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Abstract
Continual learning (CL) is a fundamental topic
in machine learning, where the goal is to train a
model with continuously incoming data and tasks.
Due to the memory limit, we cannot store all the
historical data, and therefore confront the “catas-
trophic forgetting” problem, i.e., the performance
on the previous tasks can substantially decrease
because of the missing information in the latter
period. Though a number of elegant methods
have been proposed, the catastrophic forgetting
phenomenon still cannot be well avoided in prac-
tice. In this paper, we study the problem from the
gradient perspective, where our aim is to develop
an effective algorithm to calibrate the gradient in
each updating step of the model; namely, our goal
is to guide the model to be updated in the right
direction under the situation that a large amount
of historical data are unavailable. Our idea is
partly inspired by the seminal stochastic variance
reduction methods (e.g., SVRG and SAGA) for
reducing the variance of gradient estimation in
stochastic gradient descent algorithms. Another
benefit is that our approach can be used as a gen-
eral tool, which is able to be incorporated with
several existing popular CL methods to achieve
better performance. We also conduct a set of ex-
periments on several benchmark datasets to evalu-
ate the performance in practice.

1. Introduction
In the past years, Deep Neural Networks (DNNs) demon-
strate remarkable performance for many different tasks in
artificial intelligence, such as image generation (Ho et al.,
2020; Goodfellow et al., 2014a), classification (Liu et al.,
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2021; He et al., 2016), and pattern recognition (Bai et al.,
2021; Zhu et al., 2016). Usually we assume that the whole
training data is stored in our facility and the DNN models
can be trained offline by using Stochastic Gradient Descent
(SGD) algorithms (Bottou et al., 1991; 2018). However,
real-world applications often require us to consider training
lifelong models, where the tasks and data are accumulated
in a streaming fashion (Van de Ven & Tolias, 2019; Parisi
et al., 2019). For example, with the popularity of smart
devices, a large amount of new data is generated every day.
A model needs to make full use of these new data to im-
prove its performance while keeping old knowledge from
being forgotten. Those applications motivate us to study
the problem of continual learning (CL) (Kirkpatrick et al.,
2017; Li & Hoiem, 2017), where its goal is to develop effec-
tive method for gleaning insights from current data while
retaining information from prior training data.

A significant challenge that CL encounters is “catastrophic
forgetting” (Kirkpatrick et al., 2017; McCloskey & Cohen,
1989; Goodfellow et al., 2014b), wherein the exclusive focus
on the current set of examples could result in a dramatic
deterioration in the performance on previously learned data.
This phenomenon is primarily attributed to limited storage
and computational resources during the training process;
otherwise, one could directly train the model from scratch
using all the saved data. To address this issue, we need
to develop efficient algorithm for training neural networks
from a continuous stream of non-i.i.d. samples, with the
goal of mitigating catastrophic forgetting while effectively
managing computational costs and memory footprint.

A number of elegant CL methods have been proposed to
alleviate the catastrophic forgetting issue (Wang et al., 2023;
De Lange et al., 2021; Mai et al., 2022). One representative
CL approach is referred to as “Experience Replay (ER)”
(Ratcliff, 1990; Chaudhry et al., 2019b), which has shown
promising performance in several continual learning scenar-
ios (Prabhu et al., 2023; Arani et al., 2022; Farquhar & Gal,
2018). Roughly speaking, the ER method utilizes reservoir
sampling (Vitter, 1985) to maintain historical data in the
buffer, then extract new incoming training data with random
samplings for learning the current task. Though the intu-
ition is simple, the ER method currently is one of the most
popular CL approaches that incurs moderate computational
and storage demands. Moreover, several recently proposed
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approaches suggest that the ER method can be combined
with knowledge distillation to further improve the perfor-
mance; for example, the methods of DER/DER++ (Buzzega
et al., 2020) and X-DER (Boschini et al., 2022) preserve
previous training samples alongside their logits in the model
as the additional prior knowledge. Besides the ER methods,
there are also several other types of CL techniques proposed
in recent years, and please refer to Section 1.2 for a detailed
introduction.

1.1. Our Main Ideas and Contributions

Though existing CL methods can alleviate the catastrophic
forgetting issue from various aspects, the practical perfor-
mances in some scenarios are still not quite satisfying (Yu
et al., 2023; Tiwari et al., 2022; Ghunaim et al., 2023). In
this paper, we study the continual learning problem from
the gradient perspective, and the rationality behind is as fol-
lows. In essence, an approach for avoiding the catastrophic
forgetting issue in CL, e.g., the replay mechanisms or the
regularization strategies, ultimately manifests its influence
on the gradient directions during model updating (Wang
et al., 2023). If all the historical data are available, one
could compute the gradient by using the stochastic gradient
descent method and obviously the catastrophic forgetting
phenomenon cannot happen. The previous methodologies
aim to approximate the gradient by preserving additional
information and incorporating it as a constraint to model
updates, thereby retaining historical knowledge. However,
the replay-based methods in practice are often limited by
storage capacity, which leads to a substantial loss of histori-
cal data information and inaccurate estimation of historical
gradients (Yan et al., 2021). Therefore, our goal is to de-
velop a more accurate gradient calibration algorithm in each
step of the continual learning procedure, which can directly
enhance the training quality.

We are aware of several existing CL methods that also take
into account of the gradients (Liu & Liu, 2022; Tiwari et al.,
2022; Farajtabar et al., 2020), but our idea proposed here
is fundamentally different. We draw inspiration from the
seminal stochastic variance reduction methods (e.g., SVRG
from Johnson & Zhang (2013) and SAGA from Defazio et al.
(2014)), which are originally designed to reduce the gradient
variance so that the estimated gradient can closely align
with the true full gradient over the entire dataset (including
the current and historical data). These variance reduction
methods have been extensively studied in the line of the
research on stochastic gradient descent method (Jin et al.,
2019; Babanezhad Harikandeh et al., 2015; Lei et al., 2017);
their key idea is to leverage the additional saved full gradient
information to calibrate the gradient in the current training
step, which leads to significantly reduced gradient variance
comparing with the standard SGD method. This intuition
also inspires us to handle the CL problem. In a standard

SGD method, the variance between the obtained gradient
and the full gradient is due to the “batch size limit” (if the
batch size has no bound, we can simply compute the full
gradient). Recall that the challenge of CL is due to the
“buffer size limit”, which impedes the use of full historical
data (this is similar with the dilemma encountered by SGD
with the “batch size limit”). So an interesting question is

Can the calibration idea for “batch size limit” be modi-
fied to handle “buffer size limit”? Specifically, is it possi-
ble to develop an effecitve method to compute a SVRG (or
SAGA)-like calibration for the gradient in CL scenarios?

Obviously, it is challenging to directly implement the SVRG
or SAGA algorithms in continual learning because of the
missing historical data. Note that Frostig et al. (2015) pro-
posed a streaming SVRG (SSVRG) method that realizes the
SVRG method within a given fixed buffer, but unfortunately
it does not perform quite well in the CL scenarios (as shown
in our experimental section). One possible reason is that
SSVRG can only leverage information within the buffer and
fails to utilize all historical information.

