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Abstract
Deep learning based methods for image recon-
struction are state-of-the-art for a variety of imag-
ing tasks. However, neural networks often per-
form worse if the training data differs significantly
from the data they are applied to. For example,
a model trained for accelerated magnetic reso-
nance imaging (MRI) on one scanner performs
worse on another scanner. In this work, we in-
vestigate the impact of the training data on a
model’s performance and robustness for accel-
erated MRI. We find that models trained on the
combination of various data distributions, such
as those obtained from different MRI scanners
and anatomies, exhibit robustness equal or su-
perior to models trained on the best single dis-
tribution for a specific target distribution. Thus
training on such diverse data tends to improve
robustness. Furthermore, training on such a di-
verse dataset does not compromise in-distribution
performance, i.e., a model trained on diverse data
yields in-distribution performance at least as good
as models trained on the more narrow individual
distributions. Our results suggest that training a
model for imaging on a variety of distributions
tends to yield a more effective and robust model
than maintaining separate models for individual
distributions.

1. Introduction
Deep learning models trained end-to-end for image recon-
struction are fast and accurate and outperform traditional
methods for a variety of imaging tasks ranging from denois-
ing over super-resolution to accelerated magnetic resonance
imaging (MRI) (Jin et al., 2017; Dong et al., 2014; Muckley
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et al., 2021).

Imaging accuracy is typically measured as in-distribution
performance: A model trained on data from one source is
applied to data from the same source. However, in practice
a neural network for imaging is typically applied to slightly
different data than it is trained on. For example, a neural
network for accelerated magnetic resonance imaging trained
on data from one hospital is applied in a different hospital.

Neural networks for imaging often perform significantly
worse under such distribution-shifts. For accelerated MRI, a
model trained on knees performs worse on brains when com-
pared to the same model trained on brains. Similar perfor-
mance loss occurs for other natural distribution-shifts (Knoll
et al., 2019; Johnson et al., 2021; Darestani et al., 2021).

To date, much of research in deep learning for imaging
has focused on developing better models and algorithms to
improve in-distribution performance. Nevertheless, recent
literature on computer vision models, in particular multi-
modal models, suggest that a model’s robustness is largely
impacted by the training data, and a key ingredient for robust
models are large and diverse training sets (Fang et al., 2022;
Nguyen et al., 2022; Gadre et al., 2023).

In this work, we take a step towards a better understanding
of the training data for learning robust deep networks for
imaging, in particular for accelerated MRI.

First, we investigate whether deep networks for accelerated
MRI compromise performance on individual distributions
when trained on more than one distribution. We find for
various pairs of distributions (different anatomies, image
contrasts, and magnetic fields), that training a single model
on two distributions yields the same performance as training
two individual models.

Second, we demonstrate for a variety of distribution-shifts
(anatomy, image contrast, and magnetic field shift) that the
robustness of models, regardless of its architecture, is largely
determined by the training set. A diverse set enhances
robustness towards distribution-shifts. We further show that
robustness improvements highly correlate with similarity
between train and test set.

Third, we consider a distribution-shift from healthy to non-
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Ground truth fastMRI brain DP

Figure 1: An illustrative (randomly chosen) example to
demonstrate benefits of training on a large and diverse
dataset: Shown are reconstructions from two VarNets (Sri-
ram et al., 2020), one trained on fastMRI brain, the largest
single dataset of brain images for accelerated MRI, and one
trained on a diverse collection of datasets DP . Both models
are evaluated out-of-distribution on an image from the CC-
359-sagittal (Souza et al., 2018) dataset. The model trained
on fastMRI brain shows severe artifact whereas the model
trained DP provides better details and fewer artifacts.

healthy subjects and find that models trained on a diverse
set of healthy subjects can reconstruct images with patholo-
gies as accurately as models trained on images containing
pathologies.

Fourth, we empirically find for several distribution-shifts
that what we call ‘distributional overfitting’ occurs: When
training for long, in-distribution performance continues
to improve slightly while out-of-distribution performance
sharply drops. A related observation was made by Worts-
man et al. (2022) for fine-tuning of CLIP models. Therefore,
early stopping can be helpful for training a robust model
as it can yield a model with almost optimal in-distribution
performance without losing robustness.

Taken together, those four findings suggest that training a
single model on a diverse set of data distributions and incor-
porating early stopping yields a robust model. We test this
hypothesis by training a model on a large and diverse pool
of data significantly larger than the fastMRI dataset (Zbon-
tar et al., 2019). The resulting model, as shown in Figure 1,
is significantly more robust than a model trained on the
fastMRI dataset, the single largest dataset for accelerated
MRI, without compromising performance on fastMRI data.

Related work. Several works have shown that deep learn-
ing models for accelerated MRI are sensitive to distribution-
shifts. Johnson et al. (2021) found the models submitted
to the 2019 fastMRI challenge (Knoll et al., 2020) to be
sensitive to distribution-shifts. Furthermore, Darestani et al.
(2021) show that reconstruction methods for MRI, regard-
less of whether they are trained or only tuned on data, all
exhibit similar performance loss under distribution-shifts.
Contrary to our work, both works do not propose robustness
enhancing strategies, such as training on a diverse dataset.

Moreover, there are several works that characterise the sever-
ity of specific distribution-shifts and propose transfer learn-
ing as a mitigation strategy (Knoll et al., 2019; Huang et al.,
2022; Dar et al., 2020). Those works fine-tune on data
from the test distribution, whereas we study a setup without
access to data from the test distribution.

A potential solution to enhance robustness in accelerated
MRI is test-time training to narrow the performance gap
on out-of-distribution data (Darestani et al., 2022), albeit at
high computational costs. Liu et al. (2021) propose a special
model architecture for improving performance of training
on multiple anatomies. Ouyang et al. (2023) proposes an
approach that modifies natural images for training MRI
reconstruction models. In ultrasound imaging, Khun Jush
et al. (2023) demonstrate that diversifying simulated training
data can improve robustness on real-world data.

More broadly, several influential papers have shown that
machine learning methods for problems ranging from image
classification to natural language processing perform worse
under distribution-shifts (Recht et al., 2019; Miller et al.,
2020; Taori et al., 2020; Hendrycks et al., 2021).

Shifting to computer vision, OpenAI’s CLIP model (Rad-
ford et al., 2021) is robust under distribution-shifts. Fang
et al. (2022) finds that the key contributor to CLIP’s robust-
ness is the diversity of the training set. However, Nguyen
et al. (2022) show that blindly combining data sources can
weaken robustness compared to training on the best individ-
ual data source.

These studies underscore the pivotal role of dataset design,
particularly data diversity, for a model’s performance and
robustness. In light of concerns regarding the robustness of
deep learning in medical imaging, we explore the impact of
data diversity on models trained for accelerated MRI.

While increasing the training set size generally improves
performance, often following a power law (Kaplan et al.,
2020; Zhai et al., 2022; Klug & Heckel, 2023), this work fo-
cuses on out-of-distribution improvements through diversity,
rather than in-distribution improvements through dataset
size. It’s worth noting that we specifically address out-of-
distribution robustness, while other notions exist, such as
worst-case robustness (Antun et al., 2020; Ducotterd et al.,
2022; Krainovic et al., 2023).

2. Setup and Background
We consider multi-coil accelerated MRI, where the goal
is to reconstruct a complex-valued image x ∈ CN from
measurements of electromagnetic signals obtained through
C receiver coils according to

yi = MFSix+ zi ∈ Cm, i = 1, . . . , C. (1)
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Table 1: Fully-sampled k-space datasets used here. The percentages are the proportions of the data within a dataset. Scans
containing multiple echoes or averages are separated as such and counted as separate volumes.

