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Abstract
Many existing two-phase kernel-based hypothe-
sis transfer learning algorithms employ the same
kernel regularization across phases and rely on
the known smoothness of functions to obtain opti-
mality. Therefore, they fail to adapt to the vary-
ing and unknown smoothness between the tar-
get/source and their offset. This paper introduces
Smoothness Adaptive Transfer Learning (SATL),
a two-phase kernel ridge regression (KRR)-based
algorithm to address these limitations. We first
demonstrate that employing a misspecified fixed
bandwidth Gaussian kernel in target-only KRR
learning can achieve minimax optimality when
the true function resides in Sobolev spaces. Lever-
aging this result, SATL enables the estimators to
provably and universally adapt to the varying and
unknown Sobolev smoothness of the source and
offset functions. We derive the minimax lower
bound of the learning problem in excess risk and
show that SATL achieves a matching upper bound
up to logarithmic factors. The optimal statistical
rate reveals the factors influencing the transfer dy-
namics and efficacy, including the source sample
size and the relative strength between domains.
The theoretical findings and the effectiveness of
SATL are confirmed by several experiments.

1. Introduction
Nonparametric regression is one of the most prevalent statis-
tical problems studied in many communities in past decades
due to its flexibility in modeling data. A large number of
algorithms have been proposed, such as kernel regression,
local regression, smoothing splines, and regression trees,
to name only a few. However, the effectiveness of all the
algorithms in these existing works is based on having suffi-
cient samples drawn from the same target domain. When
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samples are scarce, either due to costs or other constraints,
the performance of these algorithms can suffer empirically
and theoretically.

Hypothesis Transfer Learning (HTL) (Li & Bilmes, 2007;
Kuzborskij & Orabona, 2013; Du et al., 2017), which lever-
ages models trained on the source domain and uses samples
from the target domain to learn the model shift to the target
model, is an appealing and promising mechanism. When
the parameters of interest are infinite-dimensional (e.g., non-
parametric models), Lin & Reimherr (2024) employed the
reproducing kernel Hilbert space (RKHS) norm as a metric
for assessing similarity in functional regression frameworks,
linking the transferred knowledge to the employed RKHS
structure. They leveraged offset transfer learning (OTL),
which is one of the most popular HTL algorithms, to ob-
tain target estimators in a two-phase manner: first, training
a source model on the large sample size source dataset,
then estimating the offset model between the target and
source using the target dataset and trained source model.
However, a noteworthy observation is that both phases of
estimating the source model and offset model utilize the
same RKHS regularization. This goes against the princi-
ple that led to OTL’s success, which posits that the offset
should ideally have a simpler structure than the target and
source. A similar limitation also appears in a series of two-
phase HTL algorithms for finite-dimensional models (e.g.,
multivariate/high-dimensional linear regression) (Bastani,
2021; Li et al., 2022; Tian & Feng, 2022), which typically
utilize the ℓ1 or ℓ2 norm of the offset parameters as the
similarity measure. Since ℓ1-norm can reflect sparsity and
ℓ2 usually serves to control complexity, using the same
norm regularization across both phases is more robust to
model structure heterogeneous and more defensible in finite-
dimensional models than in infinite-dimensional ones.

In the realm of nonparametric regression, although OTL has
shown great success in practice, there are only a few studies
that provide theoretical analysis (Wang & Schneider, 2015;
Du et al., 2017), and these works are still limited in terms
of problem settings, estimation procedures, and theoretical
bounds. For example, although Wang & Schneider (2015)
noticed the nature of simple offsets, they didn’t use any
quantity (like Sobolev or Hölder smoothness) to formularize
the difference of target/source models and their offset. Their
KRR-based OTL algorithm also employed the same kernel
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to train the source model and the offset and thus has similar
limitations as Lin & Reimherr (2024) methodologically. Du
et al. (2017) formalized the varying structures via different
Hölder smoothness, but the theoretical results derived are un-
der too ideal assumptions, unverifiable in practice. Besides,
neither their approaches nor the statistical convergence rates
were adaptive, and their upper bound overlooked certain
factors, failing to provide deeper insights into the influence
of domain properties on the transfer learning dynamics and
efficacy. This raises the following fundamental question
that motivates our study:

Can we develop an HTL algorithm so that the different
structures (smoothness) of the target/source functions and

their offset can be adaptively learned?

Main contributions. This work answers the above ques-
tion positively and makes the following contributions:

We propose Smoothness Adaptive Transfer Learning
(SATL), building upon the prevalent two-phase offset trans-
fer learning paradigm. Specifically, we study the setting
where the target/source function lies in Sobolev space with
order m0 while the offset function lies in Sobolev space
with order m (where m > m0). One key feature of SATL is
its universal capability to adapt to the unknown and varying
smoothness of the target, source, and offset functions.