In this paper, we aim to apply the intuition of SVRG to
handle the “buffer size limit” in CL, and our contributions
can be summarized as follows:

• First, we propose a novel two-level dynamic algo-
rithm, named Dynamic Gradient Calibration (DGC),
to maintain a gradient calibration in continual learn-
ing. DGC can effectively tackle the storage limit and
leverage historical data to calibrate the gradient of the
model at each current stage. Moreover, our theoretical
analysis shows that our DGC based CL algorithm can
achieve a linear convergence rate.

• Second, our method can be conveniently integrated
with most existing reservoir sampling-based contin-
ual learning approaches (e.g., ER (Ratcliff, 1990),
DER/DER++ (Buzzega et al., 2020), XDER (Boschini
et al., 2022), and Dynamic ER (Yan et al., 2021)),
where this hybrid framework can induce a significant
enhancement to the overall model performance. Note
that storing the gradient calibrator can cause an extra
memory footprint; so a key question is whether such
an extra memory footprint can yield a larger marginal
benefit than simply taking more samples to fill the ex-
tra memory? In Fig 1, we illustrate a brief example to
answer this question in the affirmative; more detailed
evaluations are shown in the experimental part.

• Finally, we conduct a set of comprehensive ex-
periments on the popular datasets S-CIFAR10, S-
CIFAR100 and S-TinyImageNet; the experimental re-
sults suggest that our method can improve the final
Average Incremental Accuracy (FAIA) in several CL
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Figure 1. Performance comparison of the ER method and our pro-
posed DGC-ER method with increasing storage memory size on
CIFAR100. The x-axis denotes the actual memory footprint (MB)
and the y-axis denotes the final Average Incremental Accuracy
(FAIA) (Hou et al., 2019; Douillard et al., 2020) (the formal def-
inition is shown in Section 4). The curves in the figure indicate
that although ER outperforms DGC-ER at low MB, as MB in-
creases, the dynamic gradient calibration method can achieve a
larger marginal benefit than simply increasing the sample size of
ER.

scenarios by more than 6%. Moreover, our improve-
ment for a larger number of tasks is more significant
than that for a smaller number. Furthermore, our adop-
tion of the SVRG-inspired DGC calibration method
leads to enhanced stability in minimizing the loss func-
tion throughout the parameter optimization process.

1.2. Related Work

We briefly overview existing important continual learning
approaches (except for the ones mentioned before). We also
refer the reader to the recent surveys (Wang et al., 2023;
De Lange et al., 2021; Mai et al., 2022) for more details.

A large number of CL methods are replay based, where they
often keep a part of previous data through approaches like
reservoir sampling (Chaudhry et al., 2019a; Riemer et al.,
2019). Several more advanced data selection strategies fo-
cus on optimizing the factors like the sample diversity of
parameter gradients or the similarity to previous gradients
on passed data, e.g., GSS (Aljundi et al., 2019b) and GCR
(Tiwari et al., 2022). Experience replay can be effectively
combined with knowledge distillation. For example, Hu
et al. (2021) proposed to distill colliding effects from the fea-
tures for new coming tasks, and ICARL (Rebuffi et al., 2017)
proposed to take account of the data representation trained
on old data. MOCA (Yu et al., 2023) improves replay-based
methods by diversifying representations in the space. An-
other replay-based approach is based on generative replay,
which obtains replay data by generative models (Shin et al.,
2017; Gao & Liu, 2023; Wu et al., 2018).

Another way for solving continual learning is through some
deliberately designed optimization procedures. For example,
the methods GEM (Lopez-Paz & Ranzato, 2017), AGEM

(Chaudhry et al., 2019a), and MER (Riemer et al., 2019) re-
strict parameter updates to align with the experience replay
direction, and thereby preserve the previous input and gradi-
ent space with old training samples. Different from saving
old training samples, Farajtabar et al. (2020) proposed to
adapt parameter updates in the orthogonal direction of the
previously saved gradient. The method AOP (Guo et al.,
2022) projects the gradient in the direction orthogonal to
the subspace spanned by all previous task inputs, therefore
it only keeps an orthogonal projector rather than storing
previous data.

To mitigate the problem of forgetting, we can also augment
the model capacity for learning new tasks. Xu & Zhu (2018)
tried to enhance model performance by employing meta-
learning techniques when dynamically extending the model.
The method ANCL (Kim et al., 2023) proposes to utilize an
auxiliary network to achieve a trade-off between plasticity
and stability. Dynamic ER (Yan et al., 2021) introduces
a novel two-stage learning method that employs a dynam-
ically expandable representation for learning knowledge
incrementally.

2. Preliminaries
We consider the task of training a soft-classification function
f(·; θ): X → Y , where X and Y respectively represent
the space of data and the set of labels, and θ is the param-
eter to optimize. Without loss of generality, we assume
Y = {1, 2, · · · ,K}. So f(·; θ) maps each x ∈ X to some
f(x; θ) ∈ RK . To find an appropriate θ, the classifica-
tion function f is usually equipped with a loss function
ℓ(f(x; θ), y), which is differentiable for the variables x and
θ (e.g., cross-entropy loss). To simplify the notation, we
use ℓ(x, y, θ) to denote ℓ(f(x; θ), y). Given a set of data
P = {(xi, yi) | 1 ≤ i ≤ n} = XP × YP ⊂ X × Y , the
training process is to find a θ such that the empirical risk of
ℓ(x, y, θ), i.e.,

∑n
i=1 ℓ(x

i, yi, θ), is minimized. We define
the full gradient of ℓ(x, y, θ) on P as

G(P, θ) ≜ ∇θℓ(XP ,YP , θ) =
1

n

n∑
i=1

∇θℓ(x
i, yi, θ). (1)

2.1. Continual Learning Models

In this paper, we focus on two popular CL models: Class-
Incremental Learning (CIL) (Hsu et al., 2018) and Task-Free
Continual Learning (TFCL) (Aljundi et al., 2019a).

In the setting of CIL, the training tasks come in a sequence
{T1, T2, · · · , TT } with disjoint label space; each time spot
t ∈ {1, 2, · · · , T} corresponds to the task Tt with a training
dataset {(xit, yit) | 1 ≤ i ≤ nt}. With a slight abuse of
notations, we also use Tt to denote its training dataset. Also,
we use Yt to denote the corresponding set of labels {yit |
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1 ≤ i ≤ nt}. Although the training data for individual tasks
Tt is independently and identically distributed (i.i.d.), it is
worth noting that the overall task stream {T1, T2, · · · , TT }
does not adhere to the i.i.d. assumption due to the evolving
label space over time. We define the overall risk under this
CL setting at the current time spot t as follows:

ℓtCL(θ) ≜
1

t

t∑
c=1

E
(x,y)∼Tc

[ℓ(x, y, θ)]. (2)

The setting of TFCL is similar to CIL, where the major
difference is that the task identities are not provided in
neither the training nor testing procedures. So the TFCL
setting is more challenging than CIL because the algorithm
is unaware of task changes and the current task identity. In
the main part of our paper, we present our results in CIL;
in our supplement, we explain how to extend our results to
TFCL.

2.2. Variance Reduction Methods

A comprehensive introduction to variance reduction meth-
ods is provided in (Gower et al., 2020). Here we particu-
larly introduce one representative variance reduction method
SVRG (Johnson & Zhang, 2013) , which is closely related
to our proposed CL approach.

