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Abstract
We study the transfer learning (TL) for the func-
tional linear regression (FLR) under the Repro-
ducing Kernel Hilbert Space (RKHS) framework,
observing the TL techniques in existing high-
dimensional linear regression is not compatible
with the truncation-based FLR methods as func-
tional data are intrinsically infinite-dimensional
and generated by smooth underlying processes.
We measure the similarity across tasks using
RKHS distance, allowing the type of information
being transferred to be tied to the properties of
the imposed RKHS. Building on the hypothesis
offset transfer learning paradigm, two algorithms
are proposed: one conducts the transfer when pos-
itive sources are known, while the other leverages
aggregation techniques to achieve robust transfer
without prior information about the sources. We
establish asymptotic lower bounds for this learn-
ing problem and show the proposed algorithms
enjoy a matching upper bound. These analyses
provide statistical insights into factors that con-
tribute to the dynamics of the transfer. We also
extend the results to functional generalized linear
models. The effectiveness of the proposed al-
gorithms is demonstrated via extensive synthetic
data as well as real-world data applications.

1. Introduction
Advances in technologies enable us to collect and process
densely observed data over some temporal or spatial do-
mains, which are coined functional data (Ramsay et al.,
2005; Kokoszka & Reimherr, 2017). While functional data
analysis (FDA) has been proven useful in various fields
like finance, genetics and, etc., and has been researched
widely in the statistical community, its effectiveness relies
on having sufficient training samples drawn from the same
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distribution. However, this may not hold for functional data
under some applications due to collection expenses or other
constraints. Transfer learning (TL)(Torrey & Shavlik, 2010)
leverages additional information from some similar (source)
tasks to enhance the learning procedure on the original (tar-
get) task and is an appealing mechanism when there is a
lack of training samples. The goal of this paper is to develop
TL algorithms for functional linear regression (FLR), one of
the most prevalent models in the FDA. The FLR concerned
in this paper is Scalar-on-Function regression, which takes
the form:

Y = α+ ⟨β,X⟩L2 + ϵ = α+

∫
T
X(s)β(s) ds+ ϵ,

where Y is a scalar response, X : T → R and β : T → R
are the square-integrable functional predictor and coefficient
function respectively over a compact domain T ⊂ R, and ϵ
is a random noise with zero mean.

A classical approach to estimating β is to reduce the problem
to classical multivariate linear regression by expanding the
X and β under the same finite basis, like deterministic basis
functions, e.g. Fourier basis, or the eigenbasis of the covari-
ance function of X (Cardot et al., 1999; Yao et al., 2005;
Hall & Hosseini-Nasab, 2006; Hall & Horowitz, 2007),
which we refer to truncation-based FLR methods in this
paper. Conceptually, the offset transfer learning techniques
developed in the existing multivariate/high-dimensional lin-
ear regression framework (Kuzborskij & Orabona, 2013;
2017; Li et al., 2022; Bastani, 2021) can be applied to
truncation-based FLR methods to conduct transfer learn-
ing in FLR, though they lack a theoretical foundation in this
context due to the truncation error inherent in a basis expan-
sion of β. In particular, a key property distinguishing func-
tional data from multivariate data is that they are inherently
infinite-dimensional and generated through smooth underly-
ing processes. Omitting this fact, using finite-dimensional
approximations to β, and leveraging existing multivariate
OTL techniques on the finite coefficients lose the benefit
that data are generated from smooth processes and are less
interpretable for the transfer process; see detailed discussion
in Section 2. Observing these limitations we develop the
first TL algorithms for FLR with statistical convergence rate
guarantees under the supervised learning setting.

We summarize our main contributions as follows.
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1. We propose using the Reproducing Kernel Hilbert
Space (RKHS) distance between tasks’ coefficients
as a measure of task similarity. The transferred infor-
mation is thus tied to the RKHS’s properties and makes
the transfer more interpretable. One can tailor the em-
ployed RKHS to the task’s nature, offering flexibility
to embed diverse structural elements, like smoothness
or periodicity, into TL processes.

2. Built upon the offset transfer learning (OTL) paradigm,
we propose TL-FLR, a variant of OTL for multiple
positive transfer sources. We establish the minimax
optimality for TL-FLR. Intriguingly, the result reveals
that the faster statistical rate of TL-FLR, compared
to non-transfer learning, not only depends on source
sample size and the magnitude of discrepancy across
tasks like most existing works, but also the signal ratio
between offset and source model.

3. To deal with the practical scenario in which there is
no available prior task similarity information, we pro-
pose Aggregation-based TL-FLR (ATL-FLR), utilizing
sparse aggregation to mitigate negative transfer effects.
We establish the upper bound for ATL-FLR and show
the aggregation cost decreases faster than the transfer
learning risk, demonstrating an ability to identify op-
timal sources without too much extra cost compared
to TL-FLR. We further extend this framework to Func-
tional Generalized Linear Models (FGLM) with theo-
retical guarantees, broadening its applicability.

4. In developing statistical guarantees, we uncovered
unique requirements for making OTL theoretically fea-
sible in the functional data context. These include the
necessity for covariate functions across tasks to ex-
hibit similar structural properties to ensure statistical
convergence, and the coefficient functions of negative
sources can be separated from positive ones within
a finite-dimensional space to ensure optimal source
identification.

Literature review. Apart from truncation-based FLR ap-
proaches mentioned before, another line of research pro-
posed that one can obtain a smooth estimator via smooth-
ness regularization (Yuan & Cai, 2010; Cai & Yuan, 2012),
and has been widely used in other functional models like the
FGLM, functional Cox-model, etc. (Cheng & Shang, 2015;
Qu et al., 2016; Reimherr et al., 2018; Sun et al., 2018).

Turning to the TL regime in supervised learning, the hypoth-
esis transfer learning (HTL) framework has become popular
(Li & Bilmes, 2007; Orabona et al., 2009; Kuzborskij &
Orabona, 2013; Perrot & Habrard, 2015; Du et al., 2017).
Offset transfer learning (OTL) (a.k.a. biases regularization
transfer learning) has been widely analyzed and applied as
one of the most popular HTL paradigms. It assumes the

target’s function/parameter is a summation of the source’s
and the offset’s function/parameter. A series of works have
derived theoretical analysis under different settings. For ex-
ample, in Kuzborskij & Orabona (2013; 2017), the authors
provide the first theoretical study of OTL in the context of
linear regression with stability analysis and generalization
bounds. Later, in Wang & Schneider (2015); Wang et al.
(2016), the authors derive similar theoretical guarantees for
non-parametric regression via Kernel Ridge Regression. A
unified framework that generalizes many previous works is
proposed in Du et al. (2017), and the authors also present
an excess risk analysis for their framework. Apart from
the regression setting, generalization bounds for classifica-
tion with surrogate losses have been studied in Aghbalou &
Staerman (2023). Other results that study HTL outside OTL
can be found in Li & Bilmes (2007); Cheng & Shang (2015).
Besides, OTL can also be viewed as a case of representation
learning (Du et al., 2020; Tripuraneni et al., 2020; Xu &
Tewari, 2021) by viewing the estimated source model as a
representation for target tasks. Finally, the bias regulariza-
tion technique on which OTL relies is also widely used in
other learning settings, e.g., Meta, Multi-task, and unsuper-
vised learning, see Denevi et al. (2018; 2019); Balcan et al.
(2019); Tian et al. (2022; 2023).

The statistics community has recently adopted OTL for var-
ious high-dimensional models with statistical risk guaran-
tees. For example, Bastani (2021) proposed using OTL for
high-dimensional (generalized) linear regression but only
includes one positive transfer source. Later, Li et al. (2022)
extended this idea to multiple sources scenario and lever-
aged aggregation to alleviate negative transfer effects. In
Tian & Feng (2022), the learning procedure gets extended
to the high-dimensional generalized linear model, and the
authors also proposed a positive sources detection algorithm
via a validation approach. In these works, the similarity
among tasks is quantified via ℓ1-norm, which captures the
sparsity structure in high-dimensional parameters. There is
no TL for FDA that we are aware of, but the closest work
would be in the area of domain adaptation. Zhu et al. (2021)
studied the domain adaptation problem between two separa-
ble Hilbert spaces by proposing algorithms to estimate the
optimal transport mapping between two spaces.

Notation. For two sequence {ak}k≥1 and {bk}k≥1, we
denotes an ≍ bn and an ≲ bn if |an/bn| → c and
|an/bn| ≤ c for some universal constant c when n → ∞.
For two random variable sequence {Ak}k≥1 and {Bk}k≥1,
if for any δ > 0, there exists Mδ > 0 and Nδ > 0 such that
P(Ak < MδBk) ≥ 1− δ, ∀k ≥ Nδ , we say Ak = OP(Bk).
For a set A, let |A| denote its cardinality, Ac denote its
complement. For an integer n, denote [n] := {1, · · · , n}.

We denote the covariance function of X as C(s, t) =
E[X(s) − EX(s)][X(t) − EX(t)] for s, t ∈ T . For a
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real, symmetric, square-integrable, and nonnegative kernel,
K : T × T → R, we denote its associated RKHS on T
as HK and corresponding norm as ∥ · ∥K . We also denote
its integral operator as LK(f) =

∫
T K(·, t)f(t)dt for

f ∈ L2. For two kernels, K1 and K2, their composition
is (K1K2)(s, t) =

∫
T K1(s, u)K2(u, t)du. For a given

kernel K and covariance kernel C, define bivariate func-
tion Γ and its integral operator as Γ := K1/2CK1/2 and
LΓ(f) = L

K
1
2
(LC(L

K
1
2
(f))).

2. Preliminaries and Backgrounds
Problem Set-up. We now formally set the stage for the
transfer learning problem in the context of FLR. Consider
the following series of FLRs,

Y
(t)
i = α(t) +

〈
X

(t)
i , β(t)

〉
L2

+ ϵ
(t)
i (1)

for i ∈ [nt], t = 0 ∪ [T ], where t = 0 denotes the target
model and t ∈ [T ] denotes source models. Denote the sam-
ple space Z as the Cartesian product of the covariate space
X and response space Y . For each t ∈ 0 ∪ [T ], we denote
D(t) = {(X(t)

i , Y
(t)
i )}nt

i=1 = {Z(t)
i }nt

i=1. Throughout the
paper we assume ϵ(t)i are i.i.d. across both i and t with zero
mean and finite variance σ2.

As estimating β(0) is our primary interest, we assume for
simplicity that α(t) = 0 for all t. We assume n0 ≪∑T
t=1 nt, a condition commonly validated in most TL lit-

erature and numerous practical applications. While our
framework is designed primarily for the posterior drift set-
ting, i.e., the marginal distributions ofX(t) remain the same,
but β(t) vary, the excess risk bounds we establish are based
on a comparatively more relaxed condition, see Section 4.

In the absence of source data, estimating β(0) is termed as
target-only learning, and one can obtain a smooth estimator
of β through the regularized empirical risk minimization
(RERM) (Yuan & Cai, 2010; Cai & Yuan, 2012), i.e.

β̂ = argmin
β∈HK

{
1

n0

n0∑
i=1

ℓ(β, Z
(0)
i ) + λ∥β∥2K

}
,

where K is an employed kernel and ℓ : HK ×Z → R+ is
the loss function. This approach has been proven to achieve
the optimal rate in terms of excess risk, and we refer to it
as Optimal Functional Linear Regression (OFLR) in this
paper, which serves as a non-transfer learning baseline.

Similarity Measure. We first state the limitations of using
ℓ1/ℓ2-norm as a similarity measure in the truncation-based
FLR method, which converts the problem into a classic mul-
tivariate one. For a given series of basis functions {ϕj}j≥1

and truncated number M , one can model the t-th FLR as

Y
(t)
i ≈

M∑
j=1

X
(t)
ij β

(t)
j + ϵ

(t)
i (2)

where X(t)
ij = ⟨X(t)

i , ϕj⟩L2 and β(t)
j = ⟨β(t), ϕj⟩L2 . De-

note β(t)
trunc ∈ RM as the coefficient vector in (2), one can

then measure the similarity between the target and the t-th
FLR model by the ℓ1 or ℓ2 norm of β(t)

trunc−β
(0)
trunc like the pre-

vious works did for multivariate linear regression. However,
from the functional data analysis literature, since the func-
tional data are generated from some structural underlying
process, it is well known that one has to have the same kind
of structure in the estimator, like smoothness, for theoretical
reliability. For example, when the coefficient functions are
smooth, the above approach cannot measure the similarity
since {β(t)

trunc}Tt=0 are not necessarily sparse or might require
regularization via an ℓ2-norm, but the employed basis func-
tions might not reflect the desired smoothness. Besides, the
basis functions and M should be consistent across tasks,
which reduces the flexibility of the learning procedure.

To explore the similarity tied to the structure of coef-
ficient functions, one should quantify the similarity be-
tween tasks within certain functional spaces that possess the
same structures. These structural properties, e.g., continu-
ity/smoothness/periodicity, can be naturally encapsulated
via kernels and their corresponding RKHS. Consequently,
quantifying the similarity within a certain RKHS provides
interpretability since the type of information transferred is
tied to the structural properties of the used RKHS. We also
note that this method is broadly applicable since the repro-
ducing kernel can be tailored to the application problem
accordingly. For example, one can transfer the informa-
tion about continuity or smoothness by picking K to be a
Sobolev kernel, and about periodicity by picking periodic
kernels like K(x1, x2) = exp

(
−2/l2 sin (π|x1 − x2|/p)

)
where l is the lengthscale and p is the period.

