×10−5 and a batch size of 1, 024 during training.
After 5×105 epochs, we generated PBS data by constructing
the game tree precisely according to the action abstraction
provided by the action network. Notably, the training cost
of action network and critic network is approximately 30%
of the training cost of PBS value network.

Table 1. Competition results of the HUNL AIs against each other,
measured in mbb/hand (variance was reduced by AIVAT technique
(Burch et al., 2018)).

AI name ReBeL (Replication) Slumbot

ReBeL (Replication) - 18± 16
ReBeL (Brown et al., 2020) - 45± 5

RL-CFR (Ours) 64± 11 84± 17

We assessed the head-to-head performance of RL-CFR,
ReBeL’s replication (Brown et al., 2020) and the open
source AI Slumbot (Jackson, 2013) (the winner of the 2018
ACPC).5 We play RL-CFR for over 600, 000 hands against
ReBeL’s replication and RL-CFR achieves 64 mbb/hand
win-rate against ReBeL’s replication. We play RL-CFR
and ReBeL’s replication for over 250, 000 hands against

3Since HUNL evaluations are generally time-limited and need
to be solved within a few seconds, common HUNL AIs typically
take between 100 to 1000 CFR iterations (Brown et al., 2015;
2020; Brown & Sandholm, 2017a; Moravčı́k et al., 2017).

4An RL data instance (s,a, r) comprises a 64-dimensional
state s (recording public cards, chips, positions and previous ac-
tions in HUNL), a 6-dimensional action a and a scalar reward r.
Since the number of rounds in a HUNL game is not deterministic,
a single sample to the terminate state generally yields no more
than 10 pieces of RL data.

5Since the opponent may select actions that deviate from the
game tree, we perform nested subgame solving technique (Brown
& Sandholm, 2017b) mentioned in Appendix C.

8

RL-CFR: Improving Action Abstraction for Imperfect Information Extensive-Form Games with Reinforcement Learning

Slumbot, and the results illustrate that the replication of
ReBeL beat Slumbot with a win-rate of 18 mbb/hand, while
RL-CFR beat Slumbot with a win-rate of 84 mbb/hand,
and the win-rate of RL-CFR against Slumbot improved by
66 mbb/hand relative to ReBeL’s replication. The perfor-
mance of ReBeL’s replication is worse than the original
ReBeL version on the HUNL benchmark. This is because
the number of training samples of ReBeL’s replication be-
ing less than those of the original ReBeL implementation
due to the limited computational resources. We empha-
size that ReBeL is a building block of our novel RL-CFR
scheme, and our results show that RL-CFR achieves signifi-
cant win-rate against ReBeL’s replication and Slumbot just
by optimizing the action abstraction.6

We also performed an exploitability evaluation in over
10, 000 random river stage states. We simulate RL-CFR
versus ReBeL’s replication until reaching the river, meaning
that the two players choose their respective action abstrac-
tions, and the performance of the previously chosen action
abstraction has no effect on the test results. The exploitabil-
ity of RL-CFR is 17± 0 mbb/hand, and the exploitability
of ReBeL’s replication is 20 ± 0 mbb/hand. The results
indicate that RL-CFR generates action abstractions that are
also less likely to be exploited in the context of generating
more win-rate.

Table 2. Competition results of fixed action abstraction methods
against RL-CFR.

Method Win-rate Running time

ReBeL(Replication) −64± 11 1×
MUL-ACTION −21± 26 3×
FINE-GRAIN −23± 28 1.5×

We conduct additional experiments for RL-CFR, and the
results are presented in Table 2. In these experiments,
RL-CFR is compared against the method of choosing
an optimal action abstraction among multiple fixed ac-
tion abstractions (MUL-ACTION). MUL-ACTION oper-
ates by selecting an action abstraction with the highest
value for the root PBS βr among three action abstrac-
tions AA1(βr),AA2(βr),AA3(βr).7 RL-CFR outper-
forms MUL-ACTION by 21 mbb/hand in win-rate after
100, 000 hands, requiring only 1/3 of the running time.

6A win-rate of over 50 mbb/hand in poker is a commonly cited
benchmark for what a professional poker player seeks to win from
a weaker opponent (Bowling et al., 2017).

7We set AA1(βr) = {F,C,A, 0.5 × pot, 1 × pot, 2 ×
pot},AA2(βr) = {F,C,A, 0.25 × pot, 0.5 × pot, 1 ×
pot},AA3(βr) = {F,C,A, 0.33 × pot, 0.7 × pot, 1.5 × pot}.
Here the action abstractions other than the root are the same as
those used in ReBeL.

Additionally, we compare RL-CFR against choosing a
finer-grained action abstraction (FINE-GRAIN) AA(βr) =
{F,C,A, 0.25×pot, 0.5×pot, 0.75×pot, 1.0×pot, 1.25×
pot, 2.0 × pot} at the root PBS βr.8 RL-CFR surpasses
FINE-GRAIN by 23 mbb/hand in win-rate after 100, 000
hands, requiring approximately 2/3 of the running time.9

The results of RL-CFR versus fixed action abstraction meth-
ods illustrate that the action abstraction chosen by RL-CFR
can effectively increase the win-rate without increasing the
running time of the CFR algorithm.

Beyond just HUNL, we conducted experiments on a poker
variant of the game PREFLOP43. The game tree of PRE-
FLOP43 is constructed directly to terminal nodes to en-
sure precise value estimation, obviating the necessity for
the depth-limited subgame solving algorithm like ReBeL
(Brown et al., 2020). RL-CFR undergoes training for
1, 200, 000 epochs. Since the game tree can be built un-
til the end of the game, we performed action abstraction
evaluation. RL-CFR’s action abstraction is anticipated to
achieve an average increase of 4 mbb/action against fixed
action abstraction at a random PBS. We also performed an
exploitability test, and RL-CFR reduced exploitability from
23 mbb/hand to 21 mbb/hand after 250 CFR iterations. Fi-
nally, we assessed the head-to-head performance of RL-CFR
and the fixed abstraction method, and RL-CFR surpassed
the fixed abstraction method with a win-rate advantage of
5± 5 mbb/hand in a test of over 3, 500, 000 hands. These
results further demonstrate the effectiveness of RL-CFR in
addressing the challenges posed by large IIEFGs beyond
the HUNL poker game.

