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Abstract
A codebook designed for learning discrete distri-
butions in latent space has demonstrated state-of-
the-art results on generation tasks. This inspires
us to explore what distribution of codebook is
better. Following the spirit of Kepler’s Conjec-
ture, we cast the codebook training as solving the
sphere packing problem and derive a Kepler code-
book with a compact and structured distribution
to obtain a codebook for image representations.
Furthermore, we implement the Kepler codebook
training by simply employing this derived distribu-
tion as regularization and using the codebook par-
tition method. We conduct extensive experiments
to evaluate our trained codebook for image recon-
struction and generation on natural and human
face datasets, respectively, achieving significant
performance improvement. Besides, our Kepler
codebook has demonstrated superior performance
when evaluated across datasets and even for re-
constructing images with different resolutions.
Codes and pre-trained weights are available at
https://github.com/banianrong/KeplerCodebook.

1. Introduction
Vector quantization (VQ) (Gray, 1984) is a foundational
algorithm in the field of machine learning, extensively uti-
lized in deep learning for various domains including au-
dio (Baevski et al., 2019; Wang et al., 2021; Wu et al., 2020),
language (Roy & Grangier, 2019; Chen et al., 2023) and
vision tasks (Van Den Oord et al., 2017; Razavi et al., 2019;
Esser et al., 2021). Among these, its application in image
generation/synthesis has been particularly notable in recent
years, especially with the prevalence of pre-quantizing im-
ages into discrete latent variables and modeling them autore-
gressively, e.g., VQVAE (Van Den Oord et al., 2017), DALL-
E (Ramesh et al., 2021a), VQGAN (Esser et al., 2021), and
ViT-VQGAN (Yu et al., 2021). Those approaches follow a
two-stage generation routine, including a codebook learning
by image quantization for image reconstruction in the first
stage and vector-quantized image modeling based on the
learned codebook for image generation in the second stage.

Nevertheless, codebook learning always bears the brunt
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Figure 1. Codebook distribution. Tokens are denoted by dots. The
codebook is initialized with uniform distribution (a). After training,
VAGAN and Reg-VQ maintain unordered in (b) and (c), impairing
their performance in reconstructing and generating images. Our
Kepler codebook with an ordered and compact distribution (d).

of codebook collapse (Yu et al., 2021; Zhang et al., 2023;
Ramesh et al., 2021a), indicating that a large portion of
tokens in a learned codebook have not been fully used with
a rather low codebook usage1 (Yu et al., 2021; Zhang et al.,
2023), e.g., 35.9% for VQGAN, shown in Fig. 2. This raises
an issue: for a learned codebook, its low codebook usage is
bad for image reconstruction. Subsequently, several meth-
ods have been proposed to address this issue. One effective
method is the application of Gumbel-Softmax (Jang et al.,
2016; Ramesh et al., 2021b), which employs stochastic
quantization by random sampling to select a token from a
predicted token distribution. Reg-VQ (Zhang et al., 2023)
uses a stochastic mask regularization to balance VQGAN
and Gumbel-VQ quantization method. However, this appar-
ent improvement in codebook usage is affected by stochastic
quantization, which essentially leads to unreliable training
with limited quality of reconstructed images and general-
ization of image representation. This raises another issue:
higher codebook usage does not promise an excellent recon-
struction capability. For instance, in Fig. 2, Reg-VQ has a
higher codebook usage, but its active frequency variance2, is
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1. “Codebook usage” means the percentage of how many tokens
in a codebook are used for image reconstruction.

2. Active frequency variance measures the difference indicator
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Figure 2. The codebook usage, active frequency variance, and active rate statistics of tokens for different models trained on ADE20K.
Those models are trained with the same epochs for statistic comparison. VQGAN focuses on a very limited number of tokens that have
been trained many times with a high active rate, and thus it has a low codebook usage (35.9%) and high active frequency variance. Even
though Reg-VQ has a high codebook usage (87.6%) and declines the active frequency variance, it still exhibits a training bias to some
tokens trained many times, but some tokens have not trained. Instead, our Kepler codebook tends to a balanced training for each token;
thus it significantly improves the codebook usage to 100% and remarkably declines the active frequency variance.
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Figure 3. The active tokens are highlighted for image reconstruction in the whole token embedding space (t-SNE). One dot denotes one
token in a trained codebook. Take one image for example: for reconstructing an image in a street scene, active tokens are in yellow;
not-used (i.e., dead) tokens are in gray. VQGAN and Reg-VQ utilize a rather smaller part of tokens than our method to reconstruct
images. Thus, they possibly fail to exploit the VQ representations to produce more image details effectively, and thus the quality of their
reconstructed images is negatively influenced.

also large, indicating that their tokens are not well-balanced
for training. Thus, a small part of tokens are used to recon-
struct images, and its reconstructed images present limited
texture details and even obvious artifacts, as shown in Fig. 3.
This possibly causes a limited codebook generalization, ex-
tending it to other datasets.

The above problems are relevant to the distribution of the
codebook, as shown in Fig. 1. In VQGAN, during early
training, only the tokens closest to the feature will be acti-
vated. As the update progresses, this small subset of tokens
gradually drifts from the center of the initial distribution,
leading to low usage, distorted structure, and many wrong
details. Reg-VQ regularizes the training process with a
uniform distribution to make all tokens be used uniformly.
Despite most tokens being activated, Reg-VQ still favors cer-
tain tokens to an extreme, potentially leading to high active
frequency variance, obvious artifacts (e.g., duplicate wall
textures), and limited codebook generalization. In Fig. 3,
the codebook distributions of both VQGAN and Reg-VQ
show a disordered pattern. This implies that certain tokens
used in almost every reconstruction may represent multiple
different features, leading to artifacts and inaccurate details
in reconstruction.

To address the aforementioned issues, we propose devel-
oping a compact and structured codebook for improving
discrete representation. This approach draws inspiration
from Kepler’s Conjecture, suggesting that codebook train-
ing can be likened to solving a sphere packing problem.
Building on two key preconditions, we argue that the com-
pact and structured distribution can be effectively modeled

by the Irwin-Hall distribution (Hall, 1927). This is a proba-
bility distribution for a random variable defined as the sum
of many independent random variables, each having a uni-
form distribution. Using Irwin-Hall distribution as the ideal
prior, we apply it to regularize the codebook’s posterior
distribution via KL divergence. Based on the preconditions,
we further argue that the distribution of each dimension
within the codebook follows the independent and identically
distributed (i.i.d.) distribution. Consequently, we group the
encoder tokens, called codebook partition, to simplify the
complex dense distribution. This allows the codebook to
better capture the distribution, thus improving the ability of
reconstruction and generalization. Moreover, we conduct
reconstruction and generation experiments on the ADE20K
and CelebA-HQ datasets and obtain superior performance.
We additionally perform cross-domain experiments on three
other datasets to validate our model’s generalization and
downstream super-resolution based on the latent diffusion
model on DRealSR dataset.