Dataset Anatomy View Image contrast Vendor Magnet Coils Vol./Subj. Slices

fastMRI knee (Zbontar et al., 2019) knee coronal PD (50%), PDFS (50%) Siemens 1.5T (45%),
3T (55%)

15 1.2k/1.2k 42k

fastMRI brain (Zbontar et al., 2019) brain axial T1 (11%), T1POST (21%),
T2 (60%), FLAIR (8%)

Siemens 1.5T (43%),
3T (67%)

4-20 6.4k/6.4k 100k

fastMRI prostate (Tibrewala et al., 2023) prostate axial T2 Siemens 3T 10-30 312/312 9.5k
M4Raw (Lyu et al., 2023) brain axial T1 (37%), T2 (37%),

FLAIR (26%)
XGY 0.3T 4 1.4k/183 25k

SKM-TEA, 3D (Desai et al., 2021) knee sagittal qDESS GE 3T 8, 16 310/155 50k
Stanford 3D (Epperson, 2013) knee axial PDFS GE 3T 8 19/19 6k
Stanford 3D (Epperson, 2013) knee coronal PDFS GE 3T 8 19/19 6k
Stanford 3D (Epperson, 2013) knee sagittal PDFS GE 3T 8 19/19 4.8k
7T database, 3D (Caan, 2022) brain axial MP2RAGE-ME Philips 7T 32 385/77 112k
7T database, 3D (Caan, 2022) brain coronal MP2RAGE-ME Philips 7T 32 385/77 112k
7T database, 3D (Caan, 2022) brain sagittal MP2RAGE-ME Philips 7T 32 385/77 91k
CC-359, 3D (Souza et al., 2018) brain axial GRE GE 3T 12 67/67 17k
CC-359, 3D (Souza et al., 2018) brain coronal GRE GE 3T 12 67/67 14k

CC-359, 3D (Souza et al., 2018) brain sagittal GRE GE 3T 12 67/67 11k
Stanford 2D (Cheng, 2018) various various various GE 3T 3-32 89/89 2k
NYU data (Hammernik et al., 2018) knee various PD (40%), PDFS (20%),

T2FS(40%)
Siemens 3T 15 100/20 3.5k

M4Raw GRE (Lyu et al., 2023) brain axial GRE XGY 0.3T 4 366/183 6.6k

Figure 2: Example images for a selection of distributions from the fastMRI dataset (Zbontar et al., 2019) we consider here.
Axial view brain images are on the left, coronal view knee images are on the right. The caption above an image describes
the image contrast, and the caption below is the name of the MRI scanner used.

Here, Si is the sensitivity map of the i-th coil, F is the 2D
discrete Fourier transform, M is an undersampling mask,
and zi models additive white Gaussian noise. The measure-
ments yi are often called k-space measurements.

In this work, we consider 4-fold accelerated (i.e., m = N/4)
multi-coil 2D MRI reconstruction with Cartesian undersam-
pling. The central k-space region is fully sampled including
8% of all k-space lines, and the remaining lines are sampled
equidistantly with a random offset from the start. We choose
4-fold acceleration as going beyond 4-fold acceleration, ra-
diologists tend to reject the reconstructions by neural net-
works and other methods as not sufficiently good (Muckley
et al., 2021; Radmanesh et al., 2022). Equidistant sampling
is chosen due to the ease of implementation on existing
machines (Zbontar et al., 2019).

Class of reconstruction methods. We focus on deep
learning models trained end-to-end for accelerated MRI
because they give state-of-the-art performance in accuracy
and speed (Hammernik et al., 2018; Aggarwal et al., 2019;
Sriram et al., 2020; Fabian et al., 2022). There are different
methods to image reconstruction with neural networks in-
cluding un-trained neural networks (Ulyanov et al., 2020;
Heckel & Hand, 2019; Darestani & Heckel, 2021) and meth-
ods based on generative neural networks (Bora et al., 2017;
Jalal et al., 2021; Zach et al., 2023).

A neural network fθ with parameters θ mapping measure-
ments y = {y1, . . . ,yC} to an image is commonly trained
to reconstruct an image from the measurements y by mini-
mizing the supervised loss L(θ) =

∑n
i=1 loss(fθ(yi),xi)

over a training set consisting of target images and cor-
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responding measurements {(x1,y1), . . . , (xn,yn)}. This
dataset is typically constructed from fully-sampled k-space
data (i.e., where the undersampling mask M is identity).
From the fully-sampled data, a target image x is estimated,
and retrospectively undersampled measurements y are gen-
erated by applying the undersampling mask to the fully-
sampled data.

Several choices of network architectures work well. A stan-
dard baseline is a U-net (Ronneberger et al., 2015) trained to
reconstruct the image from a coarse least-squares reconstruc-
tion of the measurements (Zbontar et al., 2019). A vision
transformer (Dosovitskiy et al., 2021) for image reconstruc-
tion applied in the same fashion as the U-net also works
well (Lin & Heckel, 2022). The best-performing models
are unrolled networks such as the variational network (Ham-
mernik et al., 2018) and a deep cascade of convolutional
neural networks (Schlemper et al., 2018). The unrolled
networks often use either the U-net as backbone, like the
end-to-end VarNet (Sriram et al., 2020), or a transformer
based architecture (Fabian et al., 2022).

We expect our results in this paper to be model agnostic,
and show that this is indeed the case for the U-net, ViT, and
end-to-end VarNet.

Datasets. We consider the fully-sampled MRI dataset with
varying attributes listed in Table 1. The datasets include the
largest publicly available fully-sampled MRI datasets, and
contain altogether around 500k slices.

Many of our experiments are based on splits of the fastMRI
dataset (Zbontar et al., 2019), the most commonly used
dataset for MRI reconstruction research. Figure 2 depicts
samples from the fastMRI dataset and shows that MRI data
vary in appearance across different anatomies and image
contrasts (T1, T2, etc.). The image distribution also varies
across vendors and magnetic field strengths of scanners, as
the strength of the magnet impacts the signal-to-noise ratio
(SNR), with stronger magnets leading to higher SNRs.

The fastMRI dataset stands out for its diversity and size,
making it particularly well-suited for exploring how differ-
ent data distributions can affect the performance of deep
learning models for accelerated MRI. In our experiments in
Section 3, 4, 5, and 6 we split the fastMRI dataset according
to different attributes of the data. In Section 7, we showcase
the generalizability of our findings on a diverse collection
of 17 different datasets.

3. Training a Single Model or Separate Models
on Different Distributions

We start with studying whether training a model on data
from a diverse set of distributions compromises the per-
formance on the individual distributions. In its simplest

instance, the question is whether a model for image re-
construction trained on data from both distributions P and
Q performs as well on distributions P and Q as a model
trained on P and applied on P and a model trained on Q
and applied on Q.

In general, this depends on the distributions P and Q, and on
the estimator. For example, consider a simple toy denoising
problem, where the data from distribution P is generated as
y = x+ e, with x is drawn i.i.d. from the unit sphere of a
subspace, and e is drawn from a zero-mean Gaussian with
co-variance matrix σP I. Data for distribution Q is generated
equally, but the noise is drawn from a zero-mean distribution
with different noise variance, i.e., e ∼ N (0, σ2

QI) with
σ2
P ̸= σ2

Q. Then the optimal linear estimator learned from
data drawn from both distribution P and Q is sub-optimal
for both distributions P and Q. However, there exists a
non-linear estimator that is as good as the optimal linear
estimator on distribution P and distribution Q.