7. Conclusions
In this study, we introduce RL-CFR, a pioneering algo-
rithmic solution designed for the resolution of large-scale
IIEFGs. Anchored in a unique abstract MDP formulation,
RL-CFR employs public information as states, leverages
action abstraction features as actions, and adopts a meticu-
lously crafted reward function. The ingenuity of RL-CFR
lies in its fusion of reinforcement learning for action ab-
straction selection with CFR, facilitating dynamic action
abstraction selection in IIEFGs. Our extensive experiments
conducted in HUNL demonstrate that RL-CFR attains a sub-
stantial performance improvement when juxtaposed with
fixed action abstraction HUNL methods. These findings
underscore the efficacy and promise of RL-CFR in tackling
the complexities inherent in large-scale IIEFGs.

8Following the same setting as in Zarick et al. (2020), and the
action abstractions other than the root are the same as those used
in ReBeL.

9Since the numbers of non-terminal nodes extended by the root
node in the game tree built by FINE-GRAIN and RL-CFR are 9
and 6, respectively.

9

RL-CFR: Improving Action Abstraction for Imperfect Information Extensive-Form Games with Reinforcement Learning

Impact Statement
This paper presents work whose goal is to advance the field
of Imperfect Information Extensive-Form Games. There
are many potential societal consequences of our work, and
the most immediate risk posed by out work is its potential
for cheating in poker games. RL-CFR can compute a strat-
egy for arbitrary situations in seconds. For this reason, we
have decided not to release the RL-CFR code for HUNL.
We instead open source RL-CFR’s implementation of PRE-
FLOP43, a poker game with huge action space used to help
researchers conduct IIEFG and RL-CFR studies.

Acknowledgements
The work of Boning Li and Longbo Huang was supported
by the Technology and Innovation Major Project of the
Ministry of Science and Technology of China under Grant
2020AAA0108400 and 2020AAA0108403. The work of
Zhixuan Fang was supported by Tsinghua University Dushi
Program.

References
Aceto, L. Action refinement in process algebras. PhD thesis,

University of Sussex, Falmer, East Sussex, UK, 1991.

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and
Bharath, A. A. Deep reinforcement learning: A brief
survey. IEEE Signal Processing Magazine, 34(6):26–38,
2017.

Bard, N., Hawkin, J. A., Rubin, J., and Zinkevich, M. The
annual computer poker competition. AI Mag., 34(2):112,
2013.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P.,
Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse,
C., Józefowicz, R., Gray, S., Olsson, C., Pachocki, J.,
Petrov, M., de Oliveira Pinto, H. P., Raiman, J., Salimans,
T., Schlatter, J., Schneider, J., Sidor, S., Sutskever, I.,
Tang, J., Wolski, F., and Zhang, S. Dota 2 with large scale
deep reinforcement learning. CoRR, abs/1912.06680,
2019.

Bowling, M., Burch, N., Johanson, M., and Tammelin, O.
Heads-up limit hold’em poker is solved. Commun. ACM,
60(11):81–88, 2017.

Brown, N. Equilibrium Finding for Large Adversarial
Imperfect-Information Games. PhD thesis, Carnegie Mel-
lon University, 2020.

Brown, N. and Sandholm, T. Regret transfer and parameter
optimization. In AAAI, pp. 594–601. AAAI Press, 2014.

Brown, N. and Sandholm, T. Strategy-based warm starting
for regret minimization in games. In AAAI, pp. 432–438.
AAAI Press, 2016.

Brown, N. and Sandholm, T. Libratus: The superhuman AI
for no-limit poker. In IJCAI, pp. 5226–5228. ijcai.org,
2017a.

Brown, N. and Sandholm, T. Safe and nested subgame
solving for imperfect-information games. In NIPS, pp.
689–699, 2017b.

Brown, N. and Sandholm, T. Superhuman ai for heads-up
no-limit poker: Libratus beats top professionals. Science,
359(6374):418–424, 2018.

Brown, N. and Sandholm, T. Superhuman ai for multiplayer
poker. Science, 365(6456):eaay2400, 2019a.

Brown, N. and Sandholm, T. Solving imperfect-information
games via discounted regret minimization. In AAAI, pp.
1829–1836. AAAI Press, 2019b.

Brown, N., Ganzfried, S., and Sandholm, T. Hierarchi-
cal abstraction, distributed equilibrium computation, and
post-processing, with application to a champion no-limit
texas hold’em agent. In AAAI Workshop: Computer Poker
and Imperfect Information, volume WS-15-07 of AAAI
Technical Report. AAAI Press, 2015.

Brown, N., Sandholm, T., and Amos, B. Depth-limited
solving for imperfect-information games. In NeurIPS, pp.
7674–7685, 2018.

Brown, N., Lerer, A., Gross, S., and Sandholm, T. Deep
counterfactual regret minimization. In ICML, volume 97
of Proceedings of Machine Learning Research, pp. 793–
802. PMLR, 2019.

Brown, N., Bakhtin, A., Lerer, A., and Gong, Q. Combining
deep reinforcement learning and search for imperfect-
information games. In NeurIPS, 2020.

Burch, N. Time and Space: Why Imperfect Information
Games are Hard. PhD thesis, University of Alberta, 2017.

Burch, N., Johanson, M., and Bowling, M. Solving imper-
fect information games using decomposition. In AAAI,
pp. 602–608. AAAI Press, 2014.

Burch, N., Schmid, M., Moravcik, M., Morrill, D., and
Bowling, M. AIVAT: A new variance reduction technique
for agent evaluation in imperfect information games. In
AAAI, pp. 949–956. AAAI Press, 2018.