We first begin by establishing the robustness of the Gaussian
kernel in misspecified KRR, i.e., for regression functions
belonging to certain fractional Sobolev spaces (or RKHSs
that are norm equivalent to such Sobolev spaces), employ-
ing a fixed bandwidth Gaussian kernel in target-only KRR
yields minimax optimal generalization error. Remarkably,
the optimal order of the regularization parameters follows
an exponential pattern, which differs from the variable band-
width setting and we conduct comprehensive experiments to
support the finding. Furthermore, we demonstrate that an es-
timator, developed through standard training and validation
methods, achieves the same optimality up to a logarithmic
factor without prior knowledge of the true smoothness.

Leveraging these new results of the Gaussian kernel, SATL
employs Gaussian kernels in both learning phases, avoiding
the saturation effect of KRR and thus ensuring its univer-
sal and consistent adaptability to the diverse and unknown
smoothness levels m0 and m. We also establish the min-
imax statistical lower bound for the learning problem in
terms of excess risk and show that SATL achieves minimax
optimality since it enjoys a matching upper bound (up to
logarithmic factors). Crucially, our results shed light on the
impact of signal strength from both domains on the dynamic
and efficacy of OTL, which, to the best of our knowledge,
has been largely overlooked in the existing literature. This
insight enhances our understanding of the contributions of
each phase in the transfer learning process.

1.1. Related Literature

Transfer Learning. OTL (a.k.a. bias regularization transfer
learning) has been extensively researched in supervised re-
gression. The work in Kuzborskij & Orabona (2013; 2017)
focused on OTL in linear regression, establishing general-
ization bounds through Rademacher complexity. Wang &
Schneider (2015) derived generalization bounds for apply-
ing KRR on OTL without formularizing the simple offset
structure. Wang et al. (2016) assumed target/source regres-
sion functions in the Sobolev ellipsoid with order m0 and
the offset in a smoother power Sobolev ellipsoid. They used
finite orthonormal basis functions for modeling, which be-
comes restrictive if the chosen basis is misaligned with the
eigenfunctions of the Sobolev ellipsoid. Du et al. (2017)
further proposed a transformation function for the offset,
thereby integrating many preview OTL studies and offering
upper bounds on excess risk for both kernel smoothing and
KRR. Apart from regression settings, generalization bounds
for classification problems with surrogate losses have been
studied in Aghbalou & Staerman (2023) via stability analy-
sis techniques. Other results that study HTL outside OTL
can be found in Orabona et al. (2009); Cheng & Shang
(2015); Minami et al. (2024). Besides, OTL can also be
viewed as a case of representation learning Du et al. (2020);
Tripuraneni et al. (2020); Xu & Tewari (2021) by viewing
the trained source model as a representation for target tasks.

The idea of OTL has also been recently adopted by the
statistics community, which typically involves regularizing
the offset via different metrics in parameter spaces. For
example, Bastani (2021); Li et al. (2022); Tian & Feng
(2022) considered ℓ1-distance OTL for high-dimensional
(generalized) linear regression. Duan & Wang (2022); Tian
et al. (2023) considered ℓ2-distance for general linear mod-
els. Lin & Reimherr (2024) utilized RKHS-distance for
functional linear models. However, all of these works used
the same type of distance while estimating the source model
and the offset. For nonparametric regression, another study
by Cai & Pu (2024) assumed the target/source models lie
in Hölder spaces while the offset can be approximated with
any desired accuracy by a polynomial function in L1. They
proposed an algorithm based on local polynomial regression
that adapts to Hölder smoothness, but the approach can be
computationally intensive in practice. KRR under the co-
variate shift setting has also been studied in several works.
Ma et al. (2022) derived optimal rates of the generalization
error under different likelihood ratio bound conditions and
proposed rate-optimal estimator based on reweighting KRR.
Wang (2023) introduced a pseudo-labeling algorithm to ad-
dress TL scenarios where the labels in the target domain
are unobserved. For nonparametric classification, Kpotufe
& Martinet (2021); Cai & Wei (2021); Reeve et al. (2021)
developed adaptive classifiers based onK-nearest neighbors
that are rate-optimal in different distribution shift settings.
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Misspecification in KRR. This line of research focuses on
using misspecified kernels in target-only KRR to achieve
optimal statistical convergence rates.

In the realm of variable bandwidths, Eberts & Steinwart
(2013) derived the convergence rates of the excess risk for
KRR using Gaussian kernels when the true regression func-
tion lies in a Sobolev space. They found that appropriate
choices of regularization parameters and the bandwidth will
yield a non-adaptive rate that can be arbitrarily close (but
not equal) to the optimal rate under the bounded response
assumption. Building upon this work, Hamm & Steinwart
(2021) further improved the non-adaptive rate, attaining
optimal rates up to logarithmic factors. It is worth noting
that their results show that both the optimal regularization
parameter and bandwidth should decay in polynomial pat-
terns, which is different from ours. Apart from regression
setting, Li & Yuan (2019) studied using variable bandwidth
Gaussian kernels to achieve optimality in a series of non-
parametric statistical tests.

