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Abstract
When using an autoencoder to learn the low-
dimensional manifold of high-dimensional data,
it is crucial to find the latent representations that
preserve the geometry of the data manifold. How-
ever, most existing studies assume a Euclidean
nature for the high-dimensional data space, which
is arbitrary and often does not precisely reflect the
underlying semantic or domain-specific attributes
of the data. In this paper, we propose a novel
autoencoder regularization framework based on
the premise that the geometry of the data man-
ifold can often be better captured with a well-
designed similarity graph associated with data
points. Given such a graph, we utilize a Rie-
mannian geometric distortion measure as a reg-
ularizer to preserve the geometry derived from
the graph Laplacian and make it suitable for
larger-scale autoencoder training. Through ex-
tensive experiments, we show that our method
outperforms existing state-of-the-art geometry-
preserving and graph-based autoencoders with
respect to learning accurate latent structures that
preserve the graph geometry, and is particularly
effective in learning dynamics in the latent space.
Code is available at https://github.com/
JungbinLim/GGAE-public.

1. Introduction
Autoencoders are widely used to learn the low-dimensional
manifold of high-dimensional data points and to find their
latent representations (Arvanitidis et al., 2017; Shao et al.,
2018; Lee & Park, 2023; Jang et al., 2022; Lee, 2023). It has
been widely observed that vanilla autoencoders often fail to
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produce latent representations that preserve the geometry of
the data manifold, i.e., actual distances and angles on the
manifold do not match those measured in the latent space.
These distortions can be effectively mitigated by applying
appropriate regularization techniques, as pointed out and
validated via a wide range of case studies in Chen et al.
(2020); Lee et al. (2022b); Nazari et al. (2023).

Most autoencoder regularization techniques assume a Eu-
clidean ambient data space and its standard geometry, and
attempt to preserve distances, angles, or volumes on the
data manifold (Chen et al., 2020; Lee et al., 2022b; Nazari
et al., 2023; Singh & Nag, 2021). It is worth noting that for
manifold learning purposes, the Euclidean ambient space
assumption is arbitrary; other non-Euclidean ambient space
metrics may be more appropriate for the problem at hand.
While some studies have tried to estimate the ambient space
metric (Alipanahi et al., 2008; Hauberg et al., 2012; Arvani-
tidis et al., 2020), these methods are for the most part quite
computation- and memory-intensive. Some approaches
like Arvanitidis et al. (2020) assume a diagonal ambient
space metric, but such simplifying assumptions may not
accurately reflect the data’s underlying semantic or domain-
specific attributes, failing to capture the correct geometry
of the problem and leading to poor downstream task perfor-
mance.

The essence of the data space can often be captured by us-
ing a well-designed similarity graph associated with data
points, in which a node represents each data point, and an
edge represents the similarity between a data pair (Costa &
Hero, 2004; Belkin & Niyogi, 2004; Chong et al., 2020).
Compared to obtaining explicit labels, these graphs provide
valuable information for semantic or domain-specific prop-
erties of the data in a relatively cost-effective manner. We
aim to leverage the geometry derived from these graphs in
finding better representations obtained from autoencoders.

In this paper, we propose a novel autoencoder regularization
framework, the Graph Geometry-Preserving Autoencoder
(GGAE), to find representations that attempt to preserve the
geometry of the data manifold implied by a given similar-
ity graph. We use an established Riemannian geometric
distortion measure as a regularizer (Jang et al., 2021; Lee
et al., 2022b), quantifying how a mapping between two Rie-
mannian manifolds deviates from an isometry that preserves
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distances and angles.

In order to derive a metric from a graph without explicitly
estimating the high-dimensional ambient metric, we expand
the graph Laplacian-based estimation techniques employed
in Rosenberg (1997); Hein et al. (2007); Belkin et al. (2009);
Perraul-Joncas & Meila (2013); Jang et al. (2021) to the au-
toencoder training setting. One challenge in such extensions
is that, since these techniques require latent coordinates of
all data points, the entire dataset must be encoded repeat-
edly at each iteration of the gradient descent. To make this
method suitable for larger scale autoencoder training, we
consider two batch-based graph Laplacian approximation
methods: (i) Laplacian-Slicing, and (ii) Batch-Kernel. As
we show later via empirical studies, our studies indicate that
the latter method is superior to the former (see Appendix A).

We perform extensive experiments comparing different
types of geometry-preserving and graph-based autoen-
coders, and demonstrate that our method is the most ef-
fective in learning latent structures that preserve the geom-
etry of the given graph across diverse datasets. In particu-
lar, when compared to SPAE (Singh & Nag, 2021), which
is most aligned with our objective, our method shows en-
hanced robustness to errors in global geodesic distances
within the graph and in sparse graph cases where some
edges are missing. Through case studies involving high-
dimensional images of a robot manipulator, we demonstrate
that GGAE can provide suitable low-dimensional latent
representations for learning the latent dynamics of a robot
system.

2. Geometry Preserving Mapping and
Distortion Measure

As preliminaries, this section first introduces a geometry-
preserving mapping, an isometry, between Riemannian man-
ifolds, followed by a distortion measure that measures the
proximity of a given mapping to an isometry. Lastly, we
introduce a technique to estimate the distortion measure
from finite samples on Riemannian manifolds. For relevant
references, we refer to Eells & Sampson (1964); Coifman
& Lafon (2006); Jang et al. (2021); Lee et al. (2022b).

2.1. Geometry-Preserving Mapping between
Riemannian Manifolds

Let M be a Riemannian manifold of dimension m with
local coordinates x ∈ Rm and Riemannian metric G(x) ∈
Rm×m, and N be a Riemannian manifold of dimension
n with local coordinates z ∈ Rn and Riemannian metric
H(z) ∈ Rn×n. Let f : M → N be a smooth mapping,
represented in local coordinates by f : Rm → Rn. The
differential at each x ∈ M can be represented in local
coordinates by the Jacobian matrix Jf (x) :=

∂f
∂x ∈ Rn×m.

A mapping is called an isometry if it preserves distances,
angles, and volumes everywhere. In the case of a mapping
f : M → N between Riemannian manifolds, f is a local
isometry at x ∈ M, if

G(x) = Jf (x)
⊤H(f(x))Jf (x). (1)

If (1) holds for every x in M, then f is called a global
isometry. In this paper, we consider a positive measure µ in
M and f is considered an isometry if (1) holds for all x in
the support of µ.

2.2. Distortion Measure of Isometry

Considering (1), the distortion introduced by f : M →
N at each point x ∈ M can be measured as a difference
between Jf (x)

⊤H(f(x))Jf (x) and G(x). This difference
can be measured in a coordinate-invariant way using the
eigenvalues of J⊤

f HJfG
−1 ∈ Rm×m 1 (Jang et al., 2021;

Lee et al., 2022b). For (1) to hold, the eigenvalues must all
equal one. A simple choice to measure the deviation from
this ideal case at each point x ∈ Rm is

m∑
i=1

(λi(x)− 1)
2
= m+

m∑
i=1

λi(x)
2 − 2λi(x), (2)

where λi(x) denotes the i-th eigenvalue of the m×m matrix
Jf (x)

⊤H(f(x))Jf (x)G
−1(x).

To measure the amount of global distortion induced by f ,
we need some means to integrate the point-wise distortion
measure (2) over M. This can be done by integrating (2)
with respect to some positive measure µ in M. The corre-
sponding global measure of distortion is∫

M
Tr((J⊤

f HJfG
−1)2 − 2J⊤

f HJfG
−1) dµ, (3)

where we ignore the constant term in (2) and use that the
trace of a matrix equals the sum of its eigenvalues. Lastly,
we note that since the trace is invariant to the cyclic permu-
tation of matrices, we have an equivalent form of (3):∫

M
Tr((HJfG

−1J⊤
f )2 − 2HJfG

−1J⊤
f ) dµ. (4)

2.3. Estimation of JfG−1J⊤
f

Suppose we are given only a finite set of points xi ∈ M, i =
1, . . . , N , neither local coordinates for M nor a coordinate
representation of its Riemannian metric. Adopting ideas
from Perraul-Joncas & Meila (2013), we can approximate
the distortion measure (4) from the finite samples, if we are
given (i) local coordinates z ∈ Rn and metric H(z) on the

1Apart from their order, the eigenvalues are invariant under
coordinate transformations x 7→ ψ(x), z 7→ ξ(z).
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target manifold N and (ii) the pairwise geodesic distances
between xi and xj for all i, j in M.