Cesa-Bianchi, N. and Lugosi, G. Prediction, learning, and
games. Cambridge University Press, 2006. ISBN 978-0-
521-84108-5. doi: 10.1017/CBO9780511546921.

10

RL-CFR: Improving Action Abstraction for Imperfect Information Extensive-Form Games with Reinforcement Learning

Chaudhuri, K., Freund, Y., and Hsu, D. J. A parameter-
free hedging algorithm. In NIPS, pp. 297–305. Curran
Associates, Inc., 2009.

Chen, B. and Ankenman, J. The mathematics of poker.
2007.

Dibangoye, J. S., Amato, C., Buffet, O., and Charpillet, F.
Optimally solving dec-pomdps as continuous-state mdps.
In IJCAI, pp. 90–96. IJCAI/AAAI, 2013.

D’Orazio, R., Morrill, D., Wright, J. R., and Bowling, M.
Alternative function approximation parameterizations for
solving games: An analysis of f -regression counterfac-
tual regret minimization. In AAMAS, pp. 339–347. Inter-
national Foundation for Autonomous Agents and Multia-
gent Systems, 2020.

Ganzfried, S. and Sandholm, T. Action translation in
extensive-form games with large action spaces: Axioms,
paradoxes, and the pseudo-harmonic mapping. In IJCAI,
pp. 120–128. IJCAI/AAAI, 2013.

Ganzfried, S. and Sandholm, T. Potential-aware imperfect-
recall abstraction with earth mover’s distance in
imperfect-information games. In AAAI, pp. 682–690.
AAAI Press, 2014.

Ganzfried, S. and Sandholm, T. Endgame solving in large
imperfect-information games. In AAMAS, pp. 37–45.
ACM, 2015.

Hart, S. and Mas-Colell, A. A simple adaptive procedure
leading to correlated equilibrium. Game Theory and
Information, 1997.

Hawkin, J. A., Holte, R., and Szafron, D. Automated ac-
tion abstraction of imperfect information extensive-form
games. In AAAI, pp. 681–687. AAAI Press, 2011.

Hawkin, J. A., Holte, R., and Szafron, D. Using sliding
windows to generate action abstractions in extensive-form
games. In AAAI, pp. 1924–1930. AAAI Press, 2012.

Heinrich, J. and Silver, D. Deep reinforcement learning
from self-play in imperfect-information games. CoRR,
abs/1603.01121, 2016.

Huber, P. J. Robust Estimation of a Location Parameter. The
Annals of Mathematical Statistics, 35(1):73 – 101, 1964.

Humphreys, M. Action selection methods using reinforce-
ment learning. PhD thesis, University of Cambridge, UK,
1997.

Jackson, E. Slumbot nl: Solving large games with coun-
terfactual regret minimization using sampling and dis-
tributed processing. In AAAI Workshop on Computer
Poker and Imperfect Information, 2013.

Johanson, M. Measuring the size of large no-limit poker
games. CoRR, abs/1302.7008, 2013.

Johanson, M., Waugh, K., Bowling, M. H., and Zinkevich,
M. Accelerating best response calculation in large exten-
sive games. In IJCAI, pp. 258–265. IJCAI/AAAI, 2011.

Johanson, M., Bard, N., Burch, N., and Bowling, M. Finding
optimal abstract strategies in extensive-form games. In
AAAI, pp. 1371–1379. AAAI Press, 2012.

Johanson, M., Burch, N., Valenzano, R. A., and Bowling,
M. Evaluating state-space abstractions in extensive-form
games. In AAMAS, pp. 271–278. IFAAMAS, 2013.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR (Poster), 2015.

Konda, V. R. and Tsitsiklis, J. N. Actor-critic algorithms. In
Solla, S. A., Leen, T. K., and Müller, K. (eds.), Advances
in Neural Information Processing Systems 12, [NIPS Con-
ference, Denver, Colorado, USA, November 29 - Decem-
ber 4, 1999], pp. 1008–1014. The MIT Press, 1999.

Kovarı́k, V., Seitz, D., Lisý, V., Rudolf, J., Sun, S., and Ha,
K. Value functions for depth-limited solving in zero-sum
imperfect-information games. Artif. Intell., 314:103805,
2023.

Kroer, C. and Sandholm, T. Extensive-form game abstrac-
tion with bounds. In EC, pp. 621–638. ACM, 2014.

Kroer, C. and Sandholm, T. Discretization of continuous
action spaces in extensive-form games. In AAMAS, pp.
47–56. ACM, 2015.

Kroer, C. and Sandholm, T. A unified framework for
extensive-form game abstraction with bounds. In
NeurIPS, pp. 613–624, 2018.

Lanctot, M., Waugh, K., Zinkevich, M., and Bowling, M. H.
Monte carlo sampling for regret minimization in exten-
sive games. In NIPS, pp. 1078–1086. Curran Associates,
Inc., 2009.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Lee, D., Tang, H., Zhang, J. O., Xu, H., Darrell, T., and
Abbeel, P. Modular architecture for starcraft II with deep
reinforcement learning. In Rowe, J. P. and Smith, G.
(eds.), Proceedings of the Fourteenth AAAI Conference
on Artificial Intelligence and Interactive Digital Enter-
tainment, AIIDE 2018, November 13-17, 2018, Edmonton,
Canada, pp. 187–193. AAAI Press, 2018.

11

RL-CFR: Improving Action Abstraction for Imperfect Information Extensive-Form Games with Reinforcement Learning

Li, J., Koyamada, S., Ye, Q., Liu, G., Wang, C., Yang, R.,
Zhao, L., Qin, T., Liu, T., and Hon, H. Suphx: Master-
ing mahjong with deep reinforcement learning. CoRR,
abs/2003.13590, 2020.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control
with deep reinforcement learning. In ICLR (Poster), 2016.

Liu, M., Ozdaglar, A. E., Yu, T., and Zhang, K. The power
of regularization in solving extensive-form games. In
ICLR. OpenReview.net, 2023.

