
Single-Trajectory Distributionally Robust Reinforcement Learning

Zhipeng Liang * 1 Xiaoteng Ma * 2 Jose Blanchet 3 Jun Yang 2 Jiheng Zhang 1 4 Zhengyuan Zhou 5 6

Abstract

To mitigate the limitation that the classical rein-
forcement learning (RL) framework heavily relies
on identical training and test environments, Distri-
butionally Robust RL (DRRL) has been proposed
to enhance performance across a range of envi-
ronments, possibly including unknown test envi-
ronments. As a price for robustness gain, DRRL
involves optimizing over a set of distributions,
which is inherently more challenging than opti-
mizing over a fixed distribution in the non-robust
case. Existing DRRL algorithms are either model-
based or fail to learn from a single sample trajec-
tory. In this paper, we design a first fully model-
free DRRL algorithm, called distributionally ro-
bust Q-learning with single trajectory (DRQ). We
delicately design a multi-timescale framework to
fully utilize each incrementally arriving sample
and directly learn the optimal distributionally ro-
bust policy without modeling the environment,
thus the algorithm can be trained along a single
trajectory in a model-free fashion. Despite the
algorithm’s complexity, we provide asymptotic
convergence guarantees by generalizing classical
stochastic approximation tools. Comprehensive
experimental results demonstrate the superior ro-
bustness and sample complexity of our proposed
algorithm, compared to non-robust methods and
other robust RL algorithms.

*Equal contribution 1Department of Industrial Engineering
and Decision Analytics, Hong Kong University of Science and
Technology 2Department of Automation, Tsinghua University
3Department of Management Science and Engineering, Stanford
University 4Department of Mathematics, Hong Kong University
of Science and Technology 5Stern School of Business, New York
University 6Arena Technologies. Correspondence to: Zhengyuan
Zhou <zhengyuanzhou24@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Reinforcement Learning (RL) is a machine learning
paradigm for studying sequential decision problems. De-
spite considerable progress in recent years (Silver et al.,
2016; Mnih et al., 2015; Vinyals et al., 2019), RL algo-
rithms often encounter a discrepancy between training and
test environments. This discrepancy is widespread since
test environments may be too complex to be perfectly repre-
sented in training, or the test environments may inherently
shift from the training ones, especially in certain applica-
tion scenarios, such as financial markets and robotic control.
Overlooking the mismatch could impede the application
of RL algorithms in real-world settings, given the known
sensitivity of the optimal policy of the Markov Decision
Process (MDP) to the model (Mannor et al., 2004; Iyengar,
2005).

To address this concern, Distributionally Robust RL (DRRL)
(Zhou et al., 2021; Yang et al., 2022; Shi & Chi; Panaganti
& Kalathil, 2022; Panaganti et al., 2022; Ma et al., 2022;
Yang, 2018; Abdullah et al., 2019; Neufeld & Sester, 2022)
formulates the decision problem under the assumption that
the test environment varies but remains close to the training
environment. The objective is to design algorithms opti-
mizing the worst-case expected return over an ambiguity
set encompassing all possible test distributions. Evaluating
a DRRL policy necessitates deeper insight into the transi-
tion dynamics than evaluating a non-robust one, as it entails
searching for the worst-case performance across all distri-
butions within the ambiguity set. Therefore, most prior
solutions are model-based, require the maintenance of an
estimator for the entire transition model and the ambiguity
set. Such requirements may render these algorithms less
practical in scenarios with large state-action spaces or where
adequate modeling of the real environment is unfeasible.

Prompted by this issue, we study a fully model-free DRRL
algorithm in this paper, which learns the optimal DR policy
without explicit environmental modeling. The algorithm’s
distinctive feature is its capacity to learn from a single sam-
ple trajectory, representing the least demanding requirement
for data collection. This feature results from our innovative
algorithmic framework, comprising incrementally updated
estimators and a delicate approximation scheme. While
most model-free non-robust RL algorithms support training

1

Single-Trajectory DRRL

in this setting—contributing to their widespread use—no
existing work can effectively address the DRRL problem
in this way. The challenge arises from the fact that approx-
imating a DR policy by learning from a single trajectory
suffers from restricted control over state-action pairs and
limited samples, i.e., only one sample at a time. As we will
demonstrate, a simple plug-in estimator using one sample,
which is unbiased in the non-robust Q-learning algorithm,
fails to approximate any robust value accurately.

The complexity of this task is further affirmed by the sole
attempt to develop a model-free DRRL algorithm in (Liu
et al., 2022). It relies on a restricted simulator assump-
tion, enabling the algorithm to access an arbitrary number
of samples from any state-action pair, thereby amassing
sufficient system dynamics information before addressing
the DRRL problem. Relaxing the dependence on a simu-
lator and developing a fully model-free algorithm capable
of learning from a single trajectory necessitates a delicate
one-sample estimator for the DR value, carefully integrated
into an algorithmic framework to eradicate bias from insuffi-
cient samples and ensure convergence to the optimal policy.
Moreover, current solutions heavily depend on the specific
divergence chosen to construct the ambiguity set and fail
to bridge different divergences, underscoring the practical
importance of divergence selection.

Thus a nature question arises: Is it possible to develop a
model-free DRRL framework that can learn the optimal
DR policy across different divergences using only a single
sample trajectory for learning?

1.1. Our Contributions

In this paper, we provide a positive solution to the aforemen-
tioned question by making the following contributions:

1. We introduce a pioneering approach to construct the
ambiguity set using the Cressie-Read family of f -
divergence. By leveraging the strong duality form of
the corresponding distributionally robust reinforcement
learning (DRRL) problem, we reformulate it, allowing
for the learning of the optimal DR policies using misspec-
ified MDP samples. This formulation effortlessly covers
widely used divergences such as the Kullback-Leibler
(KL) and χ2 divergence.

2. To address the additional nonlinearity that arises from
the DR Bellman equation, which is absent in its non-
robust counterpart, we develop a novel multi-timescale
stochastic approximation scheme. This scheme carefully
exploits the structure of the DR Bellman operator. The
update of the Q table occurs in the slowest loop, while
the other two loops are delicately designed to mitigate
the bias introduced by the plug-in estimator due to the
nonlinearity.

3. We instantiate our framework into a DR variant of the
Q-learning algorithm, called distributionally robust Q-
learning with single trajectory (DRQ). This algorithm
solves discount Markov Decision Processes (MDPs) in
a fully online and incremental manner. We prove the
asymptotic convergence of our proposed algorithm by
extending the classical two-timescale stochastic approxi-
mation framework, which may be of independent inter-
est.

4. We conduct extensive experiments to showcase the ro-
bustness and sample efficiency of the policy learned by
our proposed DR Q-learning algorithm. We also create
a deep learning version of our algorithm and compare its
performance to representative online and offline (robust)
reinforcement learning benchmarks on classical control
tasks.

1.2. Related Work

Robust MDPs and RL: The framework of robust MDPs
has been studied in several works such as Nilim & El Ghaoui
(2005); Iyengar (2005); Wiesemann et al. (2013); Lim et al.
(2013); Ho et al. (2021); Goyal & Grand-Clement (2022).
These works discuss the computational issues using dy-
namic programming with different choices of MDP formu-
lation, as well as the choice of ambiguity set, when the
transition model is known. Robust Reinforcement Learning
(RL) (Roy et al., 2017; Badrinath & Kalathil, 2021; Wang
& Zou, 2021) relaxes the requirement of accessing to the
transition model by simultaneously approximating to the
ambiguity set as well as the optimal robust policy, using
only the samples from the misspecified MDP.

Online Robust RL: Existing online robust RL algorithms
including Wang & Zou (2021); Badrinath & Kalathil (2021);
Roy et al. (2017), highly relies on the choice of the R-
contamination model and could suffer over-conservatism.
This ambiguity set maintains linearity in their corresponding
Bellman operator and thus inherits most of the desirable
benefits from its non-robust counterpart. Instead, common
distributionally robust ambiguity sets, such as KL or χ2

divergence ball, suffer from extra nonlinearity when trying
to learn along a single-trajectory data, which serves as the
foundamental challenge in this paper.

Distributionally Robust RL: To tackle the over-
conservatism aroused by probability-agnostic R-
contamination ambiguity set in the aforementioned
robust RL, DRRL is proposed by constructing the ambigu-
ity set with probability-aware distance (Zhou et al., 2021;
Yang et al., 2022; Shi & Chi; Panaganti & Kalathil, 2022;
Panaganti et al., 2022; Ma et al., 2022), including KL and
χ2 divergence. As far as we know, most of the existing
DRRL algorithms fall into the model-based fashion, which
first estimate the whole transition model and then construct

2

Single-Trajectory DRRL

the ambiguity set around the model. The DR value and the
corresponding policy are then computed based upon them.
Their main focus is to understand the sample complexity of
the DRRL problem in the offline RL regime, leaving the
more prevalent single-trajectory setting largely unexplored.

2. Preliminary
2.1. Discounted MDPs

Consider an infinite-horizon MDP (S,A, γ, µ, P, r) where
S and A are finite state and action spaces with cardinal-
ity S and A. P : S × A → ∆S is the state transition
probability measure. Here ∆S is the set of probability
measures over S. r is the reward function and γ is the
discount factor. We assume that r : S × A → [0, 1] is
deterministic and bounded in [0, 1]. A stationary policy
π : S → ∆A maps, for each state s to a probability dis-
tribution over the action set A and induce a random tra-
jectory s1, a1, r1, s2, · · · , with s1 ∼ µ, an = π(sn) and
sn+1 ∼ P (·|sn, an) := Psn,an for n ∈ N+. To derive the
policy corresponding to the value function, we define the
optimal state-action function Q? : S × A → R as the ex-
pected cumulative discounted rewards under the optimal pol-
icy, Q?(s, a) := supπ∈Π Eπ,P [

∑∞
n=1 γ

n−1r(sn, an)|s1 =
s, a1 = a]. The optimal state-action function Q∗ is also the
fixed point of the Bellman optimality equation,

Q?(s, a) = r(s, a) + γEs′∼P [max
a′∈A

Q?(s′, a′)]. (1)

2.2. Q-learning

Our model-free algorithmic design relies on the Q-learning
template, originally designed to solve the non-robust Bell-
man optimality equation (Equation 1). Q-learning is a
model-free reinforcement learning algorithm that uses a
single sample trajectory to update the estimator for the Q
function incrementally. Suppose at time n, we draw a sam-
ple (sn, an, rn, s

′
n) from the environment. Then, the algo-

rithm updates the estimated Q-function following:

Qn+1(sn, an) = (1− αn)Qn(sn, an)+

αn(rn + γ max
a′∈A

Qn(s′n, a
′)),

Here, αn > 0 is a learning rate. The algorithm updates the
estimated Q function by constructing a unbiased estimator
for the true Q value, i.e., rn + γmaxa′∈AQn(s′n, a

′) using
one sample.

