
Non-confusing Generation of Customized Concepts in Diffusion Models

Wang Lin 1 * Jingyuan Chen 1 2 Jiaxin Shi 3 * Yichen Zhu 1 Chen Liang 4 Junzhong Miao 5 Tao Jin 1

Zhou Zhao 1 Fei Wu 1 Shuicheng Yan 6 Hanwang Zhang 6 7

Abstract
We tackle the common challenge of inter-concept
visual confusion in compositional concept genera-
tion using text-guided diffusion models (TGDMs).
It becomes even more pronounced in the genera-
tion of customized concepts, due to the scarcity
of user-provided concept visual examples. By
revisiting the two major stages leading to the suc-
cess of TGDMs—1) contrastive image-language
pre-training (CLIP) for text encoder that encodes
visual semantics, and 2) training TGDM that de-
codes the textual embeddings into pixels—we
point that existing customized generation methods
only focus on fine-tuning the second stage while
overlooking the first one. To this end, we pro-
pose a simple yet effective solution called CLIF:
contrastive image-language fine-tuning. Specifi-
cally, given a few samples of customized concepts,
we obtain non-confusing textual embeddings of
a concept by fine-tuning CLIP via contrasting a
concept and the over-segmented visual regions of
other concepts. Experimental results demonstrate
the effectiveness of CLIF in preventing the con-
fusion of multi-customized concept generation.
Project page: https://clif-official.github.io/clif.

1. Introduction
We are interested in customizing a text-guided diffusion
model (TGDM), e.g., Stable Diffusion (Rombach et al.,
2022), to generate compositions of user-provided concepts.
For example, as shown in Figure 3, given a few images of
Hector Rivera and Tang Seng, we can generate imaginary
compositions by the prompt “Hector Rivera snuggled up in
Tang Seng”. Existing customized generation methods are
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Figure 1. The black line and box denote the prevailing pipeline of
customized generation methods. Our contribution is to contrast the
textual embeddings of customized concepts in the Text Encoder
stage, which is shown in the red line and dashed box.

based on fine-tuning a pre-trained TGDM, where the tun-
able parameters include the textual embeddings of the new
concept names (Gal et al., 2022; Voynov et al., 2023) and/or
LoRAs (Hu et al., 2021) on the generation backbone (Ruiz
et al., 2023; Kumari et al., 2023). In this way, the fine-tuned
TGDM is expected to memorize the visual concepts and
generalize them to unseen compositions. However, an ever-
elusive challenge of the generalization is the inter-concept
confusion shown in Figure 3. This visual defect is even
more severe when the interaction is spatially cluttered, such
as “snuggling” and “riding motorcycle”.

Recent findings of visualizing the role of the image-text
cross-attention in pre-trained TGDM (Tewel et al., 2023;
Patashnik et al., 2023) show that the textual embeddings
(V-values) control “what to draw” and the cross-attention
map (Q-K softmax) tells “where to draw”. Inspired by this,
we believe that the cause of the confusion is mainly due to
the confusing textual embeddings of concepts. To see this,
we revisit the two stages in training TGDM (Figure 1 and
Section 3):

• Text Encoder: we obtain the text encoder from con-
trastive image-language pre-training (CLIP) on large-
scale image-text pairs (Radford et al., 2021; Schuhmann
et al., 2021). In this way, the token embedding of a con-
cept token carries its visual features.

• Text-to-Image Decoder: the textual embedding is de-
coded into pixels by the cross-attention between textual
and visual embeddings in the U-net decoder. In Section 2,
we discuss that almost all the customized generation meth-
ods focus on this stage.

We can show the confusion of common concepts in the
existing vocabulary of Stable Diffusion by measuring the
confusion degree of each concept. We use a sentence of
two concepts as the prompt for generation (e.g., “a cat and a
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dog”), and calculate the probability of their presence in the
generated image using an object detector. As illustrated in
Figure 2, when the two concept token embeddings are far
away (e.g., “octopus” and “cat”), the composition is rarely
confused; when they are close, confusion is common.

Can we use existing methods (Chefer et al., 2023; Li et al.,
2023a; Huang et al., 2023; Zhang et al., 2023; Mou et al.,
2023) of de-confusing the above TGDM-known concepts to
mitigate the confusion of TGDM-unknown, customized con-
cepts? Unfortunately, the answer is no. This is because those
methods rely on the assumption that the visual features and
textual embeddings are well-aligned—but it does not hold
for few-shot customized concepts. Then, what about the
de-confusing methods especially designed for fine-tuning
customized concepts (Gu et al., 2023; Po et al., 2023)? Still
no, because fine-tuning the second stage should not contrast
the textual embeddings of different concepts too sharply to
prevent overfitting, e.g., making the pre-trained TGDM lose
the original ability of text control.