Meng, L., Ge, Z., Tian, P., An, B., and Gao, Y. An effi-
cient deep reinforcement learning algorithm for solving
imperfect information extensive-form games. In AAAI,
pp. 5823–5831. AAAI Press, 2023.

Moravčı́k, M., Schmid, M., Burch, N., Lisý, V., Morrill, D.,
Bard, N., Davis, T., Waugh, K., Johanson, M., and Bowl-
ing, M. Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker. Science, 356(6337):508–513,
2017. doi: 10.1126/science.aam6960.

Nash Jr, J. F. Equilibrium points in n-person games. Pro-
ceedings of the national academy of sciences, 36(1):48–
49, 1950.

Nayyar, A., Mahajan, A., and Teneketzis, D. Decentralized
stochastic control with partial history sharing: A common
information approach. IEEE Trans. Autom. Control., 58
(7):1644–1658, 2013.

Nesterov, Y. E. Excessive gap technique in nonsmooth
convex minimization. SIAM J. Optim., 16(1):235–249,
2005.

Neyman, A. Existence of optimal strategies in markov
games with incomplete information. Int. J. Game Theory,
37(4):581–596, 2008.

Oliehoek, F. A. Sufficient plan-time statistics for decen-
tralized pomdps. In IJCAI, pp. 302–308. IJCAI/AAAI,
2013.

Pérolat, J., Munos, R., Lespiau, J., Omidshafiei, S., Row-
land, M., Ortega, P. A., Burch, N., Anthony, T. W., Bal-
duzzi, D., Vylder, B. D., Piliouras, G., Lanctot, M., and
Tuyls, K. From poincaré recurrence to convergence in
imperfect information games: Finding equilibrium via
regularization. In ICML, volume 139 of Proceedings
of Machine Learning Research, pp. 8525–8535. PMLR,
2021.

Rubin, J. and Watson, I. D. Computer poker: A review.
Artif. Intell., 175(5-6):958–987, 2011.

Sandholm, T. Abstraction for solving large incomplete-
information games. In AAAI, pp. 4127–4131. AAAI
Press, 2015.

Schmid, M., Moravčı́k, M., Burch, N., Kadlec, R., David-
son, J., Waugh, K., Bard, N., Timbers, F., Lanctot,
M., Holland, G. Z., Davoodi, E., Christianson, A., and
Bowling, M. Student of games: A unified learning
algorithm for both perfect and imperfect information
games. Science Advances, 9(46):eadg3256, 2023. doi:
10.1126/sciadv.adg3256.

Schnizlein, D., Bowling, M. H., and Szafron, D. Probabilis-
tic state translation in extensive games with large action
sets. In IJCAI, pp. 278–284, 2009.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., Chen, Y., Lillicrap, T. P., Hui, F., Sifre, L.,
van den Driessche, G., Graepel, T., and Hassabis, D.
Mastering the game of go without human knowledge.
Nat., 550(7676):354–359, 2017.

Sustr, M., Kovarı́k, V., and Lisý, V. Monte carlo continual
resolving for online strategy computation in imperfect in-
formation games. In AAMAS, pp. 224–232. International
Foundation for Autonomous Agents and Multiagent Sys-
tems, 2019.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. IEEE Transactions on Neural Networks, 9
(5):1054, 1998.

Tammelin, O. Solving large imperfect information games
using CFR+. CoRR, abs/1407.5042, 2014.

van Otterlo, M. and Wiering, M. A. Reinforcement learn-
ing and markov decision processes. In Wiering, M. A.
and van Otterlo, M. (eds.), Reinforcement Learning, vol-
ume 12 of Adaptation, Learning, and Optimization, pp.
3–42. Springer, 2012.

Watkins, C. J. and Dayan, P. Q-learning. Machine learning,
8:279–292, 1992.

Waugh, K., Schnizlein, D., Bowling, M. H., and Szafron, D.
Abstraction pathologies in extensive games. In AAMAS
(2), pp. 781–788. IFAAMAS, 2009.

Waugh, K., Morrill, D., Bagnell, J. A., and Bowling, M. H.
Solving games with functional regret estimation. In AAAI,
pp. 2138–2145. AAAI Press, 2015.

Xu, H., Li, K., Fu, H., FU, Q., Xing, J., and Cheng, J.
Dynamic discounted counterfactual regret minimization.
In The Twelfth International Conference on Learning
Representations, 2024.

12

RL-CFR: Improving Action Abstraction for Imperfect Information Extensive-Form Games with Reinforcement Learning

Zarick, R., Pellegrino, B., Brown, N., and Banister, C. Un-
locking the potential of deep counterfactual value net-
works. CoRR, abs/2007.10442, 2020.

Zhao, E., Yan, R., Li, J., Li, K., and Xing, J. Alphaholdem:
High-performance artificial intelligence for heads-up no-
limit poker via end-to-end reinforcement learning. In
AAAI, pp. 4689–4697. AAAI Press, 2022.

Zinkevich, M., Johanson, M., Bowling, M. H., and Piccione,
C. Regret minimization in games with incomplete infor-
mation. In NIPS, pp. 1729–1736. Curran Associates, Inc.,
2007.

13

RL-CFR: Improving Action Abstraction for Imperfect Information Extensive-Form Games with Reinforcement Learning

A Description of Games used for Evaluation 14

A.1 Heads-up No-limit Texas Hold’em Poker (HUNL) . 14

A.2 PREFLOP43 . 14

B Related Work of Texas Hold’em AIs 15

C Abstraction 15

D Solving the strategy and PBS value for large IIEFGs 15

E Examples of RL-CFR strategies 17

A. Description of Games used for Evaluation
A.1. Heads-up No-limit Texas Hold’em Poker (HUNL)

The game begins with each player receiving two cards, referred to as their “private hand”. The gameplay unfolds through
four stages: pre-flop, flop, turn, and river. During these stages, a total of five public cards are revealed – three at the start of
the flop, one at the start of the turn, and one at the start of the river.