2.3. Distributionally Robust MDPs

DRRL learns an optimal policy that is robust to unknown
environmental changes, where the transition model P and
reward function r may differ in the test environment. To
focus on the perturbation of the transition model, we assume

no pertubation to the reward function. Our approach adopts
the notion of distributional robustness, where the true tran-
sition model P is unknown but lies within an ambiguity
set P that contains all transition models that are close to
the training environment under some probability distance
D. To ensure computational feasibility, we construct the
ambiguity set P in the (s, a)-rectangular manner, where for
each (s, a) ∈ S ×A, we define the ambiguity set Ps,a as,

Ps,a := {P ′s,a : ∆S |D(P ′s,a‖Ps,a) ≤ ρ}. (2)

We then build the ambiguity set for the whole transition
model as the Cartesian product of every (s, a)-ambiguity
set, i.e., P =

∏
(s,a)∈S×A Ps,a. Given P , we define the

optimal DR state-action function Q? as the value function
of the best policy to maximize the worst-case return over
the ambiguity set,

Qrob,?(s, a) :=

sup
π∈Π

inf
P∈P

Eπ,P [

∞∑
n=1

γn−1r(sn, an)|s1 = s, a1 = a].

Under the (s, a)-rectangular assumption, the Bellman opti-
mality equation has been established by Iyengar (2005); Xu
& Mannor (2010),

Qrob,?(s, a) =Tk(Qrob,?)(s, a)

:=r(s, a) + γ inf
P∈P

Es′∼P [max
a′∈A

Qrob,?(s′, a′)].

(3)

For notation simplicity, we would ignore the superscript
rob.

3. Distributonally Robust Q-learning with
Single Trajectory

This section presents a general model-free framework for
DRRL. We begin by instantiating the distance D as Cressie-
Read family of f -divergence (Cressie & Read, 1984), which
is designed to recover previous common choices such as
the χ2 and KL divergence. We then discuss the challenges
and previous solutions in solving the corresponding DRRL
problem, as described in Section 3.2. Finally, we present the
design idea of our three-timescale framework and establish
the corresponding convergence guarantee.

3.1. Divergence Families

Previous work on DRRL has mainly focused on one or
several divergences, such as KL, χ2, and total variation (TV)
divergences. In contrast, we provide a unified framework
that applies to a family of divergences known as the Cressie-
Read family of f -divergences. This family is parameterized

3

Single-Trajectory DRRL

by k ∈ (−∞,∞)/{0, 1}, and for any chosen k, the Cressie-
Read family of f -divergences is defined as

Dfk(Q‖P) =

∫
fk(

dP

dQ
)dQ,

with fk(t) := tk−kt+k−1
k(k−1) . Based on this family, we

instantiate our ambiguity set in Equation 2 as Ps,a =
{P ′s,a : ∆S |Dfk(P ′s,a‖Ps,a) ≤ ρ} for some radius ρ > 0.
The Cressie-Read family of f -divergence includes χ2-
divergence (k = 2) and KL divergence (k → 1).

One key challenge in developing DRRL algorithms using
the formulation in Equation 3 is that the expectation is taken
over the ambiguity set P , which is computationally inten-
sive even with the access to the center model P . Since we
only have access to samples generated from the possibly
misspecific model P , estimating the expectation with re-
spect to other models P ′ ∈ P is even more challenging.
While importance sampling-based techniques can achieve
this, the cost of high variance is still undesirable. To solve
this issue, we rely on the dual reformulation of Equation 3:

Lemma 3.1 ((Duchi & Namkoong, 2021)). For any ran-
dom variable X ∼ P , define σk(X, η) = −ck(ρ)EP [(η −
X)k∗+]

1
k∗ +η with k∗ = k

k−1 and ck(ρ) = (1+k(k−1)ρ)
1
k .

Then

inf
Q�P

{EQ[X] : Dfk(Q‖P) ≤ ρ} = sup
η∈R

σk(X, η), (4)

Here (x)+ = max{x, 0}. Equation 4 shows that protect-
ing against the distribution shift is equivalent to optimizing
the tail-performance of a model, as only the value below
the dual variable η are taken into account. Another key
insight from the reformulation is that as the growth of fk(t)
for large t becomes steeper for larger k, the f -divergence
ball shrinks and the risk measure becomes less conserva-
tive. This bridges the gap between difference divergences,
whereas previous literature, including Yang et al. (2022)
and Zhou et al. (2021), treats different divergences as sepa-
rate. By applying the dual reformulation, we can rewrite the
Cressie-Read Bellman operator in Equation 3 as

Tk(Q)(s, a) = r(s, a) + γ sup
η∈R

σk(max
a′∈A

Q(·, a′), η). (5)

3.2. Bias in Plug-in Estimator in Single Trajectory
Setting

In this subsection, we aim to solve Equation 5 using single-
trajectory data, which has not been addressed by previous
DRRL literature. As we can only observe one newly ar-
rival sample each time, to design a online model-free DRRL
algorithm, we need to approximate the expectation in Equa-
tion 5 using that single sample properly. As mentioned in
Section 2.2, the design of the Q-learning algorithm relies

on an one-sample unbiased estimator of the true Bell-
man operator. However, this convenience vanishes in the
DR Bellman operator. To illustrate this, consider plugging
only one sample into the Cressie-Read Bellman operator
Equation 5:

r(s, a) + γ sup
η∈R
{η − ck(ρ)(η −max

a′
Q(s′, a′))+}

= r(s, a) + γmax
a′

Q(s′, a′).

This reduces to the non-robust Bellman operator and is ob-
viously not an unbiased estimator for Tk(Q). This example
reveals the inherently more challenging nature of the on-
line DRRL problem. Whereas non-robust RL only needs to
improve the expectation of the cumulative return, improv-
ing the worst-case return requires more information about
the system dynamics, which seems hopeless to be obtained
from only one sample and sharply contrasts with our target.

Even with the help of batch samples, deriving an appropri-
ate estimator for the DR Bellman operator is still nontriv-
ial. Consider a standard approach to construct estimators,
sample average approximation (SAA): given a batch of sam-
ple size n starting from a fix state-action pair (s, a), i.e.,
Dn = {(si, ai, s′i, ri), i ∈ [n], (si, ai) = (s, a)}, the SAA
empirical Bellman operator is defined as:

T̂k(Q)(s, a,Dn) = r(s, a) + γ sup
η∈R

σ̂k(max
a′∈A

Q(·, a′), η,Dn).

Here, σ̂k is the empirical Cressie-Read functional defined
as

σ̂k := −ck(ρ)[
∑
i∈[n]

(η −max
a′∈A

Q(s′i, a
′))k∗+ /n]

1
k∗ + η.

As pointed out by Liu et al. (2022), the SAA estimator
is biased, prompting the introduction of the multilevel
Monte-Carlo method (Blanchet & Glynn, 2015). Specif-
ically, it first obtains N ∈ N+ samples from the distribution
P(N = n) = pn = ε(1−ε)n, and then uses the simulator to
draw 2N+1 samplesD2N+1 . The samples are further decom-
posed into two parts: D:2N consists of the first 2N samples,
while D2N+1: contains the remaining samples. Finally, the
DR term in Equation 5 is approximated by solving three
optimization problems:

T̂k(Q)(s, a,Dn) = r1 + max
a′∈A

Q(s′1, a
′) +

∆q
N,δ(Q)

pN
,

∆q
N,δ(Q) := sup

η≥0
σ̂k(max

a′∈A
Q(·, a′), η,D2N+1)

− 1

2
sup
η≥0

σ̂k(max
a′∈A

Q(·, a′), η,D:2N)

− 1

2
sup
η≥0

σ̂k(max
a′∈A

Q(·, a′), η,D2N+1:).

4

Single-Trajectory DRRL

However, this multilevel Monte-Carlo solution requires
a large batch of samples for the same state-action pair
before the next update, resulting in unbounded memory
costs/computational time that are not practical. Furthermore,
it is prohibited in the single-trajectory setting, where each
step only one sample can be observed. Our experimental
results show that simply approximating the Bellman oper-
ator with simulation data, without exploiting its structure,
suffers from low data efficiency.

3.3. Three-timescale Framework

The Q-learning is solving the nonrobust Bellman operator’s
fixed point in a stochastic approximation manner. A salient
feature in the DR Bellman operator, compared with its non-
robust counterpart, is a bi-level optimization nature, i.e.,
jointly solving the dual parameter η and the fixed point Q of
the Bellman optimality equation. We revisit the stochastic
approximation view of the Q-learning and develop a three-
timescale framework, by a faster running estimate of the
optimal dual parameter, and a slower update of the Q table.

To solve Equation 5 using a stochastic approximation tem-
plate, we iteratively update the variables η andQ table as fol-
lows: for the n-th iteration after observing a new transition
sample (sn, an, s

′
n, rn) and some learning rates ζ1, ζ2 > 0,

ηn+1 = ηn − ζ1 ∗ Gradient of ηn,
Qn+1 = rn + ζ2γσk(max

a′∈A
Qn(·, a′), ηn).

As the update of η and Q relies on each other, we keep
the learning speeds of η and Q, i.e., ζ1 and ζ2, different to
stabilize the training process. Additionally, due to the (s, a)-
rectangular assumption, η is independent across different
(s, a)-pairs, while the Q table depends on each other. The
independent structure for η allows it to be estimated more
easily; so we approximate it in a faster loop, while for Q we
update it in a slower loop.

3.4. Algorithmic Design

In this subsection, we further instantiate the three-timescale
framework to the Cressie-Read family of f -divergences.
First, we compute the gradient of σk(maxa′∈AQ(·, a′), η)
in Equation 5 with respect to η.

Lemma 3.2 (Sub-Gradient of the σk dual function).

∂σk(max
a′∈A

Q(·, a′), η) ∈

{−ck(ρ)Z

1
k∗−1
1 · Z2 + 1}, η > max

a′∈A
Q(·, a′),

[−ck(ρ)Z
1
k∗−1
1 · Z2 + 1, 0], η = max

a′∈A
Q(·, a′),

{1}, η < max
a′∈A

Q(·, a′),

(6)

Algorithm 1 Distributionally Robust Q-learning with
Cressie-Read family of f -divergences

1: Input: Exploration rate ε, Learning rates {ζi(n)}i∈[3],
Cressie-Read family parameter k, Ambiguity set radius
ρ.