Given the reasoning above, for t = 0 ∪ [T ], we assume
β(t) ∈ HK , and define the t-th contrast function δ(t) :=
β(0) − β(t). Given a constant h ≥ 0, we say the t-th source
model is “h-transferable” if ∥δ(t)∥K ≤ h. The magnitude of
h characterizes the similarity between the target model and
source models. We also define Sh = {t ∈ [T ] : ∥δ(t)∥K ≤
h} as a subset of [T ], which consists of the indexes of
all “h-transferable” source models. It is worth mentioning
that the quantity h is introduced for theoretical purposes
to establish optimality, which is prevalent in recent studies
such as Bastani (2021); Li et al. (2022); Tian & Feng (2022);
He et al. (2024). However, for the implementation of the
algorithm, it is not necessary to know the actual value of
h. We abbreviate Sh as S to generally represent the h-
transferable sources index.
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Learning Framework. This paper leverages the widely
used OTL paradigm, see reviews in Section 1. Formally, in
the FLR and single source β(1) context, the OTL obtains
the target function via β̂(0) = β̂(1) + δ̂ where β̂(1) is the
estimator trained on source dataset and δ̂ is obtained from
target dataset via following minimization problem:

δ̂ = argmin
δ∈HK

1

n0

n0∑
i=1

ℓ(δ + β̂(0), Z
(0)
i ) + λ∥δ∥2K ,

where the loss function can be square loss (Orabona et al.,
2009; Kuzborskij & Orabona, 2013) or surrogate losses
(Aghbalou & Staerman, 2023). The main idea is that the
estimator β̂(1) can be learned well given sufficiently large
source samples and the simple offset estimator δ̂(0) can be
learned with much fewer target samples.

3. Methodology
3.1. Transfer Learning with S Known

For multiple sources, the idea of data fusion inspires us to
obtain a centered source estimator βS via all source datasets
in place of β(1). Therefore, we can generalize single source
OTL to the multiple sources scenario as follows.

Algorithm 1 TL-FLR

1: Input: Target/Source datasets {D(t)}Tt=0; index set of
source datasets S; Loss function ℓ as square loss.

2: Transfer Step: Obtain β̂S via

β̂S = argmin
β∈HK

∑
t∈S

1

nt

nt∑
i=1

ℓ(β, Z
(t)
i ) + λ1∥β∥2K . (3)

3: Calibration Step: Obtain offset δ̂ via

δ̂ = argmin
δ∈HK

1

n0

n0∑
i=1

ℓ(δ + β̂S , Z
(0)
i ) + λ2∥δ∥2K . (4)

4: Return β̂S + δ̂.

Since the probabilistic limit of β̂S is not consistent with β(0),
calibration of β̂S is performed in (4). The regularization
term in (4) is consistent with our similarity measure, i.e. it
restricts β̂(0) to lie in a HK ball centered at β̂S . Therefore,
this term pushes the β̂(0) close to β̂S while the mean square
error loss over the target dataset allows calibration for the
bias. Intuitively, if β̂S is close to β(0), then TL-FLR can
boost the learning on the target model.

3.2. Transfer Learning with Unknown S

Assuming the index set S is known in Algorithm 1 can
be unrealistic in practice without prior information or in-

vestigation. Moreover, as some source tasks might have
little or even a negative contribution to the target one, it
could be practically harmful to directly apply Algorithm 1
by assuming all sources belong to S. Inspired by the idea
of aggregating multiple estimators in Li et al. (2022), we
develop ATL-FLR, which can be directly applied without
knowing S while being robust to negative transfer sources.

The general idea of ATL-FLR is that one can first construct
a collection of candidates for S, named {Ŝ1, Ŝ2, · · · , ŜJ},
such that there exists at least one Ŝj satisfying Ŝj = S with
high probability and then obtain their corresponding esti-
mators F = {β̂(Ŝ1), · · · , β̂(ŜJ)} via TL-FLR. Then, one
aggregates the candidate estimators in F such that the aggre-
gated estimator β̂a satisfies the following oracle inequality
in high probability,

R(β̂a) ≤ min
β∈F

R(β) + r(F , n), (5)

where R(f) = E(X,Y )[ℓ(Y, f(X))|{D(t) : t ∈ 0∪ [T ]}],
and r(F , n) is the aggregation cost. Thus, the β̂a can
achieve similar performance as TL-FLR up to some ag-
gregation cost. The proposed aggregation-based TL-FLR is
as follows:

Algorithm 2 Aggregation-based TL-FLR (ATL-FLR)

Input: Target/Source datasets {D(t))}Tt=0; index set of
source datasets S; Loss function ℓ as square loss; A given
integer M .
Step 1: Split the target dataset D(0) into D(0)

I and D(0)
Ic

with I be a random subset of [n0] such that |I| = ⌊n0

2 ⌋.
Step 2: Built candidate sets of S, {Ŝ0, Ŝ1, · · · , ŜT } as:

1. Obtain β̂0 by OFLR using D(0)
I and let Ŝ0 = ∅.

2. For each t ∈ [T ], obtain β̂t by OFLR using D(t)

and obtain truncated RKHS norm ∆̂t = ∥β̂0 −
β̂t∥KM :=

∑M
j=1⟨β̂0 − β̂t, vj⟩2/τj .

3. Set Ŝt =
{
k : ∆̂k is among the first t smallest.

}
Step 3: For t ∈ [T ], fit TL-FLR by setting S = Ŝt with
dataset D(0)

I . Let F = {β̂(Ŝ0), β̂(Ŝ1), · · · β̂(ŜT )}.
Step 4: Implement the sparse aggregation procedure in
Algoritm 3 with F as the dictionary and training dataset
as D(0)

Ic . Obtain the sparse aggregated estimator β̂a.

Remark 3.1. While exploring the estimated similarity across
sources to the target in Step 2, we use a truncated RKHS
norm, which is the distance between β̂0 and β̂t after project-
ing them onto the space spanned by the first M eigenfunc-
tions of K. Here, {τj}j≥1 and {vj}j≥1 are the eigenvalues
and eigenfunctions of K. Such a truncated norm guarantees
the identifiability of S, see Section 4.2 for detail.
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Step 2 ensures the target-only baseline β̂0 lies in F while
the construction of Ŝt ensures thorough exploration of S.
If S can be identified by one of the Ŝt, then inequality (5)
indicates that even without knowing S, the β̂a can mimic
the performance of the TL-FLR estimator, while not being
worse than the target-only β̂0, up to an aggregation cost.

The sparse aggregation is adopted from Gaı̂ffas & Lecué
(2011), see Appendix C. Although we note that other aggre-
gation methods like aggregate with cumulated exponential
weights (ACEW) (Juditsky et al., 2008; Audibert, 2009),
aggregate with exponential weights (AEW) (Leung & Bar-
ron, 2006; Dalalyan & Tsybakov, 2007), and Q-aggregation
(Dai et al., 2012) can replace sparse aggregation in Step
4, sparse aggregation is often preferred due to its computa-
tional efficiency and ability to eliminate negative transfer
effects. Specifically, the final aggregated estimator is usu-
ally represented as a convex combination of elements in F
i.e., β̂a =

∑J
j=1 cj β̂(Ŝj). The sparse aggregation sets most

of the cj to zero, which effectively excludes the negative
transfer sources. On the other hand, none of the ACEW,
AEW, and Q-aggregation will set the cj to 0 most of the
time, meaning that negative transfer sources can still affect
β̂a. Although one can manually tune temperature parame-
ters in these approaches to shrink the cj close to zero, they
are less computationally efficient given the fact that sparse
aggregation does not require such a tuning process. In Sec-
tion 6, we verify that sparse aggregation outperforms other
aggregation methods under various settings.

4. Theoretical Analysis
In this section, we study the theoretical properties of the
prediction accuracy of the proposed algorithms. We evaluate
the proposed algorithms via excess risk, i.e.

E(β̂(0)) := EZ(0)

[
ℓ(β̂(0), Z(0))− ℓ(β(0), Z(0))

]
where the expectation is taken over an independent test
data point Z(0) from the target distribution. To study the
excess risk of TL-FLR and ATL-FLR, we denote βS the
population version of β̂S which also lies in HK and define
the parameter space as

Θ(h,R) =
{
{β(t)}t∈{0}∪S : ∥βS∥K ≤ R, ∥δ(t)∥K ≤ h

}
.

To establish the theoretical analysis of the proposed algo-
rithms, we first state some assumptions. For t ∈ 0∪ [T ], de-
note {s(t)j }j≥1 and {ϕ(t)j }j≥1 as the eigenvalues and eigen-
functions of Γ(t) := K

1
2C(t)K

1
2 respectively.

Assumption 4.1 (Eigenvalue Decay Rate (EDR)). Suppose
that the eigenvalue decay rate (EDR) of LΓ(0) is 2r, i.e.

s
(0)
j ≍ j−2r, ∀j ≥ 1.

The polynomial EDR assumption is standard in FLR litera-
ture like Cai & Yuan (2012); Reimherr et al. (2018). RKHSs
that satisfy this assumption, like Sobolev spaces, are natu-
ral choices when considering smoothness as the structural
properties in the TL processes. For target-only learning with
RERM (Cai & Yuan, 2012), the minimax convergence rate
of the excess risk is n−2r/(2r+1)

0 .

Assumption 4.2. We assume either one of the following
conditions holds.

1. LΓ(t) commutes with LΓ(0) , ∀t ∈ S , i.e. LΓ(0)LΓ(t) =
LΓ(t)LΓ(0) , and

a
(t)
j := ⟨LΓ(t)(ϕ

(0)
j ), ϕ

(0)
j ⟩ ≍ s

(0)
j ∀j ≥ 1.

2. Or the following linear operator is Hilbert–Schmidt.

I− (LΓ(0))−1/2LΓ(t)(LΓ(0))−1/2, ∀t ∈ S.

We note that under the posterior drift setting, both conditions
in Assumption 4.2 are satisfied automatically, and thus, our
theoretical results are built on assumptions that are more
relaxed than posterior drift. Although neither condition
implies the other, both conditions primarily focus on how
the smoothness of the source kernel Γ(t) relates to that of
the target kernel Γ(0). Specifically, Condition 1 implies
LΓ(0) and LΓ(t) not only share the same eigenspace but
also have similar magnitudes of the projection onto the j-th
dimension of the eigenspace, which commonly appears in
FDA literature (Yuan & Cai, 2010; Balasubramanian et al.,
2022). Condition 2 implies the probability measures ofX(0)

and X(t) are equivalent, see Baker (1973). Collectively,
both conditions indicate the feasibility of OTL for FLR
relies on the fact that the regularity of source operator LΓ(t)

should behave similarly to the target’s. Either a too “smooth”
or a too “rough” source can degrade the optimality. Besides,
these conditions help to prevent the excess risk of β̂S over
the target domain from diverging, and we refer readers to
Appendix A for a technical discussion.

4.1. Minimax Excess Risk of TL-FLR

We first provide the upper bound of excess risk on TL-FLR.

Theorem 4.3 (Upper Bound). Suppose Assumption 4.2
and 4.1 hold. If n0/nS ↛ 0, let ξ(h,R) = h2

R2 , then for the
output β̂ of Algorithm 1,

sup
Θ(h,R)

E
(
β̂
)
= OP

(
n
− 2r

2r+1

S + n
− 2r

2r+1

0 ξ(h,R)

)
, (6)

if λ1 ≍ n
− 2r

2r+1

S and λ2 ≍ n
− 2r

2r+1

0 where λ1 and λ2 are
regularization parameters in Algorithm 1.
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Theorem 4.3 provides the excess risk upper bound of β̂,
which bounds the excess risk of two terms. The first term
comes from the transfer step and depends on the sample
size of sources in S, while the second term is due to only
using the target dataset to learn the offset. In the trivial case
when S = ∅, the upper bound becomes OP(n

−2r/(2r+1)
0 ),

which coincides with the upper bound of target-only base-
line OFLR (Cai & Yuan, 2012). When S ≠ ∅, compared
with the excess risk of the target-only baseline, we can
see the sample size nS in source models and the factor
ξ(h,R) are jointly affecting the transfer learning. The factor
ξ(h,R) represents the relative task signal strength between
the source and target tasks. Geometrically, one can interpret
ξ(h,R) as the factor that roughly controls the angle between
the source and target models within the RKHS.

Figure 1. Geometric illustration for how ξ(h,R) will affect the
transfer dynamic. The circle represents an RKHS ball centered
around β(0) with radius h. With the same h, larger signal strength
of βS , i.e. ∥βS1∥K leads to smaller ξ(h,R), while smaller signal
strength of βS , i.e. ∥βS2∥K leads to larger ξ(h,R).

Figure 1 shows how nS and ξ(h,R) impact the learning rate.
When the βS and β(0) are more concordant (βS1

and β(0)
1 ),

the angle between them are small and thus so the ξ(h,R),
making the second term in the upper bound negligible in the
excess risk, and thus the risk converges faster compared to
baseline n−2r/(2r+1)

0 given sufficiently large nS . If βS and
β(0) are less concordant (βS2

and β(0)
2 ), leveraging βS will

be less effective since a large ξ(h,R) will make the second
term the dominate term.

It is worth noting that most of the existing literature fails to
identify how ξ(h,R) affects the effectiveness of OTL. For
example, in Wang et al. (2016); Du et al. (2017), this factor
does not appear in the upper bound, and they claim nS ≫
n0 provide successful transfer from source to target. In high-
dimensional linear regression (Li et al., 2022; Tian & Feng,
2022), the authors only identify ξ(h,R) is proportional to
h and claims a small h can provide a faster convergence
rate excess risk. However, our analysis (Figure 1) shows
even with the same h, the similarity of the two tasks can
be different given different signal strengths of βS , which
will also affect the effectiveness of OTL. To this end, this
reveals that one cannot obtain a faster excess risk in OTL
by simply including more source datasets (larger nS), but

should also carefully select or construct the S , i.e., the more
source data are available, the more strict one should be with
what sources one uses to build β̂S in the OTL framework.

Theorem 4.4 (Lower Bound). Under the same condition of
Theorem 4.3, for any possible estimator β̃ based on {D(t) :
t ∈ {0} ∪ S}, the excess risk of β̃ satisfies

lim
a→0

lim
n→∞

inf
β̃

sup
Θ(h,R)

P
{
E
(
β̃
)
≥

a

(
n
− 2r

2r+1

S + n
− 2r

2r+1

0 ξ(h,R)

)}
= 1.

(7)

Combining Theorems 4.3 and 4.4 implies that the estimator
from TL-FLR is rate-optimal in excess risk. The proof of
the lower bound is based on considering the lower bound
of two cases: (1) the ideal case where β(t) = β(0) for all
t ∈ S and (2) the worst case where β(t) ≡ 0, meaning no
knowledge should be transferred at all.