Specifically, we can estimate JfG
−1J⊤

f ∈ Rn×n directly
in local coordinates of N . This estimation is derived from
the following relationship between the Laplace-Beltrami op-
erator ∆M and JfG

−1J⊤
f (Perraul-Joncas & Meila, 2013):

Proposition 2.1. Let f : M → Rn be a smooth mapping –
where Rn is a local coordinate space for N –, represented
in local coordinates by f . Then, at each x ∈ M,

(JfG
−1J⊤

f )lk =
1

2
∆M

(
f l − f l(x)

) (
fk − fk(x)

)
|x, (5)

where Alk denotes (l, k)-th element of a matrix A and f =
(f1, . . . , fn).

To estimate JfG
−1J⊤

f by (5) from a finite set of points on
M, a sample-based approximation of ∆M is needed. For
this, one first constructs an N ×N kernel matrix

K = (Kij), Kij = exp

(
−dist(xi, xj)

2

h

)
, (6)

where dist(xi, xj) is the geodesic distance between points
xi and xj , and h is a bandwidth parameter.

After computing di =
∑

j Kij , D = diag(di), K̃ =

D−1KD−1, d̃i =
∑

j K̃ij and D̃ = diag(d̃i), finally the
graph Laplacian matrix L ∈ RN×N is obtained by

L =
D̃−1K̃ − I

h/4
, (7)

with which the Laplace-Beltrami operator applied to a
smooth function q : M → R at each xi can be approx-
imated as ∆Mq (xi) =

∑
j Lijq(xj) (Hein et al., 2007).

Then, as in Perraul-Joncas & Meila (2013) and Jang et al.
(2021), one can discretize (5) to estimate JfG−1J⊤

f at each
xi as

JfG
−1J⊤

f =
1

2
f(X)(diag(Li)−eie

⊤
i L−L⊤eie

⊤
i )f(X)⊤,

(8)
where f(X) = [f(x1), · · · , f(xN )] ∈ Rn×N , Li ∈ RN is
the i-th row of L, and ei ∈ RN is the i-th standard basis
vector.

We note that JfG−1J⊤
f estimated in this way depends only

on the pairwise distances dist(xi, xj) and zi = f(xi) ∈ Rn.
To emphasize these dependencies, we denote JfG

−1J⊤
f

estimated at xi in (8) as follows:

H̃i(L, f(X)) := H̃(ei, L, f(X)) ∈ Rn×n, (9)

where the graph Laplacian L, constructed by (6) and (7),
only depends on the pairwise distances dist(xi, xj).

3. Graph Geometry-Preserving Autoencoder
We develop a novel autoencoder regularization framework
that preserves the graph geometry. We begin this section
by introducing notations and assumptions used throughout.
Given a set of data points X = {xi}Ni=1 where xi ∈ RD,
we assume that (i) these data points approximately lie on
an m-dimensional manifold M ⊂ RD (m < D) and (ii)
we are given a graph G = (X,E) with N vertices X and
edges E = {eij} where eij represents the semantic distance
between xi and xj (not all vertices need to be connected).
We assume that there is an underlying Riemannian metric for
M so that eij is approximately a geodesic distance between
xi and xj .

As in the standard autoencoder framework, we will consider
an encoder fθ : RD → Z and a decoder gϕ : Z → RD, each
of which is approximated with a deep neural network. Z
is the latent space, which we assume as Z = Rm assigned
with the identity metric H(z) = I . We are particularly
interested in the encoder mapping restricted to the manifold
M, denoted by f̃θ := fθ|M : M → Z . Our objective is to
minimize the distortion of f̃θ between the Riemannian man-
ifold M – whose Riemannian geometry is approximated
with a graph G – and the Euclidean latent space Z .

3.1. Coordinate-Free Approximation of Distortion of f̃θ
using Graph G

In this section, we present a method to approximately com-
pute the distortion of f̃θ : M → Z , given a graph G whose
edge values represent geodesic distances in the Riemannian
manifold M. A naive approach would be to compute the
distortion measure of f̃θ : M → Z by approximating (3)
or (4) on the finite dataset X . However, since the under-
lying data manifold M is unknown during training time,
we neither have local coordinates for M nor a Riemannian
metric G expressed in these coordinates. Therefore, it is
challenging to compute the distortion of f̃θ directly by (3)
or (4).

Inspired by JfG
−1J⊤

f estimation introduced in Section 2.3,
we introduce a coordinate-free approximation method to
compute the distortion of f̃θ, without the need for defining
local coordinates and metric for M, directly leveraging
information in the given graph. First, we need pairwise
geodesic distances between data points xi and xj . When
only a sparse graph G of semantic distance is given, we use
the shortest-path distance distG(xi, xj) from xi to xj along
G as an approximation of the underlying (but unknown)
geodesic distance dist(xi, xj) in constructing the kernel
matrix K ∈ RN×N (6).

Subsequently, we construct the graph Laplacian L ∈ RN×N

as in (7). Then we can approximate JfG−1J⊤
f with (9) and
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rewrite (4) as a function of L and f̃θ as follows:

F (̃fθ, L) :=
1

N

N∑
i=1

Tr
[
H̃i(L, f̃θ(X))2 − 2H̃i(L, f̃θ(X))

]
,

(10)
where µ in (4) is a probability measure for the empirical data
distribution and f̃θ(X) := [̃fθ(x1), · · · , f̃θ(xN )] ∈ Rn×N .
Notice that H̃i(L, f̃θ(X)) and hence the distortion measure
F (̃fθ, L) only depend on L and f̃θ(X). As a result, the
distortion measure (10) does not require local coordinates x
nor metric G(x) of the data manifold M. Additionally, we
note that F (̃fθ, L) = F(fθ, L) since f̃θ(X) = fθ(X).

An autoencoder with a loss function augmented with the
coordinate-free distortion measure (10) is referred to as
Graph Geometry-Preserving Autoencoder (GGAE):

LGGAE = Lrecon(θ, ϕ) + αF(fθ, L), (11)

where we use the standard mean squared reconstruction
error for Lrecon(θ, ϕ) := 1

N

∑N
i=1 ∥xi − (gϕ ◦ fθ)(xi)∥2

and α > 0 is a weight parameter.

3.2. Mini-Batch Approximation of JG−1J⊤

When training GGAE on a large dataset, computing the
distortion measure (10) and its gradient at every iteration
of gradient descent is computation- and memory-intensive
because the entire dataset X must be encoded into fθ(X)
to compute H̃i(L, fθ(X)). In practice, we need some
means to approximate H̃i on a mini-batch B ⊂ X of
b := |B| ≪ N data points by encoding only the data
points in B into fθ(B) ∈ Rn×b. Our core idea is to con-
struct – instead of the entire Laplacian matrix L ∈ RN×N

– a mini-batch Laplacian matrix LB ∈ Rb×b to approxi-
mate H̃i = H̃i(LB , fθ(B)) on the mini-batch via (9). Then,
we can finally compute a mini-batch distortion measure
1
b

∑
xi∈B Tr

[
H̃2

i − 2H̃i

]
as in (10). Hence in the follow-

ing, we propose two methods to construct LB , which we
refer to as Laplacian-Slicing and Batch-Kernel, where LB

is denoted by Ls
B and Lk

B for distinction, respectively.

Laplacian-Slicing directly constructs Ls
B ∈ Rb×b by choos-

ing the b × b submatrix of L corresponding to the b data
points in B. Afterwards, a mini-batch approximation of
H̃i is obtained by (9) using inputs Ls

B and fθ(B), but with
some correction terms (see Appendix A.1) to ensure each
element of H̃i(L

s
B , fθ(B)) is an unbiased estimator of the

corresponding element of H̃i(L, fθ(X)). It is noteworthy
that L needs to be pre-computed only once before training
as it is independent of the network parameters.

Batch-Kernel first constructs a mini-batch kernel matrix
KB ∈ Rb×b by choosing the b × b submatrix of K corre-
sponding to B. Lk

B ∈ Rb×b is then obtained by (7), with
K̃, D̃ ∈ Rb×b computed from KB instead of the entire ker-
nel matrix K ∈ RN×N . A mini-batch approximation of H̃i

Batch KernelLaplacian Slicing

# of batches # of batches

p
er

se
n

t 
er

ro
r 

(%
)

p
er

se
n

t 
e

rr
o

r 
(%

)

0 2k 4k 6k 8k

0
2

0
0

k
4

0
0

k

0

0
5

0
1

0
0

50 100 150

Figure 1. The plot displays the relationship between the number
of sampled batches and the expectation error of two methods:
Laplacian-Slicing (left) and Batch-Kernel (right).

is obtained by (9) using inputs Lk
B and fθ(B). We note that

although only the points in the mini-batch are considered
in the Batch-Kernel method, it effectively uses the shortest-
path distances pre-computed on the entire graph by selecting
the submatrix KB from K. Like L in the Laplacian-Slicing
method, K needs to be pre-computed only once before train-
ing as it is independent of the network parameters.