We propose a simple yet effective method called CLIF:
Contrastive Language-Image Fine-tuning, to tackle the con-
fusion challenge directly in the first stage by contrasting
the textual embeddings of customized concepts (Figure 1).
We first present an over-segmented concept dataset that
augments the visual examples of customized concepts into
a large number of language-image contrastive data (Sec-
tion 4.1). Thus, by applying contrast fine-tuning of the
text encoder on the augmented data, we can fundamentally
eliminate the confusion in the concept token embeddings
(Section 4.2). Then, in the second stage, we reconstruct
the images of concepts to fine-tune both the text embed-
dings with the text encoder frozen and the Unet of TGDM
(Section 4.3).

In Section 5, to demonstrate the non-confusing effectiveness
of CLIF, we jointly customize 18 user-provided characters
and compare CLIF with prior SOTA methods as shown in
Figure 3. Different from prior methods (Gu et al., 2023),
these 18 characters are more fair and proper for evaluation,
because they are from less popular movies, which is rare
for a pre-trained TGDM. We conduct extensive ablations to
analyze how each CLIF’s breakdowns mitigate confusion in
multi-concept generation.

2. Related Work
Concept Customization. The goal of customized gener-
ation is to implant the user-provided visual examples of
concepts into a pre-trained TGDM to generate various rendi-
tions of the concepts vividly guided by text prompts. Exist-
ing works can be categorized into three types based on the
fine-tuned modules of the text-guided diffusion model (im-
age decoder): 1) Text embedding (Gal et al., 2022; Voynov

Figure 2. Visualization of confusion in embedding space with “cat”
as an anchor point, see Appendix for details. It shows an evident
correlation between confusion and embedding distance.

et al., 2023; Yuan et al., 2023; Alaluf et al., 2023): this type
fine-tunes the text embeddings of customized concepts to
align with input images while freezing the diffusion model.
2) Decoder (e.g., U-net) (Ruiz et al., 2023): this type ex-
plicitly binds the concept with rare words by fine-tuning the
entire diffusion model. Additionally, (Ryu, 2023) adopts
a low-rank adapter (LoRA) (Hu et al., 2021) for concept
tuning, which is lightweight and can achieve comparable fi-
delity to full-weight tuning. 3) Joint methods (Kumari et al.,
2023) that fine-tune the above two. However, these three
modules are only in the image decoder stage of TGDM.
In contrast, our CLIF recalls the neglected first stage and
fine-tunes both of the stages, thereby improving the ability
to customize and compose more diverse concepts.

Confusion in Multi-Concept Customization. Some of the
above works (Kumari et al., 2023; Gu et al., 2023; Liu et al.,
2023) focus on injecting multiple concepts into TGDM, fac-
ing the challenge of inter-concept confusion. To tackle the
challenge, current approaches can be categorized into the
following 3 types: 1) Generative semantic nursing (Chefer
et al., 2023; Li et al., 2023a; Hertz et al., 2022): this type
optimize or edit the cross-attention maps in the generative
process during inference time. Although for common con-
cepts these methods can correct minor errors in attention
maps and enable more accurate multi-concept synthesis,
they are not salvageable for the confused attention maps
generated by TGDM-unknown customized concepts. 2)
Spatial control (Huang et al., 2023; Zhang et al., 2023; Mou
et al., 2023): this type directly integrates spatial layout as a
pixel-level specification. However, obtaining additional spa-
tial conditions is costly and proves ineffective in complex
interactions involving large overlapping areas. 3) Token
embedding (Balaji et al., 2022; Liu et al., 2022; Feng et al.,
2022): this type aims to improve the prompt alignment on
the text side by combining T5 and CLIP text encoders or
utilizes language parsers to associate attributes solely with
the corresponding concepts. In contrast, our approach does
not require additional components, and we directly fine-tune
the concept token embeddings to alleviate the confusion and
achieve better prompt alignment.
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Figure 3. Visualization of multi-concept customization for challenging cases. When the concepts to be customized belong to categories
with high semantic similarity (all belonging to “humans” superclass), or when there is large regional overlap (e.g., the second and third
rows) or combinations across styles (e.g., 2D combined with 3D characters in the fifth and sixth rows), the baseline methods suffer from,
identity loss (red border), attribute leaking (blue border), or concept missing (green border), which are effectively circumvented by CLIF.
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3. Preliminary
CLIP as Text Encoder. For a concept with name c (might
be associated with some text prompts p such as “a photo of
c”), the Text Encoder transforms it into a textual embedding
V∗ that carries the concept’s visual features as:

V∗ := Text-Encoder(p), (1)

where := denotes that V∗ is the token embedding selected
from the position of c in p. Existing methods employ CLIP
to train Text Encoder by contrastive pre-training on a large-
scale dataset of text-image pairs. Specifically, for each text-
image pair (p, q) in a batch, the goal of CLIP is to maximize
the similarity between the text and the corresponding image
while minimizing the similarity with another non-matching
image. The training loss can be formulated as:

Lclip = − log
exp(s(Text-Encoder(p), f(q)))∑

n− exp(s(Text-Encoder(p), f(q−)))
,

(2)
where f(·) is image encoder and s(·, ·) represents the simi-
larity in the feature space, usually using cosine similarity.