4.2. Excess Risk of ATL-FLR

In this subsection, we study the excess risk for ATL-FLR.
As we discussed before, making ATL-FLR achieve similar
performance to TL-FLR relies on the fact that there exists a
Ŝt such that it equals to the true S (so β̂(Ŝt) = β̂(S)) with
high probability. Therefore, to ensure the F constructed in
Step 2 of Algorithm 2 satisfies such a property, we impose
the following assumption to guarantee the identifiability of
S and thus ensure the existence of such Ŝt.
Assumption 4.5 (Identifiability of S). Suppose for any h,
there is an integer M such that

min
t∈Sc

∥β0 − βt∥KM > h,

where ∥ · ∥KM is the truncated version of ∥ · ∥K defined in
Algorithm 2.

Assumption 4.5 ensures that ∀t ∈ Sc, there exists a finite-
dimensional subspace of HK , such that the norm of the
projection of the contrast function, δ(t), on this subspace is
already greater than h. This assumption indeed eliminates
the existence of β(t), for t ∈ Sc, that live on the boundary
of the RKHS-ball centered at β(0) with radius h in HK .
Under Assumption 4.5, we now show the F constructed in
Algorithm 2 guarantees the existence of Ŝt.
Theorem 4.6. Suppose Assumption 4.5 holds, then

max
t∈S

∆t < min
t∈Sc

∆t and P
(
max
t∈S

∆̂t < min
t∈Sc

∆̂t

)
→ 1,

and hence there exists a t s.t. Ŝt ∈ F and

P
(
Ŝt = S

)
→ 1.
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Remark 4.7. Assumption 4.5 ensures a sufficient gap be-
tween those ∆t that belong to S and those that don’t, which
ensures their estimated counterpart will also possess this
gap with high probability, making one of the Ŝ consistent
with S.

With Proposition D.1, which states the cost of sparse aggre-
gation in Appendix D.5, and the excess risk of TL-FLR in
Theorem 4.6, we can establish the excess risk for ATL-FLR.
Theorem 4.8 (Upper Bound of ATL-FLR). Let β̂a be the
output of Algorithm 2, then under the same settings of Theo-
rem 4.3 and Assumption 4.5,

sup
Θ(h,R)

E
(
β̂a

)
=

OP

(
n
− 2r

2r+1

S + n
− 2r

2r+1

0 ξ(h,R)︸ ︷︷ ︸
transfer learning risk

+
log(T )log(n0)

n0︸ ︷︷ ︸
aggregation cost

)
.

One interesting note is that the transfer learning risk is the
classical nonparametric rate while the aggregation cost is
parametric (or nearly parametric). Therefore, the aggrega-
tion cost usually decays substantially faster than the trans-
fer learning risk. However, in the high-dimensional linear
regression TL, such a faster-decayed aggregation cost is di-
minished since the transfer learning risk is also parametric,
see (Li et al., 2022).

5. Extension to Functional Generalized Linear
Models

In this section, we show our approaches in the FLR model
can be naturally extended to the functional generalized linear
model (FGLM) settings, which includes wider application
scenarios like classification. To start, consider the following
series of FGLM models similar to the FLR setting (1),

P(Y (t)
i |X(t)

i ) = ρ(Y
(t)
i ) exp

{
Y

(t)
i η(θ

(t)
i )− ψ(θ

(t)
i )

d(τ)

}
,

where i ∈ [nt] and t ∈ [T ], θ(t)i = ⟨X(t)
i , β(t)⟩L2 is the

canonical parameter. The functions ρ, η, ψ, d are known,
and τ is either known or out-of-interest parameter that is
independent of X(t). In this paper, we consider η to take the
canonical form, i.e., η(x) = x. The GLMs are characterized
by the different ψ. For example, in linear regression with
Gaussian response, ψ(x) = x2/2; in the logistic regression
with binary response, ψ(x) = log(1 + ex); and in Poisson
regression with non-negative integer response, ψ(x) = ex.

A standard method for addressing GLM involves minimiz-
ing the loss function defined as the negative log-likelihood.
Therefore, to implement the transfer learning for FGLM,
one can naturally substitute the square loss in TL-FLR (Al-
gorithm 1) and ATL-FLR (Algorithm 2) with the negative

log-likelihood loss, i.e.

ℓ(β, Z
(t)
i ) = −Y (t)

i η(θ
(t)
i ) + ψ(θ

(t)
i ).

We refer to these transfer learning algorithms for FGLM
as TL-FGLM and ATL-FGLM. To establish the optimal-
ity of TL-FGLM and ATL-FGLM, the following technical
assumptions are required.

Assumption 5.1. Assume ψ is Lipschitz continuous on its
domain, and ψ′ <∞.

Assumption 5.2. Assume there exist constants 0 < A1 ≤
A2 <∞ such that the function ψ′′ satisfies

A1 ≤ inf
s∈T

ψ′′(s) ≤ ψ′′(s) ≤ sup
s∈T

ψ′′(s) ≤ A2.

Assumption 5.1 is natural in most GLM literature and is
satisfied by many popular exponential families. Assump-
tion 5.2 restricts the ψ′′ in the bounded region and thus
restricts the variance of y.

Since the conditional mean for FGLM is E[Yi|Xi] =
η′(⟨β,X(0)⟩L2), we evaluate the accuracy by excess risk,
i.e. E(β̂) := EX(0) [η′(⟨β̂,X(0)⟩L2)−η′(⟨β(0), X(0)⟩L2)]2.

Theorem 5.3. Under the same assumption of Theorem 4.3
and suppose Assumptions 5.1, 5.2 holds.

1. (Lower Bound) For any possible estimator β̃ based on
target and source datasets, the excess risk of β̃ satisfies

lim
a→0

lim
n→∞

inf
β̃

sup
Θ(h,R)

P
{
E
(
β̃
)
≥

a

(
n
− 2r

2r+1

S + n
− 2r

2r+1

0 ξ(h,R)

)}
= 1.

2. (Upper Bound) If n0/nS ↛ 0 and λ1 ≍ n
− 2r

2r+1

S and

λ2 ≍ n
− 2r

2r+1

0 , then for the output β̂ of TL-FGLM,

sup
Θ(h,R)

E
(
β̂
)
= OP

(
n
− 2r

2r+1

S + n
− 2r

2r+1

0 ξ(h,R)

)
.

Remark 5.4. The error bound of TL-FLR and TL-FGLM are
the same, which is consistent with the case in the target-only
learning between FLR and FGLM, see Cai & Yuan (2012);
Du & Wang (2014). However, we note the proof is not a
trivial extension of FLR since minimizing the regularized
negative likelihood usually will not provide an analytical
solution.
Remark 5.5. Due to the same upper bound for TL-FLR and
TL-FGLM, the upper bound of ATL-FGLM is the same as
ATL-TLR, i.e., with the same aggregation cost.
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Figure 2. Left panel (Heatmap): log relative excess risk of TL-FLR to OFLR. Right panels (Line Chart): Excess Risk of different transfer
learning algorithms. Each row corresponds to a β(0), and the y-axes for each row are under the same scale. The result for each sample
size is an average of 100 replicate experiments with the shaded area indicating ± 2 standard error.

6. Experiments
We illustrate our algorithms for FLR by providing results
using simulated data and defer two real-world applications,
including financial market data application for FLR and
wearable device detection application for FGLM, to Ap-
pendix F 1. We consider the following algorithms: OFLR,
TL-FLR, ATL-FLR, Detection Transfer Learning (Detect-
TL) (Tian & Feng, 2022) and Exponential Weighted ATL-
FLR (ATL-FLR (EW)) Li et al. (2022). To set up the
RKHS, we consider the setting in Cai & Yuan (2012). Let
ψk(s) =

√
2 cos(πks) for j ≥ 1 and define the reproducing

kernel K of HK as K(·, ·) =
∑∞
k=1 k

−2ψk(·)ψk(·).

For the target model, β(0)(s) is set to be (1) β(0)
1 (s) =∑∞

k=1 4
√
2(−1)k−1k−2ψk(s); (2) β(0)

2 (s) = 4 cos(3πs);
(3) β(0)

3 (s) = 4 cos(3πs) + 4 sin(3πs). For a specific h,
let S = {l : ∥β0 − βt∥K ≤ h}, then we generate source
models as follows. We scale each target model such that
their RKHS norm is 20. If t ∈ S, then βt(t) is set to
be βt(s) = β0(s) +

∑∞
k=1

(
Uk(

√
12h/πk2)

)
ψk(s) with

Uk’s i.i.d. uniform random variable on [−1, 1]. If t ∈
Sc, then βt(s) is generated from a Gaussian process with
mean function cos(2πs) with kernel exp(−15|s − t|) as
covariance kernel. The predictors X(t) are i.i.d. generated
from a Gaussian process with the mean function sin(πs)
and the covariance kernels are set to be Matérn kernel Cν,ρ

1The R code and the application datasets are available in
https://github.com/haotianlin/HTL-FLM.

(Cressie & Huang, 1999) where the parameter ν controls the
smoothness of X(t). We set the covariance kernel of X(t)

as C1/2,1 for the target tasks and C3/2,1 for source tasks,
to fulfill Assumptions 4.2. We note that such a setting is
more challenging than assuming that the target and source
tasks have the same covariance kernel. All functions are
generated on [0, 1] with 50 evenly spaced points and we
set n0 = 150 and nt = 100. For each algorithm, we set
the regularization parameters as λ1 and λ2 as the optimal
values in Theorem 4.3 and select the constants using cross-
validation. The excess risk for the target tasks is calculated
via the Monte-Carlo method by using 1000 newly generated
predictors X(0).

In the left panel of Figure 2 we compare TL-FLR with
OFLR by considering relative excess risk, i.e. the ratio
of TL-FLR’s excess risk to OFLR’s. We note that since
RKHS of β(0) is fixed, the magnitude of h is proportional
to ξ(h, βS) and a large h indicates less similarity between
sources and target tasks. Overall, the effectiveness of TL-
FLR for different β(0) presents a consistent pattern, i.e, with
more transferable sources involved and smaller h (bottom
right), TL-FLR has a more significant improvement, while
with fewer sources and larger h (top left), the transfer may
be worse than OFLR.

In the right panel of Figure 2, we evaluate ATL-FLR un-
der unknown S cases. We set S as a random subset of
{1, 2, · · · , 20} such that |S| is equal to 0, 2, · · · , 20. We
also implement TL-FLR by using true S and OFLR as
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baseline. In all scenarios, ATL-FLR outperforms all its com-
petitors. Comparing ATL-FLR with ATL-FLR(EW), even
though ATL-FLR(EW) has similar patterns as ATL-FLR,
we can see the gaps between the two curves are larger when
the proportion of S is small, showing that ATL-FLR(EW) is
more sensitive to source tasks in Sc, while ATL-FLR is less
affected. Detect-TL only has a considerable reduction on
the excess risk with relatively small h, but provides limited
improvement when h is large, indicating its limited perfor-
mance when limited knowledge is available in sources.

7. Discussion
We conclude by summarizing our results and discussing
potential future research directions.

Summary of Results. This paper studies transfer learning
under the functional linear model framework, including FLR
and FGLM. We derive the asymptotic rates for the excess
risk over the target domain and show a faster statistical rate
depending on both source sample size and the magnitude
of similarity across tasks. Our theoretical analysis helps
researchers better understand the transfer dynamic of OTL.
Moreover, we leverage the sparse aggregation to implement
the transfer practically, alleviate the negative transfer effect,
and achieve nearly optimal statistical rates.

Future Directions. We discuss two potential future direc-
tions of this work.

(1) In the current analysis, we assume that the offset slope
function resides in HK and shares the same smoothness
as the target and source functions. This assumption is rea-
sonable given the unknown true smoothness of the offset
slope function. However, the success of OTL hinges on the
offset slope function possessing a simpler structure (well-
regularized) that can be effectively learned from a small
sample size. Consequently, a critical open question emerges:
if the offset slope function exhibits higher smoothness, how
do we identify the different smoothness for the source and
offset slope functions and subsequently apply the appropri-
ate kernel to achieve optimal statistical rates? Recently, Lin
& Reimherr (2024) explored this issue within the nonpara-
metric regression setting, identifying the Gaussian kernel as
a universal solution to achieve adaptive OTL under varying
smoothness scenarios. Although their findings are specific
to Sobolev spaces, it is worth investigating whether a similar
solution exists for FLR and FGLM since the kernel in these
contexts is a composition of the covariance kernel and the
RKHS kernel.

(2) When constructing the source hypothesis β̂S , Algo-
rithm 1 employs a data fusion technique in the transfer
step. Specifically, it consolidates all the source datasets in
S and simultaneously trains a unified β̂S. The time and

space complexities for this step are O(n3S) and O(n2S), re-
spectively. In real-world transfer learning scenarios, the
involvement of numerous large sample-size source datasets
can lead to significant algorithmic scaling issues, thereby
limiting the practicality of the transfer step and the proposed
algorithm. A potential solution is to perform the learning in
a distributed manner (Tong, 2021; Liu & Shi, 2022). Addi-
tionally, if the learned source models for each source domain
are available, one might consider fusing these learned hy-
potheses instead of the raw data.

Impact Statement
This paper aims to study the minimax asymptotic rates for
hypothesis transfer learning under the framework of (gen-
eralized) functional linear regression, and the goal is to
advance the theoretical understanding of transfer learning.
There are many potential societal consequences of our work,
none of which we feel must be specifically highlighted here.
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A. Appendix: Additional Remarks
Eigenspace Assumption Discussion. While we have discussed Assumption 4.2 intuitively in Section 4, we would like to
discuss why the assumption is taking such a complex form and how it contributes to our theoretical analysis technically.
A technical reason behind such a complex form (an asymptotic behavior between the eigenvalue of Γ(0), s(0)j , and the

projection of Γ(0) onto the eigenspace of Γ(0), a(t)j ) is due to the natural difficulty of the functional data problem as one
needs to handle quantities in infinite dimensions. Specifically, we are dealing with vectors in R∞ when bounding the
approximation error in the excess risk of the learned source model on the target domain, i.e., E⟨X(0), β̂S − βS⟩2L2 . The
constant term for the approximation error will be affected by the maximum ratio of s(0)j and a(t)j overall dimensions,
i.e., ∀j ≥ 1, and Assumption 4.2 indeed gives an appropriate control about this maximum ratio to avoid an exploded
approximation error. In the multivariate case, this is not a problem as these quantities are more easily manipulated. It’s
crucial to highlight that this unique challenge arises when dealing with functional objects due to their infinite-dimensional
nature.