Yet, H̃i(L
k
B , fθ(B)) is not necessarily an unbiased estimator

of H̃i(L, fθ(X)). A theoretical support of Batch-Kernel lies
in that a mini-batch of b data points can also be considered a
set of b samples on the data manifold. Thus H̃i(L

k
B , fθ(B))

can be directly interpreted as a discrete approximation of
JfθG

−1J⊤
fθ

at xi. According to Hein et al. (2007), as h → 0

and bh
m
2 +1/ log b → ∞, the discrete operator represented

by the graph Laplacian matrix Lk
B converges (almost surely)

to the Laplace-Beltrami operator ∆M in the sense that
limb→∞

∑
j(L

k
B)ijq(xj) = ∆Mq(xi) for a smooth func-

tion q : M → R, and the sample-based approximation error
for each element of JfθG

−1J⊤
fθ

is given by

|(JfθG−1J⊤
fθ
)jk− (H̃)jk| = O

(√
h
)
+O

(√
log b

bh
m
2 +1

)
,

(12)
provided that f̃θ : M → Rm is smooth.

Despite the unbiased estimation of H̃i(L, fθ(X)), we em-
pirically observe that GGAE trained with Laplacian-Slicing
fails to preserve geometry due to the high variance of the
estimator H̃i(L

s
B , fθ(B)). We conduct a simple numerical

experiment to investigate this further (see Appendix A.2
for details). We average the estimates for NB randomly
sampled mini-batches from the Laplacian-Slicing method
as 1

NB

∑NB

l=1 H̃i(L
s
Bl
, fθ(Bl)) and test how quickly the av-

erage converges to H̃i(L, fθ(X)) as NB increases. Figure 1
(Left) shows the percent error between H̃i(L, fθ(X)) and
the averaged estimation as a function of NB . The error
appears to converge to zero as NB → ∞, however, its con-
vergence rate is notably slow, maintaining a significantly
high percent error even after sampling 10k batches. This
indicates the unsuitability of the Laplacian-Slicing method
for training GGAE.

In contrast, GGAE with Batch-Kernel successfully learns
geometry-preserving representations despite the estimation
bias, owing to low variance and reasonable scale of bias
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from the ground truth JfθG
−1J⊤

fθ
. Figure 1 (Right) shows

the percent error measured between JfθG
−1J⊤

fθ
and its aver-

aged estimate 1
NB

∑NB

l=1 H̃i(L
k
Bl
, fθ(Bl)) of Batch-Kernel.

For a fixed mini-batch size b = |Bl|, the error quickly con-
verges to a certain non-zero lower bound as NB increases,
indicating low variance. Moreover, this lower bound grad-
ually decreases and converges to zero as the batch size b
increases, which is consistent with the theoretical support
discussed previously (12).

Overall, Batch-Kernel shows better estimates for
JfθG

−1J⊤
fθ

and superior performance in graph geometry
preservation than Laplacian-Slicing. Thus, we always use
Batch-Kernel in the subsequent experiments.

4. Related Work
4.1. Geometry-Preserving Autoencoders

While vanilla autoencoders often produce geometrically dis-
torted latent spaces, recent regularization approaches aim
to learn geometry-preserving representations (Chen et al.,
2020; Lee et al., 2022b; Nazari et al., 2023). Chen et al.
(2020); Lee et al. (2022b) attempt to preserve scaled dis-
tances and angles, while Nazari et al. (2023) aim to learn
volume-preserving representations. While these methods as-
sume the identity metrics for the ambient data spaces, other
works exploit non-Euclidean metrics (Lee et al., 2022a; Lee,
2024). We note that these works focus on minimizing the
distortions of decoders.

One may question whether we can extend the existing
geometry-preserving autoencoders to the setting where we
are given a graph G. To achieve this, we need a method for
constructing a Riemannian metric for the high-dimensional
ambient space from the graph. Some studies have attempted
to estimate the ambient space metric (Alipanahi et al., 2008;
Arvanitidis et al., 2020); however, estimating a metric
for high-dimensional space is computation- and memory-
intensive. Therefore, many studies resort to simplifying
assumptions about the metric, such as assuming a diagonal
matrix (Arvanitidis et al., 2020). Our method, in contrast,
does not require ambient space metrics, minimizing the dis-
tortions of encoders directly approximated from the graphs.

4.2. Graph-based Autoencoders

There are regularization methods that leverage information
from a given graph to enhance certain aspects of autoen-
coders (Singh & Nag, 2021; Lee et al., 2021; Moor et al.,
2020). While NRAE (Lee et al., 2021) and TopoAE (Moor
et al., 2020) focus on learning accurate manifolds and pre-
serving topological structures, respectively, SPAE (Singh &
Nag, 2021) attempts to find a graph geometry-preserving
representation aligned with our objective.

The SPAE first computes the geodesic distances between all
pairs of nodes in the graph and attempts to preserve these
global distances in the latent space. Therefore, if these
global distances are inaccurate, the performance degrades
significantly. On the other hand, our method relies on the
local metrics, thereby being robust to the global distance
errors in the graphs.

5. Experimental Results
In Section 5.1, we introduce baselines and evaluation met-
rics. Section 5.2 compares GGAE with the baselines, using
diverse datasets. Section 5.3 shows the advantageous use of
GGAE’s graph geometry-preserving latent representation
in learning latent dynamics models. Lastly, in Section 5.4,
we show the robustness of GGAE to missing edges in the
graphs.

5.1. Experimental Settings

Baseline Models: The baseline models selected for compar-
ison include AE, VAE (Kingma & Welling, 2013), geomet-
ric regularization methods such as IRAE (Lee et al., 2022b),
GeomAE (Nazari et al., 2023), and graph-based methods
such as SPAE (Singh & Nag, 2021), TopoAE (Moor et al.,
2020), NRAE (Lee et al., 2021), and GRAE (Duque et al.,
2022). The SPAE, TopoAE, and NRAE can be straight-
forwardly modified to use geometric information from a
(non-Euclidean) graph, which we refer to as TopoAE-graph,
SPAE-graph, and NRAE-graph, respectively.

Evaluation Metrics: We require evaluation metrics to mea-
sure (i) the accuracy of the learned manifold and (ii) the
preservation of graph geometry in the learned latent space.
The accuracy of the learned manifold is measured by the
mean squared reconstruction error. To evaluate the preserva-
tion of graph geometry, we use kNN, Spear, KL0.01, KL0.1,
and KL1, adopted from Moor et al. (2020); Nazari et al.
(2023). Originally, these metrics measure how well Eu-
clidean data distances are preserved in the latent space. We
adapt them by replacing the Euclidean data distances with
the ground-truth geodesic distances in a given graph. kNN
and KL0.01 evaluate geometry preservation on a local scale,
while Spear and KL1 assess it on a global scale. KL0.1

serves as an intermediary metric, balancing local and global
geometry preservation. To evaluate latent dynamics learning
performance, we use mean squared error between predicted
images and actual future images, denoted as dyn.. For more
details about the metrics, we refer the readers to Appendix
B.2.

5.2. Graph Geometry-Preserving Representation

Table 1 presents a summary of our quantitative evaluation
results. We rank the evaluation metrics for our methods and
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Table 1. Average ranks of evaluation metrics measured using all datasets; the lower, the better. Exact values of metrics can be found in
Appendix B.4.

recon. kNN Spear KL0.01 KL0.1 KL1 dyn.
GGAE 7.2 ± 3.5 1.5 ± 0.6 1.2 ± 0.5 1.2 ± 0.5 1.2 ± 0.5 1.2 ± 0.5 1

SPAE-graph 5.2 ± 3.2 1.8 ± 1.0 1.8 ± 1.0 3.2 ± 3.2 3.2 ± 2.6 2.8 ± 2.2 3
TopoAE-graph 7.0 ± 2.6 4.0 ± 2.4 4.8 ± 1.9 5.5 ± 2.6 4.0 ± 3.4 5.0 ± 3.4 5

NRAE-graph 6.0 ± 4.2 8.0 ± 2.4 8.0 ± 3.4 9.2 ± 3.5 9.0 ± 2.4 8.4 ± 3.0 2
AE 4.8 ± 4.5 7.8 ± 2.4 7.8 ± 2.2 7.8 ± 2.2 8.2 ± 2.2 9.0 ± 1.8 10

VAE 4.7 ± 3.8 10.0 ± 1.0 9.7 ± 1.5 9.0 ± 1.7 10.0 ± 0.0 8.3 ± 2.1 -
IRAE 5.0 ± 2.4 6.0 ± 2.6 6.2 ± 2.6 5.2 ± 1.3 7.0 ± 1.8 6.8 ± 2.1 4

GeomAE 6.2 ± 2.6 7.0 ± 2.2 6.5 ± 2.9 6.0 ± 3.3 5.8 ± 2.8 5.8 ± 3.2 9
SPAE 4.2 ± 4.6 8.0 ± 2.8 8.8 ± 1.0 7.4 ± 1.8 7.8 ± 1.7 8.2 ± 1.3 7

TopoAE 8.2 ± 1.9 4.8 ± 1.7 4.5 ± 1.3 4.6 ± 2.6 4.0 ± 0.8 4.5 ± 0.6 8
GRAE 5.8 ± 2.1 6.8 ± 2.9 6.0 ± 2.6 6.2 ± 2.4 5.5 ± 1.7 5.4 ± 2.9 6

AE

GRAE

GGAE (ours)

IRAE

SPAE-graph

GeomAE

TopoAE-graph

SPAE

NRAE-graph

TopoAE

Ideal Case

VAE

3D shape 
of Swiss Roll

Figure 2. Top-left: An ideal case where Swiss Roll data points are encoded equidistantly. Others: The reconstruction results and a
two-dimensional latent representation of our method, GGAE, and other baselines.

baselines, calculating the average across all datasets (details
are given in the subsequent sections). The best results are in-
dicated in bold. We fine-tune all models to achieve similarly
low reconstruction errors; therefore, the high-rank result of
GGAE in recon. does not carry significant meaning. GGAE
achieves the best average ranks in key metrics related to the
preservation of graph geometry.