The high-level idea of SVRG is to construct a calibration
term to reduce the variance in the gradient estimate. The
complete optimization process can be segmented into a
sequence of stages. We denote the training data as P =
{(xi, yi)}ni=1 ⊂ X × Y , and denote the parameter at the
beginning of each stage as θ̃. The key part of SVRG is to
minimize the variance in SGD optimization by computing
an additional term µ̃:

µ̃ ≜ G(P, θ̃) = 1

n

n∑
i=1

∇θℓ(x
i, yi, θ̃). (3)

In each stage, SVRG applies the standard SGD with the term
µ̃ to update the parameter θ: randomly sample an index ik
from {1, 2, ..., n}, and let

vk = ∇θℓ(x
i, yi, θk)− (∇θℓ(x

ik , yik , θ̃)− µ̃), (4)

θk+1 = θk − ηvk, (5)

where (xi, yi) ∈ P is the sampled training data, θk repre-
sents the parameter at the k-th step of SGD, and η is the
learning rate. Since E[∇θℓ(x

ik , yik , θ̃k)] = µ̃, vk is an un-
biased estimate of the gradient G(P, θk). Subsequently, the
term “∇θℓ(x

ik , yik , θ̃)− µ̃” in Eq (4) can be regarded as a
calibrator to reduce the variance of gradient estimation and
achieve a linear convergence rate (Johnson & Zhang, 2013),
which is faster than directly using∇θℓ(x

i, yi, θk).

3. Our Proposed Method
In this section, we propose the Dynamic Gradient Calibra-
tion (DGC) approach which maintains a gradient calibration
during the learning process. A highlight of DGC is that it
utilizes the whole historical information to obtain a more
precise gradient estimation, and consequently relieves the
negative impact of catastrophic forgetting. In Section 3.1,
we introduce ER and analyze the obstacle if we directly
combine ER with SVRG. In Section 3.2, we present our
DGC method for addressing the issues discussed in Sec-
tion 3.1. In Section 3.3, we explain how to integrate DGC
with other CL techniques.

3.1. Experience Replay Revisited and SVRG

First, we overview the classical ER (Ratcliff, 1990;
Chaudhry et al., 2019b) method as a baseline for the CIL
setting. ER employs the reservoir sampling algorithm to
dynamically manage a buffer (denoted as Mt) at time t,
which serves to store historical data. At each time spot t (and
assume the current updating step number of the optimiza-
tion is k), ER updates the model parameter θkt following the
standard gradient descent method:

θk+1
t = θkt − η · vkt , (6)

where η is the learning rate and vkt is the calculated gradient.
If not using any replay strategy, vkt is usually calculated on a
randomly sampled training data (xkt , y

k
t ) ∈ Tt. It is easy to

see that this simple strategy can cause the forgetting issue for
shifting data stream since it does not contain any information
from the previous data. Hence the classical ER algorithm
takes a random sample (x̄kt , ȳ

k
t ) from the aforementioned

buffer Mt (who contains a subset of historical data via
reservoir sampling), and computes the gradient:

vkt =
1

t
∇θℓ(x

k
t , y

k
t , θ

k
t ) +

t− 1

t
∇θℓ(x̄

k
t , ȳ

k
t , θ

k
t ). (7)

Remark 3.1. (1) For simplicity, we assume that the data sets
of all the tasks have the same size. So the obtained vkt in (7)
is an unbiased estimation of the full gradient G(

⋃t
c=1 Tc, θ)

at the current time spot t. If they have different sizes, we can
simply replace the coefficients “ 1

t ” and “ t−1
t ” by “ |Tt|∑t

c=1 |Tc|
”

and “
∑t−1

c=1 |Tc|∑t
c=1 |Tc|

”, respectively. (2) Also, we assume that the
batch sizes of the random samples from Tt andMt are both
“1”, i.e., we only take single item (xkt , y

k
t ) and (x̄kt , ȳ

k
t ) from

each of them. Actually, we can also take larger batch sizes
and then the Eq (7) can be modified correspondingly by
taking their average gradients.

Now we attempt to apply the SVRG method to Eq (7). Our
objective is to identify a more accurate unbiased estimate of
the gradient at the current time spot t so as to determine the
updating direction. At first glance, one possible solution is
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to adapt the streaming SVRG method (Frostig et al., 2015)
to the CL scenario. We treatMt as the static data set in
our memory, and apply the SVRG technique to calibrate
the gradient “∇θℓ(x

k
t , y

k
t , θ

k
t )” and “∇θℓ(x̄

k
t , ȳ

k
t , θ

k
t )” in Eq

(7). Similar to the procedure introduced in Section 2.2, we
denote the parameter at the beginning of the current stage s
as θ̃t,s. For simplicity, when we consider the update within
stage s, we just use θ̃t to denote θ̃t,s. Similar with Eq (3),
we define the terms

µ̃ ≜ G(Mt, θ̃t), ṽ ≜ G(Tt, θ̃t). (8)

Then we can calibrate the gradient by a randomly sampled
(ẋt, ẏt) from Tt and (ẍt, ÿt) from Mt (which serves as
the similar role of (xik , yik) in (4)); the new form of vkt
becomes

vkt =
1

t

(
∇θℓ(xt, yt, θ

k
t )−∇θℓ(ẋt, ẏt, θ̃t) + ṽ

)
+

t− 1

t

(
∇θℓ(x̄t, ȳt, θ

k
t )−∇θℓ(ẍt, ÿt, θ̃t) + µ̃

)
. (9)

Obviously, if the bufferMt contains the whole historical
data (denote by T[1:t) =

⋃t−1
c=1 Tc), the above approach is

exactly the standard SVRG. However, because Mt only
takes a small subset of T[1:t), this approach still cannot
avoid information loss for the previous tasks. In next section,
we propose a novel two-level dynamic algorithm to record
more useful information from T[1:t), and thereby reduce the
information loss induced byMt. We also take the approach
of Eq (9) as a baseline in Section 4 to illustrate the advantage
of our proposed approach.

3.2. Dynamic Gradient Calibration

To tackle the issue discussed in Section 3.1, we propose a
novel two-level update approach “Dynamic Gradient Cali-
bration (DGC)” to maintain our calibration term. Our focus
is designing a method to incrementally update an unbiased
estimation for G(T[1:t), θkt ). To illustrate our idea clearly,
we decompose our analysis to two levels: (1) update the
parameter during the training within each time spot t; (2) up-
date the parameter at the transition from time spot t to t+ 1
(i.e., the moment that the task Tt has just been completed
and the task Tt+1 is just coming).