The Role of Smoothness of Offset. As we have discussed in 7, in this paper, we assume all the slope functions reside in
HK , including source, target, and offset. This means they all possess the same smoothness, i.e., the eigenvalue decay rate. In
the theoretical analysis, the smoothness of δ affects the excess risk in the exponential part of the offset error, i.e., n−2r/2r+1

0 .
While assuming δ ∈ HK is a safe assumption without knowing its true smoothness, one can provide a fine-grained analysis
when the regularity of δ is known. Consider δ lies in a subspace of HK , namely HK1

, with higher smoothness (thus it is
even easier to learn). Suppose the L

Γ
(0)
1

= L
K

1/2
1 C(0)K

1/2
1

and the EDR of L
Γ
(0)
1

is 2r1 with r1 > r. Then the excess risk

12
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in Theorem 4.3 becomes n−2r/2r+1
S + n

−2r1/2r1+1
0 ξ(h,S). It provides a slightly faster rate than the one in Theorem 4.3.

However, the challenge for achieving such a rate is identifying the subspace where δ lies and selecting the correct kernel in
the calibration step. Recently, in the context of nonparametric regression, Lin & Reimherr (2024) considered the source
function resides in Sobolev space Hm0 while offset function resides in Hm with m ≥ m0. They proposed using Gaussian
kernels and a training-validation approach to adaptively learn both functions with unknown Sobolev smoothness m0 and
m. However, we note that this is not a trivial extension as in the nonparametric regression context, one only needs to be
concerned with the employed RKHS kernel, while in the context of functional data, the kernel we are concerned with is the
composition of covariance kernel of X and the RKHS kernel.

B. Appendix: Background of RKHS and Integral Operators
In this section, we will present some facts about the RKHS and also the integral operator of a kernel that are useful in our
proof and refer readers to Wendland (2004) for a more detailed discussion.

Let T be a compact set of R. For a real, symmetric, square-integrable, and semi-positive definite kernel K : T × T → R,
we denote its associated RKHS as HK . For the reproducing kernel K, we can define its integral operator LK : L2 → L2 as

LK(f)(·) =
∫
T
K(s, ·)f(s)ds.

LK is self-adjoint, positive-definite, and trace class (thus Hilbert-Schmidt and compact). By the spectral theorem for
self-adjoint compact operators, there exists an at most countable index set N , a non-increasing summable positive sequence
{τj}j≥1 and an orthonormal basis of L2, {ej}j≥1 such that the integrable operator can be expressed as

LK(·) =
∑
j∈N

τj⟨·, ej⟩L2ej .

The sequence {τj}j≥1 and the basis {ej}j≥1 are referred as the eigenvalues and eigenfunctions. The Mercer’s theorem
shows that the kernel K itself can be expressed as

K(x, x′) =
∑
j∈N

τjej(x)ej(x
′), ∀x, x′ ∈ T ,

where the convergence is absolute and uniform.

We now introduce the fractional power integral operator and the composite integral operator of two kernels. For any s ≥ 0,
the fractional power integral operator LKs : L2 → L2 is defined as

LKs(·) =
∑
j∈N

τsj ⟨·, ej⟩L2ej .

For two kernels K1 and K2, we define their composite kernel as

(K1K2)(x, x
′) =

∫
T
K1(x, s)K2(s, x

′)ds,

and thus LK2K2
= LK1

◦ LK2
. Given these definitions, for a given reproducing kernel K and covariance function C, the

definition of Γ in the main paper is

LΓ = L
K

1
2
◦ LC ◦ L

K
1
2

and Γ := K
1
2CK

1
2 .

If both L
K

1
2

and LC are bounded linear operators, the spectral algorithm guarantees the existence of eigenvalues {sj}j≥1

and eigenfunctions {ψj}j≥1.

C. Appendix: Sparse Aggregation Process
We provide the procedure of sparse aggregation in Step 4 of ATL-FLR (Algorithm 2) for completeness and refer readers to
Gaı̂ffas & Lecué (2011) for more detail.

13
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Algorithm 3 Sparse Aggregation (Gaı̂ffas & Lecué, 2011)

1: Input: The candidate set F ; target dataset D(0)
Ic ; pre-specified parameter c, ϕ.

2: Split D(0)
Ic into equal size set, with index set Ic1 and Ic2

3: Use D(0)
Ic
1

to define a random subset of F as

F1 =

{
β ∈ F : Rn,Ic

1
(β) ≤ Rn,Ic

1
(β̂n1) + cmax

(
ϕ
∥∥∥β̂n1 − β

∥∥∥
n,Ic

1

, ϕ2
)}

where

∥β∥2n,Ic
1
=

1

|Ic1|
∑
i∈Ic

1

⟨X(0)
i , β⟩2L2 , Rn,I(β) =

1

|I|
∑
i∈I

(Y
(0)
i − ⟨X(0)

i , β⟩L2)2, β̂n1 = argmin
β∈F

Rn,Ic
1
(β)

4: Set F2 as following:
F2 = {c1β1 + c2β2 : β1, β2 ∈ F1 and c1 + c2 = 1}

then, return
β̂a = argmin

β∈F2

Rn,Ic
2
(β).

The sparse aggregation algorithm is stated in Algorithm 3. For the Oracle inequality and the pre-specified parameter c and ϕ,
we refer the reader to Appendix D.5 for model detail. In general, the final aggregated estimator β̂a will only select two of
the best-performed candidates from the candidates set F . This guarantees some of the incorrectly constructed Ŝ are not
involved in building β̂a and thus alleviate the negative transfer sources.
Remark C.1. In (Gaı̂ffas & Lecué, 2011), the authors indicated β̂a has a explicit solution with the form

β̂a = t̂β̂1 + (1− t̂)β̂2

with β̂1 and β̂2 in belongs to F and t̂ has an analytical form.

D. Appendix: Proof of Section 4
D.1. Proof of Upper Bound for TL-FLR (Theorem 4.3)

Proof. We first prove the upper bound under Assumption 4.2 condition 1 and defer the proof under condition 2 at the end.
WLOG, we assume the eigenfunction of LΓ(0) and LΓ(t) are perfectly aligned, i.e. ϕ(0)j = ϕ

(t)
j for all j ∈ N. We also We

also recall that we set all the intercept α(t) = 0 since α(t) will not affect the convergence rate of estimating β(t) (Du &
Wang, 2014).

Let L2 = {f : T → R : ∥f∥L2 <∞} represent the he set of all square integrable functions over T . Since L
K

1
2
(L2) = HK ,

for any β ∈ HK , there exist a f ∈ L2 such that β = L
K

1
2
(f). In following proofs, we denote f (t) as β(t)’s corresponding

element in L2. Therefore, we can rewrite the minimization problem in the transfer step and the calibrate step as

f̂Sλ1 = argmin
f∈L2

{
1

nS

∑
t∈S

nt∑
i=1

(
Y

(t)
i − ⟨X(t)

i , L
K

1
2
(f)⟩

)2
+ λ1∥f∥2L2

}
,

where nS =
∑
t∈S nt and

f̂δλ2 = argmin
fδ∈L2

{
1

n0

n0∑
i=1

(
Y

(0)
i − ⟨X(0)

i , L
K

1
2
(f̂S + fδ)⟩

)2
+ λ2∥fδ∥2L2

}
.

Thus the excess risk of β̂ can be rewritten as

E(β̂) =
∥∥∥(LΓ(0))

1
2 (f̂ − f0)

∥∥∥2
L2

where f̂ = f̂Sλ1
+ f̂δλ2

14
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Define the empirical version of C(t) as

C(t)
n (s, t) =

1

nt

nt∑
i=1

X
(t)
i (s)X

(t)
i (t),

and let
L
Γ
(t)
n

= L
K

1
2
L
C

(t)
n
L
K

1
2
.

To bound the excess risk E(β̂), by triangle inequality,∥∥∥(LΓ(0))
1
2 (f̂ − f0)

∥∥∥
L2

≤
∥∥∥(LΓ(0))

1
2 (f̂S − fS)

∥∥∥
L2

+
∥∥∥(LΓ(0))

1
2 (f̂δ − fδ)

∥∥∥
L2

where each term at the r.h.s. corresponds to the excess risk from the transfer and calibrate steps, respectively.

Transfer Step. For the transfer step, the solution of minimization is

f̂Sλ1
=

(∑
t∈S

αtLΓ
(t)
n

+ λ1I

)−1(∑
t∈S

αtLΓ
(t)
n
(f (t)) +

∑
t∈S

g(t)n

)
,

where I is identity operator, αt = nt

nS
and

g(t)n =
1

nS

nt∑
i=1

ϵ
(t)
i L

K
1
2
(X

(t)
i ).

Besides, the solution of the transfer learning step, f̂Sλ1 , converges to its population version, which is defined by the following
moment condition ∑

t∈S
αt E

{
L
K

1
2
(X(t))

(
Y (t) − ⟨L

K
1
2
(X(t)), fS⟩L2

)}
= 0,

and therefore leads to the explicit form of fS as(∑
t∈S

αtLΓ(t)

)
fS =

∑
t∈S

αtLΓ(t)

(
f (t)
)
.

Define

fSλ1
=

(∑
t∈S

αtLΓ(t) + λ1I

)−1(∑
t∈S

αtLΓ(t)(f (t))

)
.

By triangle inequality∥∥∥(LΓ(0))
1
2 (f̂Sλ1

− fS)
∥∥∥
L2

≤
∥∥∥(LΓ(0))

1
2 (f̂Sλ1

− fSλ1
)
∥∥∥
L2︸ ︷︷ ︸

estimation error

+
∥∥∥(LΓ(0))

1
2 (fSλ1 − fS)

∥∥∥
L2︸ ︷︷ ︸

approximation error

.

For approximation error, by Lemma D.4 and taking v = 1
2 , the second term on r.h.s. can be bounded by∥∥∥(LΓ(0))

1
2 (fSλ1

− fS)
∥∥∥2
L2

= OP

(
λ1 ∥fS∥2L2

)
.

Now, we turn to the estimation error. We further introduce an intermedia term

f̃Sλ1 = fSλ1 +

(∑
t∈S

αtLΓ(t) + λ1I

)−1(∑
t∈S

αtLΓ
(t)
n
(fS − fSλ1) +

∑
t∈S

g(t)n − λ1fSλ1

)
.

We first bound ∥(LΓ(0))
1
2 (fSλ1

− f̃Sλ1
)∥2L2 . Based on the fact that

λ1fSλ1 =
∑
t∈S

αtLΓ(t)

(
f (t) − fSλ1

)
=
∑
t∈S

αtLΓ(t) (fS − fSλ1) ,
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we have

∥(LΓ(0))
1
2 (fSλ1

− f̃Sλ1
)∥L2

≤

∥∥∥∥∥(LΓ(0))
1
2 (
∑
t∈S

αtLΓ(t) + λ1I)
−1(
∑
t∈S

g(t)n )

∥∥∥∥∥
L2

+∥∥∥∥∥(LΓ(0))
1
2 (
∑
t∈S

αtLΓ(t) + λ1I)
−1(
∑
t∈S

αt(LΓ
(t)
n

− LΓ(t))(fS − fSλ1
))

∥∥∥∥∥
L2

=


∞∑
j=1

(〈
(LΓ(0))

1
2 (
∑
t∈S

αtLΓ(t) + λ1I)
−1

(∑
t∈S

g(t)n

)
, ϕ

(0)
j )

〉
L2

)2


1
2

+


∞∑
j=1

(〈
(LΓ(0))

1
2 (
∑
t∈S

αtLΓ(t) + λ1I)
−1

(∑
t∈S

αt(LΓ
(t)
n

− LΓ(t))(fS − fSλ1
)

)
, ϕ

(0)
j )

〉
L2

)2


1
2

For the first term in the above inequality, by Lemma D.6,
∞∑
j=1

(〈
(LΓ(0))

1
2 (
∑
t∈S

αtLΓ(t) + λ1I)
−1

(∑
t∈S

g(t)n

)
, ϕ

(0)
j )

〉
L2

)2
 = OP

(
σ2 (nS)

−1
λ

1
2r
1

)
.

For second one, by Lemma D.5 and D.7,

∞∑
j=1

(〈
(LΓ(0))

1
2 (
∑
t∈S

αtLΓ(t) + λ1I)
−1

(∑
t∈S

αt(LΓ
(t)
n

− LΓ(t))(fS − fSλ1)

)
, ϕ

(0)
j )

〉
L2

)2

= OP

(
(nS)

−1
λ

1
2r
1

)
.

Therefore,
∥(LΓ(0))

1
2 (fSλ1 − f̃Sλ1)∥2L2 = OP

(
∥fS∥2L2 (nS)

−1
λ

1
2r
1

)
.

Finally, we bound ∥(LΓ(0))
1
2 (f̂Sλ1

− f̃Sλ1
)∥2L2 . Once again, by the definition of f̃Sλ1

f̂Sλ1
− f̃Sλ1

=

(∑
t∈S

αtLΓ(t) + λ1I

)−1(∑
t∈S

αt(LΓ(t) − L
Γ
(t)
n
)(f̂Sλ1

− fSλ1
)

)
.

Thus, by Lemma D.5∥∥∥(LΓ(0))
1
2 (f̂Sλ1

− f̃Sλ1
)
∥∥∥2
L2

≤

∥∥∥∥∥(LΓ(0))
1
2 (
∑
t∈S

αtLΓ(t) + λ1I)
−1(
∑
t∈S

αt

(
LΓ(t) − L

Γ
(t)
n

)
)(LΓ(0))−

1
2

∥∥∥∥∥
2

op

∥∥∥(LΓ(0))
1
2 (f̂Sλ1

− fSλ1
)
∥∥∥2
L2

= OP

(
n−1
S λ

1
2r
1

∥∥∥(LΓ(0))
1
2 (f̂Sλ1 − fSλ1)

∥∥∥2
L2

)
= oP

(∥∥∥(LΓ(0))
1
2 (f̂Sλ1

− fSλ1
)
∥∥∥2
L2

)
.