By minimizing this loss on large-scale text-image pairs, the
generated token embeddings will be well-aligned with the
corresponding visual features.

Stable Diffusion as Text-to-Image Decoder. After ob-
taining the concept token embedding V∗, Text-to-Image
Decoder generates an image xgen with an initial noise map
ε ∼ N (0, 1) as:

xgen = Image-Decoderxθ
(ε,V∗). (3)

Specifically, we use Stable Diffusion (Rombach et al., 2022)
as the image decoder xθ. The concept token embedding
V∗ is decoded into images by the cross-attention between
textual and visual embeddings in the U-net decoder. The
cross-attention layers project V∗ into keys K and values
V, while the queries Q are derived from the intermediate
features of U-net. The attention maps are then calculated
by A = Softmax(QK⊺

√
d
), where d denotes the hidden state

dimension. Finally, pixel features are comprised of the val-
ues V, weighted by the attention maps A as: A ·V. (Tewel
et al., 2023) find that the keys K control the compositional
structure of the generated image, and the values V control
the appearance of image components.

Stable Diffusion is trained using a squared error loss to
denoise a variably-noised image or latent code zt as:

Lrec = Ex,V∗,ε,t

[
∥xθ(zt,V∗)− x∥22

]
, (4)

where x is the ground-truth image, and zt =
√
αtx +√

1− αtε is the noisy input at time-step t where αt is re-
lated to a fixed variance schedule. Such training objective
can be simplified as a reconstruction loss.

Figure 4. Pipeline of training data curation. We mix the customized
concepts and common concepts at instance-level and segmentation-
level, to help decouple multi-concept token embeddings which can
eliminate the confusion issues.

4. Method: CLIF
We aim to compose multiple customized concepts in one
image with complex interaction. To eliminate the confusion
issues of baselines (Gu et al., 2023; Kumari et al., 2023)
in Figure 3, we re-visit the two stages of TGDM and then
propose a two stage fine-tuning method as shown in Fig-
ure 5, to make the embeddings of different concepts more
contrastive. To support an effective contrastive fine-tuning
with very limited user-provided concept images, we design
an over-segmented method with multi-granularity for train-
ing data curation to ensure the learned concept embeddings
are separated globally and locally.

4.1. Training Data Curation

Upon revisiting the two stages of TGDM, it becomes appar-
ent that the textual embeddings of newly added customized
concepts (i.e., TGDM-unknown concepts) in existing cus-
tomized generation methods are solely trained in the Text-
To-Image Decoder stage and not in the Text Encoder stage.
They overlook that during image decoder training, the re-
construction loss Lrec aims to reconstruct visual features
at the pixel level and should not be mistaken for the con-
trastive learning loss Lclip, which decouples relationships
between concepts. This results in the under-trained concept
embedding and the projected V being confusing, ultimately
leading to confusion in generated multi-concept images.

Our idea is to fine-tune the customized concept embed-
ding by contrastive learning similar to CLIP’s to reduce its
confusion. To this end, we propose a simple technique to
construct a large number of image-text pairs for fine-tuning
the text encoder and image decoder because the customized
concepts are derived from the user-provided limited image
data. Specifically, we decompose the confusion into three is-
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sues: 1) Identity Preservation, 2) Attribute Binding, and
3) Concept Attendance. To this end, as shown in Figure 4,
we construct three augmentation data: 1) Global Augmen-
tation (G-Aug), 2) Region Augmentation (R-Aug), and 3)
Mix Augmentation (M-Aug), to address the above issues
respectively. Below, we describe in detail the motivation
and process for constructing each type of data.

G-Aug for Identity Preservation We draw the following
two observations regarding existing approaches: 1) In Fig-
ure 2, we find that the degree of confusion and the Euclidean
distance between embeddings show a correlation, which
suggests that it is necessary to pull embeddings that use the
same initialization (e.g., man) farther apart in the embedding
space. 2) In Figure 3, we observe that confusing concept
embeddings will fail to preserve identity information, such
as the erroneous fusion of TangSeng and Hector Rivera’s
visual appearance.