2: Init: Initialize Q, Z and η with zero.
3: for n = 1, 2, · · · do
4: Observe the state sn, execute the action an =

arg maxa∈AQ(sn, a) using ε-greedy policy
5: Observe the reward rn and next state s′n
6: Update

Z1(sn, an)← (1− ζ1(n))Z1(sn, an)

+ ζ1(n)(η(sn, an)−max
a

Q(s′n, a))k∗+ ,

Z2(sn, an)← (1− ζ1(n))Z2(sn, an)

+ ζ1(n)(η(sn, an)−max
a

Q(s′n, a))k∗−1
+ .

7: Update

η(sn, an)← η(sn, an)+ζ2(n)(−ck(ρ)Z
1
k∗
−1

1 (sn, an)·
Z2(sn, an) + 1).

8: Update
Q(sn, an) ← (1 − ζ3(n))Q(sn, an) + ζ3(n)(rn −
γ(ck(ρ)Z

1
k∗
1 (sn, an)− η(sn, an))).

9: end for

where

Z1 = EP [(η −max
a′∈A

Q(·, a′))k∗+], (7)

Z2 = EP [(η −max
a′∈A

Q(·, a′))k∗−1
+]. (8)

Due to the nonlinearity in Equation 6, the plug-in gradient
estimator is in fact biased. The bias arises as for a random
variable X , E[f(X)] 6= f(E[X]) for f(x) = x

1
k∗−1 in

Z
1

k∗−1

1 . To address this issue, we introduce another even
faster timescale to estimate Z1 and Z2,

Z1(sn, an)← (1− ζ1(n))Z1(sn, an)

+ ζ1(n)(η(sn, an)−max
a′

Q(s′n, a
′))k∗+ ,

(9)

Z2(sn, an)← (1− ζ1(n))Z2(sn, an)

+ ζ1(n)(η(sn, an)−max
a′

Q(s′n, a
′))k∗−1

+ .

(10)

In the medium timescale, we approximate η?(s, a) :=
arg maxη∈R σk(maxa′∈AQ(s, a′), η) by incrementally up-
date the dual variable η using the stochastic gradient descent
method, where the true gradient computed in Equation 6 is

5

Single-Trajectory DRRL

approximated by:

η(sn, an)← η(sn, an)

+ ζ2(n)(−ck(ρ)Z
1
k∗−1

1 (sn, an) · Z2(sn, an) + 1).
(11)

Finally, we update the DR Q function in the slowest
timescale using Equation 12,

Q(sn, an)←(1− ζ3(n))Q(sn, an)

+ ζ3(n)T̂n,k(Q)(sn, an), (12)

where T̂n,k(Q)(s, a) is the empirical version of Equation 5
in the n-th iteration:

T̂n,k(Q)(sn, an) = rn − γ(ck(ρ)Z
1
k∗
1 (sn, an)− η(sn, an)).

Here ζ1(n), ζ2(n) and ζ3(n) are learning rates for three
timescales at time n, which will be specified later. We
summarize the ingredients into our DR Q-learning (DRQ)
algorithm (Algorithm 1), and prove the almost surely (a.s.)
convergence of the algorithm as Theorem 3.3. The proof is
deferred in Appendix C.
Theorem 3.3. The estimators at the n-th step in Algorithm 1,
(Zn,1, Zn,2, ηn, Qn), converge to (Z?1 , Z

?
2 , η

?, Q?) a.s. as
n→∞, where η? andQ? are the fixed-point of the equation
Q = Tk(Q), and Z?1 and Z?2 are the corresponding quantity
under η? and Q?.

The proof establishes that, by appropriately selecting step-
sizes to prioritize frequent updates of Zn,1 and Zn,2, fol-
lowed by ηn, and with Qn updated at the slowest rate, the
solution path of (Zn,1, Zn,2, ηn, Qn) closely tracks a sys-
tem of three-dimensional ordinary differential equations
(ODEs) considering martingale noise. Our approach is to
generalize the classic machinery of two-timescale stochastic
approximation (Borkar, 2009) to a three-timescale frame-
work, and use it to analyze our proposed algorithm. See
Appendix B for the detailed proof.

4. Experiments
We demonstrate the robustness and sample complexity
of our DRQ algorithm in the Cliffwalking environment
(Delétang et al., 2021) and American put option environ-
ment (deferred in Appendix A). These environments provide
a focused perspective on the policy and enable a clear un-
derstanding of the key parameters effects. We develop a
deep learning version of DRQ and compare it with practical
online and offline (robust) RL algorithms in classical control
tasks, LunarLander and CartPole.

4.1. Convergence and Sample Complexity

Before we begin, let us outline the key findings and mes-
sages conveyed in this subsection: (1) Our ambiguity set

design provides substantial robustness, as demonstrated
through comparisons with non-robust Q-learning and R-
contamination ambiguity sets (Wang & Zou, 2021). (2)
Our DRQ algorithm exhibits desirable sample complex-
ity, significantly outperforming the multi-level Monte Carlo
based DRQ algorithm proposed by Liu et al. (2022) and
comparable to the sample complexity of the model-based
DRRL algorithm by Panaganti & Kalathil (2022).

(a) Environment (b) Nonrobust

(c) ρ = 1.0 (d) ρ = 1.5

Figure 1. The Cliffwalking environment and the learned policies
for different ρ’s.

Experiment Setup: The Cliffwalking task is commonly
used in risk-sensitive RL research (Delétang et al., 2021).
Compared to the Frozen Lake environment used by Pana-
ganti & Kalathil (2022), Cliffwalking offers a more intu-
itive visualization of robust policies (see Figure 1). The
task involves a robot navigating from an initial state of
(2, 0) to a goal state of (2, 3). At each step, the robot is
affected by wind, which causes it to move in a random di-
rection with probability p. Reaching the goal state earns
a reward of +5, while encountering a wave in the wa-
ter region {(3, j) | 0 ≤ j ≤ 3} results in a penalty of
−1. We train the agent in the nominal environment with
p = 0.5 for 3 million steps per run, using an ε-greedy
exploration strategy with ε = 0.1. We evaluate its perfor-
mance in perturbed environments, varying the choices of
k and ρ to demonstrate different levels of robustness. We
set the stepsize parameters according to Assumption B.1:
ζ1(t) = 1/(1+(1−γ)t0.6), ζ2(t) = 1/(1+0.1(1−γ)t0.8),
and ζ3(t) = 1/(1 + 0.05(1 − γ) ∗ t), where the discount
factor is γ = 0.9.

Robustness: To evaluate the robustness of the learned poli-

6

Single-Trajectory DRRL

0.5 0.6 0.7 0.8 0.9
p

0

1

2

3

4

Re
tu

rn

0
0.5
1.0
1.5
R

(a) Return

0.5 0.6 0.7 0.8 0.9
p

0

5

10

15

20

25

St
ep

s

0
0.5
1.0
1.5
R

(b) Episode length

1.5 2.0 2.5 3.0 3.5 4.0
k

4

3

2

1

0

1

Va
lu

e

=0.05
=0.1
=0.2
=0.4

(c) Value of various k and ρ

Figure 2. Averaged return and steps with 100 random seeds in the perturbed environments. ρ = 0 corresponds to the non-robustQ-learning.
R denotes the R-contamination ambiguity set.

0 0.075 0.15
Million Steps

3

2

1

0

1

2

Va
lu

e

k=2.0

0 0.075 0.15
Million Steps

3

2

1

0

1

2
Va

lu
e

k=3.0

0 0.075 0.15
Million Steps

2

1

0

1

2

Va
lu

e

k=4.0

non-robust = 0.2 = 0.4

Figure 3. The training curves in the Cliffwalking environment. Each curve is averaged over 100 random seeds and shaded by their standard
deviations. The dashed line is the optimal robust value with corresponding k and ρ.

cies, we compare their cumulative returns in perturbed
environments with p ∈ {0.5, 0.6, 0.7, 0.8, 0.9} over 100
episodes per setting. We visulize the decision at each status
in Figure 1 with different robustness level ρ. In particular,
the more robust policy tends to avoid falling into the water,
thus arrives to the goal state with a longer path by keeping
going up before going right. Figure 2a shows the return
distribution for each policy. Figure 2b displays the time
taken for the policies to reach the goal, and the more robust
policy tends to spend more time, which quantitatively sup-
ports our observations in Figure 1. Interestingly, we find
that the robust policies outperform the nonrobust one even
in the nominal environment. For the different ρ’s, ρ = 1.0 is
the best within a relatively wide range (p ∈ {0.6, 0.7, 0.8}),
while ρ = 1.5 is preferred in the environment of extreme
pertubation (p = 0.9). This suggests that DRRL provides a
elegant trade-off for different robustness preferences.

We also compare our model-free DRRL algorithm with
the robust RL algorithm presented in Wang & Zou (2021),
which also supports training using a single trajectory. The
algorithm in Wang & Zou (2021) uses an R-contamination
ambiguity set. We select the best value of R from 0.1 to
0.9 and other detailed descriptions in Appendix A. In most
cases, the R-contamination based algorithm performs very
similarly to the non-robust benchmark, and even performs
worse in some cases (i.e., p = 0.8 and 0.9), due to its

excessive conservatism. As we mentioned in Section 3.1,
larger k would render the the risk measure less conservative
and thus less sensitive to the change in the ball radius ρ,
which is empirically confirmed by Figure 2c.

Sample Complexity: The training curves in Figure 3 depict
the estimated value maxa Q̂(s0, a) (solid line) and the op-
timal robust value V ∗(s0) (dashed line) for the initial state
s0. The results indicate that the estimated value converges
quickly to the optimal value, regardless of the values of k
and ρ. Importantly, our DRQ algorithm achieves a similar
convergence rate to the non-robust baseline (represented by
the black line). We further compare our algorithm with two
robust baselines: the DRQ algorithm with a weak simulator
proposed by Liu et al. (2022) (referred to as Liu’s), and the
model-based algorithm introduced by Panaganti & Kalathil
(2022) (referred to as Model) in Figure 4. To ensure a fair
comparison, we set the same learning rate, ζ3(t), for our
DRQ algorithm and the Q-table update loop of the Liu’s
algorithm, as per their recommended choices.

Our algorithm converges to the true DR value at a similar
rate as the model-based algorithm, while the Liu’s algorithm
exhibits substantial deviation from the true value and con-
verges relatively slowly. Our algorithm’s superior sample
efficiency is attributed to the utilization of first-order infor-
mation to approximate optimal dual variables, whereas Liu’s
relies on a large amount of simulation data for an unbiased

7

Single-Trajectory DRRL

0 0.075 0.15
Sample Size (Million)

0

1

2

3

Va
lu

e

= 0.1, k = 2.0

0 0.075 0.15
Sample Size (Million)

1

0

1

2

3

Va
lu

e

= 0.2, k = 2.0

0 0.075 0.15
Sample Size (Million)

4

3

2

1

0

1

2

3

Va
lu

e

= 0.4, k = 2.0

Liu's Model DRQ (Ours)

Figure 4. Sample complexity comparisons in Cliffwalking environment with Liu’s and Model-based algorithms. Each curve is averaged
over 100 random seeds and shaded by their standard deviations.

estimator.