Before the game commences, several players are required to contribute a pre-specified number of chips, known as the “small
blind” and “big blind”. Typically, the small blind is set at half the value of the big blind (the small blind is 50 chips and
the big blind is 100 chips in our experiments). In the pre-flop stage of HUNL, the small blind player takes the first action,
while in other stages, the big blind player initiates the action. The permissible actions include fold, check/call, and bet/raise.
Players can bet or raise any number of chips between the last bet/raise in the stage (at least 1 big blind) and their remaining
chips, even opting for an “all-in”.

At the conclusion of a game, players who did not fold by the end of all stages select the best five cards from their private
hand and the five public cards for comparison. The player, or players, with the best hand win the pot. The win-rate in poker
is often expressed as the average number of big blinds won per game. Alternatively, it can be measured in more granular
units such as mbb (Bowling et al., 2017), equivalent to one thousandth of a big blind. For instance, a win-rate of 0.01 big
blind per hand can also be stated as 10 mbb/hand (10 mbb per hand).

A.2. PREFLOP43

PREFLOP43 a poker game that we designed manually. The relatively small size of the PREFLOP43 game allows the game
tree to be built directly to the terminal nodes, thus allowing for better evaluation of the performance of the RL-CFR without
the using of PBS value networks.

At the start of the game, each of the two players receives two private cards, and then 43 public cards are revealed to both
players. The two players then move as in the pre-flop stage of HUNL. In PREFLOP43, the size of the raise may not be a
whole number, but at least 0.5 times the size of the pot. Once the pre-flop stage is over, if neither player folds, the remaining
five cards are dealt together and the player, or players, with the best hand win the pot.

During training and evaluation, we let the fixed default action abstraction AAbase(β) = {F,C,A, 0.5× pot, 1× pot, 2×
pot, 4× pot, 8× pot}. For the chosen dynamic action abstraction, we let K = 5 and

f(xi, yi, β) =

{
(potA − 0.5× pot) ∗ (xi + 1) ∗ 0.5 + 0.5× pot, yi ≥ 0;

∅, yi < 0.
(5)

where potA is the amount of chips needed for an all-in.

14

RL-CFR: Improving Action Abstraction for Imperfect Information Extensive-Form Games with Reinforcement Learning

B. Related Work of Texas Hold’em AIs
In the realm of Texas Hold’em AI, substantial progress has been made, with notable achievements by powerful agents like
Libratus (Brown & Sandholm, 2018) and Pluribus (Brown & Sandholm, 2019a), demonstrating supremacy over top human
players in both two-player and multi-player poker. These AI models employed intricate abstractions (Johanson et al., 2012;
Ganzfried & Sandholm, 2014; Brown et al., 2015) to handle the vast decision space of Texas Hold’em, requiring extensive
computational resources for pre-calculating a blueprint strategy (Brown & Sandholm, 2016; 2017a) through CFR under an
extensive game tree.

DeepStack (Moravčı́k et al., 2017) introduced deep learning to estimate the values of private hands within the game tree,
effectively reducing its size (Johanson, 2013). ReBeL (Brown et al., 2020) leveraged self-play reinforcement learning to
generate realistic training data, providing an alternative approach to training. Notably, both Libratus and Pluribus did not
incorporate reinforcement learning, while DeepStack and ReBeL did not employ reinforcement learning in action abstraction
selection, specifically raising scales in HUNL.

A recent contribution by Zhao et al. (2022) presented a HUNL AI based on reinforcement learning, showcasing the potential
for creating excellent AIs with minimal computational resources. However, the absence of the widely used CFR algorithm
in HUNL limits its theoretical guarantees and raises concerns about exploitability.

In summary, the landscape of Texas Hold’em AI is marked by diverse approaches, encompassing complex abstractions, deep
learning, CFR, and reinforcement learning. Ongoing research aims to strike a balance between computational efficiency and
strategic sophistication in order to further advance the capabilities of AI agents in this challenging poker variant.

C. Abstraction
The huge solution complexity of IIEFGs is characterized by three dimensions: the depth of the game D, the size of the
information set |I| and the number of available actions |A(I)|.The original space complexity is O(|A(I)|D · |I|), reaching
over the order of 10160 for HUNL with stacks of 200 big blinds and 20, 000 chips (Johanson, 2013). The time complexity of
CFR to solve an IIEFG is O(T · |A(I)|D · |I|) where T is the number of iterations.

To limit the depth of the game, it is common practice not to compute the strategy until the end. Instead, a depth-limited
subgame (Brown et al., 2018) is generated, extending only a limited number of states into the future. Strategies or expected
values are estimated for leaf states, which are non-terminal states in the full game but terminal states in the depth-limited
subgame. DeepStack (Moravčı́k et al., 2017) and ReBeL (Brown et al., 2020) employ deep learning to estimate counterfactual
values of leaf states, thereby avoiding solving until the end of the game. Another approach to limit depth involves consuming
substantial computing resources to pre-calculate a blueprint strategy (Brown & Sandholm, 2016; 2017a), avoiding extensive
solving for deep game instances.

To limit the size of the information set, similar states can be grouped into the same bucket (state-space abstraction) (Johanson
et al., 2012; 2013; Brown et al., 2015) or represented in a high-dimensional feature abstraction (Brown et al., 2019).
State-space abstractions require careful design tailored to the specific game. To demonstrate the generality of our method for
general IIEFGs, our experiments refrain from using any state-space abstractions.

To restrict the number of available actions, it is common to utilize action abstraction in IIEFGs. Formally, AA(I) represents
the set of available actions at information set I , and AA(I) ⊆ A(I) is an action abstraction for A(I). If the opponent
chooses an off-tree action a not in the action abstraction AA(I), rounding off-tree action to a nearby in-abstraction action
(Schnizlein et al., 2009; Ganzfried & Sandholm, 2013) or resolving the strategy based on the new action abstraction
AA(I) ∪ a (nested subgame solving (Ganzfried & Sandholm, 2015; Brown & Sandholm, 2017b)) is commonly employed.

