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Abstract

In offline reinforcement learning (RL), updating
the value function with the discrete-time Bell-
man Equation often encounters challenges due
to the limited scope of available data. This limi-
tation stems from the Bellman Equation, which
cannot accurately predict the value of unvisited
states. To address this issue, we have introduced
an innovative solution that bridges the continuous-
and discrete-time RL methods, capitalizing on
their advantages. Our method uses a discrete-time
RL algorithm to derive the value function from
a dataset while ensuring that the function’s first
derivative aligns with the local characteristics of
states and actions, as defined by the Hamilton-
Jacobi-Bellman equation in continuous RL. We
provide practical algorithms for both determin-
istic policy gradient methods and stochastic pol-
icy gradient methods. Experiments on the D4RL
dataset show that incorporating the first-order in-
formation significantly improves policy perfor-
mance for offline RL problems.

1. Introduction
In discrete-time reinforcement learning (RL), interactions
between the agent and the environment are discretized into
steps, even in scenarios that are inherently continuous (Mnih
et al., 2015; Silver et al., 2017). This approach updates
the value function by applying the discrete-time form of
the Bellman Equation (Haarnoja et al., 2018; Silver et al.,
2014; Watkins & Dayan, 1992). While it works well in
online settings, its limitations become evident in offline
applications (Kostrikov et al., 2021; Wu et al., 2020; Kumar

1Department of Computer Science, National Yang Ming
Chiao Tung University, Hsinchu, Taiwan 2Department of
Computer Science and Engineering, University of California,
San Diego, CA, USA. Correspondence to: Yun-Hsuan Lien
<sophia.yh.lien@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

et al., 2019; Fujimoto & Gu, 2021; Wang et al., 2020). The
main issue is that, in training agents, discrete-time RL relies
solely on pre-collected data, which might not capture the
entire scenario comprehensively.

Compared to the online setting, offline RL has to extrapo-
late the value function from the dataset, so generalization
becomes a problem (Parag et al., 2022; Xu & Gu, 2020;
Boyan & Moore, 1994). We show an example in Figure
1, where an agent is tasked to reach a target located at the
bottom-left corner. However, due to inaccurate value func-
tion estimations of unvisited states, such as the wall area in
this example, the learned value function may erroneously
guide policies towards the left starting from the bottom-right
corner, as shown in panel (b). We posit that incorporating
additional derivative information of the value function with
respect to states and actions (Dong et al., 2021; Vemula
et al., 2019; Czarnecki et al., 2017) can aid in addressing
the extrapolation issues, as depicted in Figure 1(c).

Continuous-time RL incorporates the derivatives of the
value function. Unlike discrete-time methods, the value
function in continuous-time RL is characterized by first-
or second-order partial differential equations, known as
the Hamilton-Jacobi-Bellman (HJB) Equation (Doya, 2000;
Munos, 2000). The optimal policy is then derived by con-
sidering the given reward function and system dynamics
through the HJB equation. However, the direct application
of the HJB equation faces challenges. These methods are
hindered by the curse of dimensionality when solving the
HJB equation (Lutter et al., 2020; Shilova et al., 2023), and
they require explicit knowledge of the reward and system
dynamics.

Inspired by continuous-time RL, in this paper, we introduce
a novel objective function that assesses the first-order consis-
tency between the learned value function and the first-order
properties of the HJB equation as induced by the dataset.
This approach effectively eliminates the need for explicit
knowledge of both the reward function and system dynam-
ics. We then demonstrate how this loss function can be
integrated with both deterministic (Fujimoto et al., 2018;
Silver et al., 2014) and stochastic policy gradient models
(Haarnoja et al., 2018). We conducted experiments on the
D4RL benchmark dataset (Fu et al., 2020) and compared
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Figure 1. (a) In this 2D maze environment, we depict the path in white and the wall in gray. The goal is for the agents to reach the
bottom-left corner from various starting positions. The agents can only receive rewards when they are within a 0.5-unit radius of the goal
state circle. Each segment in the dataset represents a pair of (s, a, s′), where s, a, and s′ represent the current state, action, and next state,
respectively. (b) ReBrac’s (Tarasov et al., 2023) value function landscape is visualized using a color map where the colors range from dark
blue to green and yellow, indicating low and high values, respectively. The value function landscape of the bottom right region (i.e., local
view) is highlighted with a re-normalized color mapping so that the gradients of the value function can be observed. It is evident that the
increased value in the bottom-right side of the environment guides the policy to move towards the left and collide with the wall. The
resulting navigation trajectories are shown on the top right. (c) Our system’s value function is more accurate and can guide the policy to
reach the goal state, behaving similarly to the collected data.

our method with current leading offline RL methods. The
results confirmed significant improvements in policy per-
formance when higher-order information from data is in-
corporated. Specifically, our method achieved normalized
score improvements over state-of-the-art methods by 4%,
11.4%, 6.1%, and 22.9% in the Mujoco, Antmaze, Adroit,
and Franka Kitchen environments, respectively. We will
make our code publicly available.

2. Related Work
2.1. Offline Reinforcement Learning

In Offline RL, policies are trained exclusively on pre-
collected datasets, without interacting with the environment.