In addition, conventional approaches to MRI such as ℓ1-
regularized least-squares need to be tuned individually on
different distributions to achieve best performance, as dis-
cussed in Appendix A.

Thus it is unclear whether it is preferable to train a neural
network for MRI on diverse data from many distributions or
to train several networks and use them for each individual
distribution. For example, is it better to train a network spe-
cific for knees and another one for brains or to train a single
network on knees and brains together? Here, we find that
training a network on several distributions simultaneously
does not compromise performance on the individual distri-
bution relative to training one model for each distribution.

Experiments for training a joint or separate models.
We consider two distributions P and Q, and train U-
nets (Ronneberger et al., 2015), ViTs (Dosovitskiy et al.,
2021) and end-to-end VarNets (Sriram et al., 2020) on data
DP from distributions P and on data DQ from distribution
Q separately. We also train the same models on data from
P and Q, i.e., DP ∪ DQ. We then evaluate on separate test
sets from distribution P and Q. We consider the end-to-end
VarNet because it is a state-of-the-art model for accelerated
MRI, and consider the U-net and ViT as popular baseline
models. This diverse selection of architectures (unrolled,
convolutional, transformer) aims to demonstrate that our
qualitative results are independent of the specific architec-
tural choice. We consider the following choices for DP and
DQ, which are subsets of the fastMRI dataset specified in
Figure 2:

• Anatomies. P are knees scans collected with 6 dif-
ferent combinations of image contrasts and scanners
and Q are the brain scans collected with 10 different
combinations of image contrasts and scanners.
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Figure 3: The orange and blue bars are models trained
only on data from P (DP ) and Q (DQ), respectively, and
the teal bars are the models trained on both sets DP ∪ DQ.
As a reference point, the black bars are the performance
of models trained on random samples of DP ∪ DQ of half
the size. Below each bar is the number of training images.
Left: High-data regime where increasing the dataset further
gives only minor improvements. For all distributions, the
joint model trained on P and Q performs as well on P and
Q as the models trained individually for each of those dis-
tributions. Right: Results for skewed datasets. We report
the mean ± two standard deviations of five runs with differ-
ent training data from P and model initialization. We note
for training sets exceeding 3k images, there is next to no
variation (see Figure 12), therefore we only have error bars
for this experiment which includes training runs on small
datasets.

• Contrasts. We select P as PD-weighted knee images
from 3 different scanners and Q are PDFS-weighted
knee images from the same 3 scanners.

• Magnetic field. Here, we pick P to contain all 3.0T
scanners and Q to contain all 1.5T scanners regardless
of anatomy or image contrast.

Figure 3 (left) shows for U-net that the models trained on
both P and Q achieve essentially the same performance on
both P and Q as the individual models. The model trained
on both P +Q uses more examples than the model trained
on P and Q individually. To rule out the possibility that the
joint model is only as good as the individual models since
it is trained on more examples, we also trained a model
on P + Q with half the number of examples (obtained
by randomly subsampling). Again, the model performs
essentially equally well as the other models. We refer to
Appendix B.1 and B.2 for details regarding the setup.

Results for VarNet and ViT are qualitatively the same as
the results in Figure 3 for U-net (see Appendix B.3), and
indicate that our findings are architecture-independent.

Thus, separating datasets into data from individual distribu-
tions and training individual models does not yield benefits,
unlike for ℓ1-regularized least squares or the toy-subspace
example.

Experiments for training a joint or separate models on
skewed data. Next, we consider skewed data, i.e., the
training set DP is by a factor of about 10 smaller than the
training set DQ. The choices for distributions P and Q are
as in the previous experiment. Figure 3 (right) shows that
even for data skewed by a factor 10, the performance on
distributions P and Q of models (U-net) trained on both
distributions is comparable to the models trained on the
individual distributions.

4. Data Diversity Enhances Robustness
Towards Distribution-Shifts

We now study how training on diverse data affects the out-of-
distribution performance of a model. Nguyen et al. (2022)
note that for image recognition two outcomes can be ex-
pected from training a model jointly on two distributions P1

and P2, and evaluating on another distribution Q. Assuming
that training a model on P1 gives better performance on Q
than training a model on P2, the model trained on P1 and
P2 could perform (i) at least as well as a model trained on
P1 or (ii) performs worse than the model trained on P1 but
better than a model trained on P2. Here, we find that for
accelerated MRI, training a model on diverse data improves
a model’s out-of-distribution performance, i.e., case (i).

Measuring robustness. Our goal is to measure the ex-
pected robustness gain by training models on diverse data,
and we would like this measure to be independent of the
model itself. Hence, we measure robustness with the notion
of ‘effective robustness’ by Taori et al. (2020). We evalu-
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Figure 4: For a distribution-shift from distributions P = {P1, . . . , Pm} to distribution Q, we compare robustness of models
trained on P (orange) to baselines trained on the best single distribution Pbest (violet). As additional reference, we also
report models trained on both P and Q to imitate ideally robust models (teal). For the three distribution-shifts shown,
training on the more diverse dataset P is beneficial compared to training on Pbest alone.

ate models on a standard in-distribution test set (i.e., data
from the same source that generated the training data) and
on an out-of-distribution test set. We then plot the out-of-
distribution performance for different models as a function
of the in-distribution performance, see Figure 4.

It can be seen that the in- and out-of-distribution perfor-
mance of models trained on data from one distribution, (e.g.,
in-distribution data violet) is well described by a linear fit. If
a robustness intervention only moves a model along the line,
it doesn’t increase out-of-distribution performance beyond
what’s expected for a given in-distribution performance and
therefore does not yield effective robustness. Thus, a dataset
yields more effective robustness if models trained on it lie
above the violet line, since such models have higher out-of-
distribution performance than what’s expected for a fixed
in-distribution performance.

Experiment. We are given data from two distributions
P and Q, where distribution P can be split up into m
sub-distributions P1, . . . , Pm. We consider the following
choices for the two distributions, all based on the knee and
brain fastMRI datasets illustrated in Figure 2:

• Anatomy shift: P1, . . . , P6 is knee data collected with
all 6 different combinations of image contrasts and
scanners, and Q are the different brain datasets col-
lected with 8 different combinations of image con-
trasts (FLAIR, T1, T1POST, T2) and scanners (Skyra,
Prisma, Aera, Biograph mMR).

• Contrast shift: P1, . . . , P5 are all FLAIR, T1POST,
or T1 brain images and Q are T2 brain data.

• Magnetic field shift: P1, . . . , P7 are brain and knee
data collected with 1.5T scanners (Aera, Avanto) and
Q are brain and knee data collected with 3T scanners
(Skyra, Prisma, Biograph mMR).

For each of the distributions P1, . . . , Pm we construct a
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Figure 5: We compute the cosine similarity in CLIP feature-
space between a test sample and the nearest neighbor from
the training set and relate this similarity to model perfor-
mance. Left: Histograms of nearest neighbor similarity for
each test sample of Q to the training set from distributions
P or Q. Right: Strong correlation between nearest neigh-
bor similarity and performance. Compared to datasets from
distributions Pi, a more diverse dataset from distribution
P = {P1, . . . , Pm} increases both similarity to the out-of-
distribution test set and model (U-net) performance.

training set with 2048 images and a test set with 128 images.

We then train U-nets on each of the distributions P1, . . . , Pm

separately and select from these distributions the distribution
Pbest that maximizes the performance of the U-net on a test
set from the distribution Q.