(1) How to update the parameter during the training
within each time spot t. We follow the setting of the
streaming SVRG as discussed in Section 3.1: the training
process at the current time spot t is divided into a sequence
of stages; the model parameter at the beginning of each
stage is recorded as θ̃t. To illustrate our idea for calibrat-
ing the gradient vkt in Eq (9), we begin by considering an

“imaginary” approach: we let

vkt =
1

t

(
∇θℓ(xt, yt, θ

k
t )−∇θℓ(ẋt, ẏt, θ̃t) + G(Tt, θ̃t)

)
+
t− 1

t
Γ, (10)

where

Γ = ∇θℓ(x̄t, ȳt, θ
k
t )−

(
∇θℓ(ẍt, ÿt, θ̃t)− G(T[1:t), θ̃t)

)
.︸ ︷︷ ︸

Calibration from the previous parameter θ̃t

Different from Eq (9), we compute vkt based on the full his-
torical data T[1:t), which follows the same manner of SVRG.
However, a major obstacle here is that we cannot obtain
the exact Γ since T[1:t) is not available. This motivates us
to design a relaxed form of (10). We define a surrogate
function to approximate Γ, which can be computed through
recursion. Suppose each training stage has m ≥ 1 steps,
then we define

ΓDGC(t, k) = ∇θℓ(x̄t, ȳt, θ
k
t )−(

∇θℓ(ẍt, ÿt, θ̃t)− Γ′
DGC(t)

)
, (11)

Γ′
DGC(t) = ΓDGC(t,m+ 1), (12)

in the stage. Note that the term “∇θℓ(ẍt, ÿt, θ̃t)” in (11) can
be computed by the previous parameter θ̃t during training,
so we do not need to store it in buffer. For the initial t = 1
case (i.e., when we just encounter the first task), we can
directly set Γ′

DGC(1) = 0⃗. We update the function Γ′
DGC(t)

at the end of each training stage in (12), and use the function
ΓDGC(t, k) to approximate Γ in (10). Comparing with the
original formulation of Γ in (10), we only replace the term
“G(T[1:t), θ̃t)” by “Γ′

DGC(t)”. Also, we have the following
lemma to support this replacement. The detailed proof of
lemma 3.2 is provided in our supplement.
Lemma 3.2.

E [Γ′
DGC(t)] = G(T[1:t), θ̃t) (13)

We utilize the term “∇θℓ(ẍt, ÿt, θ̃t)− Γ′
DGC(t)” of (11) as

the calibrator for each updating step, thereby preserving the
unbiased nature of the gradient estimator and reducing the
variance of gradient estimation.

(2) How to update the parameter at the transition from
time spot t to t + 1. At the end of time spot t, we update
the recorded θ̃t to θm+1

t , and the data Tt from time t should
be integrated into the historical data. In this context, it is
essential to update the calibrated gradient accordingly:

Γ′
DGC(t+ 1) =

1

t

(
(t− 1) · Γ′

DGC(t) + G(Tt, θ̃t)
)
. (14)

The complete algorithm is presented in Algorithm 1. Com-
pared with the conventional reservoir sampling based ap-
proaches, we only require the additional storage for keeping
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Γ′
DGC(t), and so that the gradient ΓDGC(t, k) in (11) can be

effectively updated by the recursion. Moreover, our method
can also conveniently adapt to TFCL where the task bound-
aries are not predetermined. In such a setting, we can simply
treat each batch data (during the SGD) as a “micro” task at
the time point and then update the gradient estimation via
Eq (14). The detailed algorithm for TFCL is placed in our
appendix.

Similar to the theoretical analysis of SVRG (Johnson &
Zhang, 2013), under mild assumptions, the optimization
procedure of our DGC method at each time spot t can also
achieve linear convergence. We denote the optimal param-
eter at time spot t as θ∗ ≜ argminθ ℓ

t
CL(θ). Then we have

the following theorem.

Theorem 3.3. Assume that f(x; θ) is L-smooth and γ-
strongly convex; the parameters m ≥ 10L2

γ2 and η = γ
10L .

Then we have a linear convergence in expectation for the
DGC procedure at time t:

E
[ ∥∥∥θ̃t,s+1 − θ∗

∥∥∥2
2

]
≤ 1

2s
E
[ ∥∥∥θ̃t,1 − θ∗∥∥∥2

2

]
where θ̃t,s represents the initialization parameter at the
beginning of the s-th stage at time spot t.

The proof of Theorem 3.3 is provided in appendix. This
theorem indicates that the gradient calibrated by our DGC
method shares the similar advantages with SVRG. For in-
stance, when updating each task Tt, the loss function has a
smoother decrease (we validate this property in Section 4.3).

3.3. Combine DGC with Other CL Methods

Our proposed DGC approach can be also efficiently com-
bined with other CL methods. As discussed in Section 1, a
number of popular CL methods rely on the reservoir sam-
pling technique to preserve historical data in buffer (Buzzega
et al., 2020; Boschini et al., 2022; Riemer et al., 2019). For
these methods, such as DER and XDER, we can conve-
niently combine the conventional batch gradient descent
with the DGC calibrated gradient estimator ΓDGC(t, k) de-
fined in Section 3.2, so as to obtain a more precise gradient
estimator with reduced variance based on Eq (10):

vkt = 1
t

(
∇θℓ(xt, yt, θ

k
t )−∇θ(ẍt, ÿt, θ̃t) + G(Tt, θ̃t)

)
+

t−1
t

[
αΓDGC(t, k)+(1− α)∇θℓ(x̄t, ȳt, θ

k
t )

]
, (15)

where α is a given parameter to control the proportion of the
two unbiased estimations ΓDGC(t, k) and ∇θℓ(x̄t, ȳt, θ

k
t )

of the gradient G(T[1:t), θkt ). According to the theoretical
analysis in SSVRG (Frostig et al., 2015), the selection of
α should be related to 1/L, where L is the smoothness

Algorithm 1 DGC procedure
1: Input: Data stream {T1, T2, · · · TT }, update steps m,

update stages S, batch size b, and learning rate η.
2: Output: Trained model parameter θ̃T
3: Initialize model parameters θ̃0, Γ′

DGC(1) = 0⃗
4: Initialize bufferM1 = ∅
5: for t = 1, 2, . . . , T do
6: θ̃t ← θ̃t−1

7: for s = 1, 2, . . . , S do
8: θ1t ← θ̃t
9: for k = 1, 2, . . . ,m do

10: Take a uniform sample Xt of size b from Tt
11: Take a uniform sample X ′

t of size b fromMt

12: Calculate ΓDGC(t, k) with Γ′
DGC(t) according to

(11)
13: Calculate vkt with ΓDGC(t, k) according to (10)

/* Calculate the calibrated gradient */
14: θk+1

t ← θkt − η · vkt
15: end for
16: Update Γ′

DGC(t) according to (11) and (12)
/* Update Γ′

DGC(t) from ΓDGC(t,m+ 1) */
17: θ̃t ← θm+1

t

18: end for
19: Mt+1 ←MemoryUpdate(Tt,Mt)

/* Reservoir sampling */
20: Calculate and store Γ′

DGC(t+ 1) according to (14)
/* Update Γ′

DGC(t+ 1) from Γ′
DGC(t) */

21: end for

coefficient of the model f(x; θ), i.e.,

L = max
θ1,θ2∈Θ

|∇θf(x; θ1)−∇θf(x; θ2)|
|θ1 − θ2|

, (16)

where Θ represents the parameter space. The experimental
study on the impact of α is placed in our supplement. In
Section 4, we show that the amalgamation of the CL method
and our DGC calibration procedure can yield a more precise
update direction, and consequently enhance the ultimate
model performance.