Based on the aforementioned observations, we attribute the
identity loss to inter-concept confusion. To reduce it, we pro-
pose global augmentation. Specifically, 1) we first segment
the concept from the original images using SAM (Kirillov
et al., 2023), to filter irrelevant contexts like the background;
2) then we utilize a pre-trained diffusion model to gener-
ate some general concepts such as policeman, dog, denim
jacket, etc., as new contexts; 3) finally, we combine these
segmented concepts with the general concepts to generate a
large number of text-image pairs with different contexts.

The global augmentation is designed to fine-tune the text
encoder. With the supervision contained in text paired with
images, the concept token carries its visual features, exclud-
ing the visual features of other concepts, and inter-concept
confusion is mitigated.

R-Aug for Attribute Binding. In Figure 3, we observe
that the semantic components of a concept can also be con-
fused, leading to attribute leakage, e.g. Jerry Smith’s top
incorrectly uses the blue color of his pants.

Based on this observation, we attribute the attribute leak-
age to intra-concept confusion. To reduce it, we propose
regional augmentation. Specifically, 1) we first use GPT-4
to caption as much as possible the characterization in the
concept such as hair, necklaces, hats, and so on; 2) then,
we further segment the global concepts to get the regional
concept, and label it with the results from GPT-4; 3) finally,
we follow the global concepts’ process to generate a large
number of region-based text-image pairs.

The regional augmentation is designed to fine-tune text en-
coder and is complementary to global augmentation, work-
ing together to achieve a non-confusing text embedding.

M-Aug for Concept Attendance. We make the following
observations about missing concepts: 1) In Figure 3, we

Figure 5. Our two stage framework for multi-concept learning. We
first fine-tune the text encoder to get contrastive concept embed-
dings, and then fine-tune the text-to-image decoder to synthesizing
non-confusing images.

observe that there are often dominant concepts, while other
non-dominant concepts e.g., Miguel Ricveras and Summer
Smith, are not always successfully generated in images,
sometimes missing entirely. 2) We find the text-to-image
decoder has defined the dominance in one of the concept
embedding vectors beforehand, which we call dominant
bias. For example, when given the prompt “a photo of
a cat and a pug”, stable diffusion tends to generate two
pugs due to the bias in the pre-train data. The presence
of dominant bias results in missing concepts in multiple
concept generation where non-dominant concepts are often
lost or produce redundant dominant concepts.

Based on the aforementioned observations, we attribute con-
cept missing to the dominant bias. To reduce it, we propose
mixed augmentation. Specifically, 1) we first segment the
concept from the original images similar to global augmen-
tation; 2) then, we randomly scale and place the segmented
concept with another one on either left or right side of the
image and generate corresponding text prompts.

The mixed augmentation is designed to fine-tune the text-to-
image decoder. To present the model with correctly mixed
image samples, the text-to-image decoder is enforced to
synthesize multi-concepts equally.

4.2. CLIF for Text Encoder

We investigate embedding tuning (Gal et al., 2022; Voynov
et al., 2023) in concept customization. Given a text prompt
containing the customized concept Jerry Smith or Willy
Wonka, the supercategory embedding, e.g., “man”, is used
to initialize both concepts.

Our goal is to eliminate confusion in text embeddings by
fine-tuning the customized concepts contrastively. The fine-
tuning approach is similar to CLIP’s training, optimizing a
symmetric cross-entropy loss over these image-text similar-
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Figure 6. Comparison of different methods on DreamBench.

ity scores as follows:

Lclif = − log
exp(s(Text-Encoder(pa), f(qa)))∑

q−a
exp(s(Text-Encoder(pa), f(q−a ))))

,

(5)
where s(pa, qa) is the similarity score between the aug-
mented image qa and corresponding prompt pa, while
s(pa, q−a ) is the similarity score for negative pair in the
batch.

4.3. Fine-tuning for Text-to-Image Decoder

After applying contrastive fine-tuning to the customized
concepts in the text encoder, we have obtained decoupled
concept embeddings c and can generate customized images
with well-maintained identity information.

Our goal is to generate images that contain multi-customized
concepts. However, existing weight fine-tuning techniques
for the diffusion model are insufficient to achieve this goal
by dominant bias. With the mixed concepts augmentation,
we freeze the text encoder and jointly train multiple concepts
with a shared LoRA Wθ in the U-net θ. Since embeddings
are already separated in the text encoder, during joint train-
ing the model can avoid concept conflict (Gu et al., 2023).

5. Experimental Results
5.1. Experimental Setup

Task and Dataset. We aim to address the challenge of
preventing the confusion of multiple customized concepts.
To comprehensively verify the effectiveness of CLIF, we
consider concepts as characters comprising a range of vi-
sual elements (e.g., “face”, “hat”, and “clothes”) that need

to be preserved. We curate a dataset consisting of 18 repre-
sentative characters, including 9 real-world, 4 3D-animated,
and 5 2D-animated. Each of them possesses unique visual
appearances that must be preserved in the customized gener-
ation. In our experiment, we will demonstrate the ability of
CLIF to generate imaginative compositions of these charac-
ters with complex interactions involving spatial clutter (e.g.,
“snuggling” and “riding motorcycle”).