Now, we train a variety of different model architectures
including the U-net, end-to-end VarNet (Sriram et al., 2020),
and vision transformer (ViT) for image reconstruction (Lin
& Heckel, 2022) on data from the distribution Pbest, data
from the distribution P (which contains Pbest), and data from
the distribution P and Q. We also sample different models
by early stopping and by decreasing the training set size
by four. We plot the performance of the models evaluated
on the distribution Q as a function of their performance
evaluated on the distribution Pbest. The configurations of
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Figure 6: Models trained on images without pathologies can
reconstruct pathologies as well as models trained on images
with pathologies. SSIM is calculated for the pathology
region (A) for small (left) and large (right) pathologies.
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Figure 7: Reconstructions by a VarNet trained on images
without pathologies (P ) and with pathologies (P + Q) of
an image containing a small-sized pathology.

our models are the same as in Section 3.

Figure 4 shows that the models trained on P are outper-
formed by models trained on P and Q when evaluated
on Q, as expected, since a model trained on P and Q is
an ideal robust baseline (as it contains data from Q). The
difference of the trained on P and Q-line and the trained
on Pbest-line is a measure of the severity of the distribution-
shift, as it indicates the loss in performance when a model
trained on Pbest is evaluated on Q. Comparing the differ-
ence between the line for the models trained on P and
the line for models trained on Pbest shows that effective
robustness is improved by training on a diverse dataset, even
when compared to distribution Pbest which is the most ben-
eficial distribution for performance on Q. Moreover, we
find similar results for distribution-shifts in the acceleration
factor and in the number of receiver coils as detailed in
Appendix C.

Robustness improvements are related to increasing simi-
larity of train and test distributions. A plausible expla-
nation for the observed performance gains through training
on a more diverse dataset is that a diverse dataset increases
the similarity between samples in the training and target
test set, and thus the target test set is less out-of-distribution.

To test this hypothesis, we use CLIP-similarity, similar to
how Mayilvahanan et al. (2024) used CLIP-similarity to
study CLIP’s robustness in image classification.

Specifically, for each test sample we find the nearest neigh-
bor to a training sample in terms of the cosine similarity
of CLIP features, and then take the mean of the histogram
of similarities as the similarity of the test set to a training
set. The left plot in Figure 5, illustrates this measure for a
contrast shift. The histograms for P and Q show the dis-
tribution of the similarity-scores between the test set and
a training set. As expected, the training set from the same
distribution (Q) shows higher similarity than a training set
from a different distribution (P ). The right plot extends this
analysis to sub-distributions Pi within P , showing that a
more diverse training set P is more similar to the test set,
and most importantly this metric correlates well with recon-
struction performance. More details are in Appendix D.

5. Reconstruction of Pathologies Using Data
From Healthy Subjects

In this section, we investigate the distribution-shift from
healthy to non-healthy subjects by measuring how well
models reconstruct images containing a pathology if no
pathologies are contained in the training set. We find that
models trained on fastMRI data without pathologies recon-
struct fastMRI data with pathologies as accurately as the
same models trained on fastMRI data with pathologies.

Experiment. We rely on the fastMRI+ annotations (Zhao
et al., 2022) to partition the fastMRI brain dataset into sets
of images with and without pathologies. The annotations
cover various pathologies in the fastMRI dataset. We extract
a set of volumes without pathologies by selecting all scans
with the fastMRI+ label “Normal for age”, and select images
with pathologies by taking all images with slice-level anno-
tations of a pathology. The training set contains 4.5k images
without pathologies (P ) and 2.5k images with pathologies
(Q). We train U-nets, ViTs, and VarNets on P and on P+Q,
and sample different models by varying the training set size
by factors of 2, 4 and 8, and by early stopping. While the
training set from distribution P does not contain images
with pathologies, P is a diverse distribution containing data
from different scanners and image contrasts.

Figure 6 shows the models’ performance on Q relative to
their performance on P . Reconstructions are evaluated only
on the region containing the pathology, where we distinguish
between small pathologies (≤ 1% of the total image size)
and large pathologies (> 1% of the total image size) to see
potential dependencies on the size of the pathology.

We see that the models trained on P show essentially the
same performance (SSIM) as models trained on P + Q
regardless of pathology size. The results indicate that mod-
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Figure 8: For a distribution-shift from distribution P to dis-
tribution Q, the in- and out-of-distribution performance is
plotted as a function of training epochs (1 to 60). At the
beginning of training, out-of-distribution performance in-
creases together with in-distribution performance. Then,
out-of-distribution performance starts to drop while in-
distribution performance continues to marginally increase.

els trained on images without pathologies can reconstruct
pathologies as accurately as models trained on images with
pathologies. This is further illustrated in Figure 7, where we
show reconstructions given by the VarNet of images with
a pathology: The model recovers the pathology well even
though no pathologies are in the training set. We provide
additional results, reconstruction examples, and discussion
in Appendix E, including a more nuanced evaluation of the
SSIM values for VarNet (Figure 14).

6. Distributional Overfitting
We observed that when training for long, while in-
distribution performance continues to improve slightly, out-
of-distribution performance can deteriorate. We refer to
this as distributional overfitting. Unlike conventional over-
fitting, where a model’s in-distribution performance de-
clines after prolonged training, distributional overfitting
involves a decline in out-of-distribution performance while
in-distribution performance continues to improve (slightly).
A similar observation has been made in the context of fine-
tuning CLIP models (Wortsman et al., 2022).

Figure 8 illustrates distributional overfitting on two
distribution-shifts. Each plot depicts the in and out-of-
distribution (P and Q) performance of an U-net as a func-
tion of trained epochs. For example, in the left plot P is
fastMRI T2-weighted brain data and Q is fastMRI knee data.
We observe as training progresses, initially, the model’s in-
distribution and out-of-distribution performance both im-
prove. However, after epoch 15, out-of-distribution per-
formance deteriorates, despite marginal improvements in
in-distribution performance. In Appendix F, we show that
distributional overfitting also occurs for VarNet and ViT,
and when using other optimizers.

This finding indicates that early stopping before conven-
tional overfitting sets in, can help to improve model robust-

ness with minimal impact on in-distribution performance.

7. Robust Models for Accelerated MRI
The results from the previous sections based on the fastMRI
dataset suggest that training a single model on a diverse
dataset consisting of several data distributions is beneficial
to out-of-distribution performance without sacrificing in-
distribution performance on individual distributions.

We now move beyond the fastMRI dataset and demonstrate
that this finding continues to hold on a large collection
of datasets, enabling significant out-of-distribution perfor-
mance improvements. We train a single large model for
4-fold accelerated 2D MRI on a diverse collection of 13
datasets including the fastMRI brain and knee datasets, and
evaluate on 4 out-of-distribution datasets (the descriptions
of the sets are in Table 1). The resulting model, when com-
pared to models trained only on the fastMRI dataset, shows
significant robustness improvements while maintaining its
performance on the fastMRI dataset.

Experiment. We train an U-net, ViT, and an end-to-end
VarNet on the collection of the first 13 datasets listed in Ta-
ble 1. We denote this collection of datasets by DP . For the
fastMRI knee and brain datasets, we exclude the fastMRI
knee validation set and the fastMRI brain test set from the
training set, as we use those for testing. The total number of
training slices after the data preparation is 413k. For each
model family, we also train a model on fastMRI knee, and
one on fastMRI brain as baselines. To mitigate the risk of
distributional overfitting, we early stop training when the im-
provement on the fastMRI knee dataset becomes marginal.
Further experimental details are in Appendix G.1 and G.2.