A popular approach is the policy constraint methods, which
align the learned policy with the behavior policy inferred
from the dataset. Policy constraint methods can be catego-
rized into two primary types: direct and implicit. Direct
methods (Kostrikov et al., 2021; Wu et al., 2020; Fujimoto
et al., 2019) explicitly model the behavior policy, whereas
implicit methods (Kumar et al., 2019; Fujimoto & Gu, 2021;
Wang et al., 2020) do not rely on a specific model represen-
tation of the behavior policy. Another approach in offline
RL involves importance sampling (Nachum et al., 2019;
Zhang et al., 2020). These methods adjust the state-action
distribution within the offline dataset, offering a re-weighted
perspective of the state-action density distribution. Regular-
ization methods (Kumar et al., 2020; Yu et al., 2021; Singh
et al., 2020), on the other hand, introduce penalty terms for
those state-action pairs not represented in the dataset. Fi-

nally, uncertainty-based methods (An et al., 2021; Agarwal
et al., 2020) mitigate the uncertainties inherent in offline
data, by balancing between conservative RL strategies and
off-policy techniques, and leveraging the ensemble models
to determine the approach’s conservativeness.

Our model distinguishes itself by exploiting first-order infor-
mation in the dataset, in contrast to the predominant focus
on output value information of the Bellman equation by the
aforementioned strategies.

2.2. Continuous-time Reinforcement Learning

Continuous-time RL sets itself apart from discrete RL by
adopting a continuous temporal formulation. This approach
was initially explored in studies by Munos (1997); Munos &
Bourgine (1997) and further elaborated in works by Krylov
(2008) and Fleming & Soner (2006). Continuous-time RL
centers on the principle that the expected return, or value
function, conforms to a specific partial differential equa-
tion (PDE) known as the Hamilton-Jacobi-Bellman (HJB)
equation. Unlike discrete-time RL methods that rely on
the output value of the Bellman equation, continuous-time
RL employs a higher-order function approximation to deter-
mine the value function. The HJB equation allows for the
use of various numerical methods to address it (Doya, 2000;
Munos, 2000). These methods enable the derivation of poli-
cies aimed at maximizing expected returns, which are not
only optimal in terms of effectiveness but also avoid the in-
accuracies and computational challenges often encountered
with time discretization.
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The application of Hamilton-Jacobi-Bellman (HJB) equa-
tions has recently attracted significant attention in both RL
and control theory. For instance, Kim et al. (2021) proposed
a novel HJB formulation tailored for Q Networks, where
the control action is assumed to remain Lipschitz continu-
ous over time. This method has been shown to outperform
deep deterministic policy gradient (DDPG) methods with-
out requiring an actor network. Similarly, Wiltzer et al.
(2022) introduced a distributional HJB equation, laying the
groundwork for the online Wasserstein gradient flow fitted
Q-iteration algorithm (Martin et al., 2020). This algorithm
more precisely models return distributions than quantile re-
gression temporal difference learning (Dabney et al., 2018),
especially in particle-control tasks. They offer a practical
solution for approximating the distributional HJB equation
with the method presented by Jordan et al. (1998), making
it suitable for online control algorithms.

We, unlike the conventional approaches that directly solve
the HJB equation, leverage the HJB equation to analyze
the first-order behavior of the value function. Our strategy
enhances the accuracy of the value function while avoiding
the high computational costs associated with solving PDEs.

3. Preliminaries
Reinforcement Learning

A Markov Decision Process (MDP) is characterized by a
set of components, denoted as M = (S,A, P0, r, ρ0, γ).
Here, S and A represent the state and action spaces,
the reward function r(s, a) with state s and action a
has range [−rmax, rmax], P0(s

′|s, a) is the transition
function, ρ0 denotes the initial state distribution, and
γ ∈ (0, 1) stands for the discount factor. We focus
on Markovian policies, π ∈ Π, which are mappings
from states to distributions over actions. The value
function, V π(s) = Eat∼π,st∼P0

[
∑∞

t=0 γ
tr(st, at)], repre-

sents the anticipated discounted return, considering poli-
cies starting from an initial state distribution, can be ex-
pressed as Jρ0(π, P0) =

∑
s∈S ρ0(s)V

π(s). Additionally,
the state-action value function is defined as Qπ(s, a) =
Eat∼π,st∼P0

[r(s, a) +
∑∞

t=1 γ
tr(st, at)] .

Twin Delayed DDPG (TD3) (Fujimoto et al., 2018) is a
state-of-the-art off-policy actor-critic algorithm. In TD3,
the critic parameterized by ϕ minimizes the Bellman error:

Qπ = argmin
Qπ

E(s,a,s′)

[
r(s, a) + γ Qπ

ϕ̄(s
′, πθ(s

′))

−Qπ
ϕ(s, a)

]2
,

(1)

where ϕ̄ is the critic target network. The actor parameterized
by θ is updated with the deterministic policy gradient (Silver

et al., 2014):

πθ = argmaxπθ
Es [Q

π(s, πθ(s))] . (2)

Specifically, the policy parameters θ are updated in propor-
tion to the gradient∇θQ(s, πθ(s)). By applying the chain
rule, we have:

θ ← θ + Es

[
∇θπθ(s)∇aQ

π(s, a)|a=πθ(s)

]
. (3)

This means that the optimal policy is the action at an ex-
tremal of the Q function where∇aQ

π(s, a) = 0.