Combine three parts, we get∥∥∥(LΓ(0))
1
2

(
f̂Sλ1

− fS

)∥∥∥2
L2

= OP

(
∥fS∥2L2λ1 +

(
σ2 + ∥fS∥2L2

)
n−1
S λ

− 1
2r

1

)
,

by taking λ1 ≍ (nS)
− 2r

2r+1 and notice the fact that σ2

∥βS∥2
K

is bounded above (This is a reasonable condition since the
signal-to-noise ratio can’t be 0, otherwise one can hardly learn anything from the data), we have∥∥∥(LΓ(0))

1
2

(
f̂Sλ1

− fS

)∥∥∥2
L2

= OP

(
∥fS∥2L2n

− 2r
2r+1

S

)
= OP

(
R2n

− 2r
2r+1

S

)
.
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Calibrate Step. The estimation scheme in the calibrate step is in the same form as the transfer step, and thus, its proof
follows the same logic as the transfer step. The solution to the minimization problem in the calibration step is

f̂δλ2
=
(
L
Γ
(0)
n

+ λ2I
)−1 (

L
Γ
(0)
n
(fS − f̂Sλ1

+ fδ) + g(0)n

)
,

where

g(0)n =
1

n0

n0∑
i=1

ϵ
(0)
i L

K
1
2
(X

(0)
i ).

Similarly, define
fδλ2

= (LΓ(0) + λ2I)
−1
(
LΓ(0)(fS − f̂S + fδ)

)
,

where fδ is the population version of the estimator, i.e. f̂δ .(∑
t∈S

αtLΓ(t)

)
fδ =

(∑
t∈S

αtLΓ(t)

(
f
(t)
δ

))

By triangle inequality,∥∥∥(LΓ(0))
1
2 (f̂δ − fδ)

∥∥∥
L2

≤
∥∥∥(LΓ(0))

1
2 (f̂δ − fδλ2

)
∥∥∥
L2

+
∥∥∥(LΓ(0))

1
2 (fδλ2

− fδ)
∥∥∥
L2
.

For the second term in r.h.s.,∥∥∥(LΓ(0))
1
2 (fδλ2

− fδ)
∥∥∥
L2

≤
∥∥∥(LΓ(0))

1
2 (LΓ(0) + λ2I)

−1
LΓ(0)

(
fS − f̂Sλ1

)∥∥∥
L2

+
∥∥∥(LΓ(0))

1
2

(
f∗δλ2

− fδ
)∥∥∥
L2

≤
∥∥∥(LΓ(0))

1
2 (LΓ(0) + λ2I)

−1
(LΓ(0))

1
2

∥∥∥
op

∥∥∥L 1
2

Γ(0)

(
fS − f̂S

)∥∥∥
L2

+
∥∥∥(LΓ(0))

1
2

(
f∗δλ2

− fδ
)∥∥∥
L2
,

where f∗δλ2
= (LΓ(0) + λ2I)

−1
LΓ(0)(fδ).

By Lemma D.4 with S = ∅, ∥∥∥(LΓ(0))
1
2

(
f∗δλ2

− fδ
)∥∥∥2
L2

≤ λ2
4

∥fδ∥2L2

≲ λ2h
2,

where the second inequality holds with the fact the S =
{
1 ≤ l ≤ L : ∥f0 − f (t)∥L2 ≤ h

}
. Therefore,∥∥∥(LΓ(0))

1
2 (fδλ2 − fδ)

∥∥∥2
L2

= OP

(
n
− 2r

2r+1

S + λ2h
2

)
.

For the first term, we play the same game as transfer step. Define

f̃δλ2 = fδλ2 + (LΓ(0) + λ2I)
−1
(
L
Γ
(0)
n
(fS − f̂S + fδ) + g(0)n − L

Γ
(0)
n
(fδλ2)− λ2fδλ2

)
,

and the definition of fδλ2 leads to

f̃δλ2
− fδλ2

= (LΓ(0) + λ2I)
−1
(
(L

Γ
(0)
n

− LΓ(0))(fS − f̂S + fδ − fδλ2
) + g(0)n

)
.

Therefore, ∥∥∥(LΓ(0))
1
2

(
f̃δλ2

− fδλ2

)∥∥∥
L2

≤
∥∥∥(LΓ(0))

1
2 (LΓ(0) + λ2I)

−1g(0)n

∥∥∥
L2

+∥∥∥(LΓ(0))
1
2 (LΓ(0) + λ2I)

−1
(L

Γ
(0)
n

− LΓ(0))(LΓ(0))−
1
2

∥∥∥
op

·{∥∥∥(LΓ(0))
1
2

(
fS − f̂S + fδ − fδλ2

)∥∥∥
L2

}
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leading to ∥∥∥(LΓ(0))
1
2

(
f̃δλ2 − fδλ2

)∥∥∥
L2

= OP

((
n0λ

1
2r
2

)−1

+
(
n0λ

1
2r
2

)−1
[
n
− 2r

2r+1

S + λ2h
2

])
,

where the first term and operator norm comes from Lemma D.5 and D.6 with S = ∅, and bounds on ∥(LΓ(0))
1
2 (fS − f̂S +

fδ − fδλ2
)∥2L2 comes from transfer step and bias term of calibrate step.

Finally, for ∥(LΓ(0))
1
2 (f̂δλ2

− f̃δλ2
)∥2L2 , notice that

f̂δλ2
− f̃δλ2

= (LΓ(0) + λ2I)
−1
(
(LΓ(0) − L

Γ
(0)
n
)(f̃δλ2

− fδλ2
)
)
,

thus by Lemma D.5, ∥∥∥(LΓ(0))
1
2 (f̂δλ2

− f̃δλ2
)
∥∥∥2
L2

= oP

(
∥(LΓ(0))

1
2 (f̃δλ2

− fδλ2
)∥2L2

)
.

Combine three parts, we get∥∥∥(LΓ(0))
1
2

(
f̂δλ2 − fδ

)∥∥∥2
L2

= OP

(
λ2h

2 +
(
h2 + σ2

)
(n0λ

1
2r
2 )−1

)
,

taking λ2 ≍ n
− 2r

2r+1

0 and notice the fact that σ
2

h2 is bounded above (similar reasoning as the transfer step), we have

∥∥∥(LΓ(0))
1
2

(
f̂δλ2 − fδ

)∥∥∥2
L2

= OP

(
h2n

− 2r
2r+1

0

)
.

Combining the results from transfer step and calibrate step, and reorganizing the constants for each term, we have

E(β̂) =
∥∥∥(LΓ(0))

1
2 (f̂ − f0)

∥∥∥
L2

= OP

(
n
− 2r

2r+1

S + n
− 2r

2r+1

0 ξ(h,R)

)
.

To prove the same upper bound under Assumption 2, we only need to show Lemma D.4 to Lemma D.8 still hold under
Assumption 2. Let {(s(0)j , ϕ

(0)
j )}j≥1 be the eigen-pairs of LΓ(0) . We show that〈

LΓ(t)(ϕ
(0)
j ), ϕ

(0)
j

〉
L2

= s
(0)
j (1 + o(1)). (8)

Consider∣∣∣〈(LΓ(t) − LΓ(0))ϕ
(0)
j , ϕ

(0)
j

〉
L2

∣∣∣ = ∣∣∣〈(LΓ(0))
1
2

(
(LΓ(0))−

1
2LΓ(t)(LΓ(0))−

1
2 − I

)
(LΓ(0))

1
2ϕ

(0)
j , ϕ

(0)
j

〉
L2

∣∣∣
= λ

(0)
j

∣∣∣〈((LΓ(0))−
1
2LΓ(t)(LΓ(0))−

1
2 − I

)
ϕ
(0)
j , ϕ

(0)
j

〉
L2

∣∣∣ .
Since (LΓ(0))−

1
2LΓ(t)(LΓ(0))−

1
2 − I is Hilbert–Schmidt, then∥∥∥(LΓ(0))−

1
2LΓ(t)(LΓ(0))−

1
2 − I

∥∥∥2
HS

=
∑
i,j

∣∣∣⟨ϕ(0)i ,
(
(LΓ(0))−

1
2LΓ(t)(LΓ(0))−

1
2 − I

)
ϕ
(0)
j ⟩L2

∣∣∣2 <∞

which leads to ∣∣∣〈((LΓ(0))−
1
2LΓ(t)(LΓ(0))−

1
2 − I

)
ϕ
(0)
j , ϕ

(0)
j

〉
L2

∣∣∣ = o(1) as j → ∞.

Therefore, Equation (8) holds. One can now replace the common eigenfunctions ϕj by ϕ(0)j in the proofs of Lemma D.4 to
Lemma D.8, and it is not hard to check the results still hold.
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D.2. Proof of Lower Bound for TL-FLR (Theorem 4.4)

In this part, we proof the alternative version for lower bound, i.e.

lim
a→0

lim
n→∞

inf
β̃

sup
Θ(h,R)

P

{
E
(
β̃
)
≥ a

(
(nS + n0)

− 2r
2r+1 + n

− 2r
2r+1

0 ξ(h,R)

)}
= 1.

This alternative form is also proved in other contexts like high-dimensional linear regression or GLM to show optimality.
However, the upper bound we derive for TL-FLR can still be sharp since in the TL regime, it is always assumed nS ≫ n0,

and leads to (nS + n0)
− 2r

2r+1 ≍ n
− 2r

2r+1

S .

On the other hand, one can modify the transfer step in TL-FLR by including the target dataset D(0) to estimate βS , which

produces an alternative upper bound (nS + n0)
− 2r

2r+1 + n
− 2r

2r+1

0 ξ(h,R), and mathematically aligns with the alternative
lower bound we mention above. However, we would like to note that such a modified TL-FLR is not computationally
efficient for transfer learning, since for each new upcoming target task, TL-FLR needs to recalculate a new β̂S with the huge
datasets {D(t) : t ∈ 0 ∪ S}.

Proof. Note that any lower bound for a specific case will immediately yield a lower bound for the general case. Therefore,
we consider the following two cases.

(1) Consider h = 0, i.e.
y
(t)
i =

〈
X

(t)
i , β

〉
+ ϵ

(t)
i , ∀t ∈ {0} ∪ S.

In this case, all the source model shares the same coefficient function as the target model, i.e., β(t) = β(0) for all t ∈ S,
and therefore the estimation process is equivalent to estimate β under target model with sample size equal to nS . The
Proposition D.3 implies

lim
a→0

lim
n→∞

inf
β̃

sup
Θ(h,R)

P
{
E
(
β̃
)
≥ a (nS + n0)

− 2r
2r+1

}
= 1,

where the constant is proportional to R2.

(2) Consider β(0) ∈ BH(h) where BH(h) is a ball in RKHS centered at 0 with radius h, and β(t) = 0 for all t ∈ {0} ∪ S
and σ ≥ h. That is, all the source datasets contain no information about β(0). Applying Proposition D.3 again leads to

lim
a→0

lim
n→∞

inf
β̃

sup
Θ(h,R)

P
{
E
(
β̃
)
≥ a (n0)

− 2r
2r+1

}
= 1,

where the constant is proportional to h2.

Combining the lower bound in case (1) and case (2), we obtain the desired lower bound.

D.3. Proof of Consistency (Theorem 4.6)

Proof. Under Assumption 3,
max
t∈S

∆t < min
t∈Sc

∆t

holds automatically. To prove

P
(
Ŝj = S

)
→ 1,

we only need to show the following fact holds

P
(
max
t∈S

∆̂t < min
t∈Sc

∆̂t

)
→ 1.

Observe that

∥f∥KM =

M∑
j=1

f2j
vj

≤ 1

vM

M∑
j=1

f2j ≤ 1

vM
∥f∥L2 ≲ ∥f∥L2
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for any finite M , then by Corollary 10 in Yuan & Cai (2010)∥∥∥(β̂0 − β̂t)− (β0 − βt)
∥∥∥
KM

≲
∥∥∥(β̂0 − β̂t)− (β0 − βt)

∥∥∥
L2

= oP(1).

Therefore, for t ∈ Sc ∥∥∥β̂0 − β̂t

∥∥∥
KM

≥ (1− oP(1)) ∥β0 − βt∥KM

and also for t ∈ S ∥∥∥β̂0 − β̂t

∥∥∥
KM

≤ (1 + oP(1)) ∥β0 − βt∥KM ≤ (1 + oP(1)) ∥β0 − βt∥K

with high probability. Finally,

P
(
max
t∈S

∆̂t < min
t∈Sc

∆̂k

)
≥ P

(
(1 + o(1))max

t∈S
∥β0 − βt∥K < (1− o(1)) min

t∈Sc
∥β0 − βt∥KM

)
→ 1,

where the convergence in probability is guaranteed by Assumption 4.5.

D.4. Proof of Upper Bound for ATL-FLR (Theorem 4.8)

The Theorem directly holds by combining Theorem 4.3, Proposition D.1 with setting (2), and Theorem 4.6.

D.5. Proposition

Proposition D.1 (Gaı̂ffas & Lecué (2011)). Given a confidence level δ, assume either setting (1) or (2) holds for a constant
b,

1. max{|Y (0)|,maxβ∈HK
|⟨X(0), β⟩L2 |} ≤ b

2. max{∥ϵ(0)∥ψ, supβ∈HK
∥⟨X(0), β − β(0)⟩∥} ≤ b

where ∥ϵ(0)∥ψ := inf{c > 0 : E[exp{|ϵ(0)|/c}] ≤ 2}. Let σ2
ϵ(0)

be the upper bound for E
[
(ϵ(0))2|X(0)

]
. The pre-specified

parameter ϕ in Algorithm 3 is defined as

ϕ =


b

√
(log(|F|+ δ))

|Ic|
, if setting (1) holds

(σϵ(0) + b)

√
(log(|F|+ δ)log(|Ic|))

|Ic|
. if setting (2) holds

Let β̂a be the output of Algorithm 2, then

E
(
β̂a

)
≤ min
t=0,1,··· ,T

E
(
β̂(Ŝt)

)
+ rδ(F , n0) (9)

holds with probability at least 1− 4e−δ where

rδ(F , n0) =


Cb1

(1 + δ)log(T )

n0
, if setting (1) holds

Cb2
(1 + log(4δ−1)log(T )log(n0)

n0
, if setting (2) holds

and Cb1, Cb2 are some constants depend on b.