The fastMRI knee validation and fastMRI brain test set
are used to measure in-distribution performance. We mea-
sure out-of-distribution performance on CC-359 sagittal
view (Souza et al., 2018), Stanford 2D (Cheng, 2018),
M4Raw GRE (Lyu et al., 2023), and NYU data (Hammernik
et al., 2018). These datasets constitute a distribution-shift
relative to the training data with respect to vendors, anatomic
views, anatomies, time-frame of data collection, anatomical
views, MRI sequences, contrasts and combinations thereof
and therefore enable a broad robustness evaluation. As a
further reference point we also train models on the out-of-
distribution datasets to quantify the robustness gap.

Figure 9 shows for all architectures considered, the model
trained on the collection of datasets DP significantly outper-
forms the models trained on fastMRI data when evaluated
on out-of-distribution data, without compromising perfor-
mance on fastMRI data. For example, on the CC-359 sagit-
tal view dataset, the VarNet trained on DP almost closes
the distribution-shift performance gap (i.e., the gap to the
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Figure 9: Training on a diverse collection of datasets improves robustness under distribution-shifts. A model trained on the
diverse set of datasets DP can significantly outperform models trained on fastMRI data when evaluated on out-of-distribution
data DQ, while maintaining the same performance on fastMRI data.
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Figure 10: Nearest-neighbor CLIP similarity between a
training set and out-of-distribution (Q) test set correlate
well with the performance of VarNet.

model trained on the out-of-distribution data). We refer to
Figure 1 and Figure 20 (in the Appendix) for reconstruction
examples.

Robustness improvements are related to increasing simi-
larity of train and test distributions. In Figure 10, we
compute the CLIP similarity between the training sets and
the out-of-distribution test sets and observe a strong corre-
lation between similarity and performance. This supports
the idea that diverse datasets enhance similarity to out-of-
distribution data, leading to improved performance.

We further validate our findings in Appendix G.3, where we
evaluate model performance using the deep feature metrics
LPIPS (Zhang et al., 2018) and DISTS (Ding et al., 2022),
because these metrics were found to align well with radiol-
ogist evaluations (Adamson et al., 2023; Kastryulin et al.,

2023). The qualitative results are consistent with the SSIM
results in this section: As shown in Table 3, the models
trained on the large collection of datasets yield better scores
on the out-of-distribution datasets than the fastMRI base-
lines while achieving similar scores on the fastMRI datasets.
In addition, we provide an error analysis by quantifying the
prominence of artifacts in the reconstructions (Table 4) and
find that models trained on the diverse dataset DP produce
less pronounced artifacts compared to the fastMRI baseline.

The results in this section reinforce our earlier findings, af-
firming that large and diverse MRI training sets can sig-
nificantly enhance robustness without compromising in-
distribution performance.

8. Conclusion and Limitations
While our research shows that diverse training sets sig-
nificantly enhances out-of-distribution robustness for deep
learning models for accelerated 2D MRI, training a model
on a diverse dataset often doesn’t close the distribution-shift
performance gap, i.e., the gap between the model and the
same idealized model trained on the out-of-distribution data
(see Figure 4 and 9). Nevertheless, as datasets grow in size
and diversity, training networks on larger and even more
diverse data might progressively narrow the distribution-
shift performance gap (as suggested in Figure 5 and 10).
However, in practice it might be difficult or expensive to
collect diverse and large datasets.

Besides demonstrating the effect of diverse training data, our
work shows that care must be taken when training models
for long as this can yield to a less robust model due to
distributional overfitting. This finding also emphasizes the
importance of evaluating on out-of-distribution data.
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Figure 11: The orange and blue bars are the VarNet (Top) and ViT (Bottom) trained exclusively on data from P (DP ) and
Q (DQ), respectively, and the teal bars are the models trained on both sets DP ∪ DQ. As a reference point, the black bars
are the performance of models trained on random samples of DP ∪ DQ of half the size. The number below each bar is the
total number of training images. It can be seen that we are in the high-data regime where increasing the dataset further gives
minor improvements. For all distributions, the joint model trained on P and Q performs as well on P and Q as the models
trained individually for each of those distributions.

A. ℓ1-Regularized Least-Squares Requires Different Hyperparameters on Different Distributions
The traditional approach for accelerated MRI is ℓ1-regularized least-squares (Lustig et al., 2007). While ℓ1-regularized
least-squares is not considered data-driven, the regularization hyperparameter it typically chosen in a data-driven manner.
For different distributions like different anatomies or contrasts, the regularization parameter takes on different values and
thus the method needs to be tuned separately for different distributions. This can be seen for example from Table 4 of Zbontar
et al. (2019).

To demonstrate this, we performed wavelet-based ℓ1-regularized least-squares on the single-coil knee version of the fastMRI
dataset (Zbontar et al., 2019) using 100 images from distribution P : PD Knee Skyra, 3.0T and 100 from distribution Q:
PDFS Knee Aera, 1.5T. Using a regularization weight λ = 0.01 on distribution P gives a SSIM of 0.792, while λ = 0.001
yields subpar SSIM of 0.788. Contrary, on distribution Q, λ = 0.01 only yields 0.602, while λ = 0.001 yields SSIM 0.609.
Thus, using the same model (i.e., the same regularization parameter for both distributions) is suboptimal for ℓ1-regularized.
least squares. We used BART https://mrirecon.github.io/bart/ for running ℓ1-regularized least squares.

B. Experimental Details and Additional Results for Section 3
B.1. Data Preparation

For each of the distributions in Figure 2, we randomly sample volumes from the fastMRI training set for training so that the
total number of slices is around 2048, and we randomly sample from the validation set for testing so that the number of test
slices is around 128. Training sets of combination of distributions are then constructed by aggregating the training data from
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Figure 12: Also for smaller sized datasets (Top) or small models (U-net with 757k parameters, Bottom), a single model
performs at least as good as separate models. We report the mean ± two standard deviations from five runs with the U-net,
each with a different random seed for sampling training data and model initialization. Note that when training on datasets
with more than 3k images, there is next to no variation.

the individual distributions. For example, if we consider distribution P to contain all six knee distributions from Figure 2,
then the corresponding training set has 6 · 2048 training images. Likewise, if Q is for example all T2-weighted brain images
the corresponding training set has 5 · 2048 training images.

B.2. Models, Training, and Evaluation

Our configuration of the end-to-end VarNet (Sriram et al., 2020) contains 8 cascades, each containing an U-net with 4
pooling layers and 12 channels in the first pooling layer. The sensitivity-map U-net of the VarNet has 4 pooling layers and 9
channels in the first pooling layer. The code for the model is taken from fastMRI’s GitHub repository.

The U-nets used in the experiments have 4 pooling layers and 32 channels in the first pooling layer. The implementation of
the model is taken from the fastMRI GitHub repository. Our configuration of the vision transformer (Dosovitskiy et al.,
2021) for image reconstruction is the ViT-S configuration from Lin & Heckel (2022), and the code is taken from the paper’s
GitHub repository. As input data for the U-net and ViT, we first fill missing k-space values with zeros, then apply 2D-IFFT,
followed by a root-sum-of-squares (RSS) reconstructions to combine all the coil images into one single image, and lastly
normalize it to zero-mean and unit-variance. The mean and variance are added and multiplied back to the model output,
respectively. This is a standard prepossessing step, see for example fastMRI’s GitHub repository. The models are trained
end-to-end with the objective to maximize SSIM between output and ground-truth.