Baselines. We compare CLIF against state-of-the-art base-
lines: Text-Inversion (Gal et al., 2022), Custom Diffu-
sion (Kumari et al., 2023), Dreambooth (Ruiz et al., 2023),
and Mix-of-Show (Gu et al., 2023). Moreover, to demon-
strate the generalizability of the proposed strategy in CLIF,
we integrate it with Text-Inversion and Custom Diffusion.
Note that for fair comparison, all methods do not incorporate
additional spatial constraints as in (Zhang et al., 2023).

5.2. Qualitative Comparison

We compare CLIF with Mix-of-Show, Custom Diffusion
(Custom for short), and Text-Inversion (TI for short) for
multi-concept customized generation in Figure 3. The base-
line methods suffer from, identity loss (highlighted in red
box), attribute leaking (highlighted in blue box), or concept
missing (highlighted in green box). TI and Custom implic-
itly delegate the task of disentangling multi-concept token
embeddings to the Text-to-Image decoder. However, this
paradigm is limited to the reconstruction loss which only
encodes the concept’s visual features into the embeddings
without contrasting it with other token embeddings. On the
other hand, Mix-of-Show uses gradient fusion to merge mul-
tiple separately fine-tuned concepts, which aims to preserve
the single concept identity in the fused model rather than
decoupling each other.
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Figure 7. Results for multi-concept customized generation using CLIF. Our approach is able to generate non-confusion images containing
multiple characters with complex interactions, without the need for additional spatial constraints (e.g., layout, mask, sketch).

To demonstrate the generalization of our method, we con-
duct experiments on Dreambench. We incorporate an addi-
tional baseline PACGen(Li et al., 2023b) which is a multi-
subject driven generation method in Dreambench. As shown
in Figure 6, the experimental results demonstrate that our
approach generalizes well to Dreambench.

Based on the results of CLIF for multi-concept customiza-
tion in Figure 7, we can find that: 1) Benefiting from con-
trastive fine-tuning, CLIF can accurately generate each char-
acter even when all the customized concepts belong to the
same superclass (i.e., “human”). This indicates CLIF’s
ability to differentiate between similar concepts within the
same category; and 2) In the case of multi-concept gener-
ation with complex interactions (such as “snuggling” and
“kissing”), previous approaches exhibit more serious confu-
sion problems. Due to the spatial clutter between concepts,
these approaches tend to draw visual features of multiple
concepts in duplicate areas, which results in the wrong com-
bination or loss of concepts. CLIF can handle complex
interactions natively through contrastive fine-tuned text em-
bedding, without relying on additional spatial constraints,
making it a more cost-effective solution. 3) These results
demonstrate the effectiveness of directly contrasting the tex-
tual embeddings of customized concepts in the first stage,
which reduces the confusion significantly. Generating more
than 2 objects can be achieved by simply extending our
dataset. However, it has some limitations which are dis-
cussed in Appendix A.6.

5.3. Quantitative Comparison

Following Custom Diffusion (Kumari et al., 2023), we uti-
lize the text/image encoder of CLIP to assess text alignment

Table 1. Text-alignment and image-alignment vary between single-
concept and multi-concept generation scenarios.

Methods Text Alignment Image Alignment
Single Multi Single Multi

TI 0.604(-2.6%) 0.507(-9.2%) 0.726(-6.1%) 0.708(-5.3%)
DreamBooth 0.617(-1.3%) 0.523(-7.6%) 0.754(-3.3%) 0.711(-5.0%)
Custom 0.622(-0.8%) 0.511(-8.8%) 0.749(-3.8%) 0.715(-4.6%)
Mix-of-Show 0.629(-0.1%) 0.526(-7.3%) 0.757(-3.0%) 0.713(-4.8%)
TI+CLIF 0.631(+0.1%) 0.528(-7.1%) 0.751(-3.6%) 0.726(-3.5%)
Custom+CLIF 0.657(+2.7%) 0.535(-6.4%) 0.774(-1.3%) 0.730(-3.1%)
CLIF (ours) 0.630 0.599 0.787 0.761

Table 2. Quantitative ablation study in single-concept and multi-
concept generation scenarios.