In a nutshell, our contributions are summarized below:

• Following the spirit of Kepler’s Conjecture, we propose
to combine codebook training with solving the sphere
packing problem. We introduce the Kepler codebook,
which features a compact and structured distribution,
to achieve enhanced discrete representation.

of “Active frequency” that denotes how many times one token has
been trained during codebook training. “Active rate” is the per-
centage of active frequency, indicating whether codebook tokens
have been well trained.
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• We employ the derived Irwin-Hall distribution to regu-
larize the codebook optimization process and propose
a codebook partitioning method to reduce the code-
book distribution’s complexity. These two strategies
effectively restructure the codebook distribution, im-
proving the codebook usage and decreasing the active
frequency variance with balanced codebook training.

• Comprehensive experiments have demonstrated the
superiority of our method in reconstruction, generation,
cross-domain reconstruction, and downstream super-
resolution tasks.

2. Related Work
2.1. Tokenized Image Synthesis

Many prevailing approaches for learning discrete representa-
tions employ VQ-based methodologies, typically following
a two-step training procedure. The first step trains a well-
structured codebook, considered as a discrete representation.
In the second step, networks are trained to predict token
indices to approximate this discrete space. VQ-VAE (Van
Den Oord et al., 2017) initially demonstrated strong gen-
eration capabilities with PixelCNN (Van Den Oord et al.,
2016), while VQGAN (Esser et al., 2021) later excelled at
synthesizing high-resolution images using auto-regressive
transformers. ViT-VQGAN (Yu et al., 2021) improved the
tokenization phase by introducing a VIT-based (Dosovitskiy
et al., 2020) encoder-decoder setup. RQ-VAE (Lee et al.,
2022) made the code sequence more manageable by encod-
ing images as discrete stack sequences. DQ-VAE (Huang
et al., 2023) generated images progressively by assigning
varying code lengths to different parts of the image. HQ-
VAE (You et al., 2022) used a two-tiered discrete coding
approach with differing spatial resolutions. In contrast to
adding complexity to network architectures, our work con-
centrates on refining the codebook itself. We aim to heighten
reconstruction quality by optimizing codebook usage and
attaining a more condensed distribution.

2.2. Codebook Usage Optimization

There have been several methods to improve codebook us-
age by various ideas. VQGAN (Van Den Oord et al., 2017;
Esser et al., 2021) with narrow interval codebook initial-
ization and without regularization often leaves many to-
kens untrained throughout the training process, resulting in
their usage falling below 40%. In ViT-VQGAN (Yu et al.,
2021), factorized codes and L2-norm are used to enhance
codebook usage. Reg-VQ (Zhang et al., 2023)combines
deterministic and stochastic quantization to activate tokens
via Gumbel sampling. Additionally, HVQ-VAE (Williams
et al., 2020) and Jukebox (Dhariwal et al., 2020) implement
codebook reset strategies, randomly re-initializing unused

or low-used codebook tokens. Building upon the concept,
CVQ-VAE (Zheng & Vedaldi, 2023) further refines the ap-
proach by clustering anchors online to unoptimized tokens,
thereby waking up inactive tokens. However, these methods
do not answer what a good codebook distribution looks like.
Following the spirit of Kepler’s Conjecture, we propose a
solution involving a compact and ordered distribution to
tackle these challenges effectively.

3. Kepler Codebook
As outlined in Sec. 1, two primary concerns on codebook
training pose significant challenges: 1) a learned codebook
often exhibits low codebook usage, which is detrimental
to image reconstruction; 2) even a higher codebook usage
does not necessarily guarantee superior reconstruction ca-
pability. Those two issues would result in low-quality image
reconstruction and limited codebook generalization. Thus,
it is essential to investigate the characteristics of an effective
codebook and the optimal methods to train such a codebook.
In our study, we attempt to address this question by deriv-
ing the structure and distribution of the codebook for its
training.

3.1. Codebook Training is Kepler’s Conjecture

Learning discrete representations is closely related to a code-
book for vector quantization. Assuming the representation
space is bounded, 1) a good codebook with N tokens is
expected, whose space spanned by all tokens is as large as
possible; 2) the distance between each token is relatively
far apart, resulting in a relatively balanced probability of
each token being trained.

With both preconditions, we will derive the distribution or
structure of the codebook. In particular, to ensure as iden-
tical training as possible for each token, it can be cast as a
problem of codebook token packing, inspired by Kepler’s
Conjecture (Kepler, 1966), which was proposed to exploit
the problem of the sphere packing problem. Thus, we specif-
ically establish our strategy of codebook training, following
two principles of Kepler’s Conjecture (Hales, 1998).

Formally, a codebook is denoted as Z = {zk}Kk=1 ⊂ Rnz ,
consisting of K tokens in nz dimensions. For an image
x ∈ RH×W×3, it is represented by a set of codebook entries
zq ∈ Rh×w×nz , where (h,w) = (H/f,W/f), and f is
the down-sampling factor. In line with the VQGAN model,
the codebook is learned via a convolutional model com-
prised of an encoder E and a decoder D. During training, a
given image x is approximated into x̂ = D(zq) for image
reconstruction. This process is subject to two preconditions
aforementioned, which are elaborated as follows.

1) Making the space spanned by all the tokens as large
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as possible, indicating that a token zq ∈ Rh×w×nz

in the codebook should cover continuous latent space
ẑq = E(x) ∈ Rh×w×nz as extensively as possible. |ẑ|
is the size of the continuous latent space ẑq .

2) Making the distance between each token in the code-
book relatively far, indicating maximizing the mini-
mum of di, i.e., max

d
min
i

di. di is the minimum dis-

tance between the i-th token and all the other tokens.

Lemma 1. Considering that a token vector zk is in the ra-
tional number field, according to the countability of rational
numbers (Sagan, 1991), there exists a set of basis vector
(a.k.a., basis matrix) B that satisfies zk = Bm, where the
nz-dimensional vector m denotes integral coefficients.

Based on Lemma 1, we reformulate the codebook Z by
a basis matrix B = {bk}nz

k=1 ⊂ Rnz , where bk is a basis
vector. That is, each token vector can be represented
by this basis matrix B. The spanned space of zk can
be regarded as an nz-dimensional sphere with the radius
rk and then its volume is in direct proportion to rk

nz (its
coefficient is constant for all the tokens and thus is ignored
for simplicity in the following sections). The space of each
token has no overlap. Accordingly, the whole volume of the
spanned space by all the tokens is constrained to |ẑ|, namely,∑K

i=1 ri
nz ≤ |ẑ|. Then, based on the two preconditions, our

objective of codebook training can be formally formulated
as follows, {

argmax
d

min
i

di,

s.t.
∑K

i=1 ri
nz ≤ |ẑ|,

(1)

Remark 1. In Equ. 1, the objective optimization for code-
book training essentially follows the spirit of Kepler’s Con-
jecture (Kepler, 1966), which indicates a problem of the
closest packing of spheres to achieve the maximum packing
density of spheres in nz-dimensional space.