For any model and any choice of distributions P or Q, the models are trained to maximize SSIM between model output
and RSS target for a total of 60 epochs and we use the Adam optimizer with β1 = 0.9 and β2 = 0.999. The mini-batch
size is set to 1. We use linear learning-rate warm-up until a learning-rate of 1e-3 is reached and linearly decay the learning
rate to 4e-5. The warm up period amounts to 1% of the total number of gradient steps. Gradients are clipped at a global
ℓ2-norm of 1. During training, we randomly sample a different undersampling mask for each mini-batch independently.
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Table 2: A model trained on data with various acceleration factors (2, 4, 8, 16-fold) performs comparable as models trained
individually for each acceleration factor. Additionally, the model trained on various acceleration factors can enhance
performance for unseen acceleration factors (3-fold). Models were trained and evaluated on the fastMRI PDFS knee subset.

Train
Test 2-fold 4-fold 8-fold 16-fold 3-fold

2-fold 0.945 — — — 0.906
4-fold — 0.903 — — 0.899
8-fold — — 0.867 — 0.834
16-fold — — — 0.828 0.758
All of above 0.944 0.902 0.866 0.829 0.912

3-fold — — — — 0.921
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Figure 13: Training on a diverse dataset (P ) increases effective robustness under distribution-shifts related to the number of
coils.

During evaluation, for each volume we generated an undersampling mask randomly, and this mask is then used for all slices
within the volume.

The maximal learning-rate for each model is tuned based on a grid search on the values {1.3e-3, 1e-3, 7e-4, 4e-4} and
training on a random subset (2k slices) of the fastMRI dataset. We found negligible differences between learning rates
{1.3e-3, 1e-3, 7e-4} and therefore keep the learning rate to 1e-3 for simplicity. We also performed the same grid search on
fastMRI subsets for PD-weighted knee and PDFS knee scans and made the same observations.

B.3. Results for VarNet and ViT

In the main body we presented results for the U-net, here we present results for the VarNet and ViT. In Figure 11, we see
that, like for the U-net discussed in the main body, for the VarNet and ViT training on two distributions gives the same
performance as separate models trained on the individual distributions. Moreover, Figure 12 shows the same experiment for
the U-net on smaller datasets and smaller models, where the same observation can be made.

C. Distribution-Shifts Induced by Changes of the Forward Model
In the main body, we considered distribution-shifts primarily related to the images, such as different contrast and anatomies.
In this section, we consider two distribution-shifts that are induced by changes of the forward model, i.e., the relation of
measurements and object to be imaged. We consider shifts in the acceleration factor and a distribution-shift related to the
number of coils.

C.1. Results for Training With Multiple Acceleration Factors

In the main body, we presented reults for a single accelerated factor of 4.

We now train a (U-net) model simultaneously on data with 2-fold, 4-fold, 8-fold, and 16-fold acceleration factors, and
analyze how the performance compares to U-net models trained for each acceleration separately. We train only on the
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Figure 14: Reconstruction performance for each small pathology reconstructed with a VarNet trained only on data without
pathologies (i.e., P ) relative to the performance of a VarNet trained on data with and without pathologies (P and Q). SSIM
is measured only within the region containing the pathology. The majority of pathologies are reconstructed similarly well by
both models, however in the regime where SSIM is low some images are reconstructed better by the P -model and others are
reconstructed better by the P +Q-model.
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Figure 15: Models trained only on images without pathologies and models trained on images with pathologies have similar
global SSIM. Different models are sampled by varying the training set size by factors of 2, 4 and 8, and by early stopping.

fastMRI PDFS knee scans (see Figure 2). We report the performance in SSIM for each model and for each acceleration
factor in Table 2. We also evaluate each model on 3-fold acceleration to see how combining different accelerations affects
robustness towards a distribution-shifts related to the acceleration factor.

In Table 2, we see that the model trained on all four acceleration factors simultaneously (5th row) yields similar performance
to the models trained individually on each acceleration factor (the differences in performance are within 0.001 SSIM, which
is negligible).

For the out-of-distribution setup (i.e., evaluation on 3-fold acceleration), we observe that the model trained on all accelerations
performs by 0.006 SSIM better relative to the best separately trained model (2-fold acceleration).

Taken together, these two observations suggest that training on combinations of different acceleration factors can increase
the effective robustness of a model towards distribution-shifts related to changes to the acceleration factor slightly.

C.2. Distribution-Shifts Related to Number of Receiver Coils

We now consider a shift in the number of receiver coils. For distribution P , we select all knees scans collected with the
6 different combinations of image contrasts and scanners (see Figure 2). All knee scans are collected with 15 coils. For
distribution Q, we select the brain scans from the scanner Avanto since measurements from this scanner are collected with 4
coils.

For this distribution-shift we noticed that models, in particular VarNet which estimates sensitivity maps, struggles to
accurately predict the mean value of the images resulting in a noticeable drops in SSIM. However, this degradation was
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Trained on P Trained on P +Q Ground truth

Figure 16: Random selection of reconstructions of small pathologies, given by the VarNet when trained on images without
pathologies (P ), and on images without and with pathologies (P +Q).

hardly noticeable when looking at the reconstructions. Given that radiologists routinely adjust the brightness and contrast of
MRI images during inspection through a process known as windowing (Ishida et al., 1984), we normalize the model output
and target to have the same mean and variance during evaluation. The results are depicted in Figure 13, where we see that
training on a diverse set P increases effective robustness on this distribution-shift.

D. Measuring Similarity Between Two Datasets With CLIP Similarity
A possible explanation for performance improvements on out-of-distribution data is that a more diverse training set is more
likely to contain data that is similar to out-of-distribution data and thus diverse data is ‘less’ out-of-distribution. Training on
data that is ‘less’ out of distribution is in turn expected to increase performance.

There are several measures for the the similarity of two image dataset. We adapt the method from Mayilvahanan et al. (2024).
Mayilvahanan et al. (2024) demonstrate that similarity between training set and test set plays a crucial role in explaining
robustness of CLIP (Radford et al., 2021) models for image recognition. The method utilizes a pre-trained CLIP model to
compute features of images in CLIP’s image embedding space. Then given a training set and test set, this measure computes
the nearest neighbor in the training set for each sample in the test set based on the cosine similarity of the CLIP image
features resulting in a distribution of similarity scores—one for each sample in the test set. We then compute the mean of
the histograms of those nearest neighbors.
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Figure 17: Distributional overfitting for ViT and VarNet. Models are trained on data from distribution P , and evaluated at
different training epochs (1, 5, 15, 30, 45, 60) on P and Q.

Ground truth, Q (knee)
Trained on Q (knee)
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Epoch 15, 0.918 SSIM

Trained on P (T2 brain)
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Figure 18: Reconstruction example showing how distributional overfitting affects the VarNet from Figure 17. The
VarNet trained for 60 epochs on distribution P (fastMRI T2-weighted brain) produces more blurriness and artifacts in the
reconstruction of a sample from distribution Q (fastMRI knee) compared to the same VarNet trained for 15 epochs. This is
despite the fact, that the VarNet trained for 60 epochs performs better in-distribution (P ), as seen in Figure 17.

For this study, we rely on the pre-trained CLIP models by Cherti et al. (2023) and use the ViT-B/16 (Dosovitskiy et al., 2021)
pre-trained on DataComp-1B (Gadre et al., 2023), a large and diverse high-quality dataset that includes medical images.
From the root-sum-of-square ground truth images, we first randomly extract smaller image patches of size 80×80 and
discard those that mainly contain background and noise. CLIP features are then computed for the remaining image patches.

E. Additional Results for Section 5
Figure 14 presents the reconstruction performance evaluated for individual images in the test set, focusing on small
pathologies. The evaluation specifically targeted the pathology regions. Results are provided for VarNet trained solely on
images without pathologies (P ) and VarNet trained on images with and without pathologies (P +Q). Both models exhibit
similar mean SSIM values for test images without pathology (approximately 0.957 SSIM) and also similar SSIM values for
test images with small pathologies (approximately 0.948 SSIM).