Offline Reinforcement Learning

In the offline setting, the agent relies on an existing dataset
denoted as B = {(si, ai, ri, s′i, a′i)}

|B|
i=1 generated by a be-

havior policy denoted as µ. The datasets usually cover only
a portion of all possible state-action pairs. To mitigate ex-
trapolaion errors (Fujimoto et al., 2019; Kumar et al., 2019),
behavior regularization is often applied, which involves
adding regularizers to ensure the learned policy does not
deviate too much from the pre-collected data (Kostrikov
et al., 2021; Shilova et al., 2023).

Revisited BRAC (ReBrac) is a state-of-the-art offline
method introduced by Shilova et al. (2023). The core idea
behind ReBrac is to apply actor and critic penalizations in
an actor-critic algorithm. In ReBrac, the policy update is
built on TD3 with an L2 actor penalization:

πθ = argmaxπθ
E(s,a)∼B

[
Qπ

ϕ(s, πθ(s))−λπ · (πθ(s)− a)2
]
,

(4)

where λπ is the weight of the regularization term. The
state-action value function update with critic penalization is
defined by:

Qϕ = argminQϕ
E(s,a,s′)∼B

[
r(s, a) + γ Qπ

ϕ̄(s
′, π(s′))

−Qπ
ϕ(s, a)−λQ · (πθ(s)− a)2

]2
, (5)

where λQ is the weight of the regularization term. Previous
methods in offline RL emphasized the regularization of the
actions. In contrast, we improve generalization using the
derivatives of the state-action value function Q for both the
state and action space.

Continuous-time Reinforcement Learning and
Hamilton-Jacobi-Bellman (HJB) Equation

To incorporate the first-order information of the value func-
tion, we formulate the value function as an HJB equation in
a continuous-time dynamical system (Doya, 2000):

ṡ(t) = f(s(t), a(t)), t ≥ 0, (6)
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where s(t) is the state of the system at time t, and a(t)
denotes the control action. The function f represents the
system’s dynamics, determining how the state evolves in
response to the control actions.

The goal of optimal control is to maximize a cumulative
measure of performance, typically framed as an infinite-
horizon discounted optimal control problem. The Q-
function is defined by (Kim et al., 2021):

QHJB(s, a) := max
a∈A

∫ ∞

0

e−γtr(s(t), a(t))dt. (7)

Here, r is the reward that quantifies the instantaneous benefit
of being in state s(t) while taking action a(t), and γ is the
discount factor. This Q-function represents the maximum
possible return, given initial conditions s(0) and a(0), and
then subsequently following the optimal control strategy.

The dynamic programming equation of the Q-function in
the continuous-time cases is expressed as an HJB equation,
which can be derived by the dynamic programming principle
and using Taylor expansion (Kim et al., 2021) :

γQHJB(s, a) = max
a∈A

[
r(s, a) +∇sQ

HJB(s, a) · f(s, a)

+∇aQ
HJB(s, a) · ȧ

]
, (8)

where∇sQ
HJB(s, a) and∇aQ

HJB(s, a) represent the gradi-
ents of the Q-function with respect to the state and action,
respectively. Under this formulation, the optimal policy is
given by the action that can maximize the right-hand side of
the HJB equation:

πHJB(s) = argmax
a∈A

[
r(s, a) +∇sQ

HJB(s, a) · f(s, a)

+∇aQ
HJB(s, a) · ȧ

]
. (9)

In addition, multimodal policies can be defined using the
Boltzmann distribution:

πHJB(a|s) =
exp

[
r(s, a) +∇sQ

HJB(s, a)ṡ+∇aQ
HJB(s, a)ȧ

]∫
exp [r(s, a) +∇sQHJB(s, a)ṡ+∇aQHJB(s, a)ȧ] da

,

(10)

which simplifies the likelihood of action a given state s be-
ing directly proportional to the aforementioned exponential
term.

In the previous work by Kim et al. (2021), the HJB equation
is adapted for use with a standard Q-Learning. In their ap-
proach, they use the HJB equation to determine the optimal
action. It is beneficial since their Q-function is correctly
learned from an online setting. Our approach, however,
targets a different challenge – the difficulty of correctly

learning a Q-function for the unvisited states in an offline
setting. To address this, we leverage the HJB equation as a
means to describe the dynamics captured in the dataset and
integrate it into the Q-function learning process.

4. Optimizing First-Order State-Action
Dynamics in Q function

A key challenge in offline RL is to properly evaluate out-
of-distribution states and actions. To improve the value
function estimation, our approach incorporates additional
derivative information from the value function. We first
introduce an objective function for first-order consistency,
grounded in the HJB equation, which is detailed in Sec-
tion 4.1. Next, Section 4.2 illustrates how we embed this
first-order consistency objective within deterministic pol-
icy gradient methods. Finally, in Section 4.3, we outline a
practical algorithm that enhances the optimization stability.