Remark 2. With the Lagrange multiplier technique, the
optimal objective is achieved when d1 = d2 = ... = dK
under the condition of the spheres of two adjacent tokens
being tangent. The detailed proof is given in Appendix A.1.

In this fashion, an optimally trained codebook exhibits a
tight and structured distribution. Compared to the loose
disorder of merely narrowing the upper and lower bounds
of the initial uniform distribution in VQGAN and the disor-
der of Gaussian distribution initialization in Reg-VQ, this
compactness is conducive to improving the usage of the
codebook. At the same time, the orderliness makes the prob-
ability of each token being trained more balanced, reducing
the active frequency variance.
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Figure 4. (a) The distance between two tokens. The grey area rep-
resents the token space, which can be approximately measured by
the number of fundamental domains it occupies. (b)-(c) Visualiza-
tion for a two-dimensional solution for Equ. 1. A dark black point
represents a token and the grey area represents the corresponding
spanned space of each token. (b) illustrates a feasible solution,
where the space of all tokens is small and the minimum distance
between some tokens is close. This does not meet two of our pre-
conditions. (c) illustrates the optimal solution, where each token is
relatively far and the space of all tokens is large. This presents the
compact and ordered properties.

3.2. Hexagonal Distribution for Codebook

Based on the analyses in Sec. 3.1, training a good code-
book problem is regarded as the sphere packing problem
in Kepler’s Conjecture. The sphere packing problem con-
siders different distributions of equal spheres in the space.
Its target is to maximize the packing density of packing
spheres (Hales, 1998; Bernal, 1959). This just indicates that
an optimal codebook has tokens with identical distances to
the nearest token, but does not suggest the specific distribu-
tion of the codebook. In this part, we will explore this issue
based on Kepler’s Conjecture.

Remark 3. In Lemma 1, zk = Bm with integral items of
m also follows the definition of integer lattice3 (Maehara,
2018), and m indicates the locations in the integer lattice.
Thus, we derive the codebook distribution in the integer
lattice.

Specifically, in Kepler’s Conjecture, the packing density is
the ratio between the volume of spheres and the volume
of total space. Similarly, we denote the codebook (token)
density as η, measuring the ratio between the token space
and the fundamental domain (Beardon, 1983) in the integer
lattice. Thus, training a good codebook equals maximizing
η. η is defined as

η =
π

nz
2

Γ(nz

2 + 1)
·
∑K

i=1 r
nz
i

K det(B)
(2)

where det(B) is the volume of a fundamental domain of B.
However, this is an NP-hard problem, and it’s intractable to
optimize this objective directly. In our work, we relax the

3. A formal definition of integer lattice is that given n linearly
independent vectors b1, b2, ..., bm ∈ Rn and m× n basis matrix
B whose columns are b1, b2, ..., bn, then the lattice generated by
B is L(B) = {Bx|x ∈ Zn}, where Zn denotes the integer.
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(a) (b)

Figure 5. Kepler codebook in the 2D (a) and 3D (b) space.

original problem to maximize η with a constraint that the an-
gle between any two basis vectors in B is equal. Specifically,
we can build the codebook structure B as follows: b1 = (1, 0, 0, · · · , 0), ∥bi∥ = 1 (i)

bi · bi−1 = cos θ (ii)
bi,j = bi−1,j (1 ≤ j ≤ i− 2, i ≥ 3) (iii)

(3)

where bi,j is the j-th element in basis vector bi, θ is the
angle between two basis vectors. Rule (i) presents the initial
condition and the constraint for the unit vector. Rule (ii)
measures the distance between two vectors. Rule (iii) indi-
cates starting from the i-th (i ≥ 3) basis vector, the elements
in its first (i− 2)-rows must be equal to the (i− 1)-th vector,
to ensure that the angle between it and the previous vectors
remains constant. For example, the previous third vectors of
B are b1 = (1, 0, 0, · · · , 0), b2 = ( 12 ,

√
3
2 , 0, · · · , 0), b3 =

( 12 ,
√
3
6 ,

√
6

12 , · · · , 0).

Derived from the given codebook structure in Equ. 3, the op-
timization of the codebook density η becomes the following
form:

argmax
θ

qn(θ)/det(B), (4)

where q(θ) means the maximum radium of sphere in the
fundamental domain (Beardon, 1983) of B.

Lemma 2: When θ = 60◦, the maximum codebook density
is attained. The proof is provided in the Appendix.2.

Remark 4: Based on Lemma 2, one conclusion has been
drawn that the codebook structure or distribution in two-
dimensional space is hexagonal. This derived codebook
with the hexagonal structure or distribution is named the
Kepler codebook. Fig. 5 illustrates examples of the derived
structures in 2D/3D.

For a token, zk = Bm,m ∈ Znz , and the i-th element is
calculated as zki =

∑nz

j=1 bijmj , where for each dimension
of m, it can be approximated to follow mj ∼ U, i ∈ [1, nz].
That is, the i-th dimension of one token is approximately
equivalent to the sum of nz independent uniform distri-
butions since the basis matrix B can be rotated that none
entries in B are zero, which is mathematically regarded as a
Irwin-Hall distribution (Hall, 1927),

zki ∼ Unz (0, 1), (5)

where Unz represents the sum of nz independent uniform

distributions. On one hand, every dimension zki of each
token follows an nz-dimensional Irwin-Hall distribution as
depicted in Equ. 5. On the other hand, if the distribution
of each codebook token entry is nz-dimensional Irwin-Hall
distribution, it will reach the previous target where making
the space of all tokens larger and the distance between each
token relatively further. Meanwhile, it also means the tokens
in the codebook are compact and ordered, while the compact
property will bring the high codebook usage potential and
the ordered property will balance the train times of each
token to solve the problem proposed in the title and finally
improve the quality of image in both reconstruction and
generalization task.