Both models perform well for the majority of samples, indicated by high SSIM scores. In the low-SSIM regime where the
SSIM is low for both models, some samples are better reconstructed by the model trained on P +Q and some are better
reconstructed by the model trained solely on P .

In Figure 15, we show reconstruction performance when SSIM is calculated across the entire image and not just for the
pathology region as in the main body. It can be seen that even when evaluated globally, models trained on data without
pathologies perform as well as models trained on data with and without pathologies.

In Figure 16 we provide a selection of reconstruction examples for images with small pathologies, obtained by a VarNet
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Before size adjustment After size adjustment Ground Truth

Figure 19: Shown are two reconstructions by a VarNet trained on fastMRI knee dataset and applied to a sample of the
Stanford 3D sagittal view dataset. A mismatch in image size between training and test time can lead to artifacts (left).
Adjusting the size of the input k-space mitigates these artifacts (middle).

trained on data without pathologies and a VarNet trained on data with and without pathologies. It can be seen that the
reconstructions by the two models are essentially indistinguishable.

Our intuition on why models can generalize well for this particular distribution-shift is as follows: First, compared to the
distributions shifts in Section 4, which include shifts between anatomies or image contrasts inducing strong differences in
structure and content (see Figure 2), the pathology distribution-shift is less drastic as many image characteristics stay the
same, i.e, same anatomy, scanners, image modalities. Second, we believe that models for image reconstruction learn local
priors rather than global ones. Pathologies consist of local patterns which are also present in other areas of an image without
pathologies.

F. Additional Results on Distributional Overfitting
In Section 6, we discussed distributional overfitting for the U-net; here we demonstrate that distributional overfitting happens
equally for the ViT and VarNet. Figure 17 demonstrates for a distribution-shift from fastMRI T2-weighted brain to fastMRI
knee that ViT and VarNet also suffer from distributional overfitting. Figure 18 further illustrates distributional overfitting for
the VarNet on a random reconstruction example.

For image classification, studies have shown that using SGD instead of Adam can improve generalizability of neural
networks (Zhou et al., 2020). To see whether distributional overfitting could be mitigated by using SGD instead of Adam,
we trained U-nets with SGD on fastMRI brain data, the same data as in Section 4 for non-T2 weighted images. We trained
the models for a maximum of 100 epochs, either with zero momentum or with 0.9 momentum, and maximal learning rates
of 0.1, 0.01 and 0.001. Other hyperparameters are the same as in Appendix B.2. We observed that distributional overfitting
was not mitigated by using SGD when evaluating on fastMRI knee data, and we also did not observe better in-distribution
nor out-of-distribution performance (on T2-weighted brain and fastMRI knee) compared to using Adam.

G. Experiment Details and Additional Results for Section 7
We now discuss the experimental details for the results in section 7 on training a robust model for accelerated MRI on
diverse data and provide additional analysis.

G.1. Preparation of Datasets

We convert all the dataset listed in Table 1 to follow the convention of the fastMRI knee and brain datasets, where the
anatomies in images are vertically flipped, targets are RSS reconstructions, and the k-space is oriented such that the
horizontal axis corresponds to the phase-encoding direction and the vertical axis corresponds to the read-out direction.

If predefined train and test splits are not already provided with a dataset, we randomly select 85% of the volumes as training
set and the remaining volumes as test set. If a dataset has a designated validation set that is separate from the test set, then
we include the validation set in the training set. For 3D MRI volumes, we synthesize 2D k-spaces by taking the 1D IFFT
in the 3D k-space along either x, y or z dimension to create 2D volumes of different anatomical views (axial, sagittal and
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Table 3: Performance of models from Section 7 when evaluated on deep feature metrics LPIPS/DISTS (lower is better). For
any architecture, the model trained on the diverse collection of datasets DP performs better on out-of-distribution data than
the models trained on fastMRI knee/brain while showing similar performance on the in-distribution fastMRI data.

Model Train
Test fastMRI knee fastMRI brain CC-359 sag. NYU Stanford 2D M4Raw GRE Mean

U-net fastMRI knee 0.230/0.132 0.249/0.146 0.294/0.185 0.226/0.128 0.260/0.163 0.276/0.183 0.256/0.156
fastMRI brain 0.299/0.163 0.224/0.130 0.281/0.168 0.270/0.150 0.283/0.168 0.253/0.160 0.268/0.157
DP 0.230/0.132 0.224/0.132 0.247/0.149 0.221/0.128 0.257/0.154 0.249/0.160 0.238/0.142
Test distribution 0.230/0.132 0.224/0.130 0.215/0.136 0.214/0.123 0.246/0.143 0.239/0.153 0.228/0.136

ViT fastMRI knee 0.225/0.132 0.246/0.146 0.295/0.185 0.219/0.128 0.258/0.163 0.265/0.183 0.251/0.156
fastMRI brain 0.280/0.163 0.220/0.130 0.264/0.168 0.254/0.150 0.258/0.168 0.253/0.160 0.255/0.157
DP 0.223/0.132 0.221/0.132 0.228/0.149 0.219/0.128 0.243/0.154 0.252/0.160 0.231/0.142
Test distribution 0.225/0.132 0.220/0.130 0.206/0.136 0.207/0.123 0.236/0.143 0.237/0.153 0.222/0.136

VarNet fastMRI knee 0.209/0.122 0.226/0.132 0.306/0.189 0.201/0.106 0.244/0.143 0.344/0.226 0.255/0.153
fastMRI brain 0.246/0.139 0.206/0.120 0.251/0.152 0.223/0.118 0.241/0.141 0.273/0.174 0.240/0.140
DP 0.210/0.122 0.206/0.119 0.173/0.117 0.198/0.095 0.228/0.131 0.269/0.179 0.214/0.127
Test distribution 0.209/0.122 0.206/0.120 0.161/0.105 0.193/0.114 0.226/0.131 0.219/0.147 0.202/0.123

coronal). However, for the SKM-TEA dataset, we only consider the sagittal view. Depending on the dataset, the first and
last 15-70 slices of the synthesized 2D volumes are omitted as we mostly observe pure noise measurements:

• CC-359, sagittal view: First 15 and last 15 slices are omitted.

• CC-359, axial view: First 50 slices are omitted.

• CC-359, coronal view: First 25 and 15 slices are omitted.

• Stanford 3D, axial view: First 5 and last 5 slices are omitted.

• Stanford 3D, coronal view: First 40 and last 40 slices are omitted.

• Stanford 3D, sagittal view: First 30 and last 30 slices are omitted.

• 7T database, axial view: First 70 and last 70 slices are omitted.

• 7T database, coronal view: First 30 and last 30 slices are omitted.

• 7T database, sagittal view: First 30 and last 30 slices are omitted.

For the other datasets that are not mentioned above, all slices are used. Moreover, each of the volumes of the SKM-TEA
dataset contains originally two echos due to the use of the qDESS sequence. We separate the two echos and count them as
separate volumes.

fastMRI prostate T2. Originally, each volume of the fastMRI prostate T2 dataset contains three averages (Tibrewala et al.,
2023): two averages sampling the odd k-space lines and one average sampling the even k-space lines. Then, for each average
the authors estimate the missing k-space lines with GRAPPA (Griswold et al., 2002) and perform SENSE (Pruessmann et al.,
1999) reconstruction. The final ground truth image is then obtained by taking the mean across the three averages (see code
in the paper’s GitHub repository). However, we convert the data as follows: we take the raw k-space and average the two
averages corresponding to the odd k-space lines and then fill the missing even k-space lines with the average corresponding
to the even k-space lines. This k-space serves as our k-space data. We then take this k-space and apply a 2D-IFFT and
finally perform a RSS reconstruction and use this image as ground truth.