4. Experiments
We conduct the experiments to compare with various base-
line methods across different datasets. We consider both the
CIL and TFCL models.

Datasets We carry out the experiments on three
widely employed datasets S(Split)-CIFAR10, S-CIFAR100
(Krizhevsky et al., 2009), and S-TinyImageNet (Le & Yang,
2015). S-CIFAR10 is the split dataset by partitioning CI-
FAR10 into 5 tasks, each containing two categories; sim-
ilarly, S-CIFAR100 and S-TinyImageNet are the datasets
by respectively partitioning CIFAR100 and TinyImageNet
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Datasets S-CIFAR10 S-CIFAR100 S-TinyImageNet
Size of Buffer 500 2000 500 2000 2000 5000

AOP 66.73±0.60 42.73±0.62 21.40±0.17

AGEM 45.42±0.81 45.58±0.64 26.11±0.09 26.13±0.07 22.41±0.11 21.98±0.36

SSVRG 49.02±4.09 58.68±3.77 27.74±2.45 39.09±5.53 14.39±1.47 15.88±2.37

MOCA 81.01±0.97 85.06±0.51 54.14±0.43 59.29±2.97 34.74±10.08 38.86±8.58

GSS 68.81±0.98 76.08±1.35 33.72±0.22 38.54±0.39 31.38±0.11 34.31±0.22

GCR 82.31±0.43 86.35±0.48 53.43±2.15 63.18±2.26 48.94±0.44 54.60±0.43

HAL 58.06±1.90 69.53±2.55 24.85±0.91 28.05±1.90 18.66±1.02 21.45±0.91

ICARL 65.89±2.74 75.94±0.84 60.58±0.50 64.03±0.41 43.53±0.21 44.52±0.31

ER 74.19±0.85 84.27±0.57 42.34±0.83 55.48±1.52 39.23±0.16 45.47±0.44

DGC-ER 76.09±0.62 86.42±0.58 44.46±1.07 59.55±0.97 41.38±0.52 47.40±0.45

DER++ 59.66±1.32 66.81±0.19 47.03±0.55 55.22±0.54 32.20±0.75 40.89±0.37

DGC-DER++ 62.92±0.90 67.43±0.25 49.59±1.06 57.05±0.67 33.67±0.73 41.76±0.53

XDER 70.12±0.68 70.35±0.63 61.45±0.50 66.51±0.42 52.45±0.92 55.12±0.22

DGC-XDER 72.34±1.08 72.41±1.05 62.70±0.44 67.59±0.18 53.50±0.25 55.94±0.19

DYNAMIC ER 79.65±0.86 83.30±0.93 61.92±2.75 64.57±2.02 54.88±1.64 56.70±0.73

DGC-DYNAMIC ER 84.23±1.62 89.90±0.93 63.33±1.26 70.70±1.31 58.10±1.06 58.23±0.84

Table 1. The FAIA ± standard error(%) in CIL. The methods combined with DGC are colored in gray. The best results are highlighted in
bold, and the best results except Dynamic ER and DGC-Dynamic ER are underlined. Since AOP does not store previous data during
training, it only has one numerical result per dataset in the table (without specifying the buffer size).

Datasets S-CIFAR100
5 Tasks 20 Tasks

AOP 43.31±0.44 40.99±0.36

AGEM 38.67±0.14 16.21±0.06

SSVRG 46.00±4.60 33.22±4.10

MOCA 66.58±0.14 22.05±2.56

GSS 50.43±0.43 25.93±0.11

GCR 67.20±0.38 51.57±1.63

HAL 35.05±0.68 27.16±1.51

ICARL 67.45±0.27 55.77±0.57

ER 60.85±0.60 52.16±0.90

DGC-ER 62.13±0.33 54.86±1.22

DER++ 56.27±0.27 53.77±1.56

DGC-DER++ 57.45±1.04 57.71±0.35

XDER 67.14±0.38 60.45±0.46

DGC-XDER 67.56±0.79 63.53±0.48

Table 2. The FAIA ± standard error(%) with different number of
tasks. DGC methods are colored in gray. The best results are
highlighted in bold.

into 10 tasks, each containing 10 (S-CIFAR100) and 20
(S-TinyImageNet) categories.

Baseline methods We consider the following baselines.
(1) Replay-based methods: ER (Chaudhry et al., 2019b),
DER++ (Buzzega et al., 2020), XDER (Boschini et al.,
2022), MOCA (Yu et al., 2023), GSS (Aljundi et al., 2019b),
GCR (Tiwari et al., 2022), HAL (Chaudhry et al., 2021),
and ICARL (Rebuffi et al., 2017). (2) Optimization-based

methods: AGEM (Chaudhry et al., 2019a), AOP (Guo et al.,
2022), and SSVRG (Frostig et al., 2015). (3) Dynamic ar-
chitecture method: Dynamic ER (Yan et al., 2021). We
integrate DGC with ER, DER++, XDER, and Dynamic ER,
and assess their performances in CIL. For TFCL, we con-
sider its combination with ER and DER++. For convenience,
we use “DGC-Y” to denote the combination of DGC with a
CL method “Y”. For example, DGC-ER denotes the method
combining ER and DGC methods.

Evaluation metrics We employ the Average Accuracy (AA)
(Chaudhry et al., 2018; Mirzadeh et al., 2020) and the final
Average Incremental Accuracy (FAIA) (Hou et al., 2019;
Douillard et al., 2020) to assess the performance. These
two metrics are both widely used for continual learning.
Let ak,j ∈ [0, 1](k ≥ j) denote the classification accuracy
evaluated on the testing set of the task Tj after learning
Tk. The value AA at time spot i is defined as AAi ≜
1
i

∑i
j=1 ai,j . In particular, we name the value AAT as the

final Average Accuracy (FAA). The final AIA is defined as
FAIA ≜ 1

T

∑T
i=1 AAi. We also use Final Forgetting (FF)

from (Chaudhry et al., 2018) to measure the forgetting of the
model throughout the learning process (the formal definition
of FF and its numerical results are placed in the supplement).
Each instance of our experiments is repeated by 10 times.

4.1. Results in CIL

Hyper-parameters selection In our implementation, we
fixed the values of epoch and batch size, which implies that
the total number of optimization steps (i.e., the value s×m)
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Figure 2. The averaged AAt over implicit task number t in TFCL on S-CIFAR100.

is also fixed. In our experiments, we set the value m = 200,
so the value of s in Algorithm 1 is also determined.

Except for the Dynamic ER (which is dynamically ex-
panded), all other testing methods have constant storage
limits. The results shown in Table 1 reveal that our DGC
method can bring improvements to the combined methods
on the testing benchmarks. For the sake of clarity, we also
underline the best-performing method except Dynamic ER
and DGC-Dynamic ER in Table 1. Among the methods
with constant storage limits, DGC-ER achieves the best
results on S-CIFAR10 when the buffer size is 2000, and
DGC-XDER achieves the best results on S-CIFAR100 and
S-TinyImageNet. It is worth noting that our DGC method
can also be conveniently integrated with existing advanced
dynamic expansion representation techniques, such as Dy-
namic ER, which demonstrates the improvements to certain
extent, e.g., it achieves an improvement more than 6% on
S-CIFAR10/100 with buffer size 2000. We also record the
training time of these baseline methods in our supplement.