5.2.1. SWISS ROLL

Dataset and Graph: The Swiss Roll dataset consists of ran-
domly sampled points on a two-dimensional, spiral-shaped
manifold in R3, as shown in Figure 2. The geodesic dis-
tance between two data points is defined as the shortest path
along the roll surface. We assume the Swiss Roll manifold
inherits the Euclidean geometry of the ambient space R3.
The inherited geometry can be discretely approximated by
a k-nearest neighbor graph connecting the neighboring data
points by their Euclidean distances. A notable feature of this
dataset is a hole in the middle, which affects the structure
of the neighboring graph; the shortest path on the graph is
forced to detour around this hole. This results in a discrep-
ancy between the shortest path distance on the graph and
the global geodesic distance.

Results: Figure 2 shows two-dimensional latent represen-
tations; evaluation metrics are reported in Appendix B.4.1.
Most methods fail to learn the correct connectivity of
the manifold, while GGAE, SPAE-graph, TopoAE, and
TopoAE-graph provide good results. Note that SPAE-
graph generates a distorted hole caused by errors in global
distances, specifically exaggerated shortest-path distances
around the hole.

5.2.2. DSPRITES

Dataset and Graph: The dSprites dataset (Matthey et al.,
2017) consists of 2D synthetic images generated from six
ground truth factors of variation; color, shape, rotation,
scale, x and y positions of a 2D shape. We fix the first
three factors to white, square, and zero, so that the dataset
consists of squares with varying (scale, x, y). We refer
to this three-dimensional variable as latent vector. This
dataset inherently lies on a three-dimensional manifold. A
meaningful distance along the manifold can be defined by
the distance between latent vectors, which differs from the
image space Euclidean distance. We construct a data graph
G by connecting k-nearest neighbors in (scale, x, y) space.
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SPAE-graph

VAE TopoAE

GGAE (ours) AE

SPAE

TopoAE-graph

IRAE GRAE

(𝑠𝑐𝑎𝑙𝑒, 𝑥, 𝑦)
Ideal Case

GeomAE

NRAE-graph

Figure 3. Top-left: An ideal representation that perfectly preserves the ground truth geometry of the dSprites manifold. Others: Three-
dimensional latent representations learned by GGAE and other baselines, where brighter color indicates a larger value of the scale factor.
Only GGAE learns a graph-preserving representation similar to the ideal case.

TopoAE-graph

SPAE

NRAE-graph

TopoAEVAE

Ideal Case

GRAE

AE

GeomAE

SPAE-graph

IRAE

GGAE (ours)

Figure 4. Top-left: An ideal case where a rotating sequence is encoded equidistantly. Others: Two-dimensional latent representation with
frames from the same sequence annotated. Only the GGAE and SPAE-graph preserve the dynamical distance given by the graph.

Results Figure 3 shows three-dimensional latent represen-
tations; evaluation metrics are reported in Appendix B.4.2.
We note that only GGAE learns a graph geometry-
preserving representation similar to the ideal case (top-left
in Figure 3). When training SPAE-graph, we encountered
challenges in balancing the trade-off between reconstruction
and regularization. The case with a low reconstruction error
is presented in Figure 3; the opposite case can be found in
Appendix B.4.2.

5.2.3. ROTATING MNIST

Dataset and Graph: Our Rotating MNIST dataset consists
of 36-frame videos of handwritten digit ‘3’, with each frame
created by rotating an image of ‘3’ by 10◦ per step. The
graph is constructed by connecting all pairs of consecutive
frames, including the last and first frames.

Results: Figure 4 illustrates two-dimensional latent
representations; evaluation metrics are reported in Ap-
pendix B.4.3. The correct encoding of the dataset’s intrinsic
rotational dynamics would be reflected by a loop-shaped
structure, as shown in the Top-left. GGAE and SPAE-graph
successfully preserve the rotational dynamics in the form
of a loop. On the contrary, other baseline models produce
entangled or disconnected representations, failing to ade-

quately encode the sequential relationships between frames.
In GGAE and SPAE-graph, to capture a loop-shaped struc-
ture, reconstruction is sacrificed to some extent, resulting
in various shapes of 3’s collapsing into a similar shape. To
prevent this while enabling loop-shaped encoding, a higher-
dimensional latent dimension may be needed.

5.3. Learning Latent Dynamics from Image Sequence

In this section, we demonstrate how graph geometry-
preserving representations can benefit the downstream task
of latent dynamics learning. Once autoencoders are trained,
we fix them and train dynamics models in the latent spaces –
that are trained, using time series data, to predict a sequence
of future data given past observation data. We adopt the
architecture from Hafner et al. (2019; 2020a;b); details can
be found in Appendix B.3.

Dataset and Graph: We consider images containing a robot
holding a block as shown in Figure 5 (Left). We construct a
similarity graph of the images, by using the block’s position,
connecting images with similar block positions by edges
in the graph, based on the idea that preserving this graph
geometry would lead to good representations for learning
the latent dynamics. We note that using the image Euclidean
distances does not provide this graph.
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AE

GRAE

NRAE-graph

TopoAE

TopoAE-graph

SPAE

SPAE-graph

GeomAE

GGAE (ours)

IRAE

Top

Bottom

Left

Ideal Case

Right

Figure 5. Left: An ideal case where images are encoded while preserving the similarity from the block position. Others: Two-dimensional
latent representations of GGAE and other baselines. Only GGAE and SPAE-graph preserve the geometry of the similarity graph.
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Figure 6. Ten future latent states (black dots) predicted by the trained dynamics model and corresponding reconstructed images at
t = 1, 4, 7, 10. The dynamics model, when trained in a distorted latent space, exhibits irregular step sizes or jumps in the latent space,
leading to its failure to accurately predict future images.

Results (graph geometry-preserving): The trained latent
representations are shown in Figure 5. IRAE, GeomAE,
SPAE, TopoAE, and GRAE show distorted or disconnected
latent representations, indicating that the image space Eu-
clidean metric is inappropriate. While TopoAE-graph and
NRAE-graph fail, GGAE and SPAE-graph successfully pre-
serve the graph geometry, showing latent representations
nearly identical to the ideal case (Left).

Results (latent dynamics learning): To evaluate the perfor-
mance of the latent dynamics models, we predict the next
ten images. This process involves the latent dynamics model
first predicting ten future states in the latent space, followed
by the decoder reconstructing these states into images. The
results are illustrated in Figure 6. Models trained with dis-
torted or disconnected latent spaces predict sequences of
latent states with non-uniform distances between consec-
utive states and abnormal jumps. In contrast, GGAE and

SPAE-graph predict sequences of states that are smooth and
evenly spaced, leading to the successful prediction of future
images.

5.4. Robustness to Missing Edges: GGAE vs
SPAE-graph

In reality, acquiring all pairwise similarities of vertices can
be cost-intensive or infeasible. In this section, we compare
the robustness of GGAE and SPAE-graph, which perform
the best among the baselines, given a graph with missing
edges. We disconnect some of the edges with a probabil-
ity of p > 0; as the disconnecting probability p increases,
the graph becomes sparser, resulting in a higher error be-
tween the shortest path distances on the graph and the actual
geodesic distances. We focus on two examples from previ-
ous sections: (i) the Swiss Roll manifold and (ii) the images
of a robot arm.
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Figure 7. The trained latent representations of GGAE and SPAE-
graph on the Swiss Roll and Robot Image dataset with sparse
graphs. The graph geometry-preserving performance of SPAE-
graph decreases significantly as the graph has fewer edges.