D. Solving the strategy and PBS value for large IIEFGs
In this section, we introduce the training process of the ReBeL algorithm (Brown et al., 2020), a self-play RL method for
solving the strategy and PBS values for large IIEFGs. We use HUNL as an example to describe specific parameters settings.

In each epoch, training commences from the initial state of the game, and the PBS corresponding to the initial state is
denoted as βinit. During training, we handle a PBS βr and its corresponding action abstraction AA(βr). The task involves
computing the PBS value and sampling to a leaf PBS. Algorithm 2 details these steps (we restate the algorithms with our
notations to facilitate understanding), and we provide a description of the training process below.

15

RL-CFR: Improving Action Abstraction for Imperfect Information Extensive-Form Games with Reinforcement Learning

Algorithm 2 ReBeL algorithm: Solving the strategy and PBS value for PBS βr with action abstraction AA(βr)

function REBEL(βr,AA(βr))
G←ConstructSubgame(βr,AA(βr)) ▷ Construct a subgame rooted with βr

σ, σ0 ←UniformPolicy(βr,AA(βr))
v(βr)← 0
tsample ∼ unif{1, T} ▷ Sample next iteration
for t = 1 · · ·T do

G←LeafValueEstimate(G, σt−1, θ) ▷ θ is the parameters of PBS value network
σt ←UpdatePolicy(G, σt−1)
σ ← t−1

t+1σ + 2
t+1σ

t ▷ Update average strategy based on DCFR 3
2 ,0,2

v(βr)← t−1
t+1v(βr) +

2
t+1v

σt

(βr) ▷ Update PBS value for all infostates at βr

if t = tsample then
βnext ←SampleLeaf(G, σt) ▷ Sample a leaf PBS

end if
end for
Add {βr,v(βr)} to DataPBS ▷ Add PBS data for training
vσP(βr)

(βr)←ComputeValue(v(βr)) ▷ Compute PBS value for acting player at βr

return σ, vσP(βr)
(βr), βnext

end function

At the onset of training, we construct a depth-limited subgame rooted with βr.10 During the construction of the game tree,
for non-terminal and non-leaf node β′, we expand the child nodes downwards according to the action abstraction AA(β′).11

Once the game tree is built, the subgame is solved by running T iterations of the CFR algorithm. The value of leaf nodes is
estimated using a learned value network v̂ at each iteration based on their PBS. On each iteration t, CFR is employed to
determine a strategy profile σt in the subgame. Subsequently, the infostate value of a leaf node z is set to v̂(Op(z)|βσt

z),
where βσt

z is the PBS at z when players play according to σt.

Due to the non-zero-sum nature of estimates from the neural network, adjustments are made to the infostate values at each
PBS to ensure the game satisfies the zero-sum property. Additionally, for infostates that should have the same value, their
value estimates are averaged. Since PBSs may change every iteration, the leaf node values may also change. Given σt and
leaf node values, each infostate in each node has a calculated PBS value, as explained in Section 3. This information is then
used to update the regret and average strategy σ for the CFR algorithm.

After completing T iterations, we obtain the solved average strategy σ. Using this strategy, we calculate the PBS values
for all infostates vσp (Op|βr) for the root PBS βr. We denote this vector of PBS values as v(βr). Subsequently, we add the
PBS data βr,v(βr) to the training data (denoted DataPBS) for v̂(βr). Meanwhile, we calculate the PBS value vσP(βr)

of βr

according to the calculated value vector v(βr). This PBS value is required as part of the reward function for our RL-CFR
framework, although it is not needed in the ReBeL algorithm itself.

Next, we sample a leaf PBS βz according to σt on a random iteration t ∼ unif{1, T}, where T is the number of iterations.
To ensure more exploration, we can sample a random leaf PBS with probability ε. Additionally, we can modify some public
information in the sampled PBS for more exploration.12 We repeat the above processes until the game ends.

We utilize Huber Loss (Huber, 1964) as the loss function for the PBS value network:

L(θ, δ) =E{Op,vp(Op)}∼{βr,v(βr)},{βr,v(βr)}∼DataPBS

[min{1
2
(vp(Op)− v̂θ(Op|βr))

2, δ|vp(Op)− v̂θ(Op|βr)| −
1

2
δ2}]

(6)

10In the HUNL experiments, the subgame is built up to the end of a stage or the start of the chance player’s action. This implies that an
epoch has up to 7 phases: start of pre-flop, end of pre-flop, start of flop, end of flop, start of turn, end of turn, and start of river.

11In the HUNL experiments, to reduce the size of the game tree, for non-terminal PBS β other than the root and root’s sons, we set
AA(β) = {F,C,A, 0.8× pot}.

12For HUNL agent training, we set ε = 25%. For a sampled PBS, we multiply the chips in the pot by a random number between 0.9
and 1.1. For the PBS corresponding to the initial state, we set the chips of all players to a random number between 50 and 250 big blinds.

16

RL-CFR: Improving Action Abstraction for Imperfect Information Extensive-Form Games with Reinforcement Learning

Terminal Node
PBS Data {β,v(β)}Next PBS

β

PBS value network

Zero-sum &
average identical
infostates' value

Game Tree

After T Iteraions

in each iteration

 update PBS value network

 Non-Terminal/Leaf Node

 Leaf Node

Sample a
leaf node

Figure 3. This figure illustrates the process of generating PBS data and training the PBS value network. For a given PBS β, we construct a
depth-limited subgame rooted with β. Non-terminal and non-leaf nodes are depicted as circles, and during the construction of the game
tree, we expand child nodes based on the action abstraction of the PBS associated with the node. Terminal nodes, denoted by diamonds,
allow for direct calculation of the PBS value. Leaf nodes, represented by rectangles, require the estimation of PBS values in every iteration
of CFR, where the PBS value network is employed to estimate the PBS values for these leaf nodes.

where θ represents the parameters of the PBS value network, Op is an infostate in PBS βr, and δ is a hyperparameter of the
Huber Loss.