Methods Text Alignment Image Alignment
Single Multi Single Multi

CLIF 0.630 0.599 0.787 0.761
w/o G-Aug 0.604(-2.6%) 0.566(-3.3%) 0.751(-3.6%) 0.729(-3.2%)
w/o R-Aug 0.627(-0.3%) 0.591(-0.8%) 0.774(-1.3%) 0.753(-0.8%)
w/o M-Aug 0.612(-1.8%) 0.579(-2.0%) 0.768(-1.9%) 0.740(-2.1%)

and image alignment. A detailed evaluation setting is pro-
vided in Appendix A.5.1.

Based on the results presented in Table 1, we can find that:
1) For single-concept, compared with TI which encodes all
concept details within the text embedding, CLIF and other
baseline methods benefit from tuning the diffusion weight
and exhibit superior image alignment; 2) For single-concept,
CLIF exhibits superior image alignment compared to base-
line methods. This is attributed to the contrastive fine-tuning
of textual embeddings in CLIF. Contrastive fine-tuning not
only helps mitigate confusion but also aligns the image
and the concept, enabling the token embeddings of concept
names to capture more detailed visual features. Furthermore,
CLIF maintains comparable text alignment, indicating that
our approach can enhance high identity preservation with-
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Figure 8. Visualization of ablation results for augmented data type.

out compromising composability; 3) For multi-concept, the
superior performance of CLIF across all metrics highlights
its ability to effectively capture concept characteristics and
preserve concept distinct identity in multi-concept compo-
sitions; and 4) The integration of CLIF with TI and Cus-
tom shows a remarkable improvement, indicating that con-
trastive fine-tuning of the text embedding is indeed effective
and generalizable.

5.4. Ablation Study

As mentioned in Section 4.1, three critical capabilities must
be addressed to mitigate the confusion problem in cus-
tomized generation, namely, identity preservation, attribute
binding, and concept attendance. The following ablation
experiments will demonstrate how CLIF is specifically de-
signed to enhance these capabilities.

Effectiveness of Global Augmentation (G-Aug). In Figure
8, it can be observed that without global augmentation, the
generation results suffer from identity departure (e.g., Zhu
Bajie incorrectly uses Sha Heshang’s coat color). In contrast,
our CLIF successfully mitigates this issue by pushing the
textual embeddings of the two concepts farther apart through
contrastive supervision, which prevents the Text-to-Image
Decoder from confusing the characters’ visual appearances
during generation. This interpretation is also supported by
the quantitative results in Table 2, which indicate that the
image alignment in multi-concept scenario decreases from
0.761 to 0.729 (-3.2%).

Effectiveness of Region Augmentation (R-Aug). Even
when multiple concepts are decoupled from each other, the
generated concepts may still struggle with attribute leakage
( e.g., Zhu Bajie’s hat incorrectly using the color of his tie).
Therefore, we use region augmentation to fine-tune each
component of the embedding by binding each sub-region
of the concept to the token embedding, which not only
decouples the confusion of similar components between
concepts but also decouples the confusion within concepts.

Figure 9. Effects of using M-Aug for concept missing.

Figure 10. Visualization of attention map for concept embeddings.

According to the results in Table 2, region augmentation
improves attribute binding during multi-concept generation,
boosting both single and multi-concept image alignment.

Effectiveness of Mix Augmentation (M-Aug). A common
problem in multi-concept generation is concept missing.
As shown in Figure 8, two instances of Sha Heshang were
repeatedly generated while Zhu Bajie was missing. We at-
tribute this issue to dominant bias and address it through mix
augmentation. To highlight the impact of mix augmentation
on addressing dominant bias, we propose an intuitive metric
attendance, as described in Appendix A.3. The results are
shown in Figure 9, where the attendance score for all 18 cus-
tomized concepts is significantly improved, demonstrating
the effectiveness of mix augmentation.

Cross-Attention in Diffusion. We visualize concept tokens’
cross-attention maps before and after CLIF in Figure 10.
The results indicate that contrastive fine-tuning effectively
decouples the token embeddings of multiple customized
concepts, eliminates confusion in cross-attention maps, and
generates high-quality images.

5.5. Application to storytelling

In addition, after obtaining the non-confusion customized
token embedding by contrastive fine-tuning, the user can
further apply it to the tasks such as story generation, video
generation, and so on. As shown in Figure 11, users can
combine different customized characters to generate imagi-
native creations.
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Figure 11. A comic story generated by CLIF.

6. Conclusions
Our CLIF approach marks a significant advancement in
the customized generative models. By fine-tuning both the
text encoder and text-to-image decoder stages, CLIF suc-
cessfully addresses the persistent challenge of concept con-
fusion, particularly in multi-concept generation scenarios.
This technique preserves the integrity of each concept, ensur-
ing that each retains its unique identity even amidst complex
and cluttered interactions. Our extensive experiments and
ablation studies underscore the efficacy of CLIF, establish-
ing it as a powerful and versatile tool for customized concept
generation. The improvements observed in both single and
multi-concept customizations indicate the broad applica-
bility and potential of our method in various creative and
practical applications.