Figure 7 illustrates two-dimensional latent representations
of GGAE and SPAE-graph with p = 0.85, 0.9. In both
datasets, GGAE retains its graph geometry preservation
with sparse data graphs, while the performance of SPAE-
graph degrades drastically as the graph gets sparser. This
demonstrates that GGAE’s local metric-based regularization
is more robust to missing edges compared to SPAE’s global
distance-based regularization, as missing edges can intro-
duce errors in global distance computation. The quantitative
evaluation results are in Appendix B.4.5, with latent space
visualization in Figure 11.

6. Conclusion
In this study, we have proposed the Graph Geometry-
Preserving Autoencoder (GGAE), a novel framework for
autoencoder regularization. GGAE effectively preserves
the data manifold geometry based on a given similarity
graph, utilizing a Riemannian geometric distortion mea-
sure computed with a graph Laplacian as a regularizer. For
efficient implementations of large-scale autoencoder train-
ing, we have devised two batch-based graph Laplacian ap-
proximation methods: (i) Laplacian-Slicing and (ii) Batch-
Kernel. Through empirical error analysis, we have found
that the Batch-Kernel method significantly outperforms
Laplacian-Slicing. Our extensive experiments have con-
firmed that GGAE outperforms other geometry-preserving
autoencoders, particularly showcasing robustness to errors
in global geodesic distances on graphs. Additionally, a case
study with high-dimensional images of a robot manipulator
illustrates the effectiveness of GGAE in providing a suitable
low-dimensional latent representations for latent dynamic
learning.

One challenge of training GGAE, common among kernel-
based methods, is the lack of a canonical strategy for tuning
the bandwidth parameter, despite its significant impact on
performance. The appropriate bandwidth scale is often
related to the statistical distribution of the edge lengths
in the graph, requiring independent bandwidth tuning for
each dataset used in our experiments. For datasets without

a predefined graph, various options for similarity graph
must be explored, each of which requires finding a suitable
bandwidth. This can be burdensome when applying GGAE
to new datasets.
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A. Mini-Batch Approximation: Laplacian-Slicing vs Batch-Kernel

In this section, we present the mathematical formulation of Laplacian-Slicing along with a comparative analysis of Laplacian-
Slicing and Batch-Kernel. Additionally, we offer an empirical analysis explaining the failure of Laplacian-Slicing, focusing
on its convergence rate.

A.1. Mathematical Formulation of Laplacian-slicing

Unbiased Estimation of H̃i(L, f(X)): For a fixed data point xi, the graph Laplacian L ∈ RN×N and f(X) ∈ Rn×N , we
can rewrite (8) from the main text as

H̃i(L, f(X))kl =

N∑
m=1

1

2
Lim

(
fk(xm)f l(xm)− fk(xi)f

l(xm)− fk(xm)f l(xi)
)

(13)

where Akl denotes (k, l)-th element of a matrix A and f = (f1, ..., fn).

Define an n×n matrix H̃m
i such that (H̃m

i )kl :=
1
2Lim

(
fk(xm)f l(xm)− fk(xi)f

l(xm)− fk(xm)f l(xi)
)

for k, l = 1, ..., n.
Then, we can rewrite (13) as

H̃i(L, f(X)) =

N∑
m=1

H̃m
i . (14)

Now, consider the set of all possible mini-batches B ⊂ X that contains xi. We will denote this set as Bi. For a batch B in
Bi, the Laplacian-Slicing method approximates H̃i(L, f(X)) on B as

H̃i(L
s
B , f(B)) =

∑
xm∈B

H̃m
i , (15)

where Ls
B ∈ Rb×b is the submatrix of L ∈ RN×N corresponding to the data points in B.

The probability mass P (B) : Bi → R is uniformly 1

(N−1
b−1 )

for all B in Bi. We then derive the expectation of (k, l)-th element

of H̃i(L
s
B , f(B)) as

E
B∼P (B)

[
H̃i(L

s
B , f(B))

]
=

∑
B∈Bi

P (B)
[
H̃i(L

s
B , f(B))

]
=

1(
N−1
b−1

) ∑
B∈Bi

∑
xm∈B

(H̃m
i ). (16)

In all
(
N−1
b−1

)
batches in Bi, xi is sampled

(
N−1
b−1

)
times (i.e., always) and other data points are sampled

(
N−2
b−2

)
times each.

So we can rewrite (16) as

E
B∼P (B)

[
H̃i(L

s
B , f(B))

]
=

1(
N−1
b−1

)[(N − 1

b− 1

)
H̃i

i +

(
N − 2

b− 2

)( i−1∑
m=1

H̃m
i +

N∑
m=i+1

H̃m
i

)]

= H̃i
i +

b− 1

N − 1

( N∑
m=1

H̃m
i − H̃i

i

)

=
N − b

N − 1
H̃i

i +
b− 1

N − 1

N∑
m=1

H̃m
i . (17)

From (14) and (17), the H̃i(L, f(X)) can be approximated from the expectation of mini-batch estimation as

H̃i(L, f(X)) = E
B∼P (B)

[N − 1

b− 1
H̃i(L

s
B , f(B))− N − b

b− 1
H̃i

i

]
(18)
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which means that each element of sample-based approximation Ĥi,B := N−1
b−1 H̃i(L

s
B , f(B)) − N−b

b−1 H̃
i
i is an unbiased

estimator of the corresponding element of H̃i(L, f(X)) computed from the global Laplacian L ∈ RN×N and the entire
dataset X .

Variance of Estimator: We now compute the variance of each element of the unbiased estimator obtained in (18). For
simplicity, we denote the unbiased estimator by Ĥi,B := N−1

b−1 H̃i(L
s
B , f(B))− N−b

b−1 H̃
i
i . Since the second term does not

depend on batch sampling, we compute the variance of (k, l)-th element of H̃i(L
s
B , f(B)).

Define indicator variables Cm (m = 1, . . . , i− 1, i+ 1 . . . N) to be the random variables that each takes the value of 1 if
xm is included in a batch B ∈ Bi and 0 otherwise. Then, H̃i(L

s
B , f(B))kl can be expressed as

H̃i(L
s
B , f(B))kl =

N∑
m=1

(H̃m
i )kl = (H̃i

i )kl +
∑
m ̸=i

(H̃m
i )klCm. (19)

When uniformly sampling (b− 1) out of (N − 1) points without replacement, it is known that the corresponding indicator
variables, which are exactly the Cm’s we defined, satisfy the following:

Var(Cm) = p(1− p), Cov(Cm1
, Cm2

) = −2p(1− p)

N − 2
(m1 ̸= m2), (20)

where p := b−1
N−1 is the uniform probability for each point to be sampled.

Thus, the variance of (19) can be computed as

Var
[
H̃i(L

s
B , f(B))kl

]
= p(1− p)

∑
m ̸=i

((H̃m
i )kl)

2 − 2p(1− p)

N − 2

∑
m1,m2 ̸=i

(H̃m1
i )kl(H̃

m2
i )kl. (21)

Finally, the variance of (k, l)-th element of the sample-based approximation Ĥi,B is computed as

Var
[
(Ĥi,B)kl

]
=

N − 1

b− 1

∑
m ̸=i

((H̃m
i )kl)

2 − 2

(N − 2)

∑
m1,m2 ̸=i

(H̃m1
i )kl(H̃

m2
i )kl

 . (22)

For a fixed dataset (i.e., N and (H̃m
i )kl both fixed), the variance increases with decreasing batch size b. This is consistent

with the empirical results presented in the left subplot of Figure 9.

A.2. Empirical Error Analysis

We conduct experiments on the Swiss Roll and dSprites datasets to evaluate and compare two methods for constructing a
mini-batch Laplacian matrix: Batch-Kernel and Laplacian-Slicing. The trained latent spaces for each model are depicted in
Figure 8, and the corresponding evaluation metrics are reported in Table 2. In this table, the GGAE model using Batch-Kernel
is labeled as GGAE-k, and the one using Laplacian-Slicing as GGAE-s. As illustrated in Figure 8, GGAE-s does not
successfully preserve the geometry of the given graph in either dataset. The quantitative comparison results align with these
observations, showing that GGAE-k surpasses GGAE-s across all evaluation metrics.