4. Kepler Codebook Training
4.1. Irwin-Hall Distribution Regularization

In Sec. 3.2, we conclude that each dimension of every to-
ken conforms to independent and identical nz-dimensional
Irwin-Hall distribution. Thus, we follow the principle of the
Kepler codebook and propose an Irwin-Hall Distribution
(IHD) regularization to constrain the training of the code-
book. Specifically, we take the distribution of Kepler code-
book as prior for codebook training. The prior distribution
Pprior = Unz (0, 1) = [p1, p2, ..., pk], where pi is a vector
sampled from nz-dimensional Irwin-Hall distribution, is
utilized to regularize the vector quantization. The posterior
distribution can be approximated Ppost = [z1, z2, ..., zK ].
Accordingly, our Irwin-Hall distribution regularization is
calculated by the distance between the prior and the pre-
dicted codebook distribution, to constrain the codebook
training. It aims to facilitate the model to learn a compact
codebook space with ordered token distribution to improve
codebook usage and balance the training for each token.
With the Kullback–Leibler (KL) divergence as the distance
measure, it is defined as follows,

LIHD = KL(Ppost, Pprior) = −
∑K

i=1
pi log

zi
pi
. (6)

4.2. Codebook Partition

Due to the curse of dimensionality, the token distribution in
the codebook becomes sparse, which can lead to inaccurate
probability distribution estimation and then make it hard to
calculate accurately the KL divergence in Equ. 6. Thus, we
aim to obtain a lower-dimensional codebook distribution to
reduce training complexity, by partitioning the encoder out-
put and then quantifying the elements within each partition.
This partitioning strategy is supported by the conclusion
that every dimension of tokens conforms to Equ. 5 in an
independent identical distribution. Precisely, we can shuffle
the encoder output ẑq to low dimension ẑq/d, where d is
the number of partitions in the quantization process, and
then unshuffle to zq for decoder to reconstruct the image.
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Table 1. Quantitative comparison of image reconstruction and gen-
eration tasks with VQGAN (Esser et al., 2021), Reg-VQ (Zhang
et al., 2023), FSQ (Mentzer et al., 2023) on the ADE20K and
CelebA-HQ datasets. The notation [R] and [G] indicate whether
the metric is for image reconstruction or generation.

Method
ADE20K CelebA-HQ

PSNR[R]↑ rFID[R]↓ FID[G]↓ PSNR[R]↑ rFID[R]↓ FID[G]↓

VQ-VAE 19.95 49.21 60.29 23.39 28.38 39.57
VQGAN 18.89 28.17 38.53 22.44 12.74 17.42
Reg-VQ 18.44 23.69 34.47 22.05 10.09 15.34

FSQ 20.31 18.30 35.03 - - -
Ours 21.34 16.87 33.84 24.85 8.59 14.96

Table 2. Ablation study for our proposed method on ADE20K.
The codebook partition number is d = 4. nz is the codebook
dimension. The codebook vector number K is set as 1024 in all
experiments.

Method d nz rFID↓ usage↑
Baseline (VQGAN) 1 256 28.17 35%
+ IHD 1 256 26.28 40%
+ Partition 4 64 19.34 100%
+ IHD&Partition (Ours) 4 64 16.87 100%

For its implementation, VQ-GAN flattens the encoder out-
put ẑq to hw × nz for quantization, while we reshape it
to hwd × nz/d. Correspondingly, the dimension of the
codebook nz reduces to nz/d to mitigate the effects of the
curse of dimensionality. After quantization, the flattened zq
is reshaped back to h × w × nz . This ensures 0imension
consistency in the network between the output of encoder
and the input of decoder, aligning with VQGAN. Similarly,
this strategy can also be used in the dimension hw, by flat-
tening hw to d× hw/d during the quantization process and
reshaping it back to hw after quantization.

5. Experiments
5.1. Experimental Settings

Datasets. For empirical comparison with existing methods,
we conduct the codebook training on ADE20K (Zhou et al.,
2017) and CelebA-HQ (Liu et al., 2015) datasets, respec-
tively, in two tasks of image reconstruction and semantic
image synthesis. The evaluation results are reported on
the validation sets of these two datasets, respectively. To
further demonstrate the generalization capabilities of our
method, we extend our evaluation to cross-domain datasets,
namely training on the ADE20K dataset and testing on
another three datasets, MS-COCO (Lin et al., 2014), LS-
DIR (Li et al., 2023), and DIV2K (Timofte et al., 2017).
Additionally, we undertake a downstream application of
the learned codebooks to the image super-resolution task.
Specifically, we train the latent diffusion model (Rombach

et al., 2022) on a large real-world image super-resolution
dataset DRealSR (Wei et al., 2020), whose autoencoder is
replaced by our models trained on the ImageNet dataset.

Implementation details. Our model follows the similar
architecture of VQGAN (Esser et al., 2021), which com-
presses 256 × 256 images into 16 × 16 tokens (where
f = 16). We utilize the proposed Irwin-Hall distribution
regularization for the reconstruction training to optimize the
codebook, which has a K × nz/d size. We set d = 4 in
all experiments. All the experiments are conducted on 8
NVIDIA Tesla A100-40G GPUs. The model optimization
is performed using the AdamW optimizer (Loshchilov &
Hutter, 2017) with parameters β1 = 0.9 and β2 = 0.95, and
a base learning rate of 4.5 × 10−6. The batch size is 96
for the reconstruction and 64 for the generation. Detailed
efficiency analyses can be found in the Appendix.

Metrics. In the image reconstruction and semantic image
synthesis tasks, following VQGAN, we use FID (Heusel
et al., 2017) and PSNR for comparison. For cross-domain
evaluation and downstream application, we adopt PSNR,
SSIM, LPIPS, and FID to evaluate the model’s capabilities
from various aspects.

5.2. Quantitative Evaluation

For the image reconstruction task, the experiments are
conducted on the ADE20K and CelebA-HQ datasets, re-
spectively. The comparative results are detailed in Tab. 1.
It is noteworthy that our model outperforms VQ-VAE (Van
Den Oord et al., 2017), VQGAN (Esser et al., 2021), and
Reg-VQ (Zhang et al., 2023) by 1.39, 2.45, 2.9 dB in PSNR
and by 32.34, 11.3, 6.82 in rFID on ADE20K, respectively.
On CelebA-HQ, compared to VQ-VAE, VQGAN, and Reg-
VQ, there is a 1.46, 2.41, 2.8 dB improvement in PSNR
and 19.79, 4.15, 1.5 performance gains in rFID. Besides,
the comparison with the state-of-the-art method, FSQ, In
comparison with FSQ (Mentzer et al., 2023) trained from
scratch on ADE20K using its official codes, our method
outperforms FSQ by 1.03 dB in PSNR and 1.43 in rFID.
These significant performance improvements demonstrate
that our model performs better than existing works, i.e.,
VQ-VAE, VQGAN and Reg-VQ, on two different datasets.
One main difference between our method and those existing
works is the introduction of IHD regulation for the codebook
training. Thus, these improvements can be attributed to the
consideration of the codebook distribution, which is vital
for effectively reconstructing image details and reducing
artifacts.

For the semantic image synthesis task, the experimental
results on ADE20K and CelebA-HQ datasets are provided
in Tab. 1. Our model also achieves a remarkable improve-
ment on these two different datasets. For example, in com-
parison with VQ-VAE, VQGAN, and Reg-VQ, our model
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Ground TruthVQGAN Reg-VQ Ours Ground TruthVQGAN Reg-VQ Ours

Figure 6. Reconstruction results on ADE20K and CelebA-HQ from different models.