In our HUNL experiments, the PBS value network consists of 6 layers and 18 million parameters. The input layer has 2, 678
dimensions, corresponding to all possible private hands of the two players and the public state information. Each hidden
layer comprises 1, 536 dimensions, and the output layer has 2, 652 dimensions, representing all possible private hands of the
two players. We sampled 6× 107 epochs during training. Random sampling was performed from the last 1× 107 epochs,
and the training employed a learning rate of 1 × 10−5 with a batch size of 512. The training process and data sampling
occurred simultaneously.

In summary, ReBeL is a self-play RL framework capable of continuously generating data from scratch for training. Figure
D illustrates the training process of the ReBeL algorithm. Following the training process, we obtained a replication version
of ReBeL as a baseline.

E. Examples of RL-CFR strategies
We use several examples from HUNL to illustrate how RL-CFR selects action abstractions. We show examples of heads-up
evaluation between ReBeL’s replication (Brown et al., 2020) and RL-CFR. Both players start with 200 big blinds (BB) and
20, 000 chips (100 chips for 1 BB) in all examples.

Example 1.

Pre-flop stage. ReBeL sits in small blind position with hand 4♠3♠ and RL-CFR sits in big blind position with hand J♡8♢.
ReBeL acts first with action abstraction {F,C, 2, 3, 5, A} (F,C,A refer to fold, check/call and all-in respectively and the
numbers represent raising scales in BB). The strategy calculated by ReBeL is: call with 3.21%, raise to 2 BB (0.5×pot) with
52.10%, raise to 3 BB (1×pot) with 44.11% and raise to 4 BB (2×pot) with 0.58%. ReBeL raises to 2 BB in this example.
In this situation, RL-CFR selects an action abstraction {F,C, 3, 8.8, 16.21, A}. The strategy is: call with 76.08%, raise
to 8.8 BB (1.7×pot) with 23.67% and raise to 16.21 BB (3.5525×pot) with 0.25%. ReBeL calls in this example. When

17

RL-CFR: Improving Action Abstraction for Imperfect Information Extensive-Form Games with Reinforcement Learning

RL-CFR is faced with a 2 BB raise in the big blind position, RL-CFR will use the three raising scales of 3 BB, 8.8 BB,
16.21 BB and expect to win 10 mbb/hand compared to the default raising scales (4 BB, 6 BB, 10 BB).

Flop stage. Flop is J♢6♡3♢. There are 4 BB in the pot and RL-CFR acts first. RL-CFR selects an action abstraction
{F,C,A}. In this case, RL-CFR will check all hands, which is a common strategy that human professional players will
employ. Now turn to ReBeL and the strategy is: check with 47.94%, bet 2 BB (0.5×pot) with 51.63% and bet 4 BB (1×pot)
with 0.42%. ReBeL bets 2 BB in this example. In this situation, RL-CFR selects an action abstraction {F,C, 4, 25.36, A}.
The strategy is: call with 72.09% and raise to 4 BB (0.25×pot) with 27.91%. RL-CFR calls in this example. It’s an
interesting strategy, with RL-CFR opting for a minimum raising scale (mini-raise) and a very large raising scale, gaining an
additional 6 mbb/hand win-rate compared to the default action abstraction.

Turn stage. Turn is 4♣. There are 8 BB in the pot and RL-CFR acts first. RL-CFR selects an action abstraction {F,C, 1, A}.
The strategy is: check with 20.64% and bet 1 BB with 79.36%. The turn card is very favourable to RL-CFR’s calling range,
so RL-CFR had a high frequency of betting (donk). Choosing a 1 BB raising scale (minimum betting) gives RL-CFR an
additional win-rate of 42 mbb/hand compared to the default action abstraction, which is very impressive. RL-CFR bets
1 BB in this example. Now turn to ReBeL and the strategy is: call with 99.63% and raise to 6 BB (0.5×pot) with 0.37%.
ReBeL has two-pairs now, however the strategy calculated by CFR is calling most hands since the turn card is unfavorable
to small blind player’s hand range.

River stage. River is 2♡. There are 10 BB in the pot and RL-CFR acts first. RL-CFR selects an action abstraction
{F,C, 8.42, 14.88, 46.22, A} with 4 mbb/hand extra win-rate. The strategy is: check with 99.93% and bet 8.42 BB
(0.842×pot) with 0.07%. Now turn to ReBeL and the strategy is: check with 0.37%, bet 5 BB (0.5×pot) with 43.76%,
bet 10 BB (1×pot) with 55.66% and bet 20 BB (2×pot) with 0.19%. ReBeL bets 5 BB in the example. Now turn to
RL-CFR and the selected action abstraction is {F,C, 17.81, 55.31, 98.77, A} with 6 mbb/hand extra win-rate. The strategy
of RL-CFR is: fold with 42.04%, call with 56.52%, raise to 17.81 BB (0.6405×pot) with 0.55% and raise to 93.77 BB
(4.4385×pot) with 0.87%. RL-CFR folds and loses the 10 BB pot in the example.

Example 2. It is a symmetrical example of Example 1.

Pre-flop stage. RL-CFR sits in small blind position with hand 4♠3♠ and ReBeL sits in big blind position with hand J♡8♢.
RL-CFR acts first and selects an action abstraction {F,C, 2.9, 4.56, 7.64, A} with 24 mbb/hand extra win-rate. The strategy
of RL-CFR is: call with 18.16%, raise to 2.9 BB (0.95×pot) with 78.54% and raise to 4.56 BB (1.78×pot) with 3.29%.
RL-CFR raises to 2.9 BB and ReBeL calls in this example.

Flop stage. Flop is J♢6♡3♢. There are 5.8 BB in the pot and ReBeL checks first. The action abstraction selected by
RL-CFR is {F,C, 8.6, 28.1, A}. It is an interesting strategy generated by RL-CFR with overbet (bet more than a pot) only
and gain an additional 46 mbb/hand win-rate compared to the default action abstraction. The strategy is: check with 99.65%,
bet 8.6 BB with 0.22% and bet 28.1 BB with 0.13%. RL-CFR checks in the example.