In the subsequent experiment, we investigate the perfor-
mance of DGC compared to other baseline methods with
varying the number of tasks. Throughout the experiment,
we maintain a constant buffer size of 2000. As outlined in
Table 2, our results demonstrate that DGC can bring certain
improvements to ER, DER++, and XDER with setting the
number of tasks to be 5 and 20. Moreover, similar to the pre-
vious research in (Boschini et al., 2022), the results shown
in Table 2 also imply that increasing the number of tasks
could exacerbate the catastrophic forgetting issue. This phe-
nomenon occurs because the model faces a reduced volume
of data on each specific task, and thereby necessitates the
capability of retaining the information of historical data
to guide the model updates. As can be seen, the improve-
ment obtained by DGC for the case of 20 tasks usually is

more significant compared with the case of 5 tasks. For ex-
ample, DGC-DER++ achieves a 3.94% improvement with
20 tasks versus a 1.18% improvement with 5 tasks, while
DGC-XDER exhibits a 3.08% improvement with 20 tasks
and only 0.42% with 5 tasks. These results highlight the
advantage of DGC for mitigating catastrophic forgetting by
effectively utilizing historical data through gradient-based
calibration.

4.2. Results in TFCL

We then conduct the experiments in TFCL. The curves
shown in Figure 2 depict the average AAt evolutions with
varying the “implicit” task number t on S-CIFAR100. We
call it “implicit” since the value t is not given during the
training, which means that the design of the algorithm can-
not rely on task boundaries or task identities. Therefore, we
only compare those baseline methods that are applicable to
TFCL model. The results suggest that DGC can bring im-
provements to ER and DER++ on AAt for almost all the ts;
in particular, DGC-DER++ achieves the best performance
and also with small variances. Through approximating the
full gradient, the GCR and SSVRG methods can relieve the
catastrophic forgetting issue to a certain extent, but they still
suffer from the issue of storage limit, which affects their
effectiveness for estimating the full gradient. Consequently,
these methods exhibit performance downgrade and larger
variance in Figure 2. Comparing with them, the approaches
integrated with DGC illustrate more consistent and stable
improvements. More detailed results for TFCL are available
in our supplement.

4.3. Smoothness of Training with DGC

Since our proposed DGC approach stems from the variance
reduction method of SGD, a natural question is whether
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Figure 3. The partial trajectories of loss on S-CIFAR100.

it also improves the smoothness during the training pro-
cess. We compare the loss trajectories on the entire training
dataset before and after implementing DGC. From Figure 3
we can see that the classical ER method has erratic fluctu-
ations in loss during the training process; this could cause
some practical problems in a real-world CL scenario, e.g.,
we may need to pay more effort to carefully adjust the learn-
ing rate and determine the stopping condition. In contrast,
the DGC method has a smoother reduction in loss, and
ultimately yields lower loss values.

5. Conclusion
In this paper, we revisit the experience replay method and
aim to utilize historical information to derive a more accu-
rate gradient for alleviating catastrophic forgetting. Inspired
by the variance reduction methods for SGD, we introduce
a new approach “DGC” to dynamically manage a gradient
calibration term in CL training. Our approach can be conve-
niently integrated with several existing continual learning
methods, contributing to a substantial improvement in both
CIL and TFCL. Moreover, the improved stability of training
loss reduction can also ease our practical implementation.
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A. Omitted Proofs
Lemma A.1 (Lemma 3.2).

E [Γ′
DGC(t)] = G(T[1:t), θ̃t). (17)

Proof. We prove it by induction. When t = 1, both the two-side terms are 0, so the equation holds. Assume the equation
holds when t = t1, and we consider the change of Γ′

DGC(t) at the time spot t1.

Firstly, Γ′
DGC(t1) is updated at the end of every stage. After the update, Γ′

DGC(t1) = ΓDGC(t1,m+ 1). Meanwhile, we have

E[ΓDGC(t1,m+ 1)]

= E[∇θℓ(x̄t1 , ȳt1 , θ
m+1
t1 )− (∇θℓ(ẍt1 , ÿt1 , θ̃t1)− Γ′

DGC(t1))]

= G(T[1:t1), θ
m+1
t1 )− G(T[1:t1), θ̃t1) + G(T[1:t1), θ̃t1)

= G(T[1:t1), θ
m+1
t1 )

= G(T[1:t1), θ̃t1),

where the first equation comes from Eq (11) and the second equation is based on the inductive hypothesis.

Secondly, in the update from time spot t to t+ 1, we have

E[Γ′
DGC(t1 + 1)]

= E[
1

t1
((t1 − 1) · ΓDGC(t1,m+ 1) + G(Tt1 , θ̃t1))]

=
1

t1
((t1 − 1) · G(T[1:t1), θ̃t1) + G(Tt1 , θ̃t1))

= G(T[1:t1), θ̃t1+1)

based on Eq (14). This implies that our conclusion also holds when t = t1 + 1.

Theorem A.2 (Theorem 3.3). Assume that f(x; θ) is L-smooth and γ-strongly convex; the parameters m ≥ 10L2

γ2 and
η = γ

10L . Then we have a linear convergence in expectation for the DGC procedure at time t:

E
[
∥θ̃t,s+1 − θ∗∥22

]
≤ 1

2s
E
[
∥θ̃t,1 − θ∗∥22

]
where θ̃t,s represents the initialization parameter at the beginning of the s-th stage at time spot t.

Our proof is inspired by the idea of (Johnson & Zhang, 2013). To simplify the notations, we define

vkt = ∇ψxt

(
θkt
)
−∇ψxt(θ̃t) + µ̃

through combining Eq (10) and (11) (we replace “Γ” in Eq (10) by (11)), where

∇ψxt

(
θkt
)
≜

1

t
∇θℓ(xt, yt, θ

k
t ) +

t− 1

t
∇θℓ(x̄, ȳ, θ

k
t ),

∇ψxt(θ̃t) ≜
1

t
∇θℓ(ẋt, ẏt, θ̃t) +

t− 1

t
∇θℓ(ẍ, ÿ, θ̃t),

µ̃ ≜
1

t
G(Tt, θ̃t) +

t− 1

t
Γ′

DGC(t).

Before proving Theorem 3.3, we provide the following key lemmas first.

Lemma A.3.
E[
∥∥vkt ∥∥22] ≤ 2L

[
E[||θkt − θ∗||22] + E[||θ̃t − θ∗||22]

]
.

13
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Proof.