Ground TruthVQ-GAN Reg-VQ Ours Ground TruthVQ-GAN Reg-VQ Ours
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VQGAN Reg-VQ Ours
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（b）

（c）
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Ground TruthVQGAN Reg-VQ Ours Ground TruthVQGAN Reg-VQ Ours

Figure 7. Semantic segmentation synthesis on ADE20K and CelebA-HQ. The semantic segmentation map in the first column is the
condition for generation.

Figure 8. Ablation study on the effect of codebook dimension nz

on ADE20K. In our method, nz = 256 means no codebook par-
tition technique is utilized, nz = 128 means 2 partitions, and
nz = 64 means 4 partitions, and so on. For VQGAN, the code-
book dimension is reduced directly. The codebook vector number
K is set as 1024 in all experiments.

outperforms them by 26.45, 4.69, and 1.19 in FID on the
ADE20K dataset. It indicates that our Kepler codebook with
a compact and ordered distribution is beneficial in producing
conditional images for the autoregressive model.

5.3. Qualitative Evaluation

We present a comparison of reconstruction visualizations
for the ADE20K and CelebA-HQ datasets, as illustrated in
Fig. 6. Our model demonstrates superior performance in
image reconstruction. For instance, our model reproduces
the shape of the haystack more accurately, and the woman’s

Ground TruthVQ-GAN Reg-VQ Ours Ground TruthVQ-GAN Reg-VQ Ours

ADE20K

CelebA-HQ

CelebA-HQ

VQGAN Reg-VQ Ours
Condition

VQGAN Ground TruthReg-VQ Ours

（a）

（b）

（c）

ADE20K

Figure 9. Cross-domain experiment. All models are trained on the
ADE20K dataset and tested on (a) MS-COCO, (b) LSDIR, and (c)
DIV2K.

eyes and lips are more faithful. Compared with VQGAN and
Reg-VQ, our model preserves details and structure without
distortions. Fig. 7 shows the results generated by each
model using the same semantic segmentation map. Our
model produces images corresponding to the semantic map
while retaining reasonable details in natural scenes, indoor
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Figure 10. Multi-resolution cross-domain evaluation on DIV2K
validation set. We train the three models on ADE20K with 256×
256 resolution and test them on five different resolutions from low
to high on the DIV2K dataset.

Table 3. Quantitative reconstruction and SR comparison on Ima-
geNet and DRealSR validation sets.

Method Task Dataset PSNR↑ SSIM↑ LPIPS↓ rFID/FID↓
LDM Rec. ImageNet 27.48 0.826 0.024 0.42
Ours 28.00 0.837 0.019 0.33

LDM SR DRealSR 24.86 0.715 0.080 35.66
Ours 26.15 0.750 0.065 26.11

scenes, and faces.

5.4. Ablation Study and Evaluation

IHD regularization & Codebook partition. The ablation
study on those two strategies is provided in Tab. 2. With the
proposed IHD regularization based on the baseline model
VQGAN, the performance of both rFID and codebook us-
age is improved. With the codebook partition, there is an
improvement of about 31% in rFID, and the usage rate is
directly increased from 35% to 100%. When both strate-
gies are used, our model makes an improvement of 40%
in rFID compared to VQGAN and the usage rate is still
100%. Since the dimension of tokens in codebook is so
high that it is difficult to compute the KL divergence accu-
rately in Equ. 6, only using IHD regularization improves
performance slightly. With the codebook partition, though
there is a remarkable improvement, it cannot confirm the
well-ordered property of codebook distribution. Thus the
collaboration of the codebook partition to lower the dimen-
sion of tokens and the IHD regularization to confirm the
well-ordered property of the distribution, our model im-
proves the image reconstruction by an even larger margin.

Codebook dimension. The use of the codebook partition
technique naturally alters the dimensionality of the code-

book. To explore the effect on the quality of image recon-
struction when only reducing the dimension but no parti-
tion performed, we conduct a set of ablation experiments.
As shown in Fig. 8, when the token number K remains
unchanged, the quality of image reconstruction gradually
deteriorates and the codebook usage decreases as the di-
mension decreases. In contrast, our model achieves a sig-
nificant improvement in image reconstruction quality and
codebook utilization as the dimension decreases (which im-
plies a corresponding increase in the partition number nz).
This implies that there is a fundamental difference between
codebook partition and dimensionality reduction.

Balance evaluation of codebook distribution. To fully
verify our method, we measure the balance of the code-
book distribution before and after training. The distribution
balance implies that the number of other tokens within the
neighborhood of each token is roughly equal, avoiding situ-
ations where certain tokens have disproportionately many or
few neighboring tokens within their hollow neighborhoods.
Based on this principle, we set a radius for the hollow neigh-
borhoods and evaluate the balance of the distribution by cal-
culating the variance of the number of other tokens within
each token’s hollow neighborhood. If the variance is large,
it suggests that some tokens in the distribution are either
overly dense or sparse, whereas a small variance indicates a
relatively even distribution among the tokens.

Specifically, in Tab. 4, the parameter drank represents that
we select the drank-th distance as the hollow neighborhood
radius when arranging all the distances between any two
tokens in the codebook in ascending order. We present
evaluation results on the ADE20K dataset with a codebook
dimensionality K=1024. As shown in Tab. 4, during the
early stages of training, all models exhibit varying degrees
of imbalance in their distribution states. However, after
applying our optimized training strategy, we observe a sig-
nificant decrease in the variance values, with an average
reduction approximately twice that of the initial state. In
contrast, other models show minimal improvement in their
distribution balance after training, still closely resembling
their initial distribution states. Notably, regardless of the
drank value chosen, our method consistently reduces the
variance to about half that achieved by alternative methods,
further substantiating the superior performance of our model
in improving the balance of distributions.

5.5. Cross-Domain Evaluation

The generalization performance of VQGAN, Reg-VQ, and
our model is examined by training them on ADE20K and
testing on MS-COCO, LSDIR, and DIV2K, respectively.
Specifically, these models are trained on ADE20K with a
resolution of 256×256 and tested on the other three datasets.
As shown in Fig. 9, our model produces impressive visual
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Table 4. Balance evaluation of the codebook distribution trained on the ADE20K dataset. The variance of the number of other tokens
within each token’s hollow neighborhood, explained in Sec.5.4, is employed to measure the balance degree.

drank
2048 5120 10240 20480

VQGAN Reg-VQ Ours VQGAN Reg-VQ Ours VQGAN Reg-VQ Ours VQGAN Reg-VQ Ours

Variance(Before training) 54.2 66.3 54.1 248.6 286 252.3 765.2 837.5 768.1 2269.3 2377.4 2241.9
Variance(After training) 50.6 67.3 23.5 242.6 282.4 113.7 798.7 837.7 410.1 2635.3 2398.5 1505.6

VQGAN

Reg-VQ

Ours

GT

2032 × 12801016 × 640508 × 320254 × 160127 × 80

Figure 11. Multi-resolution cross-domain visualization on DIV2K
validation set with five resolutions from high to low. Notably, the
models are trained on ADE20K with 256×256 resolution. Please
zoom in for a better view.