Remark D.2. We call the setting (1) bounded setting and (2) sub-exponential setting. The latter one is milder but leads to a
suboptimal cost. We refer readers to Gaı̂ffas & Lecué (2011) for more detailed discussions about the optimal cost in sparse
aggregation.
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Proposition D.3 (Lower bound for target-only FLR). Suppose the observed data {(Yi, Xi)}n0
i=1 are generated from FLR

model, with the true slope function resides in BH(R) = {β ∈ H : ∥β∥K ≤ R}, then

lim
a→0

lim
n0→∞

inf
β̃

sup
Θ(h,R)

P

{
E
(
β̃
)
≥ an

− 2r
2r+1

0

}
= 1.

Proof. Consider slope functions β1, · · · , βM ∈ BH(R) and P1, · · · , PM as the probability distribution of {(X(0)
i , Y

(0)
i ) :

i = 1, · · · , n0} under β1, · · · , βM . Then the KL divergence between Pi and Pj is

KL (Pi|Pj) =
n0
2σ2

∥∥∥L
(C(0))

1
2
(βi − βj)

∥∥∥2
K

for i, j ∈ {1, · · · ,K}.

Let β̃ be any estimator based on {(X(0)
i , Y

(0)
i ) : i = 1, · · · , n0} and consider testing multiple hypotheses, by Markov

inequality and Lemma D.9∥∥∥L
(C(0))

1
2

(
β̃ − βi

)∥∥∥2
K

≥ Pi

(
β̃ ̸= βi

)
min
i,j

∥∥∥L
(C(0))

1
2
(βi − βj)

∥∥∥2
K

≥

1−
n0

2σ2 maxi,j

∥∥∥L
(C(0))

1
2
(βi − βj)

∥∥∥2
K
+ log(2)

log(M − 1)

min
i,j

∥∥∥L
(C(0))

1
2
(βi − βj)

∥∥∥2
K
.

(10)

Our target is to construct a sequence of β1, · · · , βM ∈ BH(R) such that the above lower bound matches with the upper
bound. We consider Varshamov-Gilbert bound in Varshamov (1957), which we state as Lemma D.10. Now we define,

βi =

2N∑
k=N+1

bi,k−NR√
N

L
K

1
2
(ϕk) for i = 1, 2, · · · ,M.

where (bi,1, bi,2, · · · , bi,N ) ∈ 0, 1N . Then,

∥βi∥2K =

2N∑
k=N+1

b2i,k−NR
2

N

∥∥∥L
K

1
2
(ϕk)

∥∥∥2
K

≤ h2,

hence βθ ∈ BH(R). Besides,∥∥∥L
(C(0))

1
2
(βi − βj)

∥∥∥2
K

=
R2

N

2N∑
k=N+1

(bi,k−N − bj,k−N )
2
s
(0)
l

≥
R2s

(0)
2N

N

2N∑
k=N+1

(bi,k−N − bj,k−N )
2

≥
R2s

(0)
2N

4
,

where the last inequality is by Lemma D.10, and∥∥∥L
(C(0))

1
2
(βi − βj)

∥∥∥2
K

=
R2

N

2N∑
k=N+1

(bi,k−N − bj,k−N )
2
s
(0)
k

≤
R2s

(0)
N

N

M∑
k=M+1

(bi,k−N − bj,k−N )
2

≤ R2s
(0)
N .

Therefore, one can bound the KL divergence by

KL (Pi|Pj) ≤ max
i,j

{
n0
2σ2

∥∥∥L
(C(0))

1
2
(βi − βj)

∥∥∥2
K

}
.
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Using the above results, the r.h.s. of Equation 10 becomes(
1−

4n0R
2

σ2 s
(0)
N + 8log(2)

N

)
s
(0)
2NR

2

4
.

Taking N = 8R2

σ2 n
1

2r+1

0 , which implies N → ∞, would produce(
1−

4n0h
2

σ2 s
(0)
N + 8log(2)

N

)
s
(0)
2NR

2

4
≍
(
1

2
− 8log(2)

N

)
R2N−2r

≍ n
− 2r

2r+1

0 R2

D.6. Lemmas

In this part, we prove the lemmas that are used in the proof of Theorem 4.3. We prove them under the Assumption 4.2
condition 1 and let ϕj denote perfectly aligned eigenfunctions of Γ(t) with t ∈ {0} ∪ S .

Lemma D.4.

∥(LΓ(0))v (fSλ1
− fS)∥2L2 ≤ (1− v)2(1−v)v2vλ2v1 ∥fS∥2L2 max

j


(

s
(0)
j∑

t∈S αts
(t)
j

)2v
 .

Proof. By the definition of fS and fSλ1
,(∑

t∈S
αtLΓ(t) + λ1I

)
fSλ1 =

∑
t∈S

αtLΓ(t)

(
f (t)
)

and

(∑
t∈S

αtLΓ(t)

)
fS =

∑
t∈S

αtLΓ(t)

(
f (t)
)

then

fSλ1 − fS = −

(∑
t∈S

αtLΓ(t) + λ1I

)−1

λ1fS .

Hence,

∥(LΓ(0))v (fSλ1
− fS)∥2L2 ≤ λ21

∥∥∥∥∥(LΓ(0))v(
∑
t∈S

αtLΓ(t) + λ1I)
−1

∥∥∥∥∥
2

op

∥fS∥2L2

≤ λ21 max
j

{
(s

(0)
j )2v

(
∑
t∈S αts

(t)
j + λ1)2

}
∥fS∥2L2

By Young’s inequality, λ1 +
∑
t∈S αts

(t)
j ≥ (1− v)−(1−v)v−vλ1−v1 (

∑
t∈S αts

(t)
j )v

∥(LΓ(0))v (fSλ1
− fS)∥2L2 ≤ (1− v)2(1−v)v2vλ2v1 ∥fS∥2L2 max

j


(

s
(0)
j∑

t∈S αts
(t)
j

)2v
 .

Lemma D.5.∥∥∥∥∥∥(LΓ(0))v

(∑
t∈S

αtLΓ(t) + λ1I

)−1(∑
t∈S

αt

(
LΓ(t) − L

Γ
(t)
n

))
(LΓ(0))−v

∥∥∥∥∥∥
op

= OP

((
nSλ

1−2v+ 1
2r

1

)− 1
2

)
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Proof. ∥∥∥∥∥∥(LΓ(0))v

(∑
t∈S

αtLΓ(t) + λ1I

)−1(∑
t∈S

αt

(
LΓ(t) − L

Γ
(t)
n

))
(LΓ(0))−v

∥∥∥∥∥∥
op

= sup
h:∥h∥L2=1

∣∣∣∣∣∣
〈
h, (LΓ(0))v

(∑
t∈S

αtLΓ(t) + λ1I

)−1(∑
t∈S

αt

(
LΓ(t) − L

Γ
(t)
n

))
(LΓ(0))−vh

〉
L2

∣∣∣∣∣∣ .
Let

h =
∑
j≥1

hjϕj ,

then 〈
h, (LΓ(0))v

(∑
t∈S

αtLΓ(t) + λ1I

)−1(∑
t∈S

αt

(
LΓ(t) − L

Γ
(t)
n

))
(LΓ(0))−vh

〉
L2

=
∑
j,k

(s
(0)
j )v(s

(0)
k )−vhjhk∑

t∈S αts
(t)
j + λ1

〈
ϕj ,
∑
t∈S

(
LΓ(t) − L

Γ
(t)
n

)
ϕk

〉
L2

.

By Cauchy-Schwarz inequality,∥∥∥∥∥∥(LΓ(0))v

(∑
t∈S

αtLΓ(t) + λ1I

)−1(∑
t∈S

αt

(
LΓ(t) − L

Γ
(t)
n

))
(LΓ(0))−v

∥∥∥∥∥∥
op

≤

∑
j,k

(s
(0)
j )2v(s

(0)
k )−2v

(
∑
t∈S αts

(t)
j + λ1)2

〈
ϕj ,
∑
t∈S

αt

(
LΓ(t) − L

Γ
(t)
n

)
ϕk

〉2

L2

 1
2

.

Consider E⟨ϕj ,
∑
t∈S(LΓ(t) − L

Γ
(t)
n
)ϕk⟩2L2 , note that

E

〈
ϕj ,
∑
t∈S

αt

(
LΓ(t) − L

Γ
(t)
n

)
ϕk

〉2

L2

= E

(∑
t∈S

αt

〈
L
K

1
2
(ϕk), (C

(t) − L
C

(t)
n
)L

K
1
2
(ϕj)

〉
L2

)2

= E

(∑
t∈S

αt
1

nt

nt∑
i=1

∫
T 2

L
K

1
2
(ϕk)(s)

(
X

(t)
i (s)X

(t)
i (t)− EX

(t)
i (s)X

(t)
i (t)

)
L
K

1
2
(ϕj)(t)dtds

)2

≤ |S|
∑
t∈S

α2
t

nt
s
(t)
j s

(t)
k

By Jensen’s inequality

E

∑
j,k

(s
(0)
j )2v(s

(0)
k )−2v

(
∑
t∈S αts

(t)
j + λ1)2

〈
ϕj ,
∑
t∈S

αt

(
LΓ(t) − L

Γ
(t)
n

)
ϕk

〉2

L2

 1
2

≤

∑
j,k

(s
(0)
j )2v(s

(0)
k )−2v

(
∑
t∈S αts

(t)
j + λ1)2

E

〈
ϕj ,
∑
t∈S

αt

(
LΓ(t) − L

Γ
(t)
n

)
ϕk

〉2

L2

 1
2

,
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thus,

E

∑
j,k

(s
(0)
j )2v(s

(0)
k )−2v

(
∑
t∈S αts

(t)
j + λ1)2

〈
ϕj ,
∑
t∈S

αt

(
LΓ(t) − L

Γ
(t)
n

)
ϕk

〉2

L2

 1
2

≤

∑
j,k

(s
(0)
j )2v(s

(0)
k )−2v

(
∑
t∈S αts

(t)
j + λ1)2

(∑
t∈S

αts
(t)
j s

(t)
k

)
|S|
(nS)

2

≤ max
j,k

(∑
t∈S αts

(t)
j s

(t)
k

s
(0)
j s

(0)
k

)∑
j,k

(s
(0)
j )1+2v(s

(0)
k )1−2v

(
∑
t∈S αts

(t)
j + λ1)2

|S|
(nS)

2

By assumptions of eigenvalues, maxj,k

(∑
t∈S αts

(t)
j s

(t)
k

s
(0)
j s

(0)
k

)
≤ C1 for some constant C1. Finally, by Lemma D.8

E

∑
j,k

(s
(0)
j )2v(s

(0)
k )−2v

(
∑
t∈S αts

(t)
j + λ1)2

〈
ϕj ,
∑
t∈S

αt

(
LΓ(t) − L

Γ
(t)
n

)
ϕk

〉
L2

 1
2

≲
(
(nS)λ

1−2v+ 1
2r

1

)−1

.

The rest of the proof can be completed by Markov inequality.

Lemma D.6.

∥∥∥∥∥(LΓ(0))v(
∑
t∈S

αtLΓ(t) + λ1I)
−1
∑
t∈S

g(t)n

∥∥∥∥∥
2

L2

= OP

((
(nS)λ

1−2v+ 1
2r

1

)−1
)

Proof.

∥∥∥∥∥(LΓ(0))v(
∑
t∈S

αtLΓ(t) + λ1I)
−1
∑
t∈S

g(t)n

∥∥∥∥∥
2

L2

=
∑
j≥1

〈
(LΓ(0))v(

∑
t∈S

αtLΓ(t) + λ1I)
−1
∑
t∈S

g(t)n , ϕj

〉2

L2

=
∑
j≥1

〈∑
t∈S

g(t)n ,
(s

(0)
j )v∑

t∈S αts
(t)
j + λ1

ϕj

〉2

L2

=
∑
j≥1

(s
(0)
j )2v

(
∑
t∈S αts

(t)
j + λ1)2(

1

nS

∑
t∈S

nt∑
i=1

〈
ϵ
(t)
i X

(t)
i , L

K
1
2
(ϕj)

〉
L2

)2

.
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Therefore,

E

∥∥∥∥∥(LΓ(0))v(
∑
t∈S

αtLΓ(t) + λ1I)
−1
∑
t∈S

g(t)n

∥∥∥∥∥
2

L2

=
∑
j≥1

(s
(0)
j )2v

(
∑
t∈S αts

(t)
j + λ1)2

·

E

(
1

nS

∑
t∈S

nt∑
i=1

〈
ϵ
(t)
i X

(t)
i , L

K
1
2
(ϕj)

〉
L2

)2

=
∑
j≥1

(s
(0)
j )2v

(
∑
t∈S αts

(t)
j + λ1)2

1

(nS)2
·

∑
t∈S

nt E
(
⟨ϵ(t)i X

(t)
i , L

K
1
2
(ϕj)⟩L2

)2

=
∑
j≥1

(s
(0)
j )2v

(
∑
t∈S αts

(t)
j + λ1)2

(∑
t∈S σ

2nts
(t)
j

)
(nS)2

≤ max
j

{
α0s

(0)
j +

∑
t∈S αts

(t)
j

s
(0)
j

}
·C1

nS

∑
j≥1

(s
(0)
j )1+2v

(
∑
t∈S αts

(t)
j + λ1)2

 ,

thus by assumption on eigenvalues and Lemma D.8 with v = 1
2 ,

E

∥∥∥∥∥(LΓ(0))v(
∑
t∈S

αtLΓ(t) + λ1I)
−1
∑
t∈S

g(t)n

∥∥∥∥∥
2

L2

≲
(
(nS)λ

1−2v+ 1
2r

1

)−1

,

with the constant proportional to σ2. The rest of the proof can be completed by Markov inequality.

Lemma D.7. ∥∥∥∥∥∑
t∈S

αtLΓ
(t)
n

(
f (t) − fS

)∥∥∥∥∥
2

L2

= OP
(
(nS)

−1
)

Proof.

E

∥∥∥∥∥∑
t∈S

αtLΓ
(t)
n

(
f (t) − fS

)∥∥∥∥∥
2

L2

=

∞∑
j=1

E

(∑
t∈S

αt

〈
C(t)
n L

K
1
2
(f (t) − fS), L

K
1
2
(ϕj)

〉
L2

)2

≲
∞∑
j=1

∑
t∈S

αt
nS

⟨f (t) − fS , ϕj⟩2L2(s
(t)
j )2

≲ (nS)
−1 max

j,l

{
αt(s

(t)
j )2

}∑
t∈S

∥∥∥f (t) − fS

∥∥∥2
L2

≲ (nS)
−1,

with the universal constant proportional to ∥fS∥2L2 . The rest of the proof can be completed by Markov inequality.