E[
∥∥vkt ∥∥22]

≤2E
[
∥∇ψxt

(
θkt
)
−∇ψxt (θ∗) ∥22

]
+ 2E

[
∥∇ψxt(θ̃t)−∇ψxt (θ∗)−∇ℓtCL(θ̃t)∥22

]
=2E

[
∥∇ψxt

(
θkt
)
−∇ψxt

(θ∗) ∥22
]

+ 2E[∥∇ψxt
(θ̃t)−∇ψxt

(θ∗)

− E[∇ψxt(θ̃t)−∇ψxt (θ∗)]∥22]

≤2E[
∥∥∇ψxt

(
θkt
)
−∇ψxt

(θ∗)
∥∥2
2
]

+ 2E[
∥∥∥∇ψxt(θ̃t)−∇ψxt (θ∗)

∥∥∥2
2
]

≤2L
[
E[||θkt − θ∗||22] + E[||θ̃t − θ∗||22]

]
,

(18)

where the first inequality comes from the fact ∥a+ b∥22 ≤ 2∥a∥22 + 2∥b∥22 for any vectors a, b and Lemma A.1, the second
inequality is based on the fact E[∥ξ − Eξ∥22] = E[∥ξ∥22] − ∥E[ξ]∥22 ≤ E[∥ξ∥22] for any random vector ξ, and the third
inequality is based on L-smooth.

Lemma A.4.
E[
∥∥θkt − θ∗∥∥22] ≤ (1− 2ηγ + 2Lη2)E[||θk−1

t − θ∗||22]

+ 2Lη2E[||θ̃t − θ∗||22].
(19)

Proof. Note that E[vkt ] = E[∇ψxt
(θkt )] = ∇ℓtCL

(
θk−1
t

)
, and so we have

E[
∥∥θkt − θ∗∥∥22]

=
∥∥θk−1

t − θ∗
∥∥2
2
− 2η

(
θk−1
t − θ∗

)⊤ E[vk−1
t ] + η2E[

∥∥vk−1
t

∥∥2
2
]

≤
∥∥θk−1

t − θ∗
∥∥2
2
− 2η

(
θk−1
t − θ∗

)⊤∇ℓtCL

(
θk−1
t

)
+ 2Lη2

[
E[||θk−1

t − θ∗||22] + E[||θ̃t − θ∗||22]
]

≤
∥∥θk−1

t − θ∗
∥∥2
2
− 2ηγ||θk−1

t − θ∗||22
+ 2Lη2

[
E[||θk−1

t − θ∗||22] + E[||θ̃t − θ∗||22]
]
,

where the first inequality comes from Lemma A.3, and the second inequality is based on the γ-strong convexity of ℓtCL(θ).
We take the expectation on θk−1

t from the above inequality and then have

E[
∥∥θkt − θ∗∥∥22]
≤ E[

∥∥θk−1
t − θ∗

∥∥2
2
]− 2ηγE[||θk−1

t − θ∗||22]

+ 2Lη2
[
E[||θk−1

t − θ∗||22] + E[||θ̃t − θ∗||22]
]

= (1− 2ηγ + 2Lη2)E[||θk−1
t − θ∗||22] + 2Lη2E[||θ̃t − θ∗||22].

Proof of Theorem 3.3. We now proceed to prove the theorem. To simplify notation, we denote E
∥∥θkt − θ∗∥∥22 as pk. Based

on lemma A.4, we have

pk ≤
(
1− 2ηγ + 2η2L

)
pk−1 + 4η2Lpk−1.

14
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By setting η = γ
10L and m ≥ 10L2

γ2 , we have

pm+1 ≤
(
1− γ2

10L2

)
pm ≤

(
1− γ2

10L2

)m

p1

≤ exp

(
− γ2

10L2
m

)
p1 ≤

1

2
p1,

i.e

E
[
∥θm+1

t − θ∗∥22
]
≤ 1

2
E
[
∥θ1t − θ∗∥22

]
. (20)

Subsequently, we consider the update during different stage s, so that the initial parameter θ̃t,s is θ1t and updated parameter
θ̃t,s+1 = θm+1

t is selected after all of the updates have been completed. Then Eq (20) becomes

E
[
∥θ̃t,s+1 − θ∗∥22

]
≤ 1

2
E
[
∥θ̃t,s − θ∗∥22

]
. (21)

Through recursively applying the above equation from stage 1 to stage s+ 1, we have

E
[
∥θ̃t,s+1 − θ∗∥22

]
≤ 1

2s
E
[
∥θ̃t,1 − θ∗∥22

]
.

B. Detailed DGC procedure in TFCL
We consider the data streams {T1, T2, · · · TT } with each Ti being the batch training data in TFCL. Algorithm 2 shows how
to implement the DGC procedure in this model.

Algorithm 2 DGC procedure in TFCL
1: Input: Data stream {T1, T2, · · · TT }, update steps m, batch size b, and learning rate η.
2: Output: Trained model parameter θT
3: Initialize model parameters θ0, Γ′

DGC(1) = 0⃗, t̃ = 1

4: Initialize bufferM1 = ∅, θ̃ = θ0
5: for t = 1, 2, . . . , T do
6: θt ← θt−1

7: Take a uniform sample X ′
t of size b from Mt

8: Calculate ΓDGC(t, 1) with Γ′
DGC(t̃) according to (11)

9: Calculate v1t with ΓDGC(t, 1) according to (10)
/* Calculate the calibrated gradient */

10: θt ← θt − η · v1t
11: if (t− 1) mod m = 0 then
12: Update Γ′

DGC(t̃) according to (11) and (12)
/* Update Γ′

DGC(t̃) from ΓDGC(t, 1) */
13: t̃← t, θ̃ ← θt
14: end if
15: Mt+1 ←MemoryUpdate(Tt,Mt)

/* Reservoir sampling */
16: Calculate and store Γ′

DGC(t̃) according to (14)
/* Update Γ′

DGC(t̃) for new historical data */
17: end for

15
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Datasets S-CIFAR100
α 1e−2 1e−3 1e−4 0

DGC-ER 57.4±2.14 59.55±0.97 59.14±0.91 55.48±1.52

Table 3. The FAIA ± standard error(%) with different selection of α.

Datasets S-CIFAR100
m 1 100 200 300 400

DGC-ER 49.11±5.30 59.44±0.95 59.55±0.97 59.27±0.65 58.94±0.98

Table 4. The FAIA ± standard error(%) with different selection of m.

C. Details for Experimental Setup
Architecture and hyperparameter Most of the comparison methods in our experiments use the implementation of
Mammoth 1. For the Dynamic ER (Yan et al., 2021) method we use the implementation of PyCIL 2, and for the GCR method
we use the implementation of Google-research 3. To be consistent with the selection of these open source frameworks,
all the methods use ResNet18 (He et al., 2016) as the base network. All the networks are trained from scratch. For the
hyperparameter selection of different methods, we directly use the original hyperparameters used in these open-source
frameworks, which are obtained by using grid search on 10% of the training set.

Training details To maintain consistency, we utilize the default parameter settings and network architectures provided
by the framework. As in previous studies (Tiwari et al., 2022; Yan et al., 2021; Buzzega et al., 2020), random crops and
horizontal flips are used as data augmentation in all experiments. All methods that do not incorporate DGC are optimized
using standard SGD. In our DGC calibrated method, we empirically set m = 200. To fairly compare the methods with
constant storage limits, we uniformly train for 50 epochs in each task on S-CIFAR10 and S-CIFAR100, and 100 epochs in
each task on S-TinyImageNet. The batch size is all set to be 32. According to the experimental description in the Dynamic
ER method, we train the first task for 200 epochs on all datasets and train all subsequent tasks for 170 epochs; the batch size
is set to be 128.