Ground TruthVQ-GAN Reg-VQ Ours Ground TruthVQ-GAN Reg-VQ Ours

ADE20K

CelebA-HQ

CelebA-HQ

VQGAN Reg-VQ Ours
Condition

VQGAN Ground TruthReg-VQ Ours

（a）

（b）

（c）

ADE20K

LDM Ours GTinput

Figure 12. Evaluation on the super-resolution task on the DRealSR
datset.

results. This demonstrates the accuracy of our codebook in
modeling discrete representations and the ability to gener-
alize to cross-domain images while still achieving accurate
reconstruction compared to other models. Furthermore,
we conduct a multi-resolution cross-domain experiment on
the DIV2K dataset, using trained models on ADE20K. As
shown in Fig. 10, our model achieves superior results on the
four metrics. The visualization for five resolution images
is shown in Fig. 11. Additional visualization results and
detailed metrics can be found in the Appendix.

5.6. Downstream Application: Super-Resolution

We present a downstream application to image super-
resolution (SR). We first train our model as an autoencoder
from scratch on the ImageNet dataset, employing the same
downsample factor (f = 4) and codebook configurations
(VQ, K = 8192, nz = 3) with the autoencoder in Latent
Diffusion Model (LDM) (Rombach et al., 2022). We then

apply our model to the LDM to train an SR model on the
DRealSR dataset. All configurations are consistent with the
SR tasks in LDM. The quantitative result for reconstruction
and SR is shown in Tab. 3 and the qualitative result for SR is
shown in Fig. 12. Our model has significant advantages for
both the reconstruction and SR tasks, especially in terms of
rFID/FID enhancement, indicating that Kepler Codebook is
also beneficial for enhancing downstream tasks. Additional
visualization results can be found in the Appendix.

6. Conclusion
In this paper, we make a theoretical and technical attempt
to explore the codebook to address the typical codebook
collapse and ensure full training of codebook tokens for
high codebook usage. The codebook distribution is formu-
lated and derived in conjunction with Kepler’s Conjecture
in a principle way. To constrain the distribution of tokens,
the derived Irwin-Hall distribution regularization for Kepler
codebook training is conducted together with a codebook
partition strategy to improve codebook usage. Extensive
experiments have been conducted to evaluate our trained
codebook for image reconstruction and generation on natu-
ral and human face datasets, respectively, demonstrating a
remarkable performance in these tasks. Moreover, the pro-
posed Kepler codebook has been further evaluated across
datasets and even for reconstructing images with different
resolutions, demonstrating a promising codebook general-
ization. Our main contributions, including the mathemati-
cal derivation of the codebook distribution from Kepler’s
Conjecture perspective and the proposed Kepler codebook
together with its training manner, are expected to be useful
for further insightful research.

Acknowledgements
This work is supported in part by National Nat-
ural Science Foundation of China (NSFC) under
Grant No.62376292, 62376209, U21A20470, 62325605,
China Postdoctoral Science Foundation under Grant No.
2023M731964, Guangzhou Science and Technology Pro-
gram (No.2024A04J6365), and Guangdong Province Key
Laboratory of Information Security Technology.

9



Kepler Codebook

Impact Statement
Our work aims to explore the problem of codebook collapse
for its training and learn discrete representations with vector
quantization. The trained codebook is a precondition for
generative models and is the base for visual content gener-
ation. The main contribution is casting codebook training
as the densest sphere packing and providing a principle
solution to derive a compact and structured codebook dis-
tribution, which presents a promising potential to extend to
the learning visual representation. Ethical considerations
are crucial, as generative models can be misused to create
misleading content. This paper highlights the significance
of responsible use of technology to ensure that technological
advancements benefit our society.
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A. Proof Details
A.1. Codebook Training is Kepler’s Conjecture Proof Details

To ensure the establishment of a representative feature space, two essential conditions are posited. Under the assumption
that the representation space is bounded (a reasonable consideration for deterministic data within a given training set), the
conditions are delineated as follows:

1) A well-constructed codebook comprising N tokens is requisite, with the space spanned by all tokens maximizing its
expansiveness. 2) The distance between each token should be relatively large, leading to a relatively uniform probability
distribution for the training of each token.

Further more, according to the first precondition, the space of each token is contact instead of separation to get larger
spanned space. According to the based model VQGAN, it usually use the nearest neighbour encoding resulting the spanned
space of any two tokens will contact in their midpoint. Thus we can get the relation between ri and di of i-th token that
2ri = di. In other words, the constrained condition can be transformed into g(d1, d2, ..., dK) =

∑K
i=1 d

nz
i ≤ |ẑ| /2nz .

Formally, these conditions can be expressed as follows:

{
argmax f(d1, d2, ..., dK)

s.t. g(d1, d2, ..., dK) =
∑K

i=1 d
nz
i ≤ |ẑ| /2nz

(7)

where di is the minimum distance between the i-th token and all the other tokens, K is the number of tokens in codebook,
nz is the dimension of the token and |ẑ| is the space of ẑ = E(x). Since f(d1, d2, ..., dK)

.
= min(d1, d2, ..., dK), we may

infer that d1 represents the minimum distance within d1, d2, ..., dK . Consequently, we can reformulate Equation 7 into an
equivalent expression as follows:



argmin −d1
s.t. g1(d1, d2, ..., dK) = g(d1, d2, ..., dK)− |ẑ| /2nz ≤ 0

g2(d1, d2, ..., dK) = d1 − d2 ≤ 0
g3(d1, d2, ..., dK) = d1 − d3 ≤ 0

...
gK(d1, d2, ..., dK) = dK − d2 ≤ 0

(8)

It is apparent that the set G becomes nonlinear when G = {∇gi(d
∗) : i = 1, 2, ...,K} serves as the optimal solution for

Equ. 8. Initially, we compute each ∇gi(d
∗) as outlined below:

∇g1(d
∗) = ( ∂g1∂d1

, ∂g1
∂d2

, ..., ∂g1
∂dK

) = (nzd
nz−1
1 , nzd

nz−1
2 , ..., nzd

nz−1
K )

∇g2(d
∗) = ( ∂g1∂d1

, ∂g1
∂d2

, ..., ∂g1
∂dK

) = (1,−1, 0, 0, ..., 0)

∇g3(d
∗) = ( ∂g1∂d1

, ∂g1
∂d2

, ..., ∂g1
∂dK

) = (1, 0,−1, 0, ..., 0)

∇g4(d
∗) = ( ∂g1∂d1

, ∂g1
∂d2

, ..., ∂g1
∂dK

) = (1, 0, 0,−1, ..., 0)
...