4.1. First-Order Consistency

We propose a novel approach that bridges between discrete-
and continuous-time RL. Firstly, we use discrete-time RL to
learn the state-action value function from offline data, ensur-
ing that it aligns with the properties of the first-order HJB
equation. Our primary insight here is that the first-order
HJB equation values can be approximated directly from the
dataset, without the need to solve PDE explicitly. Specifi-
cally, with a dataset containing tuples (s, a, r, s′, a′) ∼ B,
we approximate the dynamics f(s, a) and ȧ using finite
differences: f(s, a) = (s′ − s)/∆t and ȧ = (a′ − a)/∆t,
where ∆t is the time step size used in the environment. In
the majority of offline datasets, particularly those derived
from simulators, the control frequency is consistent. This
implies ∆t is a constant. For the sake of simplicity and
without losing generality in our analyses and modeling, we
assume ∆t = 1. Hence, we calculate the change in states
as f(s, a) = s′ − s and the change in actions as ȧ = a′ − a,
which are crucial for Equations (9) and (10).

Remark 1. For datasets where ∆t is a not constant, we can
compute the f(s, a) = (s′ − s)/∆t and ȧ = (a′ − a)/∆t

with the actual ∆t.

Our second key insight pertains to the consistency between
discrete- and continuous-time RL. Rather than striving to
fit identical functions across these two paradigms, we focus
on consistency in decision-making. Specifically, if a value
function learned via an RL algorithm closely approximates
the solution to the HJB equation, it will result in similar
decision-making outcomes. This perspective allows us to
use the values derived from the HJB equation based on
dataset information. We formally define first-order consis-
tency as the following definition.

Definition 1 (Offline First-Order Consistency with dataset
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Algorithm 1 Updating Deterministic Policy Gradient with First-Order Consistency

Require: Offline dataset B = {si, ai, ri, s′i}
|B|
i=1, number of iterations T , number of update samples Tupd

1: Initialize policy πθ0 , value function Qϕ0

2: for t = 0, · · · , T − 1 do
3: Sample a tuple Tupd = {s, a, r, s′} from the offline dataset
4: Compute the Bellman update Loss and first-order consistency loss and update Q function by Equation 14:

Q = argminQE(s,a,s′)

[(
r + γ Qϕ̄t

(s′, π(s′))−Qϕt
(s, a)

)2
− ∇sQϕt(s, a)ṡ

∥∇sQϕt
(s, a)∥∥ṡ∥

+ ∥∇aQϕt
(s, a)∥2

]
.

5: Update policy π = argmaxπE(s,a) [Qϕt
(s, πθt(s))]

6: end for

dynamic). Let Qπ be a state-action value function learned
from any RL algorithm. Give a datapoint in an offline
dataset, (s, a, s′, a′), a learned Qπ function is first-order
consistent with the dataset dynamic if and only if the action
a in the dataset satisfies the following condition:

a = argmax
π(s)

[
r(s, π(s)) +∇sQ

π(s, π(s))(s′ − s)

+∇aQ
π(s, π(s))(a′ − a)

]
, (11)

or

π(a|s) ∝ exp
[
r(s, π(a|s)) +∇sQ

π(s, π(a|s))(s′ − s)

+∇aQ
π(s, π(a|s))(a′ − a)

]
. (12)

Remark 2. First-order consistency is characterized by the
alignment of Qπ function landscape to the HJB equation
(Equations (9) - (12)). It is a local consistency which im-
plies that the gradient of Qπ with respect to the state s,
∇sQ

π(s, a), aligns in a similar direction to ṡ itself, and anal-
ogously, the gradient with respect to action a,∇aQ

π(s, a),
aligns with ȧ.

4.2. Deterministic Policy Gradient with First-Order
Consistency

In this section, we primarily focus on the deterministic
policy aspect of the actor-critic algorithm. However, we
also discuss a practical algorithm tailored for stochastic
policy algorithms in Section 6, for completeness.

We incorporate first-order consistency with the deterministic
policy of an actor-critic algorithm, TD3 (Fujimoto et al.,
2018). In Equation (3), for a policy in TD3 method to
achieve the first-order consistency at a data sample (s, a) in
the dataset, the condition∇aQ

π(s, a) = 0 must be satisfied.
Following Equation (11), the corresponding loss function of

first-order consistency in Definition 1 is adapted as follows:

Qϕ =argminQϕ
E(s,a,s′)

[
(r + γQπ

ϕ̄(s
′, πθ(s

′))−Qπ
ϕ(s, a))

2

− λs∇sQ
π
ϕ(s, a)ṡ+ λd∥∇aQ

π
ϕ(s, a)∥2

]
. (13)

The first term in the expectation is from the TD3 Bell-
man error in Equation (1). The second term accounts for
the first-order consistency of the state derivative in Equa-
tion (11). The last term comes from the TD3 policy con-
straint∇aQ

π(s, a) = 0. In practice, we turn the hard policy
constraint into a soft constraint with L2 norm to stabilize
the training. We balance between the loss function terms
using weights λs and λd.

To maintain numerical stability and prevent the state gradi-
ent ∇sQ

π(s, a) from becoming excessively large, which
could disproportionately influence the loss, we set the
weight λs to normalize the term by its magnitude. We
then set λd = 1:

Qϕ =argminQϕ
E(s,a,s′)

[
(r + γQπ

ϕ̄(s
′, πθ(s

′))−Qπ
ϕ(s, a))

2

−
∇sQ

π
ϕ(s, a)ṡ

∥∇sQπ
ϕ(s, a)∥∥ṡ∥

+ ∥∇aQ
π
ϕ(s, a)∥2

]
. (14)

We detail the algorithm in Algorithm 1.