D. Other Experimental Results
Selection of α We explore the impact of different α values to the performance of our DGC method. In the experiment, we
fix the buffer size to 2000. Table 3 shows that DGC can improve ER under different α values. In all the experiments of
Section 4, we fix the value of α to be 1e−3.

Selection of m As stated in Theorem 3.3, when m is sufficiently large, our DGC method has a linear convergence in
expectation. The results in Table 4 show that whenm is greater than 100, DGC-ER can significantly improve the performance
of ER. Table 4 also suggests that our method is relatively robust to the selection of m.

FF and FAA results in CIL we use Final Forgetting (FF) (Chaudhry et al., 2018) to measure the forget-
ting of the model throughout the learning process. Following the previous work, it is defined as FF ≜

1
T−1

∑T−1
j=1

(
maxk∈{1,...,T−1} ak,j − aT,j

)
. Table 5 and Table 6 show that DGC based methods can reduce forgetting while

improving the performance in all the cases. For most instances, our DGC based methods achieve the best performance.

Detailed results in TFCL Table 7 shows that our DGC method can improve the performance in TFCL. The DGC-DER++
method achieves the best performance in all the cases.

Training Time We set b = 500 and conduct experiments on S-CIFAR100 to measure the training time of several algorithms
on the first three tasks in the CIL scenario. Table 8 shows that our method and GCR have roughly the same training time,
which is higher than AGEM but lower than other baselines. The results on the remaining tasks and other datasets are similar.
Therefore, the increase caused by our method on training time is not significant, compared with most of the baselines.

1https://github.com/aimagelab/mammoth
2https://github.com/G-U-N/PyCIL
3https://github.com/google-research/google-research/tree/master/gradient coresets replay
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Datasets S-CIFAR10 S-CIFAR100 S-TinyImageNet
Size of Buffer 500 2000 500 2000 2000 5000

AOP 49.54±1.44 14.24±2.18 3.92±0.19

AGEM 96.50±1.29 96.34±0.87 89.58±0.14 89.56±0.22 77.30±0.22 77.53±0.39

SSVRG 52.10±7.83 68.75±11.86 56.65±5.21 70.15±8.61 21.99±2.02 31.29±3.92

MOCA 12.97±1.00 7.22±0.71 28.65±0.87 58.08±17.70 41.61±14.34 32.04±11.13

GSS 64.81±4.99 47.27±5.06 83.43±0.50 79.52±0.43 72.75±0.40 69.97±0.48

GCR 24.18±1.76 13.34±1.09 58.03±5.80 34.41±2.56 48.47±1.60 39.34±1.77

HAL 62.86±2.80 36.65±2.88 55.22±1.62 47.69±2.73 43.72±2.34 38.86±1.25

ICARL 31.91±2.25 26.56±1.19 30.20±0.40 24.64±0.33 18.55±0.45 17.62±0.61

ER 44.28±1.93 22.96±0.90 74.29±0.73 54.60±0.63 65.74±0.59 54.27±0.68

DGC-ER 39.72±1.91 20.37±1.03 72.31±0.85 52.30±1.09 64.58±0.52 52.38±0.68

DER++ 9.24±3.01 6.82±0.60 14.94±2.23 9.19±1.09 7.86±3.24 6.75±0.84

DGC-DER++ 4.90±1.86 3.99±1.01 9.15±2.52 5.79±0.85 3.40±0.66 4.59±0.83

XDER 10.64±0.70 8.89±0.33 25.11±0.79 12.15±0.26 17.95±0.55 12.81±0.31

DGC-XDER 8.74±0.98 7.22±0.97 23.24±0.65 11.11±0.37 16.99±0.74 11.84±0.47

Table 5. The FF ± standard error(%) in CIL. The methods combined with DGC are colored in gray. The best results are highlighted in
bold.

Datasets S-CIFAR10 S-CIFAR100 S-TinyImageNet
Size of Buffer 500 2000 500 2000 2000 5000

AOP 48.52±1.06 26.13±1.22 8.61±0.02

AGEM 19.80±0.29 20.06±0.38 9.25±0.08 9.31±0.06 7.94±0.06 7.86±0.11

SSVRG 32.08±6.97 43.55±11.38 9.92±2.22 17.40±5.35 0.75±0.09 7.92±2.22

MOCA 70.34±1.23 78.68±0.86 37.13±0.55 9.35±18.67 0.50±0.00 0.50±0.00

GSS 44.56±3.95 56.46±4.48 13.22±0.05 16.12±0.13 11.74±0.14 13.45±0.20

GCR 72.62±0.76 80.95±0.47 28.66±4.14 48.89±1.99 29.01±0.87 36.45±0.89

HAL 39.41±1.96 58.34±2.66 8.46±1.09 11.91±2.05 5.43±0.71 8.00±0.99

ICARL 57.51±2.90 69.91±0.68 45.69±0.53 52.30±0.47 30.30±0.44 31.69±0.32

ER 61.08±1.23 76.82±0.95 21.18±0.65 36.24±1.27 18.39±0.38 26.71±0.53

DGC-ER 64.42±1.35 79.46±0.61 23.11±0.76 40.23±1.05 19.52±0.55 27.96±0.54

DER++ 54.89±1.42 64.84±0.40 37.56±1.03 50.42±0.68 15.34±3.53 31.09±0.59

DGC-DER++ 58.03±1.10 66.02±0.51 40.48±1.14 52.14±0.64 20.82±0.91 33.72±1.63

XDER 63.88±1.43 67.86±0.84 47.45±0.65 56.88±0.53 41.41±0.36 44.66±0.09

DGC-XDER 69.46±1.82 71.40±1.69 49.07±0.40 57.97±0.31 41.58±0.32 44.88±0.40

Table 6. The FAA ± standard error(%) in CIL. The methods combined with DGC are colored in gray. The best results are highlighted in
bold.
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Datasets S-CIFAR10 S-CIFAR100 S-TinyImageNet
Size of Buffer 500 2000 2000

AOP 66.73±0.60 42.73±0.62 21.40±0.17

AGEM 50.24±0.53 23.55±0.23 18.95±0.40

SSVRG 49.02±4.09 39.09±5.53 14.39±1.47

MOCA 81.01±0.97 59.29±2.97 34.74±10.08

GSS 68.81±0.98 38.54±0.39 31.38±0.11

GCR 82.31±0.43 63.18±2.16 48.94±0.44

ER 73.04±0.47 55.46±0.77 37.44±0.20

DGC-ER 74.03±0.55 58.35±0.81 38.00±0.34

DER++ 82.72±0.17 65.57±0.42 47.23±1.22

DGC-DER++ 82.93±0.14 66.57±0.20 50.08±1.10

Table 7. The FAIA ± standard error(%) in TFCL. The methods combined with DGC are colored in gray. The best results are highlighted
in bold.

Methods(s) GSS XDER AOP MOCA SSVRG GCR DGC AGEM ER
T1 4959.29 1083.86 1418.49 655.15 216.38 689.85 218.46 212.76 214.34
T2 4281.39 2495.60 1412.48 1192.89 873.39 690.34 666.08 478.99 345.05
T3 4158.51 2826.82 1415.24 1173.05 878.89 686.16 668.86 488.91 340.36

Table 8. Training time of the first three task in CIL on S-CIFAR100.
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