∇gK(d∗) = ( ∂g1∂d1
, ∂g1
∂d2

, ..., ∂g1
∂dK

) = (1, 0, 0, 0, ...,−1)

(9)

It is evident that ∇gi(d
∗) is linearly independent for 2 ≤ i ≤ K. Simultaneously, considering that the distance between

any two tokens is greater than zero (d1, d2, ..., dK > 0), a linear combination of ∇g2(d
∗),∇g3(d

∗), ....,∇gK(d∗) cannot
represent ∇g1(d

∗). Consequently, Equ. 8 adheres to the regularity conditions.

We consider using the Lagrange Multiplier Method to solve the problem. We transform Equ. 8 into the Lagrange function as
follows:

L(d, µ1, µ2, ..., µK) = −d1 +

K∑
i=1

µigi(d) (10)
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where d represents (d1, d2, ..., dK) and µi is the Lagrange Multiplier. Using the KKT conditions, potential optimal solutions
can be found:


∇dL = 0
µigi(d) = 0 i = 1, 2, ...,K
µi ≥ 0 i = 1, 2, ...,K
gi(d) ≤ 0 i = 1, 2, ...,K

(11)

One such optimal solution is:

{
d1 = d2 = ... = dK
g1(d) = 0

(12)

The expression corresponding to Equ. 12 maximizes the space occupied by all tokens when the distances di of each token
are equal within the constraint space. Simultaneously, this expression is analogous to Kepler’s Conjecture, which seeks to
determine the maximum density of sphere packing.

A.2. Hexagonal Distribution is Good for Codebook Proof Details

To demonstrate the existence of the basis matrix B when θ ≤ 90◦ in any dimension, consider B = (
−→
b1 ,

−→
b2 , ...,

−→
bnz ). It is

evident that the matrix BTB is semi-positive definite, indicating that xTBTBx ≥ 0. For x = (1, 1, ..., 1), the following
expression can be derived:

xTBTBx =
∑
ij

bTi bj =
∑
i̸=j

bTi bj + nz ≥ 0 (13)

The following form can be derived from Equ. 13:

nz(nz − 1)max
i ̸=j

(
−→
bi ·

−→
bj ) ≥

∑
i ̸=j

bTi bj ≥ −nz (14)

Consequently, we can draw the conclusion from Equ. 14:

max
i ̸=j

(
−→
bi ·

−→
bj ) ≥ − 1

n− 1
(15)

Given that both bi and bj are unit vectors, it follows that cos(θ) ≥ − 1
nz−1 in nz-dimensional space. To elaborate further,

the range of angles between basis vectors in B is 0 ≤ θ ≤ arccos(− 1
n−1 ) in nz dimensions, implying that the basis matrix

can be constructed using the method outlined in the paper. As the dimension nz approaches infinity, the range of angles θ
approximates the interval from 0 to 90 degrees. Exploiting this property of angle range in sufficiently high dimensions and
the associated symmetry, we maximize the following expression within the angle range from 0 to 90 degrees:

max
θ

qn(θ)

det(B)
(16)

Before addressing Equ. 16, let us elucidate the choice of q(θ). Without loss of generality, the basis matrix B can be
constructed in the following manner:

 b1 = (1, 0, 0, ..., 0), ∥bi∥ = 1
bi · bi−1 = cos θ
bi,j = bi−1,j(1 ≤ j ≤ i− 2, i ≥ 3)

(17)

13



Kepler Codebook

Here, the angles between and basis vectors in B are θ. Moreover, the basis matrix B is a nonnegative matrix. Then q(θ) can
be described as follows:

q(θ) = min
α ̸=β

∥Bα−Bβ∥ (18)

Here, α and β belong to {0, 1}nz . Given that the basis matrix B is a nonnegative matrix, the possible values for α and β
are constrained to

{(0, 0, ..., 0), (1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1)}

. In other words, if α = (1, 1, 0, ..., 0) and β = (0, 0, 0, ..., 1), the distance between Bα and Bβ is greater than when
α = (1, 0, 0, ..., 0) and β = (0, 0, 0, ..., 1). Meanwhile, Equ. 18 can be accurately transformed into the following form:

q(θ) = min(1,min
i̸=j

∥bi − bj∥) (19)

where the value 1 represents the distance between α = (0, 0, ..., 0) and β. And bi represents Bα where only i-th entry in α
is 1, other entries are zero. It’s easy to find that ∥bi − bi+1∥ = ∥bi − bj∥ , j = i+ 1, i+ 2, ...,K. Therefore, Equ. 19 can be
transformed to the following form.

q(θ) = min(1,min
i

∥bi − bi+1∥) (20)

In order to calculate ∥bi − bi+1∥, here we first derive the relationship between adjacent diagonal elements in the basis matrix
B. The relationship between bi and bi+1 can be derived from Equ. 17 as follows.

{
bi · bi+1 = cos θ
∥bi∥ = ∥bi+1∥ = 1

(21)

From Equ. 21, we can get the relationship between bii and bi+1i+1 as follows.

b2i+1i+1 = 2(1− cos θ)− (1− cos θ)
2

b2ii
(22)

While for the relationship between bii and bi+1i is bi+1i =
b2ii−1+cos θ

bii
. Thus, ∥bi − bi+1∥ can be calculated as follows.

∥bi − bi+1∥ = ((bii − bi+1i)
2 + b2i+1i+1)

1
2

= ((bii − bii +
1−cos θ

bii
)2 + 2(1− cos θ)− (1−cos θ)2

b2ii
)

1
2

= (2(1− cos θ))
1
2

= 2 sin θ
2

(23)

It follows that q(θ) = min(1, 2 sin θ
2 ). When θ > 60◦, it is evident that q(θ) = 1

2 , and
∏k

i=1 bi,i increases. This indicates
that the result for θ = 60◦ cannot be surpassed if θ > 60◦ in Equation 16. Therefore, we can narrow down the range of
angles under consideration to 0 ≤ θ ≤ 60◦.

To simplify the discussion, let us use the following symbols to represent the optimization target in Equ. 16:

h(n, θ) =
(2 sin θ

2 )
n

n∏
i=1

bii
(24)

For the 2-dimensional case, Equ. 24 takes the following form:
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h(2, θ) =
2 sin( θ2 )

sin θ
=

1

cos( θ2 )
(25)

Clearly, when the angle θ equals 60 degrees, h(2, θ) attains its maximum.