Table 2. Quantitative comparison of Laplacian-Slicing and Batch-Kernel.
dataset model recon. kNN Spear KL0.01 KL0.1 KL1

Swiss Roll GGAE-k 4.874e-3 0.9911 1.0000 3.673e-5 4.730e-6 5.030e-7
GGAE-s 9.407e-2 0.8306 0.8820 5.748e-2 9.265e-3 6.450e-4

dSprites GGAE-k 2.830e-4 0.9683 0.9979 1.633e-3 3.310e-4 1.291e-5
GGAE-s 6.372e-4 0.5780 0.4252 3.416e-1 1.052e-1 4.691e-3

To understand why Laplacian-Slicing fails despite the validity of (18), we empirically examined the convergence and its rate
as indicated in (18). Assuming that f : R3 → R2 is an ideal isometric mapping for the Swiss Roll, we analyzed whether the
average of N−1

b−1 H̃i(L
s
B , f(B))− N−b

b−1 H̃
i
i converges to H̃i(L, f(X)) for randomly sampled batches, and if so, how quickly

this convergence occurs.
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recon. latent
Swiss Roll

GGAE w/
Batch Kernel

GGAE w/
Laplacian Slicing

dSprites

Figure 8. The experimental results of GGAEs using Batch-Kernel and Laplacian-Slicing on the Swiss Roll and dSprites datasets.

Using k randomly sampled batches, we calculate the error in the expectation from Laplacian-Slicing as

percent error (%) =
||H̃i(L, f(X))− 1

k

∑Bk

B=B1

[
N−1
b−1 H̃i(L

s
B , f(B))− N−b

b−1 H̃
i
i

]
||F

||H̃i(L, f(X))||F
× 100. (23)

where || · ||F denotes the Frobenius norm 2. We also calculate the error of Batch-Kernel as

percent error (%) =
||(JG−1J⊤)xi − 1

k

∑Bk

B=B1
H̃i(L

k
B , f(B))||F

||(JG−1J⊤)xi
||F

× 100. (24)

Here, (JG−1J⊤)xi denotes JG−1J⊤ at xi.

         

 

    

    

    

    

    

        

        

        

            

 
 
  
  

  
  
  
  
  

 

         

 

  

  

  

  

   

   

   

   

   

     

      

      

       

            

 
 
  
  

  
  
  
  
  

 

Laplacian Slicing Batch Kernel

Figure 9. The plot displays the relationship between the number of sampled batches and the expectation error of two methods: Laplacian-
Slicing (left) and Batch-Kernel (right).

Figure 9 (Left) illustrates the percent error between H̃i(L, f(X)) and 1
k

∑Bk

B=B1

[
N−1
b−1 H̃i(L

s
B , f(B)) − N−b

b−1 H̃
i
i

]
||F as a

function of the number of sampled batches k. Although the error converges toward zero as k approaches infinity, the
rate of convergence is slow, with a notably high percent error persisting even after 10k batch samples. Figure 9 (Right)
displays the percent error of the Batch-Kernel method measured between the actual JG−1J⊤ and its averaged estimate
1
k

∑Bk

B=B H̃i(L
k
B , f(B)). At a constant batch size b = |B|, the error quickly reaches a certain non-zero minimum as k

increases. As the batch size b grows, the error gradually diminishes and eventually zeroes out, consistent with the theoretical
support previously discussed (12). Comparatively, the Batch-Kernel’s percent error is substantially lower than that of
Laplacian-Slicing, demonstrating the superior performance of the Batch-Kernel method.

2One might wonder why the geodesic distances between two symmetric positive-definite matrices, derived as d(P1, P2) =

(
∑n

i=1(log λi(P
−1
1 P2))

2)1/2, are not used to measure the difference between H̃i(L, f(X)) and its expectation. The reason is that
we observed, in the middle of convergence, the term 1

k

∑Bk
B=B1

[
N−1
b−1

H̃i(L
s
B , f(B)) − N−b

b−1
H̃i

i

]
is not a symmetric positive-definite

matrix. Therefore, we instead employ the Frobenius norm to calculate the error.
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A.3. Pseudocode

In this section, we provide python-style pseudocode for Batch-Kernel and Laplacian-Slicing. Batch-Kernel chooses a
submatrix of the kernel matrix to compute the batch Laplacian, whereas Laplacian-Slicing computes the Laplacian first and
then chooses a submatrix of the Laplacian matrix. The functions Equation7, Equation8, and Equation18 represent
the corresponding equations from the main text.

1 def BatchKernel(K, fX, batch_indices, bandwidth):
2 # ----------- INPUT -----------
3 # K : a kernel matrix, size of (N, N)
4 # fX : embedded points f(X), size of (N, n)
5 # batch_indices : indices of data points in a batch, size of (B)
6 # bandwidth : a bandwidth parameter, size of (1)
7

8 # ----------- OUTPUT ----------
9 # H_tilde : J_f Gˆ{-1} J_fˆT for points in a batch, size of (B, n, n)

10

11 # Choose a submatrix of the kernel matrix K
12 K_B = K[batch_indices, :][:, batch_indices] # size of (B, B)
13

14 # Batch the embedded points
15 fB = fX[batch_indices, :] # size of (B, n)
16

17 # Calculate Equation (7): calculate the batch Laplacian
18 L_B = Equation7(K_B, bandwidth) # size of (B, B)
19

20 # Calculate Equation (8): calculate J_f Gˆ{-1} J_fˆT
21 H_tilde = Equation8(L_B, fB) # size of (B, n, n)
22

23 return H_tilde

Listing 1. pseudocode for Batch-Kernel

1 def LaplacianSlicing(K, fX, batch_indices, bandwidth):
2 # ----------- INPUT -----------
3 # K : a kernel matrix, size of (N, N)
4 # fX : embedded points f(X), size of (N, n)
5 # batch_indices : indices of data points in a batch, size of (B)
6 # bandwidth : a bandwidth parameter, size of (1)
7

8 # ----------- OUTPUT ----------
9 # H_tilde : J_f Gˆ{-1} J_fˆT for points in a batch, size of (B, n, n)

10

11 # Calculate Equation (7): calculate the Laplacian
12 L = Equation7(K, bandwidth) # size of (N, N)
13

14 # Choose a submatrix of the Laplacian matrix
15 L_B = L[batch_indices, :][:, batch_indices] # size of (B, B)
16

17 # Batch the embedded points
18 fB = fX[batch_indices, :] # size of (B, n)
19

20 # Calculate Equation (18) in Appendix A.1: calculate J_f Gˆ{-1} J_fˆT
21 H_tilde = Equation18(L_B, fB) # size of (B, n, n)
22

23 return H_tilde

Listing 2. pseudocode for Laplacian-Slicing
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B. Further Experimental Details
B.1. Computational Complexity

GGAE initially computes the shortest path distances between every node on a given graph before training. Then, the
distortion measure is approximated from the mini-batch kernel matrix by (6)∼(10) at every training iteration. This involves
multiplications of b × b and b × n matrices, where b is the batch size and n the latent dimension. The computational
complexity of our distortion measure is O(b3 + b2n). In our experiments, this complexity does not pose a significant
computational burden during training. The training time measurements of GGAE and the baselines are presented in Table 3.
The experiments utilized an i9-10900K CPU and a Geforce RTX 4090 GPU. For the dataset, we employed the dSprites
dataset used in Section 5.2.2, with a batch size of 100. With this setup, we measured the time taken for 100 training steps.
GGAE exhibits comparable computation time to the baselines utilizing simple regularization terms, such as AE, VAE, SPAE,
and GRAE. Furthermore, GGAE demonstrates shorter computation time relative to models employing Jacobian-based
regularization terms (IRAE, GeomAE) or other computationally intensive regularization terms (TopoAE, NRAE).

Table 3. The training time measurements of GGAE and baselines
Elapsed time (s)

GGAE 0.487 ± 0.007
SPAE-graph 0.456 ± 0.014

TopoAE-graph 1.401 ± 0.067
NRAE-graph 7.092 ± 0.015

AE 0.472 ± 0.018
VAE 0.406 ± 0.005

IRAE 2.137 ± 0.023
GeomAE 2.811 ± 0.003

SPAE 0.476 ± 0.013
TopoAE 1.410 ± 0.008

GRAE 0.431 ± 0.005

For the computation of shortest path distances on the graph, we employ the Dijkstra algorithm, implemented in the scipy
Python library. The time complexity of Dijkstra’s algorithm is O(V E + V 2 log V ), where V and E represent the number of
nodes and edges in the graph, respectively. As an example, for the Swiss Roll dataset with 10k data points and a k-nearest
neighbor graph constructed with k = 10, resulting in approximately 50k edges, it takes approximately 23.5 seconds to
compute the shortest path distances between all nodes using an AMD Ryzen 9 7950X CPU.

One advantage of GGAE is its robustness to errors in global geodesic distance calculations. As demonstrated in Section 5.4,
GGAE maintains its performance levels even with only 10% of the original edges. This robustness significantly reduces the
time needed to compute shortest path distances on the graph, as shown in Table 4.