4.2. Practical Implementation

We validate the practicality of our DRQ framework by im-
plementing a practical version, called the Deep Distribution-
ally Robust Q-learning (DDRQ) algorithm, based on the
DQN algorithm (Mnih et al., 2015). We apply this algo-
rithm to two classical control tasks from the OpenAI Gym
(Brockman et al., 2016): CartPole and LunarLander.

Our practical algorithm, denoted as Algorithm 2, is a variant
of Algorithm 1. Specifically, we adopt the Deep Q-Network
(DQN) architecture (Mnih et al., 2015) and employ two sets
of neural networks as functional approximators. One set,
Qθ1 and Qθ2 , serves as approximators for the Q function,
while the other set, ηθ3 and ηθ4 , approximates the distribu-
tionally robust dual variable η. To enhance training stability,
we introduce a target network, Qθ2 , for the fast Q network
Qθ1 and ηθ4 for the fast dual variable η network ηθ3 .

Due to the approximation error introduced by neural net-
works and to further improve sample efficiency, our prac-
tical DDRQ algorithm adopts a two-timescale update ap-
proach. In this approach, our Q network aims to minimize
the Bellman error, while the dual variable η network strives
to maximize the DR Q value defined in Equation 5. It’s
important to note that the two-timescale update approach
could introduce bias in the convergence of the dual vari-
able, and thus the dual variable η may not the optimal dual
variable for the primal problem. Given the primal-dual
structure of this DR problem, this could render an even
lower target value for the Q network to learn. This approach
can be understood as a robust update strategy for our origi-
nal DRRL problem, share some spirits to the optimization
techniques used in other algorithms like Variational Autoen-
coders (VAE)(Kingma & Welling, 2013), Proximal Policy
Optimization (PPO)(Schulman et al., 2017), and Maximum
a Posteriori Policy Optimization (MPO) (Abdolmaleki et al.,
2018). Additional experimental details can be found in
Appendix A.3.

To assess the effectiveness of our DDRQ algorithm, we
compare it against the RFQI algorithm (Panaganti et al.,
2022), the soft-robust RL algorithm (Derman et al., 2018),
and the non-robust DQN and FQI algorithms. This com-
parison encompasses representative practical (robust) rein-
forcement learning algorithms for both online and offline
datasets. To evaluate the robustness of the learned poli-
cies, we introduce action and physical environment pertur-
bations. For action perturbation, we simulate the pertur-
bations by varying the probability ε of randomly select-
ing an action for both CartPole and LunarLander tasks.
We test with ε ∈ {0, 0.1, 0.2, · · · , 1.0} for CartPole and
ε ∈ {0, 0.1, 0.2, · · · , 0.6} for LunarLander. Regarding
physical environment perturbation in LunarLander, we de-
crease the power of all the main engine and side engines by
the same proportions, ranging from 0 to 0.6. For CartPole,
we reduce the ”force mag” parameter from 0.2 to 0.8. We set
the same ambiguity set radius for both our DDRQ and RFQI
algorithm for fair comparisons. Figure 5 illustrates how
our DDRQ algorithm successfully learns robust policies
across all tested tasks, achieving comparable performance
to other robust counterparts such as RFQI and SR-DQN.
Conversely, the non-robust DQN and FQI algorithms fail to
learn robust policies and deteriorate significantly even under
slight perturbations. It is worth noting that RFQI does not
perform well in the LunarLander environment, despite us-
ing the official code provided by the authors. This outcome
could be attributed to the restriction to their TV distance
in constructing the ambiguity set, while our Creass-Read
ambiguity set can be flexibily chosen to well adopted to the
environment nature. Additionally, the soft-robust RL algo-
rithm requires generating data based on multiple models
within the ambiguity set. This process can be excessively
time-consuming, particularly in large-scale applications.

5. Conclusion
In this paper, we introduce our DRQ algorithm, a fully
model-free DRRL algorithm trained on a single trajectory.

8

Single-Trajectory DRRL

0 20 40 60 80 100
Prob. of picking a random action

50

100

150

200

Re
tu

rn
 in

 1
00

 G
am

es CartPole (AP)

80 70 60 50 40 30 20
Change from Nominal Value (%)

100

150

200

CartPole (FMP)

0 10 20 30 40 50 60
Prob. of picking a random action

100

0

100

200

300

Re
tu

rn
 in

 1
00

 G
am

es LunarLander (AP)

60 50 40 30 20 10 0
Change from Nominal Value (%)

100

0

100

200

300
LunarLander (EPP)

RFQI FQI DQN SR-DQN DDRQ (Ours)

Figure 5. The return in the CartPole and LunarLander environment. Each curve is averaged over 100 random seeds and shaded by their
standard deviations. AP: Action Perturbation; FMP: Force Mag Perturbation; EPP: Engines Power Perturbation.

By leveraging the stochastic approximation framework, we
effectively tackle the joint optimization problem involving
the state-action function and the DR dual variable. Through
an extension of the classic two-timescale stochastic approxi-
mation framework, we establish the asymptotic convergence
of our algorithm to the optimal DR policy. Our extensive
experimentation showcases the convergence, sample effi-
ciency, and robustness improvements achieved by our ap-
proach, surpassing non-robust methods and other robust
RL algorithms. Our DDRQ algorithm further validates the
practicality of our algorithmic framework.

Acknowledgements
This work is generously supported by the General Re-
search Fund [Grants 16208120, and 16214121] from the
Hong Kong Research Grants Council, the NSF grants CCF-
2312205 and CCF-2312204.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning, especially to enhance the robustness
of the widely-used reinforcement learning algorithms. There
are many potential societal consequences of our work, none
which we feel must be specifically highlighted here.

References
Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R.,

Heess, N., and Riedmiller, M. Maximum a posteriori
policy optimisation. arXiv preprint arXiv:1806.06920,
2018.

Abdullah, M. A., Ren, H., Ammar, H. B., Milenkovic, V.,

Luo, R., Zhang, M., and Wang, J. Wasserstein Robust
Reinforcement Learning, 2019. URL http://arxiv.
org/abs/1907.13196.

Badrinath, K. P. and Kalathil, D. Robust reinforcement
learning using least squares policy iteration with provable
performance guarantees. In International Conference on
Machine Learning, pp. 511–520. PMLR, 2021.

Blanchet, J. H. and Glynn, P. W. Unbiased monte carlo for
optimization and functions of expectations via multi-level
randomization. In 2015 Winter Simulation Conference
(WSC), pp. 3656–3667. IEEE, 2015.

Borkar, V. S. Stochastic approximation: a dynamical sys-
tems viewpoint, volume 48. Springer, 2009.

Borkar, V. S. and Meyn, S. P. The ode method for con-
vergence of stochastic approximation and reinforcement
learning. SIAM Journal on Control and Optimization, 38
(2):447–469, 2000.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Cox, J. C., Ross, S. A., and Rubinstein, M. Option pricing:
A simplified approach. Journal of financial Economics, 7
(3):229–263, 1979.

Cressie, N. and Read, T. R. Multinomial goodness-of-fit
tests. Journal of the Royal Statistical Society: Series B
(Methodological), 46(3):440–464, 1984.

Delétang, G., Grau-Moya, J., Kunesch, M., Genewein, T.,
Brekelmans, R., Legg, S., and Ortega, P. A. Model-
free risk-sensitive reinforcement learning. arXiv preprint
arXiv:2111.02907, 2021.

9

http://arxiv.org/abs/1907.13196
http://arxiv.org/abs/1907.13196

Single-Trajectory DRRL

Derman, E., Mankowitz, D. J., Mann, T. A., and Mannor,
S. Soft-robust actor-critic policy-gradient. arXiv preprint
arXiv:1803.04848, 2018.

Duchi, J. C. and Namkoong, H. Learning models with uni-
form performance via distributionally robust optimization.
The Annals of Statistics, 49(3):1378–1406, 2021.

Goyal, V. and Grand-Clement, J. Robust markov decision
processes: Beyond rectangularity. Mathematics of Oper-
ations Research, 2022.

Ho, C. P., Petrik, M., and Wiesemann, W. Partial policy
iteration for l1-robust markov decision processes. J. Mach.
Learn. Res., 22:275–1, 2021.

Iyengar, G. N. Robust dynamic programming. Mathematics
of Operations Research, 30(2):257–280, 2005.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Lim, S. H., Xu, H., and Mannor, S. Reinforcement learning
in robust markov decision processes. Advances in Neural
Information Processing Systems, 26, 2013.

Liu, Z., Bai, Q., Blanchet, J., Dong, P., Xu, W., Zhou, Z.,
and Zhou, Z. Distributionally robust q-learning. In In-
ternational Conference on Machine Learning, pp. 13623–
13643. PMLR, 2022.

Ma, X., Liang, Z., Xia, L., Zhang, J., Blanchet, J., Liu, M.,
Zhao, Q., and Zhou, Z. Distributionally robust offline re-
inforcement learning with linear function approximation.
arXiv preprint arXiv:2209.06620, 2022.

Mannor, S., Simester, D., Sun, P., and Tsitsiklis, J. N. Bias
and variance in value function estimation. In Proceedings
of the twenty-first international conference on Machine
learning, pp. 72, 2004.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Neufeld, A. and Sester, J. Robust q-learning algorithm for
markov decision processes under wasserstein uncertainty.
ArXiv, abs/2210.00898, 2022.

Nilim, A. and El Ghaoui, L. Robust control of markov
decision processes with uncertain transition matrices. Op-
erations Research, 53(5):780–798, 2005.

Panaganti, K. and Kalathil, D. Sample complexity of ro-
bust reinforcement learning with a generative model. In
International Conference on Artificial Intelligence and
Statistics, pp. 9582–9602. PMLR, 2022.

Panaganti, K., Xu, Z., Kalathil, D., and Ghavamzadeh, M.
Robust reinforcement learning using offline data. Ad-
vances in neural information processing systems, 35:
32211–32224, 2022.