4.3. Implementations of First-Order Consistency

We apply first-order consistency (Definition 1) to a determin-
istic policy gradient method, ReBrac (Tarasov et al., 2023).
The details are outlined in Algorithm 2 and explained in the
following paragraphs.

Weighted Consistency of Derivatives

The data gathered for training may not always be optimal.
To address this, we use a weighting function W to adjust
the first-order consistency loss:

W(r + wc), (15)

5



Enhancing Value Function Estimation through First-Order State-Action Dynamics in Offline Reinforcement Learning

Algorithm 2 Practical Offline First-Order Consistency Algorithm

Require: Offline dataset B = {si, ai, ri, s′i}
|B|
i=1, number of iterations T , number of update samples Tupd, action gradient

threshold ga, Weighted function W , weighted constant wc, actor regularization weight λπ , critic regularization weight
λQ, first-order consistency weight λf ,

1: Initialize policy πθ0 , value function Qϕ0

2: for t = 0, · · · , T − 1 do
3: Sample a tuple Tupd = {s, a, r, s′} from the offline dataset
4: Compute the Bellman update Loss and first-order consistency loss and update Q function by Equation 16, 17, 15:

Q = argmin
Q

[
E(s,a,s′)

[
r + γ Qϕ̄t

(s′, π(s′))−Qϕt(s, a)− λQ · (πθt(s)− a)2
]2

+λfW(r + wc)
[
− ∇sQϕt

(s, a) · ṡ
∥∇sQϕt

(s, a)∥∥ṡ∥
− ∇sQϕt

(Near(s), a) · ṡ
∥∇sQϕt

(Near(s), a)∥∥ṡ∥︸ ︷︷ ︸
Nearby State Consistency︸ ︷︷ ︸

State Consistency

+1∥∇aQϕt (s,a)∥2>ga︸ ︷︷ ︸
Action Indicator

·∥∇aQϕt
(s, a)∥2

︸ ︷︷ ︸
Action Consistency

]]
.

5: Update policy π = argmaxπE(s,a)

[
Qϕt

(s, πθt(s))− λπ · (πθt(s)− a)2
]

6: end for

where r is the reward associated with each sample and wc
is a constant. This adjustment is based on the reward that
measures the effectiveness of a particular action in a given
state. By guiding the value function to fit more closely
with the derivatives of the data when policies produce better
actions, we can improve the accuracy of the value function.

In our implementation, we set W (x) = exp(x) in the Mu-
joco task. In Antmaze, we modified the reward function
by setting W (x) = 100x, following the approach of Chen
et al. (2022) and Shilova et al. (2023). In Adroit, we choose
W (x) = x since the maximum reward value in this envi-
ronment can exceed 100. Regarding the constant parameter
wc, we select wc to be the negative average reward of the
dataset in Mujoco. For other environments, we set wc = 0.

Consistency of State Derivatives

We anticipate that the derivatives of the value function
∇sQ

π(s, a) will be in accordance with the state dynam-
ics ṡ in the dataset. In addition to the current state s, we also
retain the consistency of nearby state derivatives to enhance
the structure of the value function landscape. Here, the
nearby state is defined by Near(s) = s− e(s′ − s), where
s′ represents the next state and e is a number uniformly
sampled from [0, 1]. Therefore, we formulate the loss of the
state consistency as follows:

E(s,a,s′)

[
− ∇sQ

π(s, a)ṡ

∥∇sQπ(s, a)∥∥ṡ∥
− ∇sQ

π(Near(s), a)ṡ
∥∇sQπ(Near(s), a)∥∥ṡ∥

]
.

(16)

The aim of this regularization is to restrict the gradient direc-
tions of neighboring points in the state space. This ensures

that the change in the state from s to s′ aligns consistently
across neighboring points. As a result, it helps us effectively
capture the underlying structure of the state space.

Consistency of Action Derivatives

When integrating the first-order consistency with determinis-
tic policy gradient methods, the optimal action a must meet
the condition ∇aQ

π(s, a) = 0. Since actions in the dataset
may not always be optimal, we introduce a threshold ga to
penalize the value function only when ∇aQ

π(s, a) exceeds
this threshold. This is done by adding an indicator function
to the consistency loss of action derivatives:

E(s,a,s′)

[
1{∥∇aQπ(s,a)∥2>ga}∥∇aQ

π(s, a)∥2
]
. (17)

This adjustment is important to prevent the policy from over-
fitting to non-optimal actions in the dataset. By introducing
an indicator function, we increase the flexibility and robust-
ness of the learning process, which is essential when dealing
with imperfect data.