Lemma D.8.

λ
− 1

2r
1 ≲

∑
j≥1

(s
(0)
j )1+2v

(
∑
t∈S αts

(t)
j + λ1)1+2v

≲ 1 + λ
− 1

2r
1 .
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Proof. The proof is exactly the same as Lemma 6 in Cai & Yuan (2012) once we know that maxj

(
s
(0)
j∑

t∈S αts
(t)
j

)
≤ C,

which got satisfied under the assumptions of eigenvalues.

Lemma D.9 (Fano’s Lemma). Let P1, · · · , PM be probability measure such that

KL(Pi|Pj) ≤ α, 1 ≤ i ̸= j ≤ K

then for any test function ψ taking value in {1, · · · ,M}, we have

Pi(ψ ̸= i) ≥ 1− α+ log(2)

log(M − 1)
.

Lemma D.10. (Varshamov-Gilbert) For any N ≥ 1, there exists at least M = exp(N/8) N-dimenional vectors,
b1, · · · , bM ⊂ {0, 1}N such that

N∑
l=1

1 {bik ̸= bjk} ≥ N/4.

E. Appendix: Proof of Section 5
We prove the upper bound and the lower bound of TL-FGLM. We first note that under Assumption 5.2, the excess risk
E(β̂) for FGLM is equivalent to EX(0)⟨β̂ − β(0), X(0)⟩2L2 up to universal constants. Thus we focus on bounding the
EX(0)⟨β̂ − β(0), X(0)⟩2L2 in following proofs.

Although we are focusing on EX(0)⟨β̂ − β(0), X(0)⟩2L2 , which is exactly the same as FLR. However, minimizing the
regularized negative log-likelihood will not provide an analytical solution of β̂ as those in FLR, meaning that the proof
techniques we used in proving TL-FLR and ATL-FLR are not applicable. Therefore, we use the empirical process to prove
the upper bound.

We abbreviate ⟨·, ·⟩L2 as ⟨·, ·⟩ in following proofs. We first introduce some notations. Let

LS(β) =
∑
t∈S

αt E
[
Y (t)⟨X(t), β⟩ − ψ(⟨X(t), β⟩)

]
,

L(β) = E
[
Y (0)⟨X(0), β + β̂S⟩ − ψ(⟨X(0), β + β̂S⟩)

]
and their empirical version are denoted as

LS
nS

(β) =
1

n0 + nS

∑
t∈S

nt∑
i=1

[
Y

(t)
i ⟨X(t)

i , β⟩ − ψ(⟨X(t)
i , β⟩)

]
,

Ln(β) =
1

n0

n0∑
i=1

[
Y

(0)
i ⟨X(0)

i , β + β̂S⟩ − ψ(⟨X(0)
i , β + β̂S⟩)

]
Let PS and P be the conditional distribution of ∪t∈SY

(t)|X(t) and Y (0)|X(0) respectively, and PS
nS

and Pn as their
empirical version, by define

ℓS(β) =
∑
t∈S

αt

[
Y (t)⟨X(t), β⟩ − ψ(⟨X(t), β⟩)

]
,

ℓ(β) =
[
Y (0)⟨X(0), β + β̂S⟩ − ψ(⟨X(0), β + β̂S⟩)

]
we get

PS
nS
ℓS(β) = LS

nS
(β), PSℓS(β) = LS(β), Pnℓ(β) = Ln(β), P ℓ(β) = L(β).
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E.1. Proof of Upper bound for TL-FGLM (Theorem 5.3)

Proof. As mentioned before, we are focusing on ∥β̂ − β(0)∥2
C(0) , i.e.

∥β̂ − β(0)∥2C(0) =

∫
T

∫
T
(β̂(s)− β(0)(s))C(0)(s, t)(β̂(t)− β(0)(t))dsdt

= E⟨X(0), β̂ − β(0)⟩2.

Therefore, we only need to show ∥β̂ − β(0)∥2
C(0) is bounded by the error terms in Theorem 5.3. Notice that∥∥∥β̂ − β(0)
∥∥∥
C(0)

≤
∥∥∥β̂S − βS

∥∥∥
C(0)

+
∥∥∥δ̂S − δS

∥∥∥
C(0)

, (11)

we then bound the two terms in r.h.s. separately. We denote ∥a− b∥2
C(t) := d2t (a, b) for all t ∈ 0 ∪ [T ] and a, b ∈ HK .

We first focus on the transfer learning error. Based on the Theorem 3.4.1 in (Vaart & Wellner, 1996), if the following three
conditions hold,

1. E supρ/2≤d0(β,βS)≤ρ
√
nS |(LS

nS
− LS)(β − βS)| ≲ ρ

2r−1
2r ;

2. supρ/2≤d0(β,βS)≤ρ P
SℓS(β)− PSℓS(βS) ≲ −ρ2;

3. LS
nS

(β̂S) ≥ LS(βS)−OP
(
r−2
nS

∥βS∥2K
)
.

then
d20(β̂S , βS) = OP(r

−2
nS

∥βS∥2K) = OP(r
−2
nS
R2).

For part (1), define

ΠS
ρ = {ℓS(β)− ℓS(βS) : β ∈ Bρ} where Bρ = {β ∈ HK : d20(β, βS) ∈ [

ρ

2
, ρ]}.

Then supβ∈Bρ
|(LS

nS
− LS)(β − βS)| = supf∈ΠS

ρ
|(PS

nS
− PS)f | and by Cauchy-Schwarz inequality,

E sup
f∈ΠS

ρ

|(PS
nS

− P
S
)f | ≤

{
E[ sup
f∈ΠS

ρ

|(PS
nS

− PS)f |]2
}1/2

:=

∥∥∥∥∥ sup
f∈ΠS

ρ

|(PS
nS

− PS)f |

∥∥∥∥∥
PS ,2

.

To bound the right hand side, by Theorem 2.14.1 in (Vaart & Wellner, 1996), we need to find the covering number of ΠS
ρ , i.e.

N (ϵ,ΠS
ρ , ∥ · ∥PS ,2). We first show that

log
(
N (ϵ,ΠS

ρ , ∥ · ∥PS ,2)
)
≤ O

(
ϵ−

1
r log(

ρ

ϵ
)
)
.

Suppose there exist functions β1, · · · , βM ∈ Bρ such that

min
1≤m≤M

∥ℓS(β)− ℓS(βm)∥PS ,2 < ϵ, ∀β ∈ Bρ.

Since (
ℓS(β)− ℓS(βi)

)2
=

[∑
t∈S

αtY
(t)⟨X(t), β − βi⟩ −

(
ψ(⟨X(t), β⟩)− ψ(⟨X(t), βi⟩)

)]2
≤ |S|

∑
t∈S

α2
t ((Y

(t))2 + (C(t))2)⟨X(t), β − βi⟩2L2

≤ |S|max
t∈S

{
(Y (t))2 + (C(t))2

}∑
t∈S

α2
t ⟨X(t), β − βi⟩2L2
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thus
∥lS(β)− lS(βi)∥2PS ,2 ≤ |S|max

t∈S

{
Eψ′(⟨X(t), β(t)⟩) + (C(t))2

}
d20(β, βi) := C1d

2
0(β, βi),

where the inequality follows the fact for all t ∈ S, and dt(β, βi) ≍ d0(β, βi) under Assumption 4.2. Hence, the covering
number of ΠS

ρ under norm ∥ · ∥PS ,2 is bounded by covering number of Bρ under norm d0, i.e.

N (ϵ,ΠS
ρ , ∥ · ∥PS ,2) ≤ N (

ϵ

C1
,Bρ, d0).

Define B̃ρ = {β ∈ HK : d0(β, βS) ∈ [0, ρ]}, then

N (
ϵ

C1
,Bρ, d0) ≤ N (

ϵ

C1
, B̃ρ, d0).

Next, we will show N ( ϵ
C1
, B̃ρ, d0) can be bounded by covering number for a ball in RJ for some finite integer J . Notice

that HK = LK1/2(L2) = {
∑
j≥1 bjLK1/2(ϕj) : (bj)j≥1 ∈ ℓ2}, hence for any β =

∑
j≥1 bjLK1/2(ϕj) ∈ HK ,

d20(β, βS) = ⟨β − βS , LC(0)(β − βS)⟩2

=

∞∑
j=1

⟨bj − bSj , LK1/2CK1/2(bj − bSj )⟩

=

∞∑
j=1

s0j (bj − bSj )
2

which allows one to rewrite B̃ρ as

B̃ρ =

∑
j≥1

bjLK1/2(ϕj) :

∞∑
j=1

s0j (bj − bSj )
2 ≤ ρ2

 .

Let J = ⌊( ϵ
2C1

)−
1
r ⌋ be a truncation number, and define

B̃∗
ρ =


J∑
j=1

bjLK1/2(ϕj) :

J∑
j=1

s0j (bj − bSj )
2 ≤ ρ2

 .

For any β ∈ B̃ρ, let β∗ ∈ B̃∗
ρ be its counterpart, then

d20(β, β
∗) =

∞∑
j=J+1

s0jb
2
j ≤ s0J

∞∑
j=J+1

b2j ≍ J−2r = (
ϵ

2C1
)2.

Suppose there exist function β∗
1 , · · · , β∗

M ∈ B̃∗
ρ such that

min
1≤m≤M

d0(β
∗, β∗

m) <
ϵ

2C1
∀β ∈ B̃∗

ρ,

then by triangle inequality
min

1≤m≤M
d0(β, β

∗
i ) <

ϵ

C1
∀β ∈ Bρ.

The above inequality indeed shows that the covering number of B̃ρ with radius ϵ
C1

can be bounded by the covering of B̃∗
ρ

with radius ϵ
2C1

, i.e.

N (
ϵ

C1
, B̃ρ, d0) ≤ N (

ϵ

2C1
, B̃∗

ρ, d0).

It is known that the covering number for a unit ball in RN , then the covering number is less than ( 2ϵ + 1)N . Therefore,

N (
ϵ

2C1
, B̃∗

ρ, d0) ≤

(
2ρ+ ϵ

2C1

ϵ
2C1

)J
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which leads to
logN (

ϵ

2C1
, B̃∗

ρ, d0) ≤ OP

(
ϵ−

1
r log(

ρ

ϵ
)
)
.

By Dudley entropy integral, we know

sup
f∈LS

ρ

|(PS
nS

− PS)f | ≲
∫ ρ

0

√
logN ( ϵ

2C1
, B̃∗

ρ, d0(·, ·))
nS

dϵ

= ρ
2r−1
2r n

− 1
2

S

∫ ∞

1

exp{(1− 1

2h
)u2}u2du

= O(ρ
2r−1
2r n

− 1
2

S )

Hence, by Theorem 2.14.1 in (Vaart & Wellner, 1996), we finish the proof of (1).

For part (2), let G(t) = ℓS(βS + tβ̃) where β̃ = β − βS , then we notice G(1) = ℓS(β) and G(0) = ℓS(βS). We further
notice

G
′
(t) = −

∑
t∈S

αt

{
Y (t)⟨X(t), β̃⟩ − ψ′(⟨X(t), βS + tβ̃⟩)⟨X(t), β̃⟩

}
and thus

EG
′
(0) =

∑
t∈S

αt E
{
Y (t)⟨X(t), β̃⟩ − ψ′(⟨X(t), βS⟩)⟨X(t), β̃⟩

}
=
∑
t∈S

αt E
{
E
{
Y (t) − ψ′(⟨X(t), βS⟩)|X(t)

}
⟨X(t), β̃⟩

}
= 0

Besides, by direct calculation,

G
′′
(t) = −

∑
t∈S

αt

{
ψ′′(⟨X(t), βS + tβ̃⟩)⟨X(t), β̃⟩2

}
.

By Taylor expansion, there exists a γ ∈ [0, 1] such that

G(1)−G(0) = G
′
(0) +

1

2
G

′′
(γ)

= G
′
(0)− 1

2

∑
t∈S

αt

{
ψ′′(⟨X(t), βS + γβ̃⟩)⟨X(t), β̃⟩2

}
.

Notice that PSℓS(β)− PSℓS(βS) = E[G(1)−G(0)], and then

PSℓS(β)− PSℓS(βS) = E[G(1)−G(0)]

= −1

2

∑
t∈S

αt E
{
ψ′′(⟨X(t), βS + γβ̃⟩)⟨X(t), β̃⟩2

}
≤ −mint∈S{A1}

2

∑
t∈S

αt⟨X(t), β̃⟩2,

and
PSℓS(β)− PSℓS(βS) = E[G(1)−G(0)]

= −1

2

∑
t∈S

αt E
{
ψ′′(⟨X(t), βS + γβ̃⟩)⟨X(t), β̃⟩2

}
≥ −maxt∈S{A2}

2

∑
t∈S

αt⟨X(t), β̃⟩2,

which leads to
PSℓS(β)− PSℓS(βS) ≍ −

∑
t∈S

αtd
2
t (β, βS)
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Hence, we get

sup
ρ/2≤d0(β,β0)≤ρ

{
PSℓS(β)− PSℓS(βS)

}
≍ −

(
ρ2 +

∑
t∈S

αtd
2
t (β, βS)

)
≲ −ρ2,

which proves part (2).

Finally for part (3), we pick rnS = n
r

2r+1

S ∥βS∥
− 2r

2r+1

K which satisfies r2nS
ϕn(r

−1
nS

) ≤ √
nS where ϕn(x) = ∥βS∥Kx

2r−1
2r .

Let λ1 = O(r−2
nS

), since
−LS

n(β̂S) + λ1∥β̂S∥2K ≤ −LS
n(βS) + λ1∥βS∥2K ,

hence
LS
n(β̂S) ≥ LS

n(βS) + λ1

(
∥β̂S∥2K − ∥βS∥2K

)
≥ LS

n(βS)− λ1∥βS∥2K
≥ LS

n(βS)−O(r−2
nS

∥βS∥2K).

Combining part (1)-(3), based on the Theorem 3.4.1 in (Vaart & Wellner, 1996), we know

d20(β̂S , βS) = Op
(
r−2
nS

∥βS∥2K)
)
.