Table 4. The elapsed time for shortest path distance calculation on Swiss Roll
disconnecting probability p Elapsed time (s)

0.00 53.72
0.50 44.49
0.80 34.75
0.85 27.96
0.90 5.08

Furthermore, this robustness allows adjusting the limit parameter in the Dijkstra algorithm. The Dijkstra algorithm stops
searching for a path between two nodes if the path distance exceeds the limit value, assigning an infinite distance instead. A
lower limit significantly speeds up the algorithm but at the cost of greater inaccuracy in global distances. However, due to
GGAE’s robustness to these errors, a low limit parameter does not compromise GGAE’s performance, while significantly
decreasing the computation time for Dijkstra. For instance, we use a limit of 100 for the Swiss Roll experiments, but
reducing the limit to 10 decreases the computation time to just 1.69 seconds, without affecting GGAE’s superior performance
on the Swiss Roll dataset, as shown in Table 5.

Table 5. Performance Comparison of GGAE with different limit parameters
limit recon.(↓) kNN(↑) Spear(↑) KL0.01(↓) KL0.1(↓) KL1(↓)
10 8.011e-3 0.9910 1.0000 4.808e-5 9.551e-6 2.098e-7

100 4.874e-3 0.9911 1.0000 3.673e-5 4.730e-6 5.030e-7
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B.2. Evaluation Metrics

In this section, we explain the quantitative metrics of graph geometry preservation, which are kNN, Spear, and KLσ

(σ = 0.01, 0.1, 1). These metrics all measure how pairwise distances of data points and pairwise distances of corresponding
latent points are aligned. For our purpose of evaluating graph geometry preservation, we use the semantic distance (which
the data graph G approximates) as the distance metric for data points, while the distance between latent points are measure
by Euclidean distances.

The semantic distance for each dataset is as follows. For Swiss Roll, it is the geodesic distance along the surface of 2D Swiss
Roll manifold without hole. For dSprites, it is the 2-norm distance between the latent vectors (scale, x, y). For Rotating
MNIST, it is only defined for images in a same sequence as the number of time steps between them. Finally for Robot
Images, it is the 2-norm distance between block positions in images.

B.2.1. kNN

The kNN (Kobak & Berens, 2019) evaluates the fraction of k-nearest neighbors in the data space that are also a k-nearest
neighbors in the latent space. If nearest neighbors are perfectly preserved, kNN becomes 1. For the datasets except for
Rotating MNIST, we report the average of kNN obtained by changing k from 10 to 200 in steps of 10, as proposed in Moor
et al. (2020). For Rotating MNIST, we iterate k from 2 to 10 in steps of 2, since a rotating sequence only contains 36 images.

B.2.2. Spear

The Spear (Kobak & Berens, 2019) is defined as the Spearman’s rank correlation between the pairwise distances of data
points and the pairwise distances of latent points. This measures how rankings (not the exact distances) of the pairwise
distances of data and latent points are aligned. If these are perfectly aligned, Spear becomes 1.

B.2.3. KLσ

The KLσ measures the Kullback-Leibler divergence between the density estimates (Chazal et al., 2011) computed in the
data and latent space. Denote the data and their pairwise distance by X = {xi}Ni=1 and dist(xi, xj), and denote latent points
by Z = {zi}Ni=1. The density estimate pX : X → R on X is defined by

pX,σ(xi) =
p̃X,σ(xi)∑
j p̃X,σ(xj)

, p̃X,σ(xi) =
∑
j

exp

(
− 1

σ

(
dist(xi, xj)

maxx′,x′′∈X dist(x′, x′′)

)2
)
, (25)

and the density estimate pZ : Z → R on Z is defined similarly by replacing dist with Euclidean distance. With these, KLσ

is defined by DKL(pX,σ∥pZ,σ). Larger σ corresponds to evaluating the preservation of geometry on a more global scale.
We use σ = 0.01, 0.1, 1 as in Moor et al. (2020).

B.3. Details of Dreamer Architecture

Learning dynamics models in low-dimensional latent state space is an actively studied area, primarily due to its computation-
and memory-efficient prediction capabilities (Hafner et al., 2019; 2020a;b). In latent dynamics learning experiments in
Section 5.3, we utilize a modified version of the Dreamer (Hafner et al., 2019). The original version of the Dreamer is
proposed for model-based reinforcement learning, consisting of the following components: representation model (encoder),
observation model (decoder), transition model (latent dynamics), reward model, value model and action model. In our
experiment, we employ models only related to the latent dynamics learning as

representation model (encoder): fθ(zt|xt) (26)
observation model (decoder): gθ(xt|zt) (27)

transition model (latent dynamics): qθ(zt|zt−1). (28)

Originally, these three models are trained simultaneously, incorporating both the reconstruction error and the dynamics
prediction error into the loss function. To evaluate how helpful the latent representations obtained by GGAE and other
baselines are, we keep the pretrained autoencoders fixed and train the dynamics model using only the dynamics prediction
loss. The dynamics learning error, as reported in Table 10, is evaluated based on the mean squared error between the future
observation image and its prediction.
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B.4. Quantitative Evaluation Results

In this section, we present the quantitative evaluation results of each experiment. In all tables except Tables 8 and 11, the
best result is indicated by bold and underlined text, while the second-best result is shown in bold. In Tables 8 and 11, only
the best result is indicated by bold text.

B.4.1. SWISS ROLL
Table 6. Evaluation metrics on the Swiss Roll dataset

recon.(↓) kNN(↑) Spear(↑) KL0.01(↓) KL0.1(↓) KL1(↓)
GGAE (ours) 4.874e-3 0.9911 1.0000 3.673e-5 4.730e-6 5.030e-7
SPAE-graph 7.315e-3 0.9784 0.9996 4.638e-5 6.201e-5 8.142e-7

TopoAE-graph 9.671e-3 0.9912 0.9999 7.852e-5 6.804e-6 8.447e-7
NRAE-graph 1.768e-3 0.8026 0.8525 2.166e-1 2.364e-2 6.442e-4

AE 1.134e-1 0.5800 0.5399 1.650e-1 6.037e-2 2.430e-3
VAE 5.903e-2 0.7929 0.4644 1.845e-1 4.268e-2 1.579e-3

IRAE 3.385e-2 0.9447 0.7093 1.093e-2 2.466e-2 1.380e-3
GeomAE 4.130e-2 0.8103 0.8776 1.301e-2 1.433e-2 8.919e-4

SPAE 1.890e-1 0.7049 0.7113 3.636e-2 8.782e-3 7.911e-4
TopoAE 4.448e-2 0.9461 0.9981 5.696e-4 2.769e-4 2.470e-5

GRAE 5.010e-2 0.8353 0.8957 6.902e-2 6.432e-3 3.271e-4

B.4.2. DSPRITES
Table 7. Evaluation metrics on the dSprites dataset
recon.(↓) kNN(↑) Spear(↑) KL0.01(↓) KL0.1(↓) KL1(↓)

GGAE (ours) 2.830e-4 0.9683 0.9979 1.633e-3 3.310e-4 1.291e-5
SPAE-graph 1.487e-4 0.8930 0.9336 5.213e-2 1.272e-2 6.152e-4

TopoAE-graph 3.784e-4 0.8415 0.9223 2.845e-2 9.520e-3 5.766e-4
NRAE-graph 2.861e-3 0.8068 0.7372 2.216e-1 6.244e-2 2.037e-3

AE 7.405e-5 0.8411 0.8717 6.096e-2 2.229e-2 1.155e-3
VAE 9.597e-5 0.8160 0.8392 4.945e-2 2.257e-2 1.052e-3

IRAE 2.154e-4 0.8556 0.9292 2.870e-2 1.171e-2 6.576e-4
GeomAE 1.519e-4 0.8437 0.9335 2.211e-2 9.630e-3 5.464e-4

SPAE 1.262e-4 0.8550 0.8997 5.421e-2 1.795e-2 8.898e-4
TopoAE 1.987e-4 0.8499 0.9291 2.715e-2 9.588e-3 5.846e-4

GRAE 1.967e-4 0.8281 0.9195 3.208e-2 1.030e-2 3.954e-4

SPAE-graph with a low regularization term As mentioned in Section 5.2.2, we encountered challenges in balancing
the trade-off between reconstruction and regularization when training SPAE-graph for the dSprites dataset. We report
SPAE-graph(recon.), the case with a low reconstruction error, in Figure 3 and Table 7. Here, we present SPAE-graph(reg.),
the opposite case with a low regularization term. The latent representation learned by SPAE-graph(reg.) is illustrated in
Figure 10 with evaluation metrics provided in Table 8, both in comparison with GGAE and SPAE-graph(recon.). We note
that GGAE outperforms SPAE-graph(reg.) even in graph geometry preservation. This is because the shortest path detours
the hole in (scale, x, y) space, making SPAE-graph preserve exaggerated distances around the hole as in the Swiss Roll
experiments.

GGAE (ours) SPAE-graph (recon.)Ideal Case SPAE-graph (reg.)