Hyperparameters

Algorithm 2 describes our implementation details, highlight-
ing the first-order consistency method in blue. Our base
algorithm is ReBrac (Tarasov et al., 2023), which is an
ensemble-free actor-critic framework. In this framework,
the actor is updated with a penalty of λπ · (πθt(s)−a)2, and
the critic is updated with λQ · (πθ̄t(s) − a)2. We set gen-
eral hyper-parameters such as the discount factor γ, penalty
weights λπ, and λQ as suggested by Tarasov et al. (2023).
The weight of the first-order consistency λf and the thresh-
old for the action derivatives ga are provided in Appendix C.
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Ours ReBrac RVS ATAC F-BRC DT TD3+BC CQL IQL BC
Walker2d-medium 87.0 ± 5.9 82.5 71.7 89.6 78.8 74.0 83.7 79.5 80.7 75.3

Walker2d-medium-replay 87.5 ± 8.2 77.3 60.6 92.5 41.8 66.6 81.8 76.8 75.4 26.0

Hopper-medium 102.0 ± 1.0 102.0 60.2 85.6 99.4 67.6 59.3 61.9 65.2 52.9

Hopper-medium-replay 101.3 ± 0.8 98.1 73.5 102.5 35.6 82.7 60.9 86.3 89.6 18.1

Halfcheetah-medium 66.9 ± 3.9 65.6 41.6 53.3 41.3 42.6 48.3 46.9 50.0 42.6

Halfcheetah-medium-replay 52.9 ± 0.5 51.0 38.0 48 43.2 36.6 44.6 45.3 42.1 36.6

Mujoco Performance 82.6 79.4 57.6 78.6 56.7 61.7 63.1 66.1 67.2 41.9

Umaze 98.0 ± 1.5 97.8 65.4 - - 65.6 78.6 74.0 83.3 54.6
Medium-play 88.4 ± 4.3 84.0 58.1 - - 1.0 10.6 61.2 64.6 45.6

Large-play 75.0 ± 5.0 60.4 32.4 - - 0.0 0.2 15.8 42.5 0.0
Umaze-diverse 94.0 ± 2.2 88.3 60.9 - - 51.2 71.4 84.0 70.6 0.0

Medium-diverse 88.2 ± 3.5 76.3 67.3 - - 0.6 3.0 53.7 61.7 0.0
Large-diverse 70.4 ±  4.4 54.4 36.9 - - 0.2 0.0 14.9 27.6 0.0

Antmaze Performance 85.7 76.9 53.5 - - 19.8 27.3 50.6 58.4 16.7

Pen-cloned 107.8 ± 9.6 91.8 - 43.7 - - 61.4 39.2 77.2 56.9

Pen-expert 154.7 ± 7.4 154.1 - 136.2 - - 146.0 107.0 133.6 85.1

Hammer-cloned 21.1 ± 6.6 6.7 - 1.1 - - 0.8 2.1 1.1 0.8

Hammer-expert 135.6 ± 0.5 133.8 - 126.9 - - 117.0 86.7 129.6 125.6

Relocate-cloned 1.2 ± 1.1 0.9 - 0.2 - - -0.1 -0.1 0.2 -0.1

Relocate-expert 110.5 ± 1.1 106.6 - 99.4 - - 107.3 95.0 106.5 101.3

Door-cloned 0.2 ± 0.3 1.1 - 3.7 - - 0.1 0.4 0.8 -0.1

Door-expert 105.7 ± 0.9 104.6 - 99.3 - - 84.6 101.5 105.3 34.9

Adorit Performance 79.6 75.0 - 63.8 - - 64.6 54.0 69.3 50.6

Partial 52  ± 2.0 - 51.4 - - - - - 49.8 38

Complete 74.5  ± 12.6 - 38 - - - - - 43.8 65

Franka Preformance 63.3 - 44.7 - - - - - 46.8 51.5

Table 1. The performance of first-order consistency was benchmarked against baseline models, with results averaged across four random
seeds. Following the work of Fu et al. (2020), the scores in this table have been normalized using (So − Sr)/(Se − Sr), where So, Sr ,
and Se denote the rewards achieved by the offline policy, random policy, and expert policy. Note that the baseline results were copied
from the papers of ReBrac and RVS.

5. Results and Evaluation
5.1. Performance

We conducted an evaluation of our approach on four D4RL
tasks, namely Gym-MuJoCo, AntMaze, Adroit, and Franka
Kitchen. To assess the performance of our approach, we
compared it to several ensemble-free baselines, includ-
ing ReBrac (Tarasov et al., 2023), RVS (Emmons et al.,
2022), IQL (Kostrikov et al., 2022), DT (Chen et al., 2021),
TD3+BC (Fujimoto & Gu, 2021), and CQL (Kumar et al.,
2020), F-BRC (Kostrikov et al., 2021).

The results on the aforementioned tasks are available in
Table 1, and we report our scores over five seeds. The
best-performing algorithms are highlighted in bold face.
Notably, our approach outperformed baselines on overall
performance across the tasks.

It is worth mentioning that, from an implementation perspec-

tive, F-BRC (Kostrikov et al., 2021) can be considered as a
simplified version of our first-order consistency, although F-
BRC was derived based on the idea of policy regularization,
and it is essentially different from ours. Specifically, F-BRC
minimizes ∥∇aQ

π(s, a)∥2 when integrating with existing
offline RL algorithms. In this subsection, the base algorithm
and the network architecture of F-BRC were different from
ours. We will compare our approach with F-BRC in the
ablation study using the same base algorithm and network
architecture.