Roy, A., Xu, H., and Pokutta, S. Reinforcement learning
under model mismatch. Advances in neural information
processing systems, 30, 2017.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shi, L. and Chi, Y. Distributionally Robust Model-Based Of-
fline Reinforcement Learning with Near-Optimal Sample
Complexity. URL http://arxiv.org/abs/2208.
05767.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Tamar, A., Mannor, S., and Xu, H. Scaling up robust mdps
using function approximation. In International confer-
ence on machine learning, pp. 181–189. PMLR, 2014.

Tsitsiklis, J. N. Asynchronous stochastic approximation and
q-learning. Machine learning, 16:185–202, 1994.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds, T.,
Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I.,
Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M.,
Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V.,
Budden, D., Sulsky, Y., Molloy, J., Paine, T. L., Gulcehre,
C., Wang, Z., Pfaff, T., Wu, Y., Ring, R., Yogatama,
D., Wünsch, D., McKinney, K., Smith, O., Schaul, T.,
Lillicrap, T., Kavukcuoglu, K., Hassabis, D., Apps, C.,
and Silver, D. Grandmaster level in StarCraft II using
multi-agent reinforcement learning. 575(7782):350–354,
2019. doi: 10.1038/s41586-019-1724-z.

Wang, Y. and Zou, S. Online robust reinforcement learning
with model uncertainty. Advances in Neural Information
Processing Systems, 34:7193–7206, 2021.

Wiesemann, W., Kuhn, D., and Rustem, B. Robust markov
decision processes. Mathematics of Operations Research,
38(1):153–183, 2013.

Xu, H. and Mannor, S. Distributionally robust markov
decision processes. Advances in Neural Information Pro-
cessing Systems, 23, 2010.

Yang, I. Wasserstein distributionally robust stochastic con-
trol: A data-driven approach. IEEE Transactions on
Automatic Control, 66:3863–3870, 2018.

10

http://arxiv.org/abs/2208.05767
http://arxiv.org/abs/2208.05767

Single-Trajectory DRRL

Yang, W., Zhang, L., and Zhang, Z. Toward theoretical un-
derstandings of robust markov decision processes: Sam-
ple complexity and asymptotics. The Annals of Statistics,
50(6):3223–3248, 2022.

Zhou, Z., Zhou, Z., Bai, Q., Qiu, L., Blanchet, J., and Glynn,
P. Finite-sample regret bound for distributionally robust
offline tabular reinforcement learning. In International
Conference on Artificial Intelligence and Statistics, pp.
3331–3339. PMLR, 2021.

11

Single-Trajectory DRRL

Appendix
In the subsequent sections, we delve into the experimental specifics and provide the technical proofs that were not included
in the primary content.

In Section A, we commence by showcasing an additional experiment on the American call option. This aligns with the
convergence and sample complexity discussions from the main content. We then elucidate the intricacies of Liu’s algorithm
to facilitate a transparent comparison with our methodology. Lastly, we discuss the algorithmic intricacies of our DDRQ
algorithm and provide details on the experiments that were previously omitted.

In Section B, to prove Theorem 3.3, we begin by extending the two-timescale stochastic approximation framework to a
three-timescale one. Following this, we adapt it to our algorithm, ensuring all requisite conditions are met.

A. Additional Experiments Details
A.1. Experiment on the American Put Option Problem

In this section, we present additional experimental results from a simulated American put option problem (Cox et al., 1979)
that has been previously studied in robust RL literature (Zhou et al., 2021; Tamar et al., 2014). The problem involves
holding a put option in multiple stages, whose payoff depends on the price of a financial asset that follows a Bernoulli
distribution. Specifically, the next price sh+1 at stage h+ 1 follows,

sh+1 =

{
cush, w.p. p0,

cdsh, w.p. 1− p0,
(13)

where the cu and cd are the price up and down factors and p0 is the probability that the price goes up. The initial price s0

is uniformly sampled from [κ − ε, κ + ε], where κ = 100 is the strike price and ε = 5 in our simulation. The agent can
take an action to exercise the option (ah = 1) or not exercise (ah = 0) at the time step h. If exercising the option, the agent
receives a reward max(0, κ− sh) and the state transits into an exit state. Otherwise, the price will fluctuate based on the
above model and no reward will be assigned. Moreover we introduce a discount structure in this problem, i.e., the 1 reward
in the stage h+ 1 worths γ in stage h as our algorithm is designed for discounted RL setting. In our experiments, we set
H = 5, cu = 1.02, cd = 0.98 and γ = 0.95. We limit the price in [80, 140] and discretize with the precision of 1 decimal
place. Thus the state space size |S| = 602.

0.3 0.4 0.5 0.6 0.7
p

1.2

1.3

1.4

1.5

1.6

1.7

Re
tu

rn

0.0
0.1
0.2
0.4

Figure 6. Averaged return in the American call option problem. ρ = 0.0 is the non-robust Q-learning.

We first demonstrate the robustness gain of our DR Q-learning algorithm by comparing with the non-robust Q-learning
algorithm, and investigate the effect of different robustness levels by varying ρ. Each agent is trained for 107 steps with
an ε-greedy exploration policy of ε = 0.2 and evaluated in perturbed environments. We use the same learning rates for
the three timescales in our DR Q-learning algorithm as in the Cliffwalking environment: ζ1(t) = 1/(1 + (1 − γ)t0.6),
ζ2(t) = 1/(1 + 0.1 ∗ (1 − γ)t0.8), and ζ3(t) = 1/(1 + 0.01 ∗ (1 − γ)t). For the non-robust Q-learning we set the
same learning rate as in our Q-update, i.e., ζ3(t). We perturb the transition probability to the price up and down status

12

Single-Trajectory DRRL

p = {0.3, 0.4, 0.5, 0.6, 0.7}, and evaluate each agent for 5000 episodes. Figure 6 reports the average return and one standard
deviation level. The non-robust Q-learning performs best when the price tends to decrease and the market gets more
benefitial (p = {0.3, 0.4, 0.5}), which benefits the return of holding an American put option. However, when the prices tend
to increase and the market is riskier (p = {0.6, 0.7}), our DR Q-learning algorithm significantly outperforms the non-robust
counterpart, demonstrating the robustness gain of our algorithm against worst-case scenarios.

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

1.3

1.4

1.5

1.6

1.7

1.8

Va
lu

e

k=1.5

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

1.3

1.4

1.5

1.6

1.7

1.8
Va

lu
e

k=2.0

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Va
lu

e

k=3.0

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Va
lu

e

k=4.0

= 0.05 = 0.1 = 0.2 = 0.4 = 0.5

Figure 7. Convergence curve of DR Q-learning algorithm to the true DR value under different ρ’s and k’s. Each curve is averaged over 10
random seeds and shaded by their standard deviation. The dashed line is the optimal robust value with corresponding k and ρ.

We present the learning curve of our DR Q-learning algorithm with different ρ in Figure 7. Our algorithm can accurately
learn the DR value under different ρ’s and k’s within 0.1 million steps. We compare the sample efficiency of our algorithm
with the DR Q-learning algorithm in Liu et al. (2022) (referred to as Liu’s) and the model-based algorithm in Panaganti &
Kalathil (2022) (referred to as Model). We set a smaller learning rate for Liu’s as ζ(t) = 1/(1 + (1− γ)t). The reason is
setting the same learning rate ζ3(t) for their algorithm would render a much slower convergence performance, which is
not fair for comparisons. We use the recommended choice ε = 0.5 for the sampling procedure in Liu algorithm. Both DR
Q-learning and Liu are trained for 5 ∗ 107 steps per run, while the model-based algorithm is trained for 106 steps per run to
ensure sufficient samples for convergence. As shown in Figure 8, the model-based approach is the most sample-efficient,
converging accurately to the optimal robust value with less than 104 samples. Our DR Q-learning algorithm is slightly less
efficient, using 105 samples to converge. Liu algorithm is significantly less efficient, using 107 samples to converge. Note
that the model-based approach we compared here is to first obtain samples for each state-action pairs, and then conduct
the learning procedure to learn the optimal robust value. In particular, we need to specify the number of samples for each
state-action pair n. Then the total number of samples used is the sum of all these number, i.e., S×A×n, whose computation
manner is different from that in the model-free algorithms we used where each update requires one or a batch of new
samples.

To ensure self-containment, we provide the pseudocode for our implemented Liu algorithm (Algorithm 3) and the model-
based algorithm (Algorithm 2) below. These algorithms were not originally designed to solve the ambiguity set constructed
by the Cressie-Read family of f -divergences.

A.2. Liu’s Algorithm Descriptions

In this subsection, we provide the pseudo-code for the Liu algorithm, represented in Algorithm 2. Our intention is to
emphasize the differences in algorithmic design between their approach and ours.

Their algorithm, in particular, relies extensively on multi-level Monte Carlo, requiring the sampling of a batch of samples
for each state-action pair. Once they estimate the Doubly Robust (DR) value for a specific state-action pair, the samples
are promptly discarded and subsequently resampled from a simulator. To summarize, their algorithm exhibits significant
distinctions from ours in terms of algorithmic design.

A.3. Practical Experiments

In this section, we provide a comprehensive description of our Deep Distributionally Robust Q-learning (DDRQ) algorithm,
as illustrated in Algorithm 2, along with its experimental setup in the context of CaroPole and LunarLander.

Most of the hyperparameters are set the same for both LunarLander and CartPole. We choose Cressie-Read family parameter

13

Single-Trajectory DRRL

Algorithm 2 Distributionally Robust Deep Q-learning with Cressie-Read family of f -divergences

1: Input: Discount Factor γ, Radius of robustness ρ, Cressie-Read family parameter k, Q-network target update rate τQ
and η-network target update rate τη, mini-batch size N , maximum number of iterations T , start training timestep Ttr,
training network update frequency Ftr and target network update frequency Fup.

2: Init: Two state-action neural networks Qθ1 and Qθ2 , two dual neural network ηθ1 and ηθ2 , C = (1 +k ∗ (k− 1) ∗ρ)1/k.
3: for for t = 1, · · · , T do
4: Observe a state st and execute an action at using ε-greedy policy.
5: if t ≥ Ttr and t%Ftr then
6: Sample a minibatch B with N samples from the replay buffer.
7: Compute next-state target value for Q network

Qi = rt − γC ∗ (ηθ1(si, ai)−max
a∈A

Qθ1(si, ai))
k∗
+ , ∀i ∈ B

and for η network

Q′i = rt − γC ∗ (ηθ2(si, ai)−max
a∈A

Qθ2(si, ai))
k∗
+ , ∀i ∈ B.

8: Update θ1 = arg minθ
∑
i(Qi −Qθ(si, ai))2.

9: Update θ3 = arg maxθ
∑
iQ
′
i(θ).