To bound the second term in the r.h.s. of (11), we follow the same proof procedure as the proof of bounding the first term.
Specifically, we need to show

1. E supρ/2≤d0(δ,δS)≤ρ
√
n0|(Ln0 − L)(δ − δS)| ≲ ρ

2r−1
2r ;

2. supρ/2≤d0(δ,δS)≤ρ Pℓ(δ)− Pℓ(δS) ≲ −ρ2;

3. Ln0
(δ̂S) ≥ L(δS)−OP

(
r−2
n0

∥δS∥2K
)
.

It is not hard to check, including the estimator from transfer step β̂S into the loss function for the debias step defined at the
beginning of the proof will not affect the statements (1)-(3). For example, in part (1), the β̂S will vanish when calculating
(ℓ(δ)− ℓ(δi))

2; in part (2), its effect will vanish since our assumption of the second order derivatives of ψs is bounded from
infinity and zero; in part (3), the inequality holds as δ̂S is the minimizer of the regularized loss function. Therefore, in the
end, we have

d20(δ̂S , δS) = OP(r
−2
n0

∥δS∥2K) = OP(r
−2
n0
h2).

Combining the bounds of d0(β̂S , βS) and d0(δ̂S , δS), we reach to

E(β̂) = Op

(
n
− 2r

2r+1

S +

(
h2

R2

)a
n
− 2r

2r+1

0

)
,

for some a > 0.

E.2. Proof of Lower Bound for TL-FGLM (Theorem 5.3)

Proof. We calculate the Kullback–Leibler divergence between Pi and Pj under the exponential family. By the definition of
KL divergence and density function of the exponential family, we have

KL(Pi||Pj) = (n0 + nS) E

{
⟨X(0), βi − βj⟩ψ′(⟨X(0), βi⟩)

−
(
ψ(⟨X(0), βi⟩)− ψ(⟨X(0), βj⟩)

)}
= (n0 + nS) E

{
1

2
ψ′′(⟨X(0), β̃⟩) < X(0), βi − βj >

2

}
≲ (n0 + nS)d

2
0(βi, βj),
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for some β̃ between βi and βj . Therefore, the proof of the lower bound for the target-only FGLM follows exactly the same
as FLR, i.e., Proposition D.3.

Then, the proof of the lower bound for TL-FGLM follows exactly the same as TL-FLR, i.e., Theorem 4.4, by considering
two specific cases.

F. Appendix: Additional Experiments for TL-FLR/ATL-FLR
In this section, we explore how the smoothness of the coefficient functions, β(t), for t ∈ Sc, will affect the performance
of ATL-FLR. We also explore how different temperatures will affect the performance of Exponential Weighted ATL-FLR
(ATL-FLR (EW)).

We consider the setting that β(t) with t ∈ Sc are generated from a much rougher Gaussian process, i.e. βt are generated
from a Gaussian process with mean function cos(2πt) with covariance kernel min(s, t), which is exactly Wiener process,
and thus the βts are less smooth than βts that are generated from Ornstein–Uhlenbeck process (the one we used in main
paper). For ATL-FLR (EW), we consider three different temperatures, i.e., T = 0.2, 2, 10, where a lower temperature will
usually produce small aggregation coefficients. All the other settings are the same as the simulation section.

The results are presented in Figure 3. In general, the patterns of using the Wiener process are consistent with using the
Ornstein–Uhlenbeck process, which demonstrates the robustness of the proposed algorithms to negative transfer source
models. We also note that while the temperature is low (T = 0.2), the small convex combination coefficients {cj} will make
ATL-FLR(EW) have almost the same performance as ATL-FLR, but it still cannot beat ATL-FLR. While we increase the
temperature (T = 2, T = 10), the gap between ATL-FLR(EW) and ATL-FLR increases, especially when the proportion of
|S| is small. Therefore, selecting the wrong T can hugely degrade the performance of ATL-FLR(EW). This demonstrates the
superiority of sparse aggregation in practice since its performance does not depend on the selection of any hyperparameters.
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(a) Low Temperature (T = 0.2)
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(b) Middle Temperature (T = 2)
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(c) High Temperature (T = 10)

Figure 3. Excess Risk of different transfer learning algorithms. Each row corresponds to different β(0), and the y-axes for each row are
under the same scale. The result for each sample size is an average of 100 replicate experiments with the shaded area indicating ± 2
standard error.

G. Appendix: Application
G.1. Application for Functional Linear Regression

In this section, we demonstrate an application of the proposed algorithms in the financial market. The goal of portfolio
management is to balance future stock returns and risk, and thus, investors can rebalance their portfolios according to their
goals. Some investors may be interested in predicting the future stock returns in a specific sector, and transfer learning can
borrow market information from other sectors to improve the prediction of the interest.

In this stock data application, for two given adjacent months, we focus on utilizing the Monthly Cumulative Return (MCR)
of the first month to predict the Monthly Return (MR) of the subsequent month and improving the prediction accuracy on a
certain sector by transferring market information from other sectors. Specifically, suppose for a specific stock, the daily
price for the first month is {s1(t0), s1(t1), · · · , s1(tm)} and for the second month is {s2(t0), s2(t1), · · · , s2(tm)}, then the
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predictors and responses are expressed as

X(t) =
s1(t)− s1(t0)

s1(t0)
and Y =

s2(tm)− s2(t0)

s2(t0)
. (12)

The stock price data are collected from Yahoo Finance (https://finance.yahoo.com/), and we focus on stocks whose
corresponding companies have a market cap over 20 Billion. We divide the sectors based on the division criteria on Nasdaq
(https://www.nasdaq.com/market-activity/stocks/screener). The raw data obtained from websites are processed to match the
format in (12) and both the raw data and processed data are available at https://github.com/haotianlin/HTL-FLM.

After pre-processing, the dataset consists of total 11 sectors: Basic Industries (BI), Capital Goods (CG), Consumer
Durable (CD), Consumer Non-Durable (CND), Consumer Services (CS), Energy (E), Finance (Fin), Health Care
(HC), Public Utility (PU), Technology (Tech), and Transportation (Trans), with the number of stocks in each sector
as 60, 58, 31, 30, 104, 55, 70, 68, 46, 103, 41. The period of the stocks’ price is 05/01/2021 to 09/30/2021.

We compare the performance of Pooled Transfer (Pooled-TL), Naive Transfer (Naive-TL), Detect-TL, ATL-FLR(EW) and
ATL-FLR. Naive-TL implements TL-FLR by setting all source sectors belonging to S, while the Pooled-TL one omits
the calibrate step in Naive-TL, and the other three are the same as the former simulation section. The learning of each
sector is treated as the target task each time, and all the other sectors are sources. We randomly split the target sector
into the train (80%) and test (20%) set and report the ratio of the four approaches’ prediction errors to OFLR’s on the test
set. We consider the Matérn kernel as the reproducing kernel K again. Specifically, we set ρ = 1 and ν = 1/2, 3/2,∞
(where ν = 1/2 is equivalent to the exponential kernel and ν = ∞ is equivalent to Gaussian kernel), which endows K with
different smoothness properties. The tuning parameters are selected via Generalized Cross-Validation(GCV). Again, we
replicate the experiment 100 times and report the average prediction error with standard error in Figure 4.

First, we note that the Pooled-TL and Naive-TL only reduce the prediction error in a few sectors but make no improvement
or even downgrade the predictions in most sectors. This implies the effect of direct transfer learning can be quite random,
as it can benefit the prediction of the target sector when it shares high similarities with other sectors while having worse
performance when similarities are low. Besides, Naive-TL shows an overall better performance compared to the Pooled-
TL, demonstrating the importance of the calibrate step. For Detect-TL, all the ratios are close to 1, showing its limited
improvement, which is as expected as it can miss positive transfer sources easily. Finally, both ATL-FLR(EW) and ATL-FLR
provide more robust improvements on average. We can see both of them have improvements across almost all the sectors,
regardless of the similarity between the target sector and source sectors. Comparing the results from different kernels, we
can see the improvement patterns are consistent across all the sectors and adjacent months, showing the proposed algorithms
are also robust to different reproducing kernels.

G.2. Application for Functional Generalized Linear Models

Personal wearable devices have become increasingly popular as they can detect users’ movements and provide feed-
back/records. However, the limited data can make the device’s detection inaccurate for a newly registered user. The
technology can make detecting new users’ actions more accurate by leveraging learned hypotheses from other users
with similar features. Under this context, we consider the Human Activity Recognition (HAR) dataset (Anguita et al.,
2013), which contains the recordings of volunteers performing daily living activities, including walking, walking upstairs,
walking downstairs, sitting, standing, and laying. Each volunteer carried a waist-mounted smartphone with an embedded
accelerometer and gyroscope sensors to capture the body acceleration and gravity signal.

In this section, we evaluate the efficacy of our proposed transfer learning method for FGLM and specifically aim at functional
logistic regression. The goal is to distinguish the actions of walking upstairs (marked as 1) and walking downstairs (marked
as 0) by applying functional logistic regression with the covariate X as the body acceleration signal in the vertical direction
over time. We treat the classification for each volunteer as a separate task. After preprocessing, there are a total of 30
volunteer datasets. Each dataset is balanced in terms of label proportion and the sample size of each is between 78 to 127.
The covariate of body acceleration signals is measured in equal spacing 128 consecutive time points, and we pick the first 32
points to reduce motion cycles. For each dataset, we randomly split the samples into a training set (80%) and test set (20%).
Each volunteer is treated as a target each time and all the other volunteers as sources.

We compare the performance of our proposed ATL-FLR(EW) and ATL-FLR with the non-transfer baseline OFLR and some
competitors, including Pooled Transfer (Pooled-TL), Naive Transfer (Naive-TL), Detect-TL. We consider the Matérn kernel
Kν,ρ (Cressie & Huang, 1999) as the reproducing kernel and set ρ = 1 and ν = 1/2. The regularization parameters are
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Figure 4. Relative prediction error of Pooled-TL, Naive-TL, Detect-TL, ATL-FLR(EW), and ATL-FLR to OFLR for each target sector.
Each bar is an average of 100 replications, with standard error as the black line.
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selected via Generalized Cross-Validation (GCV). We repeat the experiment 100 times to assess the variability in train/test
data split and report the misclassification rate (in percentage) on test data with standard error. The threshold for all binary
classification is set to be 0.5. The results are placed in Table 1.

Based on Table 1, the results demonstrate that the proposed ATL-FGLM can provide the lowest misclassification rate for
most of the volunteers. In cases where ATL-FGLM is not the best, its misclassification rate is also close to the lowest (e.g.,
Volunteer 9,17,27), which verifies its robustness to non-informative sources.

Table 1. Misclassification rates (%) on the test set for each target volunteer with standard errors in subscript.

Target Transfer Learning Algorithms
Non-TL Pooled-TL Naive-TL Detect-TL ATL-FGLM

(EW)
ATL-FGLM

Volunteer1 5.5480.395 8.2900.408 5.1290.364 5.1940.346 4.7740.365 4.3870.365

Volunteer2 15.6790.522 17.6790.541 16.5360.514 15.7140.520 15.1790.521 15.0360.528
Volunteer3 21.8790.747 21.5760.600 21.1210.628 21.1210.650 18.6670.716 17.7580.680
Volunteer4 25.0000.705 25.7670.693 23.4670.686 21.1330.669 22.4670.701 21.3000.672
Volunteer5 29.0000.913 43.8570.791 28.7860.837 29.3930.804 24.7140.800 24.3570.779
Volunteer6 16.4480.600 15.3450.544 16.1030.572 16.1030.550 16.4140.572 16.2760.565
Volunteer7 12.7590.489 15.4480.638 14.2070.599 13.3790.574 12.4830.543 12.4830.530
Volunteer8 27.0000.697 24.3040.801 23.9130.684 25.0870.762 25.6090.786 23.6090.780
Volunteer9 23.5360.614 25.6790.623 25.0360.667 25.2860.651 24.7140.665 24.5360.657

Volunteer10 31.1200.732 32.6000.674 30.1600.740 30.6000.736 30.0800.731 29.4800.764
Volunteer11 16.2670.575 14.4000.503 15.0000.487 14.2000.552 13.9670.552 13.4000.574
Volunteer12 6.6670.402 9.1000.452 6.6330.403 5.6000.367 5.4670.359 4.7670.352

Volunteer13 19.9030.539 18.9030.543 18.5810.552 19.0650.564 18.5810.567 18.1290.546
Volunteer14 37.3000.578 33.5330.688 35.8330.702 35.6670.692 35.7330.648 35.8670.679
Volunteer15 21.9260.618 23.0000.554 20.7780.595 20.9260.587 20.4810.628 20.3330.604
Volunteer16 18.3790.630 19.3100.600 17.9310.626 18.2410.632 17.8970.625 17.6550.620
Volunteer17 17.9640.614 20.2500.616 22.3930.716 20.8570.635 19.8930.564 18.8210.576
Volunteer18 24.9710.580 21.4120.591 20.0290.579 20.1760.545 19.5590.577 18.4710.567
Volunteer19 20.8330.657 19.8750.672 19.3750.631 18.9580.668 19.0000.668 19.1670.686
Volunteer20 15.9660.617 18.3790.618 15.8970.548 15.2070.565 15.5860.605 15.0690.549
Volunteer21 16.0360.550 18.3210.585 16.4290.585 15.3570.582 15.1070.534 15.6430.546
Volunteer22 19.5000.716 19.7080.758 19.7500.736 18.7500.734 18.5000.686 18.4580.689
Volunteer23 22.3230.648 20.3870.637 20.8710.626 21.8710.641 20.7740.642 19.7420.582
Volunteer24 16.3140.580 15.1710.529 15.4000.536 15.5140.550 15.5430.559 15.5140.554
Volunteer25 32.1390.583 30.1940.648 29.4170.595 29.4440.587 29.3060.593 29.0560.619
Volunteer26 6.8440.376 8.1560.389 7.4370.392 6.7500.392 6.9370.384 6.7190.383

Volunteer27 8.5000.473 8.7860.414 7.6430.425 7.5360.476 6.2860.394 6.3930.407
Volunteer28 25.1030.709 24.5860.716 23.4480.712 24.1720.739 23.5170.726 23.0690.694
Volunteer29 39.2760.761 38.5860.738 37.3450.775 37.2760.752 37.5520.819 37.1030.846
Volunteer30 33.4740.749 33.2630.610 30.5260.672 32.6320.712 30.0000.777 29.2630.800
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