5.2. Ablation Study

We have evaluated the effectiveness of each component
in the first-order consistency for offline RL applications.
These components include state consistency, nearby state
consistency, action indicator, and action consistency. For
the details on these components, please refer to Algorithm
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Ours w/o Nearby State 
Cosistency

w/o  State 
Consistency

w/o Action 
Indicator

w/o  Action 
Consistency

 State Consistency w/o  
normalization

w/o  State Consistency 
&  Action Indicator

Umaze-diverse 94.0 ± 2.2 91.4 ± 3.5 80.4 ±  17.2 95.2 ± 2.1 93.6 ± 1.9 72.0 ± 18.2 85.2 ± 13.7
Medium-diverse 88.2 ± 3.5 75.6 ±  18.7 84.4 ±  4.5 75.6 ± 17.9 77.2 ±  20.7 80.6 ± 17.3 81.8 ± 5.6

Large-diverse 70.4 ±  4.4 48.5 ±  30.0 50.6 ±  20.7 63.4 ± 6.2 66.2 ±  14.7 50.8 ± 31.1 43.8 ± 39.9

Table 2. The results of the ablation study indicate the effectiveness of each component in the presented first-order consistency. Details of
each component are described in Algorithm 2.

2. Additionally, we have also evaluated the effectiveness of
normalization in state consistency. Lastly, we have analyzed
the performance of the first-order consistency by removing
both state consistency and action indicator. We evaluated
this variant because it is the same as F-BRC (Kostrikov
et al., 2021) from the implementation perspective.

Our analysis, presented in Table 2, demonstrates that our
first-order consistency is effective on the Antmaze datasets,
and none of the components can be eliminated. For a more
detailed analysis of Mujoco and Antmaze datasets, please
refer to Appendix B.

6. Discussion: Stochastic Policy Gradient with
First-Order Consistency

We have integrated first-order consistency into Soft-Actor-
Critic (SAC) (Haarnoja et al., 2018), a stochastic actor-critic
algorithm, to show the flexibility of our method. In SAC,
the policy’s objective function is defined as:

DKL

(
π(·|s)

∥∥∥∥∥exp(Qπ
ϕ(s, ·))

Zπ(s)

)
, (18)

where Zπ(s) is used to normalize the distribution.

To ensure first-order consistency, the policy induced by Qπ

must satisfy Equation (12). An intuitive way to integrate
this equation into SAC is to minimize

DKL

(
π(·|s)

∥∥∥∥∥exp(r(s, ·) +∇sQ
π
ϕ(s, ·)ṡ+∇aQ

π
ϕ(s, ·)ȧ)

ZHJB(s)

)
.

(19)

Similarly, ZHJB(s) is used to normalize the distribution.
However, the term Qπ

ϕ(s, a) in Equation (18) accounts
for future returns in a long trajectory, whereas Equa-
tion (19) focuses solely on local characteristics around spe-
cific states. Therefore, we utilize the reward shaping tech-
nique (Hu et al., 2020) to incorporate first-order consis-
tency into the Bellman equation by redefining the reward as
r(s, a)+λr exp

(
r(s, a)+∇sQ

π
ϕ(s, a)ṡ+∇aQ

π
ϕ(s, a)ȧ

)
,

where λr is a balancing weight. The corresponding loss for

training the soft value function then becomes

JQπ (ϕ) =E(s,a) ∼D,a′∼πθ(·|s′)

[(
Qπ

ϕ(s, a)−
(
r(s, a)

+λrexp
(
r(s, a) +∇sQ

π
ϕ(s, a)ṡ+∇aQ

π
ϕ(s, a)ȧ

)
+γ
(
Qπ

ϕ̄(s
′, a′)− α log πθ(a

′|s′)
)))2]

. (20)

In Equation (20), the reward shaping term is highlighted
in blue, and the other terms are the SAC Bellman error.
We show the implementation details in Algorithm 3 in Ap-
pendix A.

We have implemented Algorithm 3 on an offline stochas-
tic policy gradient method EDAC (An et al., 2021) and
compared it to several stochastic policy baselines, includ-
ing EDAC (An et al., 2021), SAC-N (An et al., 2021),
SAC-RND (Nikulin et al., 2023), and SAC(Haarnoja et al.,
2018). Evaluations were conducted on the Walker2d-
medium, Walker2d-medium-replay, Halfcheetah-medium,
Halfcheetah-medium-replay, Adroit-Relocate-expert, and
Adroit-Door-expert datasets with results reported over five
seeds. Experiment results in Table 3 indicate that our first-
order consistency approach can benefit the stochastic policy
gradient framework as well.

7. Conclusions
We have developed a new strategy to learn value functions
from pre-collected data more effectively. Our approach
combines both discrete- and continuous-time RL techniques
to improve policy efficacy. Specifically, we use the Bell-
man equation of discrete RL to learn the value function and
ensure that its first derivative aligns with the local character-
istics defined by the HJB equation. This helps to integrate
first-order information into the learning process, resulting
in more accurate value function estimations. The strategy
also sidesteps the direct computation involved in continu-
ous system dynamics, enabling the integrated algorithm to
handle states and actions in high-dimensional space. Our
method improves the performance of existing policy gradi-
ent algorithms, as demonstrated in the experiments.
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Stochastic Policy First-Order 
Consistency EDAC SAC-N SAC-RND SAC

Walker2d-medium 95.1 ± 1.4 92.5 ± 0.8 87.9 ± 0.2 91.6 ± 2.8 -0.3 ± 0.2
Walker2d-medium-replay 94.1 ± 2.0 87.1 ± 2.4 78.7 ± 0.7 88.7 ± 7.7 -0.4 ± 0.3