Figure 10. Left: An ideal representation that perfectly preserves the ground truth geometry of the dSprites manifold. Others: Three-
dimensional latent representations of GGAE, SPAE-graph(recon.) and SPAE-graph(reg.).

Table 8. Evaluation metrics on the dSprites dataset: GGAE vs. SPAE-graph
recon.(↓) kNN(↑) Spear(↑) KL0.01(↓) KL0.1(↓) KL1(↓)

GGAE (ours) 2.830e-4 0.9683 0.9979 1.633e-3 3.310e-4 1.291e-5
SPAE-graph (recon.) 1.487e-4 0.8930 0.9336 5.213e-2 1.272e-2 6.152e-4

SPAE-graph (reg.) 4.535e-1 0.9500 0.9941 4.410e-3 7.989e-4 4.116e-5
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B.4.3. ROTATING MNIST
Table 9. Evaluation metrics on the Rotating MNIST dataset

recon.(↓) kNN(↑) Spear(↑) KL0.01(↓) KL0.1(↓) KL1(↓)
GGAE (ours) 4.640e-2 1.000 0.9984 7.048e-4 1.432e-5 1.434e-7
SPAE-graph 4.683e-2 1.000 0.9984 8.697e-4 2.537e-5 4.840e-7

TopoAE-graph 4.070e-2 0.8036 0.3753 1.052e-1 6.519e-2 3.262e-3
NRAE-graph 4.046e-2 0.7442 0.2363 1.921e-1 9.019e-2 3.270e-3

AE 3.732e-2 0.7510 0.4016 8.366e-2 4.604e-2 2.797e-3
VAE 3.804e-2 0.7167 0.3364 1.444e-1 7.706e-2 2.638e-3

IRAE 3.860e-2 0.7445 0.4096 4.466e-2 2.920e-2 2.324e-3
GeomAE 3.806e-2 0.7538 0.3437 5.568e-2 2.155e-2 1.884e-3

SPAE 3.753e-2 0.7173 0.2567 5.224e-2 4.962e-2 2.817e-3
TopoAE 4.871e-2 0.8425 0.4844 1.353e-2 2.407e-2 2.385e-3

GRAE 3.940e-2 0.7424 0.2980 9.940e-2 6.403e-2 3.250e-3

B.4.4. ROBOT IMAGES
Table 10. Evaluation metrics on the robot image dataset

recon.(↓) kNN(↑) Spear(↑) KL0.01(↓) KL0.1(↓) KL1(↓) dyn.(↓)
GGAE (ours) 3.491e-3 0.8891 0.9946 4.939e-3 7.268e-4 2.778e-5 5.927e-3
SPAE-graph 3.018e-3 0.9094 0.9968 1.622e-3 4.392e-4 1.611e-5 5.985e-3

TopoAE-graph 3.270e-3 0.7944 0.9126 5.438e-2 8.077e-3 2.401e-4 6.110e-3
NRAE-graph 3.263e-3 0.7774 0.9167 3.197e-2 1.454e-2 4.732e-4 5.955e-3

AE 3.297e-3 0.7175 0.8629 4.803e-2 2.083e-2 6.505e-4 8.306e-3
IRAE 2.831e-3 0.6941 0.8506 6.221e-2 2.141e-2 6.416e-4 6.084e-3

GeomAE 5.348e-3 0.6096 0.8038 7.999e-2 2.502e-2 6.973e-4 7.107e-3
SPAE 2.675e-3 0.6978 0.8042 7.765e-2 2.747e-2 1.017e-3 6.272e-3

TopoAE 3.330e-3 0.7155 0.8742 7.765e-2 1.396e-2 4.019e-4 6.499e-3
GRAE 2.847e-3 0.8021 0.9200 2.900e-2 1.187e-2 4.732e-4 6.181e-3

B.4.5. EXPERIMENTS WITH SPARSE GRAPHS

Table 11. Quantitative evaluation results with sparse graphs
dataset model p recon. kNN Spear KL0.01 KL0.1 KL1

Swiss Roll

GGAE

0.5 8.225e-3 0.9901 0.9999 4.808e-5 9.551e-6 6.938e-7
0.7 8.568e-3 0.9894 0.9999 3.548e-5 2.972e-6 3.268e-7
0.8 6.921e-3 0.9871 0.9998 5.670e-5 6.591e-6 1.118e-6

0.85 9.431e-3 0.9863 0.9998 5.615e-5 7.973e-6 1.480e-6
0.9 5.601e-3 0.9853 0.9998 6.028e-5 9.966e-6 1.827e-6

SPAE-graph

0.5 5.109e-3 0.9731 0.9994 8.296e-5 8.861e-5 1.319e-6
0.7 3.459e-3 0.9690 0.9994 1.859e-4 7.395e-5 1.483e-6
0.8 4.512e-2 0.9728 0.9995 2.540e-4 6.427e-5 2.154e-6

0.85 1.234e-1 0.9533 0.9978 2.179e-3 2.732e-4 1.246e-5
0.9 2.356e-0 0.7772 0.8976 3.232e-2 1.524e-2 1.077e-3

Robot images

GGAE

0.5 3.246e-3 0.7724 0.9955 3.362e-3 5.955e-4 2.004e-5
0.7 3.300e-3 0.7604 0.9954 3.185e-3 6.218e-4 2.140e-5
0.8 3.210e-3 0.7647 0.9956 2.951e-3 5.887e-4 2.105e-5

0.85 3.125e-3 0.7588 0.9956 2.697e-3 5.990e-4 2.090e-5
0.9 3.035e-3 0.7767 0.9960 2.522e-3 5.529e-4 1.922e-5

SPAE-graph

0.5 2.990e-3 0.7803 0.9966 1.547e-3 4.631e-4 1.562e-5
0.7 2.924e-3 0.7610 0.9959 1.723e-3 5.593e-4 1.880e-5
0.8 3.137e-3 0.7261 0.9932 3.443e-3 9.202e-4 3.064e-5

0.85 3.583e-3 0.6379 0.9748 1.805e-2 4.423e-3 1.705e-4
0.9 1.036e-2 0.3144 0.5055 1.531e-1 5.007e-2 1.471e-3

We have conducted an additional analysis about the robustness experiments in Section 5.4, specially the relation between the
disconnecting probability and the graph approximation error of the geodesic distances. We calculate the approximation
error as MAPE (Mean Absolute Percent Error) between the ground-truth geodesic distance and the shortest path distance on
the graph, with the results displayed in Table 12. As the disconnecting probability p increases, the graph becomes sparser,
resulting in a higher approximation error. While this leads to performance degradation in SPAE-graph, our GGAE retains its
geometry preservation performance, as shown in Figure 11. This result highlights the stability of GGAE against the graph
approximation error of the geodesic distance.
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Table 12. Approximation errors (MAPE) across various disconnecting probabilities p
p=0.5 p=0.7 p=0.8 p=0.85 p=0.9

Swiss Roll 6.64% 9.65% 31.90% 63.15% 157.38%
Robot images 3.96% 7.33% 31.28% 62.18% 184.46%

𝑝 = 0.5 𝑝 = 0.7 𝑝 = 0.8 𝑝 = 0.85 𝑝 = 0.9

GGAE (ours)

SPAE-graph

GGAE (ours)

SPAE-graph

Figure 11. The trained latent representations from GGAE and SPAE-graph across different edge-disconnection probabilities. The top two
rows display the trained latent representations of the Swiss Roll dataset, while the bottom two rows show the trained latent representations
of the Robot Images dataset, both obtained from GGAE and SPAE-graph.
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C. Additional Results on MNIST Dataset
In this section, we conduct additional experiments on MNIST dataset to demonstrate potential application of GGAE in
real-world scenarios where ground-truth similarity information is not available. Among the digits in the dataset, 3’ and ‘8’
exhibit similar shapes, often resulting in overlapping clusters in the latent space when trained with a vanilla autoencoder, as
shown in Figure 12. To separate these two clusters, we construct a similarity graph using class label information. Specifically,
we use a k-nearest neighbor graph based on a modified Euclidean distances, where the distance between a pair of images
with different labels is increased by a factor of c > 1. With our proposed regularization to preserve the similarity graph,
GGAE learns latent spaces where ‘3’ and ‘8’ become more clearly separated as the value of c increases, as shown in
Figure 12. These results suggest that, with a properly defined graph, GGAE can obtain a latent representation suitable for
downstream tasks such as classification and clustering.

𝑐 = 1.0 𝑐 = 1.2 𝑐 = 1.4 𝑐 = 1.6Vanilla Autoencoder

Figure 12. Left: Two-dimensional latent representation learned by vanilla autoencoder. Others: Latent representation learned by GGAE,
with increasing value of c in graph construction. Larger c results in clearer separation between ‘3’ and ‘8’, as expected.
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