Similarly, we can demonstrate that for n = 3, 2sin( θ
2 )

b22
also achieves its maximum at θ = 60◦. This implies that at an angle

of 60 degrees, h(3, θ) reaches its maximum because both h(2, θ) and 2sin( θ
2 )

b22
attain their maxima at θ = 60◦.

Assuming that n = 2, 3, ..., k supports the conclusion that sin( θ
2 )

bnn
reaches its maximum at θ = 60◦, then when n = k + 1,

we can draw the following conclusions:

sin( θ2 )

bk+1k+1
=

sin( θ2 )√
2(1− cos θ)− (1−cos θ)2

b2kk

=
sin( θ2 )√

4sin2( θ2 )−
4sin4( θ

2 )

b2kk

=
1

2
(1−

sin2( θ2 )

b2kk
)−1

(26)

In the above assumption, we deduce that when θ = 60◦, sin( θ
2 )

bkk
is the largest. Thus, when θ = 60◦, sin( θ

2 )

bk+1k+1
reaches its

maximum. More to specifically, that implies that h(k + 1, θ) is the largest at θ = 60◦.

To sum up, when θ = 60◦, the maximum codebook density h(nz, θ) is attained.

B. Further Evaluation for Codebook Partition
We conclude that each entry in the codebook follows an independent identical distribution. Consequently, we employ the
codebook partition to enhance the image quality in the reconstruction and generalization processes. Specifically, this implies
that there can be multiple variations of the codebook partition method. As described in the following Table 5, reshaping the
model’s encoder output ẑq from hwnz to hwd× nz/d or from nzhw to d× nzhw/d contributes to improving the image
quality.

Table 5. Ours reshapes encoder output ẑq from hwnz to hwd× nz/d where d means the number of partitions. Ours(w/o permute) is
reshapes encoder output ẑq from nzhw to d× nzhw/d. It shows better reconstruction image quality in both reshape methods which
further proves each entry in codebook is an independent identical distribution, thus it can be used in any reshape methods in the quantized
process.

Model PSNR↑ rFID↓
Reg-VQ 18.44 23.69

Ours(w/o permute) 20.31 20.43
Ours 21.71 16.39

C. Efficiency analysis
The main modifications of our method to the baseline are a KL regularization-based loss and the codebook partition which
both bring negligible computations. A comparison in terms of the parameters can be found in Tab. 6.

With almost the same parameter size and FLOPS, VQGAN, Reg-VQ, and Ours require almost the same training hours, as
shown in Tab. 7.
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Table 6. The efficiency analysis comparison on ADE20K.
Model #Param FLOPS

VQGAN 376.4M 264.1G
Reg-VQ 376.1M 264.2G

Ours 377.2M 264.3G

Table 7. The details about batch, epoch and training time set in the training process.
Task Dataset Batch Epoch Training time

Reconstruction ADE20K 96 100 14h
Reconstruction Celeb-HQ 96 100 14h

Generation ADE20K 64 50 18h
Generation Celeb-HQ 64 50 18h

D. More Visualization Results
D.1. More reconstruction and generation results

We provide additional reconstruction and semantic segmentation synthesis results on ADE20K and CelebA-HQ datasets in
Fig.13, Fig.14 and Fig.15, respectively.

D.2. More cross-domain results

We provide additional cross-domain visualization comparison on MS-COCO LSDIR and DIV2K datasets in Fig.16, along
with multi-resolution results for DIV2K in Fig.17. More detailed metrics are shown in Tab. 8. In the comparison of
cross-domain datasets with identical resolution, our model outperforms others in reconstructing various elements such as
animals, architecture, text, landscapes, etc. When comparing cross-domain multi-resolution reconstruction, our model
demonstrates a more favorable visualization effect compared to the other two models. These results highlight the potential of
the Kepler codebook distribution in cross-domain and multi-resolution. The tight and ordered properties of Kepler codebook
distribution improve the ability to capture more details for codebook tokens.

D.3. More super-resolution results

We additionally provide downstream super-resolution visualization comparison on DRealSR validation set in Fig. 18.
Whether faced with text, buildings, or natural scenes, our models accurately reproduce GT, whereas LDM suffers from
significant color aberration, producing artifacts and false details.
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VQGAN Reg-VQ Ours Ground TruthVQGAN Reg-VQ OursGround Truth

Figure 13. Additional reconstruction results on ADE20K dataset.

Table 8. Multi-resolution cross-domain results on DIV2K validation dataset. We train the three models on ADE20K with 256 × 256
resolution and test them on five different resolutions from low to high.

Resolution Method PSNR↑ SSIM↑ LPIPS↓ rFID↓

127×80
VQGAN 14.14 0.227 0.211 222.94
Reg-VQ 13.88 0.241 0.211 223.91

Ours 14.99 0.326 0.147 195.77

254×160
VQGAN 15.63 0.304 0.207 197.58
Reg-VQ 15.51 0.326 0.203 185.31

Ours 16.88 0.417 0.138 130.06

508×320
VQGAN 17.33 0.389 0.182 132.09
Reg-VQ 17.24 0.406 0.178 129.39

Ours 19.05 0.514 0.117 73.73

1016×640
VQGAN 19.42 0.485 0.148 79.33
Reg-VQ 19.24 0.498 0.147 77.45

Ours 21.73 0.614 0.094 41.28

2032×1280
VQGAN 21.18 0.552 0.119 50.66
Reg-VQ 20.84 0.561 0.121 49.16

Ours 23.76 0.676 0.072 23.62
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VQGAN Reg-VQ Ours Ground Truth VQGAN Reg-VQ Ours Ground Truth

Figure 14. Additional reconstruction results on CelebA-HQ dataset.
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VQGAN Reg-VQ Ours
Condition

ADE20K

CelebA-HQ

CelebA-HQ

CelebA-HQ

ADE20K

ADE20K

Figure 15. Generation results on ADE20K and CelebA-HQ datasets. The first column is the semantic segmentation map and the subsequent
columns show the generated results conditioned on it.

VQ-GAN Ground TruthReg-VQ Ours

LSDIR

VQ-GAN Ground TruthReg-VQ Ours

DIV2K

MS-COCO

Figure 16. Cross-domain reconstruction results on MS-COCO, LSDIR, and DIV2K datasets.
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VQGAN

Reg-VQ

Ours

GT

2032 × 12801016 × 640508 × 320254 × 160127 × 80

Figure 17. Multi-resolution cross-domain visualization on DIV2K validation set (0865) with five resolutions from high to low. Please
zoom in for a better view.

PSNR

SSIM

LPIPS

23.78

0.723

0.167

24.34

0.738

0.157

LDM Ours GT

LDM Ours GTinput

Ground Truthcodebook distribution & reconstruction image

Reg-VQ Ours

codebook distribution & reconstruction image

VQGAN

codebook distribution & reconstruction image

Figure 18. Super-resolution visualization on DRealSR validation set.
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