Turn stage. Turn is 4♣. There are 5.8 BB in the pot and ReBeL acts first. The strategy of ReBeL is: check with 60.17%,
bet 2.9 BB with 26.06%, bet 5.8 BB with 13.66% and bet 11.6 BB with 0.12%. ReBeL checks in the example and turn
to RL-CFR. The action abstraction calculated by RL-CFR is {F,C, 1, 1.85, A}. However, after evaluation by the policy
network, RL-CFR considers this action abstraction to be inferior to the default action abstraction, so the default action
abstraction will be chosen this time.13 The strategy of RL-CFR is: check with 0.03%, bet 2.9 BB with 98.88%, bet 5.8 BB
with 0.14% and bet 11.6 BB with 0.94%. In this example, RL-CFR bets 2.9 BB and ReBeL calls.

River stage. River is 2♡. There are 11.6 BB in the pot and ReBeL checks first. The action abstraction selected by RL-CFR is
{F,C, 2.3, 44.41, 46.43} and the strategy of RL-CFR is: check with 0.30%, bet 2.3 BB with 99.64% and bet 44.41, 44.63
BB with 0.06%. In this example, RL-CFR bets 2.3 BB and ReBeL calls. RL-CFR wins the 16.2 BB pot with two pairs at
showdown.

Example 3. In this example RL-CFR performed a bluff (betting with a weaker hand) and successfully bluffing with a
suitable action abstraction.

Pre-flop stage. ReBeL sits in small blind position with hand Q♡9♡ and RL-CFR sits in big blind position with hand 9♣8♡.
ReBeL raises 2 BB first and RL-CFR calls in this example.

13After selecting an action abstraction through the action network, we evaluate it using the policy network and if the evaluation value is
negative, we use the default action abstraction.

18

RL-CFR: Improving Action Abstraction for Imperfect Information Extensive-Form Games with Reinforcement Learning

Flop stage. Flop is K♣6♠2♢. There are 4 BB in the pot. RL-CFR and ReBeL check in this example.

Turn stage. Turn is 7♣. There are 4 BB in the pot and RL-CFR acts first. The action abstraction selected by RL-CFR is
{F,C, 1, 2.25, A} with 10 mbb/hand extra win-rate. The strategy of RL-CFR is: check with 34.31%, bet 1 BB with 11.06%
and bet 2.25 BB with 54.63%. RL-CFR bets 1 BB in this example. The stragety of ReBeL is: fold with 48.32%, call with
51.04%, raises to 4 BB with 0.61% and raises to 7 BB with 0.03%. ReBeL calls in this example.

River stage. River is 4♠. There are 6 BB in the pot and RL-CFR acts first. The action abstraction selected by RL-CFR
is {F,C, 4.56, 5.71, 29.23, A} with 3 mbb/hand extra win-rate. The strategy of RL-CFR is: check with 12.48%, bet 4.56
BB with 41.63%, bet 5.71 BB with 33.11% and bet 29.23 BB with 12.78%. RL-CFR bets 5.71 BB in this example and the
strategy of ReBeL is: fold with 99.14% and call with 0.85%. ReBeL folds and RL-CFR wins the 6 BB pot.

Example 4. In this example RL-CFR calls the 3-bet (re-raise at pre-flop stage) from ReBeL.

Pre-flop stage. RL-CFR sits in small blind position with hand A♢4♢ and ReBeL sits in big blind position with hand K♠J♠.
RL-CFR raises to 2.9 BB. The strategy of ReBeL is: call with 2.37%, raises to 5.8 BB with 36.31%, raises to 8.7 BB with
42.01% and raises to 14.5 BB with 19.31%. ReBeL raises to 8.7 BB in this example. The action abstraction selected by
RL-CFR is {F,C, 14.5, 16.22, 27.96, A} with 13 mbb/hand extra win-rate. The strategy of RL-CFR is: call with 70.90%,
raise to 14.5 BB with 0.03%, raise to 16.22 BB with 0.04%, and raise to 27.96 BB with 29.03%. RL-CFR calls in the
example.

Flop stage. Flop is Q♣5♢3♢. There are 17.4 BB in the pot and ReBeL acts first. The strategy of ReBeL is: check with
80.33%, bet 8.7 BB with 14.94%, bet 17.4 BB with 4.46% and bet 34.8 BB with 0.26%. ReBeL bets 17.4 BB in the
example. The action abstraction selected by RL-CFR is {F,C, 34.8, A} with 142 mbb/hand extra win-rate, which means
that if there is no mini-raise in the action abstraction there will be a huge loss in this situation. The strategy of RL-CFR is:
call with 97.69%, raise to 34.8 BB with 1.73% and all-in with 0.58%. RL-CFR calls in the example.

Turn stage. Turn is 6♢ and RL-CFR has the nuts (strongest hand). There are 52.2 BB in the pot and ReBeL checks first.
The action abstraction selected by RL-CFR is {F,C, 15.11, 64.73, 97.22, A} with 46 mbb/hand extra win-rate. The strategy
of RL-CFR is: check with 0.43%, bet 15.11 BB with 88.13% and bet 64.73 BB with 11.43%. RL-CFR bets 15.11 BB in
the example and ReBeL folds. RL-CFR wins the 52.2 BB pot. The action abstraction of RL-CFR in this situation is very
reasonable, and a 15.11 BB bet can put many of opponent’s hands in an embarrassing situation.

19

	Introduction
	Related Work on Extensive-Form Games
	Background and Notation
	A Novel MDP Formulation for IIEFGs
	RL-CFR Framework
	Experiment
	Conclusions
	Description of Games used for Evaluation
	Heads-up No-limit Texas Hold'em Poker (HUNL)
	PREFLOP43

	Related Work of Texas Hold'em AIs
	Abstraction
	Solving the strategy and PBS value for large IIEFGs
	Examples of RL-CFR strategies