G.2. Models, Training, and Evaluation

The U-net used has 124M parameter with 4 pooling layers and 128 channels in the first pooling layer. The maximal learning
rate is set to 4e-4. The ViT has 127M parameters, where we use a patch-size of 10, an embedding dimension of 1024, 16
attention heads, and a depth of 10. The maximal learning rate is set to 2e-4. The VarNet contains 8 cascades, each containing
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Table 4: Quantification of artifacts in the reconstructions of the models from Section 7. We quantify the prominence of
artifacts by computing the variance of the Laplacian applied to the difference image, abs(target – reconstruction), where
lower values indicate fewer artifacts. Models trained on the diverse collection of datasets DP tend to have less pronounced
artifacts compared to models trained on the fastMRI dataset.

Model Train
Test fastMRI knee fastMRI brain CC-359 sag. NYU Stanford 2D M4Raw GRE Mean

U-net fastMRI knee 257 184 389 153 357 246 264
fastMRI brain 294 157 348 167 334 197 245
DP 267 169 309 165 346 194 242
Test distribution 257 157 239 147 267 156 204

ViT fastMRI knee 255 189 409 158 348 239 266
fastMRI brain 293 154 329 173 303 202 242
DP 255 157 288 158 265 194 220
Test distribution 255 154 227 148 249 156 198

VarNet fastMRI knee 245 174 434 183 318 331 281
fastMRI brain 271 149 292 214 323 247 249
DP 245 148 151 136 271 199 192
Test distribution 245 149 117 138 211 139 166

an U-net with 4 pooling layers and 12 channels in the first pooling layer. We use linear learning rate decay and gradients are
clipped at a global ℓ2-norm of 1. For U-net and ViT, training is set for 40 epochs but we early stopped the models at epoch
24, and we use a mini-batch size of 8. The VarNet is trained for 40 epochs and we use a mini-batch size of 4. Since slice
dimensions can vary across different volumes, the images within a mini-batch are chosen randomly from the same volume
without replacement. We use the Adam optimizer with β1 = 0.9 and β2 = 0.999 and the models are trained to maximize
SSIM between model output and RSS target. Training was carried out on two NVIDIA RTX A6000 GPUs. Training the
U-net took 384 GPU hours, the ViT took 480 GPU hours, and the VarNet took 960 GPU hours.

Early stopping criterion. Observing whether distributional overfitting occurs and its significance depends on both the
training dataset and the test dataset as for some combinations we might not be able to observe distributional overfitting, e.g.,
when training on fastMRI knee data and evaluating on fastMRI brain data. However, our results suggest a common thread:
when distributional overfitting occurs, in-distribution performance improvements are marginal. Therefore, we base our early
stopping criterion on this observation.

Resolution mismatch. The U-net and ViT are trained on center-cropped zero-filled reconstructions, the VarNet is trained
on the entire k-space and therefore on the full-sized image. For example, the average image size of fastMRI knee dataset is
640 × 360. Now, if we consider for example a distributions-shift from the fastMRI knee dataset to the Stanford 3D dataset
which contains images of approximately half the size, we additionally introduce an artificial distribution-shift by having a
mismatch between the image size from training to evaluation.

To mitigate this artificial distribution-shift we implement the following steps during inference: given the undersampled
k-space and mask, we first repeat the undersampled k-space one time in an interleaved fashion in horizontal direction and
another time in vertical direction, and adjust the undersampling mask accordingly. The repeated k-space and mask serve as
input to the VarNet and the output is center-cropped to the original image size. As can be seen in Figure 19, these processing
steps heavily reduces artifacts of the VarNets trained on the fastMRI datasets when evaluated on the Stanford 2D, CC-359
sagittal view, and M4Raw GRE dataset.

Output normalization. Similar to Appendix C.2, we observed significant drops in SSIM on out-of-distribution evaluations
due to hardly visible mismatches in terms of mean or variance between model output and target. Hence, we normalize the
output of the models to have the same mean and variance as the target during evaluation. This normalization reduces the
SSIM score’s sensitivity to variations in brightness and contrast, enabling it to better reflect structural differences.

G.3. Additional Metrics and Error Analysis

Summarizing the reconstruction quality in a single number is difficult. While SSIM is a rather standard metric for evaluating
the reconstruction quality, there are other metrics that agree better with radiologit’s ratings, such as such as LPIPS (Zhang
et al., 2018) or DISTS (Ding et al., 2022). LPIPS an DISTS are based on features of pretrained neural networks, and
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Ground truth

0.846

0.932

0.883

Trained on fastMRI brain

0.887

0.950

0.907

Trained on DP

Figure 20: Out-of-distribution reconstruction examples for the NYU, Stanford 2D, and M4Raw GRE datasets. Shown are
reconstructions by the VarNet trained on fastMRI brain are compared to the VarNet trained on the collection of datasets
(DP ). The numbers are the SSIM between the reconstruction and the ground truth image.

correlate relatively well with radiologist evaluations (Adamson et al., 2023; Kastryulin et al., 2023). Those metrics compute
the distance between the ground-truth and the reconstruction in the feature space of pretrained neural networks.

In Table 3, we evaluate the performance of models from Section 7 on LPIPS and DISTS. We find that, consistent with the
SSIM results in Section 7, the models trained on the diverse collection of datasets DP perform better out-of-distribution
than models trained on fastMRI knee or brain without sacrificing performance on the fastMRI datasets.

Quantification of artifacts. When inspecting the reconstructions of our models in out-of-distribution setups, we observed
significant errors caused by artifacts. For example, Figure 1 (middle) depicts a reconstruction severely affected by artifacts.
To quantify the prominence of artifacts, we compute the variance of the Laplacian applied to the difference image, i.e.,
abs(target – reconstruction), where lower values indicate fewer artifacts.

Table 4 shows the evaluation of the models from Section 7 on the prominence of artifacts. We observe that the models
trained on the diverse data DP tend to yield less pronounced artifacts.

In Figure 20, we provide further out-of-distribution reconstruction examples by the VarNet trained on fastMRI brain and
trained on the collection of datasets DP for the NYU, Stanford 2D, and M4Raw GRE datasets. A reconstruction example,
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Figure 21: Fine-tuning reduces out-of-distribution robustness. PQi indicates the model obtained by fine-tuning the model
trained on DP (orange bar) indicated by P , on one of the distributions Q1, Q2, Q3 or Q4. It can be seen that while the models
perform better on the data they are fine-tuned on (gray bar), the fine-tuned models perform worse on out-of-distribution data
than the model P .

for CC-359 sagittal view is provided in Figure 1.

G.4. Finetuning Reduces Out-Of-Distribution Robustness

Our results indicate that training a model on a diverse dataset enhances its robustness towards natural distribution-shifts.
In this section we demonstrate that fine-tuning an already diversely trained model on a new dataset reduces its overall
robustness.

For this experiment, we take the models from Section 7 that were trained on DP and fine-tune them on one of the four
out-of-distribution datasets DQi (see last four rows in Table 1). We denote the model fine-tuned on Qi by PQi. As depicted
in Figure 21, the fine-tuned model PQi exhibits improved performance on the specific distribution Qi it is fine-tuned on, as
expected. However, the model under-performs on all other datasets in comparison to the model trained on DP (i.e., prior to
fine-tuning).
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