10: end if
11: if t ≥ Ttr and t%Fup then
12: Update target network θ2 = (1− τQ)θ2 + τQθ2, θ4 = (1− τη)θ4 + τηθ3.
13: end if
14: end for
15: t = t+ 1

Environment Maximum Training Step T εEnd τQ τη

CartPole 1e8 0.05 1 0.05
LunarLander 3e7 0.2 0.5 0.1

Table 1. Different Hyperparamers between CartPole and LunarLander

k = 2, which is indeed the χ2 ambiguity set and we set ambiguity set radius as ρ = 0.3. For RFQI we also use the same ρ
for fair comparison. Our replay buffer size is set 1e6 and the batch size for training is set 4096. Our fast Q and η network
are update every 10 steps (Ftr = 10) and the target networks are updated every 500 steps (Fup = 500). The learning rate
for Q network is 2.5× 10−4 and for η network is 2.5× 10−3. The Q network and the η network both employ a dual-layer
structure, with each layer consisting of 120 dimensions. For exploration scheme, we choose epsilon-greedy exploration with
linearly decay epsilon with ending εEnd. The remain parameters tuned for each environments are referred in Table 1.

B. Multiple Timescale Convergence
We fix some notations that will be used in the following proof. For a positive integer n, [n] denotes the set {1, 2, · · · , n}. |A|
denotes the cardinality of the set A. We adopt the standard asymptotic notations: for two non-negative sequences an and bn,
an = O(bn) iff lim supn→∞ an/bn <∞. ∆d is the simplex on a d dimensional space, i.e., ∆d = {x :

∑d
i=1 xi = 1, xi ≥

0,∀i ∈ [d]}. For any vector x ∈ Rd and any semi-positive matrix A ∈ Rd×d with A � 0, we denote ‖x‖A :=
√
x>Ax. ‖·‖

is Euclidean norm.

B.1. Three Timescales Convergence Analysis

In this subsection, we outline the roadmap for establishing the a.s. convergence of the Algorithm 1. For ease of presentation,
our analysis is given for the synchronous case, where every entry of the Q function is updated at each timestep. Extension to
the asynchronous case, where only one state-action pair entry is updated at each timestep, follows Tsitsiklis (1994). Our

14

Single-Trajectory DRRL

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
Sample Size (log10N)

1.4

1.6

1.8

Va
lu

e

= 0.1, k = 2.0

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
Sample Size (log10N)

1.3

1.4

1.5

1.6

1.7

Va
lu

e

= 0.2, k = 2.0

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
Sample Size (log10N)

1.3

1.4

1.5

1.6

Va
lu

e

= 0.4, k = 2.0

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
Sample Size (log10N)

1.4

1.6

1.8

= 0.1, k = 4.0

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
Sample Size (log10N)

1.3

1.4

1.5

1.6

1.7

1.8
= 0.2, k = 4.0

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
Sample Size (log10N)

1.3

1.4

1.5

1.6

1.7

= 0.4, k = 4.0

Liu Model DRQ (Ours)

Figure 8. Sample complexity comparisons in American option environment with other DRRL algorithms. The dashed line is the optimal
robust value with corresponding k and ρ. The x-axis is in log10 scale. Each curve is averaged over 10 random seeds and shaded by their
one standard deviation. The dashed line is the optimal robust value with corresponding k and ρ.

approach is to generalize the classic machinery of two-timescale stochastic approximation (Borkar, 2009) to a three-timescale
framework, and use it to analyze our proposed algorithm. We rewrite the Algorithm 1 as

Zn+1 = Zn + ζ1(n)[f(Zn, ηn, Qn) +MZ
n], (14)

ηn+1 = ηn + ζ2(n)[g(Zn, ηn, Qn) + εηn], (15)

Qn+1 = Qn + ζ3(n)[h(Zn, ηn, Qn) + εQn]. (16)

Here, we use Zn = (Zn,1, Zn,2) to represent the Zn,1 and Zn,2 jointly. To echo with our algorithm, f = (f1, f2) and
MZ
n = (MZ

n,1,M
Z
n,2) are defined as,

f1(Zn, ηn, Qn)(s, a) = Es′ [(ηn(s, a)−max
a′

Qn(s′, a′))k∗+ − Zn,1(s, a)],

f2(Zn, ηn, Qn)(s, a) = Es′n [(ηn(s, a)−max
a′

Qn(s′, a′))k∗−1
+ − Zn,2(s, a)],

MZ
n,1(s, a) = (ηn(s, a)−max

a′
Qn(s′, a′))k∗+ − Zn,1(s, a)− f1(Zn, ηn, Qn)(s, a),

MZ
n,2(s, a) = (ηn(s, a)−max

a′
Qn(s′, a′))k∗−1

+ − Zn,2(s, a)− f2(Zn, ηn, Qn)(s, a).

In the update of ηn (Equation 15), g and εηn are defined as

g(Zn, ηn, Qn)(s, a) = −ck(ρ)E[(ηn(s, a)−max
a′∈A

Qn(s′, a′))k∗+]
1
k∗
−1 · E[(ηn(s, a)−max

a′∈A
Qn(s′, a′))k∗−1

+] + 1,

εηn(s, a) = −ck(ρ)Z
1
k∗
−1

n,1 (s, a) · Zn,2(s, a) + 1− g(Zn, ηn, Qn)(s, a).

Finally in the update of Qn (Equation 16), h and εQn are defined as

h(Zn, ηn, Qn)(s, a) = r(s, a)− γ(ck(ρ)(EP [(ηn(s, a)−max
a′∈A

Qn(s′, a′))k∗+])
1
k∗ − ηn(s, a)),

εQn (s, a) = r(s, a)− γ(ck(ρ)Z
1
k∗
n,1(s, a)− ηn(s, a))− h(Zn, ηn, Qn)(s, a).

The algorithm 1 approximates the dynamic described by the system of f , g and h through samples along a single trajectory, with the
resulting approximation error manifesting as martingale noise MZ

n conditioned on some filtration Fn and the error terms εηn and εQn .

To analyze the dynamic of algorithm 1, we first obtain the continuous dynamic of f, g, and h using ordinary differential equations (ODEs)
analysis. The second step is to analyze the stochastic nature of the noise term MZ

n and the error terms εηn and εQn , to ensure that they are
negligible compared to the main trend of f , g, and h, which is achieved by the following stepsizes,

15

Single-Trajectory DRRL

Condition B.1. The stepsizes ζi(n), i = 1, 2, 3 satisfy∑
n

ζi(n) =∞,
∑
n

ζ2i (n) <∞, ζ1(n) = o(ζ2(n)), ζ2(n) = o(ζ3(n)).

These stepsize schedules satisfy the standard conditions for stochastic approximation algorithms, ensuring that (1). the key quantities in
gradient estimator Zn update on the fastest timescale, (2). the dual variable for the DR problem, ηn, update on the intermediate timescale;
and (3). theQ table updates on the slowest timescale. Examples of such stepsize are ζ1(n) = 1

1+n0.6 , ζ2(n) = 1
1+n0.8 and ζ3(n) = 1

1+n
.

Notably, the first two conditions in Condition B.1 ensure the martingale noise is negligible. The different stepsizes for the three loops
specificed by the third and fourth conditions ensures that Zn,1 and Zn,2 are sufficiently estimated with respect to the ηn and Qn, and
these outer two loops are free from bias or noise in the stochastic approximation sense.

Under Condition B.1, when analyzing the behavior of the Zn, the ηn and the Qn can be viewed as quasi-static. To study the behavior of
the fastest loop, we analyze the following ODEs:

Ż(t) = f(Z(t), β(t), Q(t)), η̇(t) = 0, Q̇(t) = 0, (17)

and prove that ODEs (17) a.s. converge to λ
′′
1 (η,Q) for proper η and Q and some mapping λ

′′
1 . Similarly, Qn can be viewed as fixed

when analyzing the behavior of ηn, and the corresponding ODEs to understand its behavior are

η̇(t) = g(λ′′1 (η(t), Q(t)), η(t), Q(t)), Q̇(t) = 0. (18)

By exploiting the dual form of the distributionally robust optimization problem, we can prove these ODEs converge to the set
{λ′1(Q), λ′2(Q), Q|Q ∈ V } for some mapping λ′1 and λ′2 with V is the set containing all the mapping from S to R. Lastly, we
examine the slowest timescale ODE given by

Q̇(t) = h(λ′1(Q(t)), λ′2(Q(t)), Q(t)), (19)

and employ our analysis to establish the almost sure convergence of Algorithm 1 to the globally optimal pair (Z?1 , Z
?
2 , η

?, Q?).
Lemma B.2 (Discrete Gronwall inequality). Let {xn, n ≥ 0} (resp. {an, n ≥ 0}) be nonnegative (resp. positive) sequences and
C,L ≥ 0 scalars such that for all n,

xn+1 ≤ C + L

(
n∑

m=0

amxm

)
.

Then for Tn =
∑n
m=0 am,

xn+1 ≤ CeLTn .
Lemma B.3 (Gronwall inequality). For continuous u(·), v(·) ≥ 0 and scalars C,K, T ≥ 0

u(t) ≤ C +K

∫ t

0

u(s)v(s)ds, ∀t ∈ [0, T],

implies
u(t) ≤ CeK

∫ T
0 v(s)ds, ∀t ∈ [0, T].

B.2. Stability Criterion

Consider the stochastic approximation scheme zn ∈ RN given by

zn+1 = zn + an [g (zn) +Mn+1] ,

with the following Condition:
Condition B.4. g : RN → RN is Lipschitz.
Condition B.5. The sequence {an} ⊂ R satisfies

∑
n an =∞,

∑
n a

2
n <∞.

Condition B.6. {Mn} is a martingale difference sequence with respect to the filtration Fn = σ (zm,Mm,m ≤ n), there exists K > 0
such that E

[
‖Mn+1‖2 | Fn

]
≤ K(1 + ‖zn‖2) a.s..

Condition B.7. The functions gd(z) = g(dz)/d, d ≥ 1 satisfy gd(z)→ g∞(z) as d→∞ uniformly on compacts for some continuous
function g∞ : RN → RN . In addition, the ODE

ż(t) = g∞(z(t))

has the origin as its globally asymptotically stable equilibrium.

We then have
Lemma B.8. Under Condition B.4 to B.6, we have supn ‖zn‖ <∞ a.s.

See Section 2.2 and 3.2 in Borkar (2009) for the proof. As the stability proofs in Section 3.2 of Borkar (2009) are path-wise, we can apply
this result to analyze multiple timescales dynamic.