Impact Statement
Ethical Impacts This study does not raise any ethical con-
cerns. The research does not involve subjective assessments
or the use of private data. Only publicly available datasets
are utilized for experimentation.

Expected Societal Implications We aim to address the
confusion in customized concepts and facilitate the gener-
ation of higher-quality customized multi-concept images.
A primary ethical concern is the potential misuse of this
technology, notably in creating deepfakes, which can result
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comes. To mitigate these risks, the establishment of robust
ethical guidelines and continuous monitoring is essential.

The concern raised here is a common one, not just for
our method but across various multi-concept customiza-
tion techniques. A viable strategy to lessen these risks
might be the implementation of tactics akin to those used
in anti-dreambooth(Van Le et al., 2023). This approach in-
volves adding minor noise disturbances to the shared images,
thereby hindering the customization process. Furthermore,
embedding invisible watermarks in the generated images
can serve as a deterrent against misuse and ensure that they
are not used without due acknowledgment.
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A. Appendix
A.1. Dataset and Implementation Details

A.1.1. DATASET DETAILS

Global Augmentation Data. For each customized concept we collect 10-20 images. We apply global data augmentation
through a three-step process.

• step-1. We first segment the original images using the SAM model. Considering that each image is character-oriented, we
filter the segmented images with an area less than 10%. For the remaining segmented images, we simply use the CLIP
model to classify whether it is a person or not.

• step-2. Then we generate 100 common concepts including characters, animals, objects, etc. by GPT-4. In order to prevent
overfitting, we generat 20 images for each concept and require a solid color background in the generated text prompts to
facilitate the subsequent segmentation process.

• step-3. Finally, we randomly combine our customized concepts with each generated image.

In practice, we construct about 40,000 image-text pairs for contrastive fine-tuning.

Region Augmentation Data. For region-augmented data, considering the fact that there are numerous regions that can be
segmented from each image, but the majority of these regions contain noise, we opt to use an intact concept image rather
than the original image in order to extract all potential regions. This approach ensures that the segmented region images are
all integral components of the concept. Specifically, we extract 3-10 sub-regions for each concept. To augment the data for
these sub-regions, we have divided the process into two steps.

• step-1. First, we use GPT-4 to characterize as many objects as possible present in the segmented intact concept image,
such as hair, necklaces, hats, and so on. This provides us a list of objects on which we label each segmented region image
using CLIP.

• step-2. Then we use the pre-trained diffusion model to generate images of the objects in the list and the segmented
obtained regions are combined to obtain the enhanced image data and text prompts.

In practice, we construct about 10,000 region image-text pairs.

Mix Augmentation Data. Based on global augmented data, we randomly combine them with each other. To optimize
training time efficiency, we limit the combination to two images per concept with other concepts. This resulted in a total of
612 mix augmented data points being used in our study.

A.1.2. IMPLEMENTATION DETAILS

Implementation Details. The implementation process for the text encoder involves fine-tuning it on augmented data,
following a similar approach as CLIP, with a learning rate of 1e-4. Once this is completed, the text encoder is then frozen,
and the fine-tuning process continues for the text embedding along with the LoRA layer. As part of the LoRA tuning, we
integrate the LoRA layer into the linear layer within all attention modules of the U-net, utilizing a rank of r = 8. The Adam
optimizer is utilized for both text embeddings and diffusion model parameters, with a learning rate of 2e-4.

Sample Details. All experiments and evaluations make use of the DDPM with 50 sampling steps. To ensure consistency
and filter out undesired variations in diffusion models, we follow the approach outlined in (Gu et al., 2023) by employing
the same negative prompt for both our method and the comparison methods during sampling. The negative prompt used is
“long body, low-res, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality.”

Running Times. The process of tuning concept embeddings in text encoder typically requires approximately 4-5 hours
using four Nvidia-A100 GPUs, accounting for variations in data volume. In the case of shared LoRA weight tuning, it takes
10 hours on four Nvidia-A100 GPUs to tune 18 concepts within the pre-trained model.

A.2. Measurement of Confusion Degree

To highlight why we need to fine-tune the embeddings of customized tokens, we visualize the confusion between token
embeddings in the hidden space, using “cat” as an anchor point.