Halfcheetah-medium 70.0 ± 0.2 65.9 ± 0.6 67.5 ± 1.2 66.6 ± 1.6 55.2 ± 27.8
Halfcheetah-medium-replay 66.0 ± 0.4 61.3 ±1 .9 63.9 ± 0.8 54.9 ± 0.6 0.8 ± 1.0

Adroit Relocate-expert 63.7 ± 8.4 -0.3 ± 0.0 - 3.4 ± 4.5 -

Adroit Door-expert 107.6 ± 0.3 -0.3 ± 0.1 - 73.6 ± 26.7 -

Table 3. The performance of first-order consistency on stochastic policy gradient method in Algorithm 3.
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A. Stochastic Policy Gradient with First-Order Consistency Algorithm

Algorithm 3 Updating Stochastic Policy Gradient with First-Order Consistency

Require: Offline dataset B = {si, ai, ri, s′i, a′i}
|B|
i=1, objective function J , step size parameter η, number of iterations T ,

number of update samples Tupd, balancing weight λr

1: Initialize policy πθ0 , value function Qϕ0

2: for t = 0, · · · , T − 1 do
3: Sample a tuple Tupd = {s, a, r, s′, a′} from the offline dataset
4: Compute the Bellman update Loss and first-order consistency loss and update Q by Equation 20:

Q = E(s,a) ∼D,a′∼πθ(·|s′)

[(
Qϕ(s, a)−

(
r + λrexp

(
r +∇sQϕ(s, a)ṡ+∇aQϕ(s, a)ȧ

)
(21)

+ γ
(
Qϕ̄(s

′, a′)− α log πθ(a
′|s′)

)))2]
(22)

5: Update policy π = argmaxπEs∼D,a∼πθ(·|s)

[
Qϕ(s, a)− α log πθ(a|s)

]
6: end for

B. Additional Ablation Study
We conduct a detailed ablation study across various environments in Mujoco and Antmaze to examine the impact of state
consistency and action consistency, with results presented in Table 4.

Table 4. Ablation Study of first-order consistency in Mujoco and Antmaze.

Ours w/o  Action 
Consistency

w/o  State 
Consistency

Walker2d-medium 87.0 ± 5.9 84.7 ± 1.6 84.2 ± 3.1
Walker2d-medium-replay 87.5 ± 8.2 75.3 ± 11.9 83.9 ± 5.5

Hopper-medium 102.0 ± 1.0 102.5 ± 0.2 101.1 ± 2.4
Hopper-medium-replay 101.3 ± 0.8 101.0 ± 0.6 85.0 ± 14.9
Halfcheetah-medium 66.9 ± 3.9 65.0 ± 1.8 45.4 ± 0.1

Halfcheetah-medium-replay 52.9 ± 0.5 50.7 ± 0.8 40.2 ± 1.9
Mujoco Performance 82.6 80.9 73.3

Umaze 98.0 ± 1.5 97.4 ± 0.8 97.2 ± 1.4
Medium-play 88.4 ± 4.3 82.6 ± 5.2 84.8 ± 3.7

Large-play 75.0 ± 5.0 50.2 ± 20.7 62.2 ± 19.9
Umaze-diverse 94.0 ± 2.2 93.6 ± 1.9 80.4 ±  17.2

Medium-diverse 88.2 ± 3.5 77.2 ±  20.7 84.4 ±  4.5
Large-diverse 70.4 ±  4.4 66.2 ±  14.7 50.6 ±  20.7

Antmaze Performance 85.7 77.8 76.6

C. Hyperparameter Setting
For the general hyper-parameters of RL training, we follow ReBrac’s setting (Tarasov et al., 2023) as shown in Table 5. For
first-order consistency training, there are two additional hyper-parameters: first-order consistency weight λf and action
gradient threhold ga. The hyper-parameters are listed in Table 6.

12



Enhancing Value Function Estimation through First-Order State-Action Dynamics in Offline Reinforcement Learning

Table 5. Hyperparameter Settings for the experiemtns in this paper.

Antmaze Adorit Mujoco Franka Kitchen
Optimizer Adam Adam Adam Adam
Batch Size 256 256 1024 256

Learning Rate 0.0003 0.0003 0.001 0.0003
Hidden Dimension 256 256 256 256

Num of Layers 3 3 3 3
Gamma 0.999 0.99 0.99 0.99

Nonlinearity ReLU ReLU ReLU ReLU

Table 6. Hyperparameter Settings for the experiments in this paper.

Weight ga
Antmaze
Umaze 0.01 1

Medium-play 0.005 1
Large-play 0.002 0.5

Umaze-diverse 0.01 1
Medium-diverse 0.01 1
Large-diverse 0.01 1

Mujoco
Walker2d-medium 0.001 1

Walker2d-medium-replay 0.001 1
Hopper-medium 0.001 1

Hopper-medium-replay 0.001 1
Halfcheetah-medium 0.001 0.5

Halfcheetah-medium-replay 0.002 1

Adroit
Pen-cloned 0.0005 0.5
Pen-expert 0.002 0.2

Hammer-cloned 0.0005 0.5
Hammer-expert 0.001 0
Relocate-cloned 0.001 0.5
Relocate-expert 0.001 0
Door-cloned 0.01 0
Door-expert 0.001 0

Franka Kitchen
Partial 0.0005 0.5

Complete 0.0001 0.8
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