16

Single-Trajectory DRRL

B.3. Three Timescales Convergence Criterion

Consider the scheme

xn+1 = xn + an
[
f (xn, yn, zn) +M

(1)
n+1

]
(20)

yn+1 = yn + bn
[
g (xn, yn, zn) +M

(2)
n+1

]
(21)

zn+1 = zn + cc
[
h (xn, yn, zn) +M

(3)
n+1

]
(22)

where f : Rd+k+p → Rd, g : Rd+k+p → Rk, h : Rd+k+p → Rp, {M (i)
n }, i = 1, 2, 3 are martingale difference sequences with respect

to the σ-fields Fn = σ
(
xm, ym,M

(1)
m ,M

(2)
m ,M

(3)
m ;m ≤ n

)
, and the an, bn, cn form decreasing stepsize sequences.

It is instructive to compare the stochastic update algorithms from Equations 20 to 22 with the following o.d.e.,

ẋ(t) =
1

a
f(x(t), y(t), z(t)),

ẏ(t) =
1

b
g(x(t), y(t), z(t)),

ż(t) =
1

c
h(x(t), y(t), z(t)),

in the limit that a, b, c→ 0 and a = o(b), c = o(b).

We impose the following conditions, which are necessary for the a.s. convergence for each timescale itself and are commonly used in the
literature of stochastic approximation algorithms, e.g., (Borkar, 2009).

Condition B.9. f and g is L-Lipschitz map for some 0 < L <∞ and h is bounded.

Condition B.10. ∑
n

an =
∑
n

bn =
∑
n

cn =∞,
∑
n

(a2n + b2n + c2n) <∞, and bn = o(an), cn = o(bn).

Condition B.11. For i = 1, 2, 3 and n ∈ N+, {M (i)
n } is a martingale differeence sequence with respect to the increasing family of

σ-fields Fn. Furthermore, there exists some K > 0, such that for i = 1, 2, 3 and n ∈ N+,

E[‖M (i)
n+1‖

2|Fn] ≤ K(1 + ‖xn‖2 + ‖yn‖2 + ‖zn‖2).

Condition B.12. supn(‖xn‖+ ‖yn‖+ ‖zn‖) <∞, a.s..

Condition B.13. For each y ∈ Rk and z ∈ Rp, ẋ(t) = f(x(t), y, z) has a globally asymptotically stable equilibrium λ1(y, z), where
λ1 : Rk+p → Rd is a L-Lipschitz map for some L > 0.

Condition B.14. For each z ∈ Rp, ẏ(t) = g(λ1(y(t), z), y(t), z) has a globally asymptotically stable equilibrium λ2(z), where
λ2 : Rp → Rk is a L-Lipschitz map for some L > 0.

Condition B.15. ż(t) = h(λ1(z(t)), λ2(z(t)), z(t)) has a globally asymptotically stable equilibrium z?.

Conditions B.9, B.10, B.11 and B.12 are necessary for the a.s. convergence for each timescale itself. Moreover, Condition B.12 itself
requires Conditions like B.9, B.10, B.11, with an extra condition like Condition B.6. Instead, we need to prove the boundedness for each
timescale, thus the three timescales version is as follow

Condition B.16. The ODE

ż(t) = f∞(x(t), y, z)

ẏ(t) = g∞(λ1(y(t), z), y(t), z)

ż(t) = h∞(λ1(z(t)), λ2(z(t)), z(t))

all have the origin as their globally asymptotically stable equilibrium for each y ∈ Rk and z ∈ Rp, where

f∞ = lim
d→∞

f(dx)

d
, g∞ = lim

d→∞

g(dx)

d
, and h∞ = lim

d→∞

h(dx)

d
.

We have the following results, which appears as a three timescales extension of Lemma 6.1 in Borkar (2009) and serves as a auxiliary
lemma for the our a.s. convergence.

Lemma B.17. Under the conditions B.9, B.10, B.11 and B.12. (xn, yn, zn)→ {λ′1(z), λ′2(z), z : z ∈ Rp} a.s..

17

Single-Trajectory DRRL

Proof. Rewrite Equations 21 and 22 as

yn+1 = yn + an
[
ε1,n +M

(2)′

n+1

]
zn+1 = zn + an

[
ε2,n +M

(3)′

n+1

]
,

where ε1,n = bn
an
g(xn, yn, zn), ε2,n = cn

an
h(xn, yn, zn), M (2)′

n+1 = bn
an
M

(2)
n+1, M (3)′

n+1 = cn
an
M

(3)
n+1. Note that ε1,n, ε2,n → 0 as n→∞.

Consider them as the special case in the third extension in Section 2.2 in Borkar (2009) and then we can conclude that (xn, yn, zn)
converges to the internally chain transitive invariant sets of the o.d.e.,

ẋ(t) = h(x(t), y(t), z(t))

ẏ(t) = 0

ż(t) = 0,

which implies that (xn, yn, zn)→ {λ′1(y, z), y, z : y ∈ Rk, z ∈ Rp}.

Rewrite Equation 22 again as

zn+1 = zn + bn
[
ε′2,n +M

(3)′′

n+1

]
,

where ε′2,n = cn
bn
h(xn, yn, zn) and M (3)′′

n+1 = cn
bn
M

(3)
n+1. We use the same extension again and can conclude that (xn, yn, zn) converges

to the internally chain transitive invariant sets of the o.d.e.,

ẏ(t) = g(λ′1(y(t)), y(t), z(t))

ż(t) = 0.

Thus (xn, yn, zn)→ {λ1(y), λ2(z), z : z ∈ Rp}.

Theorem B.18. Under the Condition B.9 to B.16, (xn, yn, zn)→ (λ1(z∗), λ2(z∗), z∗).

Proof. Let t(0) = 0 and t(n) =
∑n−1
i=0 ci for n ≥ 1. Define the piecewise linear continuous function z̃(t), t ≥ 0 where z̃(t(n)) = zn

and z̃(t) = t(n+1)−t
t(n+1)−t(n)zn+1 + t−t(n)

t(n+1)−t(n)zn for t ∈ [t(n), t(n + 1)] with any n ∈ N . Let ψn =
∑n−1
i=0 ciM

(3)
i+1, n ∈ N+. For any

t ≥ 0, denote [t] = max{s(n) : s(n) ≤ t}. Then for n,m ≥ 0, we have

z̃(t(n+m)) = z̃(t(n)) +

m−1∑
k=1

cn+kh(xn+k, yn+k, zn+k) + (ψm+n+1 − ψn)

= z̃(t(n)) +

∫ t(n+m)

t(n)

h(λ1(z(s)), λ2(z(s)), z(s))ds

+

∫ t(n+m)

t(n)

(h(λ1(z([s])), λ2(z([s])), z([s]))− h(λ1(z(s)), λ2(z(s)), z(s)))ds

+

m−1∑
k=0

cn+k(h(xn+k, yn+k, zn+k)− h(λ1(zn+k), λ2(zn+k), zn+k))

+ (ψn+m+1 − ψn). (23)

We further define zt(n)(t) as the trajectory of ż(t) = g(λ1(z(t)), λ2(z(t)), z(t)) with zt(n)(t(n)) = z̃(t(n)).

zt(n)(t(n+m)) = z̃(t(n)) +

∫ t(n+m)

t(n)

h(λ1(zt(n)(s)), λ2(zt(n)(s)), zt(n)(s))ds. (24)

18

Single-Trajectory DRRL

Taking the difference between Equation 23 and the Equation 24 we have

|z̃(t(n+m))− zt(n)(t(n+m))|

=

m−1∑
k=0

cn+k(h(λ1(z̃(t+ k)), λ2(z̃(t+ k)), z̃(t+ k))− h(λ1(z(t(n+ k))), λ2(z(t(n+ k))), z(t(n+ k))))︸ ︷︷ ︸
+ |
∫ t(n+m)

t(n)

(h(λ1(z([t])), λ2(z([t])), z([t]))− h(λ1(z(s)), λ2(z(s)), z(s)))ds|︸ ︷︷ ︸
I

+ |
m−1∑
k=1

cn+k(h(xn+k, yn+k, zn+k)− h(λ1(zn+k), λ2(zn+k), zn+k))|︸ ︷︷ ︸
II

+ |ψn+m+1 − ψn|︸ ︷︷ ︸
III

.

We analyze the I term. For notation simplicity we ignore the supsript t(n).

|h(λ1(z([t])), λ2(z([t])), z([t]))− h(λ1(z(t)), λ2(z(t)), z(t))|
= |(h(λ1(z([t])), λ2(z([t])), z([t]))− h(λ1(z([t])), λ2(z([t])), z(t)))|

+ |(h(λ1(z([t])), λ2(z([t])), z(t))− h(λ1(z([t])), λ2(z([t])), z([t])))|
= |(h(λ1(z([t])), λ2(z([t])), z([t]))− h(λ1(z([t])), λ2(z(t)), z(t)))|

+ |h(λ1(z([t])), λ2(z([t])), z(t))− h(λ1(z([t])), λ2(z([t])), z(t))|
+ |(h(λ1(z([t])), λ2(z([t])), z(t))− h(λ1(z([t])), λ2(z([t])), z([t])))|. (25)

By the Lipschitzness of the h we have

‖h(x)− h(0)‖ ≤ L‖x‖,

which implies

‖h(x)‖ ≤ ‖h(0)‖+ L‖x‖.

‖zt(n)(t)‖ ≤ ‖z̃(s)‖+

∫ t

s

‖h(zt(n)(s))‖ds

≤ ‖z̃(s)‖+

∫ t

s

(‖h(0)‖+ L‖zt(n)(s)‖)ds

≤ (‖z̃(s)‖+ ‖h(0)‖T) + L

∫ t

s

‖zt(n)(s)‖ds.

By Gronwall’s inequality (Lemma B.3), we have

‖zt(n)(t)‖ ≤ (C + ‖h(0)‖T)eLT , ∀t ∈ [t(n), t(n+m)].

Thus for all t ∈ [t(n), t(n+m)], we have

‖h(λ1(zt(n)(t)), λ2(zt(n)(t)), zt(n)(t))‖ ≤ CT := ‖h(0)‖+ L(C + ‖h(0)‖T)eLT <∞, a.s..

For any k ∈ [m− 1] and t ∈ [t(n+ k), t(n+ k + 1)],

‖zt(n)(t)− zt(n)(t(n+ k))‖ ≤ ‖
∫ t

t(n+k)

h(λ1(zt(n)(s)), λ2(zt(n)(s)), zt(n)(s))ds‖

≤ CT (t− t(n+ k))

≤ CT a(n+ k),

19

Single-Trajectory DRRL

where the last inequality is from the construction of {t(n) : n ∈ N+}. Finally we can conclude

‖
∫ t(n+m)

t(n)

(h(λ1(z([s])), λ2(z([s])), z(s))− h(λ1(z([s])), λ2(z([s])), z([s])))ds‖

≤
∫ t(n+m)

t(n)

L‖z(s)− z([s])‖ds

= L

m−1∑
k=0

∫ t(n+k−1)

t(n+k)

‖z(s)− z(t(n+ k))‖ds

≤ CTL
m−1∑
k=0

c2n+k

≤ CTL
∞∑
k=0

c2n+k → 0, a.s..