First, we extract the features of each token and perform dimensionality reduction by t-SNE to approximate their relationship
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Figure 12. Summarization of our evaluation prompts for each concept.

in the high-dimensional hidden space. Then we create the text prompt “a photo of a cat and a Tok” and use it to generate
images as conditions, generating 4 images for each prompt. We then utilize a pre-trained object detector1 to identify the two
concepts, defining the confusion score as:

φ = 1− [(|BoxCat
Cat −BoxTok

Cat |+ |BoxCat
Tok −BoxTok

Tok|)/2], (6)

where BoxCat
Cat denotes the confidence score of the cat in the bounding box that is detected to be a cat and BoxTok

Cat denotes
the confidence score of the Tok in the bounding box that is detected to be a cat. If the two concepts are completely decoupled,
φ = 0; when the two concepts are completely confused such as cats and cats, φ = 1.

A.3. Measurement of Attendance

To evaluate the improvement of mix augmentation data for missing concepts, we design attendance based on image
alignment. Specifically, for a concept, we measure the similarity between the concept’s reference image and the image
generated from the text prompt containing that concept and others. In practice, for each concept, we measure its attendance
in the images generated separately from the other 17 concepts and take the average as the final attendance score.

A.4. Scalability Compared to Decentralized Learning-based Approaches

There are two ways to perform multi-concept customized generation, joint training and decentralized learning. Custom
Diffusion suggests that co-training multiple concepts yields better results. However, the disadvantage is that the co-training
approach lacks scalability, and each newly added concept needs to be re-trained with the already fine-tuned concepts.

Another approach is decentralized learning, such as Mix-of-Show, where each concept is learned independently, and then
multiple concepts are fused to obtain a new generative model. This approach has the advantage of avoiding repetitive
training of concepts but also brings additional training overhead for fusion. For instance, in Mix-of-Show, 10-15 minutes of
training is required to fuse 3 concepts. Furthermore, there is an extra storage overhead, as a new generative model needs to
be fused and stored for each combination of concepts. For example, in this paper, we have 18 customized concepts, resulting
in C18

2 = 153 merged models for all two-by-two combinations.

In summary, both co-training and decentralized learning have their advantages and disadvantages in terms of efficiency and
performance. However, our research primarily focuses on addressing the issue of confusion in handling multiple concepts.

A.5. Quantitative and Qualitative Evaluation

A.5.1. EVALUATION SETTING

Our evaluation focuses on investigating each concept in the single-concept generation and the multi-concept generation. To
assess the performance, we employ the evaluation metric, which includes image-alignment and text-alignment, as outlined
in Custom Diffusion(Kumari et al., 2023). Specifically, for text-alignment, we evaluate the text-image similarity of the
sampled image with the corresponding sample prompt in the CLIP feature space(Radford et al., 2021) by the CLIP-Score
toolkit2. For image-alignment, we evaluate the pairwise image similarity between the sampled image and the target concept

1https://portal.vision.cognitive.azure.com/demo/generic-object-detection
2https://github.com/jmhessel/clipscore
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Figure 13. More concepts customized results.
data in the CLIP Image feature space.

For single-concept generation, we utilize 20 evaluation prompts, some of which are borrowed from previous work (Gu et al.,
2023). We sample 50 images for each prompt, ensuring reproducibility by fixing the seed within the range of [1, 50]. This
yields a total of 1,000 images for single-concept. The evaluation prompts for each concept are presented in Figure 12 (a).

For multi-concept generation, we utilize 10 evaluation prompts, which contain some complex interactions to better evaluate
the model’s capabilities. We train 18 concepts together, pairing them together to generate C18

2 = 153 combinations. The
evaluation prompts for each concept are presented in Figure 12 (b). We sample 10 images for each prompt and each
combination. This yields a total of 15,300 images for multi-concept generation.

A.5.2. MORE CONCPETS RESULTS

We supplement results for the customized generation of 3-5 concepts, revealing a gradual increase in confusion as more
concepts are added. However, our method still remains clearly superior to other methods, as shown in Figure 13. While
CLIF alleviates the problem of confusion between concepts, we are constrained by the ability of CLIP’s text encoder
to comprehend long texts and the ability of the Diffusion model to follow text prompts, which leads to the inability of
customized generation with more concepts.

We present additional multi-concept generation results of CLIF in Figure 14. CLIF demonstrates a superior ability to
preserve concept identity and offers a wider range of customized concepts.

A.6. Limitation and Future Work

The limitation involves the generation of more concepts. e.g., 4, 5 or more. While CLIF alleviates the problem of confusion
between concepts, we are constrained by the ability of CLIP’s text encoder to comprehend long texts and the ability of
Stable Diffusion to follow text prompts, leading to the inability of customized generation with more concepts.

CLIF empowers diffusion models to generate customized concepts without confusion, an advancement that can enhance story
generation by maintaining character identity information, which is essential for enabling character interaction. Moreover,
CLIF is not restricted to image generation models; it can also mitigate confusion in the generation of personalized videos or
3D assets. This technology could lead to more creative and efficient production processes for the media industry advertising
and marketing.
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Figure 14. More results of multi-subject generation.
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