For the III term, it converges to zero from the martingale convergence property.

Subtracting equation 23 from 24 and take norms, we have

‖z̃(t(n+m))− zt(n)(t(n+m))‖

≤ L
m−1∑
i=0

cn+i‖z̃(t(n+ i))− zt(n)(t(n+ i))‖

+ CTL
∑
k≥0

c2n+k + sup
k≥0
‖δn,n+k‖, a.s..

Define KT,n = CTL
∑
k≥0 c

2
n+k + supk≥0‖δn,n+k‖. Note that KT,n → 0 a.s. n→∞. Let ui = ‖x̃(t(n+ i))− xt(n)(t(n+ i))‖.

Thus, above inequality becomes

um ≤ KT,n + L

m−1∑
i=0

cn+iui.

Thus the above inequality becomes

z(t(n+m)) ≤ KT,n + L

m−1∑
k=0

ckz(t(n+ k)).

Note that u0 = 0 and
∑m−1
i=0 bi ≤ T , then using the discrete Gronwall lemma (Lemma B.2) we have

sup
0≤i≤m

ui ≤ KT,ne
LT .

Following the similar logic as in Lemma 1 in Borkar (2009), we can extend the above result to the case ‖z̃(t)− zt(n)(t)‖ → 0 where
t ∈ [0, T].

Then using the proof of Theorem 2 of Chapter 2 in Borkar (2009), we get zn → z∗ a.s. and thus by Lemma B.17 the proof can be
concluded.

C. Convergence of the DR Q-learning Algorithm
Before we start the proof of the DR Q-learning algorithm, we first introduce the following lemma.

Lemma C.1. Denote η∗ = arg maxη σk(X, η) = −ck(ρ)EP [(η − X)k∗+]
1
k∗ + η. Given that X(ω) ∈ [0,M], then we have

η∗ ∈ [0, ck(ρ)
ck(ρ)−1

M].

20

Single-Trajectory DRRL

Proof. Note that for η = minωX(ω), −ck(ρ)EP [(η −X)k∗+]
1
k∗ + η = minωX(ω) ≥ 0. Also we know that when η ≥ ck(ρ)

ck(ρ)−1
M ,

− ck(ρ)EP [(η −X)k∗+]
1
k∗ + η

≤− ck(ρ)EP [(η −M)k∗+]
1
k∗ + η

=− ck(ρ)(η −M) + η

≤0.

Then we can conclude that η∗ ≤ ck(ρ)
ck(ρ)−1

M . Moreover, as X(ω) ≥ 0, we know σk(X, 0) = 0, which concludes that η∗ ∈
[0, ck(ρ)

ck(ρ)−1
M].

Note that Qn ∈ [0, 1
1−γ] when reward is bounded by [0, 1]. Thus M = 1

1−γ in our case and then we denote η = ck(ρ)
ck(ρ)−1

M . Now we are
ready to prove the convergence of the DR Q-learning algorithm. For theoretical analysis, we consider the clipping version of our DR
Q-learning algorithm.

Proof of Theorem 3.3. We define the filtration generated by the historical trajectory,

Fn = σ({(st, at, s′t, rt)}t∈[n−1], sn, an).

In the following analysis, we fix for a (s, a) ∈ S ×A but ignore the (s, a) dependence for notation simplicity. Following the roadmap in
Section 3.4, we rewrite the algorithm as

Zn+1,1 = Zn,1 + ζ1(n)[f1(Zn,1, Zn,2, ηn, Qn) +M
(1)
n+1], (26)

Zn+1,2 = Zn,2 + ζ1(n)[f2(Zn,1, Zn,2, ηn, Qn) +M
(2)
n+1], (27)

ηn+1 = Γη [ηn + ζ2(n)f3(Zn,1, Zn,2, ηn, Qn)] , (28)
Qn+1 = ΓQ[Qn + ζ3(n)[f4(Zn,1, Zn,2, ηn, Qn)]]. (29)

Here for theoretical analysis, we add a clipping operator Γη(x) = min(max(x, 0), η) and ΓQ(x) = min(max(x, 0),M) compared
with the algorithm presented in the main text.

We first proceed by first identifying the terms in Equation 26 and 27 and studying the corresponding ODEs

Q̇(t) = 0,

η̇(t) = 0,

Ż1(t) = f1(Z1(t), Z2(t), η(t), Q(t)).

Ż2(t) = f2(Z1(t), Z2(t), η(t), Q(t)).

As f1 and f2 is in fact irrelavant to the Z2 and Z1, we analyze their equilibria seperately. For notation convenience, we denote
yn(s) = maxa′∈AQn(s, a′).

For ODE 26 and each ηn ∈ R, Qn ∈ S × A → R, it is easy to know there exists a unique global asymtotically stable equilibrium
Z?n,1 = λ1(ηn, yn) = E[(ηn − yn)k∗+]. Similarly, For ODE 27 and each ηn ∈ R, Qn ∈ S × A → R, there exists a unique global
asymtotically stable equilibrium Z?n,2 = λ2(η, y) = E[(ηn − yn)k∗−1

+].

Second, M (1)
n+1 = (ηn − yn)y∗+ −E[(ηn − yn)y∗+] and M (2)

n+1 = (ηn − yn)y∗−1
+ −E[(ηn − yn)y∗−1

+]. Note that for any (s, a) ∈ S ×A,
ηn(s, a) ≤ η, yn(s′) ≤M and M ≤ η. Thus |(ηn(s, a)− yn(s′))y∗+ | ≤ ηy∗ , which leads to |M (1)

n+1(s, a)| = |(ηn(s, a)− yn(s′))y∗+ −
E[(ηn(s, a)− yn(s′))y∗+]| ≤ ηk∗ .

Since ‖yn‖∞ ≤ ‖Qn‖∞ and (x− y)2+ ≤ x2 + y2 for any x, y, we have,

E[‖M (1)
n+1‖

2|Fn]

= E[‖(ηn − yn)y∗+ − E[(ηn − yn)y∗+]‖2|Fn]

≤ K1(1 + ‖Zn,1‖2 + ‖Zn,2‖2 + ‖Qn‖2 + ‖ηn‖2),

where K1 = Sη2k∗ . Similarly, we can conclude that E[‖M (2)
n+1‖2|Fn] ≤ K2(1 + ‖Zn,1‖2 + ‖Zn,2‖2 + ‖Qn‖2 + ‖ηn‖2) for some

K2 = Sη2(k∗−1).

21

Single-Trajectory DRRL

Next we analyze the second loop.

Q̇(t) = 0,

η̇(t) = Γη[f3(λ1(η(t), Q(t)), λ2(η(t), Q(t)), η(t), Q(t))],

where

f3(λ1(η,Q), λ2(η,Q), η,Q) = −ck(ρ)λ1(η,Q)
1
k∗
−1
λ2(η,Q) + 1.

The global convergence point is η∗(t) = arg maxη∈[0,η]{σk(Q, η)} = arg maxη∈R{σk(Q, η)}.

Finally we arrive to the outer loop, i.e.,

Q̇(t) = ΓQ[f4(λ1(Q(t)), λ2(Q(t)), λ3(Q(t)), Q(t))].

By using the dual form of Cressie-Read Divergence (Lemma 3.1), we know that this is equivilant to

Q̇(t) = r + γ inf
P∈P

EP [max
a′

Q(s′, a′)]−Q(t),

for ambiguity set using Cressie-Read of f divergence.

Denote H(t) = r + γ infP∈P EP [maxa′ Q(s′, a′)] and thus we can rewrite the above ODE as

Q̇(t) = H(t)−Q(t).

Following , we consider its infity version, i.e., H∞(t) = limc→∞H(ct)/c.

Q̇(t) = γ inf
P∈P

EP [max
a′

Q(s′, a′)]−Q(t).

This is a contraction by Theorem 3.2 in Iyengar (2005). By the proof in Section 3.2 in Borkar & Meyn (2000), we know the contraction
can lead to the global unique equilibrium point in the ode. Thus we finish verifying all the conditions in Section B.3, which can lead to the
desired result.

22

Single-Trajectory DRRL

Algorithm 3 Distributionally Robust Q-learning with Cressie-Read family of f -divergences with Simulator
1: Input: Exploration rate ε, Learning rates {ζi(n)}i∈[3], Ambiguity set radius ρ > 0, parameter ε ∈ (0, 0.5)

2: Init: Q̂(s, a) = 0,∀(s, a) ∈ S ×A
3: while Not Converge do
4: for every (s, a) ∈ S ×A do
5: Sample N ∈ N from P (N = n) = pn = ε(1− ε)n.
6: Draw 2N+1 samples {(ri, s′i)}i∈[2N+1] from the simulator
7: Compute ∆r

N,ρ via

∆r
N,ρ = sup

η∈R
σ̂rk([2N+1], η)− 1

2
sup
η∈R

σ̂rk([2N], η)− 1

2
sup
η∈R

σ̂rk([2N :], η),

where

sup
η∈R

σ̂rk(I, η) = sup
η∈R
{−ck(ρ)[

∑
i∈I

(η − ri)k∗+ /n]
1
k∗ + η},

and [2N] = {1, 2, 3, · · · , 2N} and [2N :] = {2N , 2N + 1, · · · , 2N+1}.
8: Compute ∆q

N,ρ(Q̂t) via

∆q
N,ρ(Q̂t) = sup

η∈R
σ̂qk(Q̂t, [2

N+1], η)− 1

2
sup
η∈R

σ̂qk(Q̂t, [2
N], η)− 1

2
sup
η∈R

σ̂qk(Q̂t, [2
N :], η),

where

sup
η∈R

σ̂qk(Q̂t, I, η) = sup
η∈R
{−ck(ρ)[

∑
i∈I

(η −max
a′∈A

Q̂t(s
′
i, a
′))k∗+ /n]

1
k∗ + η}.

9: Set Rρ(s, a) = r1 +
∆r
N,ρ

pN
.

10: Update Q via

Q̂t+1(s, a) = (1− ζt)Q̂t(s, a) + ζtT̂ρ(Q̂t)(s, a),

where

T̂ρ(Q̂t)(s, a) = r1 + ∆r
N,ρ + γ(max

a′∈A
Q̂t(s1, a

′) +
∆q
N,ρ(Q̂t)

pN
).

11: end for
12: t = t+ 1
13: end while

23