Another line of research considers fixed bandwidth kernels.
For instance, Wang & Jing (2022) investigated the misspeci-
fication of Matérn kernel-based KRR. They demonstrated
that even when the true regression functions belong to a
Sobolev space, utilizing misspecified Matérn kernels can
still attain minimax optimal convergence rates or, in some
cases, a slower convergence rate (referred to as the satu-
ration effect of KRR). Similarly, several other works have
presented similar results on general RKHS with polynomial
eigen-decay rate, and the true function resides in the power
space of the RKHS, see Steinwart et al. (2009); Dicker et al.
(2017); Blanchard & Mücke (2018); Fischer & Steinwart
(2020); Lin & Cevher (2020); Zhang et al. (2023) and more
references therein.

2. Preliminaries
Problem Formulation. Consider the two nonparametric
regression models

yp,i = fp(xp,i) + ϵp,i, p ∈ {T, S}

where p is the task index (T for target and S for source),
fp are unknown regression functions, xp,i ∈ X ⊂ Rd is
a compact set with positive Lebesgure measure and Lips-
chitz boundary, and ϵp,i are i.i.d. random noise with zero
mean. The target and source regression function, fT and
fS , belong to the (fractional) Sobolev space Hm0 with
smoothness m0 ≥ d/2 over X . The joint probability dis-
tribution ρp(x, y) is defined on X × Y for the data points
{(xp,i, yp,i)}

np

i=1, and µp represents the marginal distribu-
tion of ρp on X . In this work, we assume the model shift
(a.k.a. posterior drift) setting, where µT is equal to µS ,
while the regression function fT differs from fS . The goal
of this paper is to find a function f̂T based on the combined

data {(xT,i, yT,i)}nT
i=1 ∪ {(xS,i, yS,i)}nS

i=1 that minimizes
the generalization error on the target domain, i.e.

E(f̂T ) = Ex∼µT
[(f̂T (x)− fT (x))

2].

Non-Transfer Scenario. In the absence of source data,
recovering fT using KRR is referred to as target-only learn-
ing and has been extensively studied. We now state some of
its well-known results.

Proposition 2.1 (Target-only Learning). For a symmetric
and positive semi-definite kernel K : X × X → R, let HK

be the RKHS associated with K (Wendland, 2004). The
KRR estimator is

f̂T = argmin
f∈HK

{
1

nT

nT∑
i=1

(yT,i − f(xT,i))
2 + λ∥f∥2HK

}
,

and we call the kernel K as the imposed kernel. Then, the
convergence rate of the generalization error of f̂T , E(f̂T ),
is given as follows.

1. (Well-specified Kernel) If HK coincides with Hm0 ,
E(f̂T ) can reach the standard minimax convergence

rate in high-probability given λ ≍ n−
2m0

2m0+d , i.e.

E(f̂T ) = OP

(
n
− 2m0

2m0+d

T

)
.

2. (Misspecified Kernel) If the K is the Matérn kernel
then its induced space is isomorphic to Hm′

0 with

m′
0 > d

2 . Furthermore, given λ ≍ n−
2m′

0
2m0+d and

γ = min{2, m0

m′
0
} , then

E(f̂T ) = OP

(
n
− 2γm′

0
2γm′

0+d

T

)
.

3. (Saturation Effect) For m′
0 <

m0

2 and any choice of
parameter λ(nT ) satisfying that nT → ∞, we have

E(f̂T ) = ΩP

(
n
− 4m′

0
4m′

0+d

T

)
.

The well-specified result is well-known and can be found
in a line of past work (Geer, 2000; Caponnetto & De Vito,
2007). The misspecified kernel result comes from a combi-
nation (with a modification) of Theorem 15 and 16 in Wang
& Jing (2022). The saturation effect is proved by Li et al.
(2023). The Proposition 2.1 indicates that for target-only
KRR, even when the smoothness of the imposed RKHS,
m′

0, disagrees with the smoothness m0 of the Sobolev space
to which fT belongs, the optimal rate of convergence is still
achievable if m′

0 ≥ m0/2 with the λ appropriately chosen.
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However, if m′
0 < m0/2, i.e., the true function is much

smoother than the estimator itself, the saturation effect oc-
curs, meaning that the information-theoretic lower bound
n
−2m0/(2m0+d)
T seemingly cannot be achieved regardless

of the selection of the regularization parameters in KRR
(Bauer et al., 2007; Gao et al., 2008).

Transfer Learning Framework. We introduce the KRR-
based version of OTL for nonparametric regression, which
serves as the backbone of our proposed algorithm. Formally,
OTL obtains the estimator for fT as f̂T = f̂S + f̂δ via
two phases. In the first phase, it obtains f̂S by KRR with
the source dataset {(xS,i, yS,i)}nS

i=1. In the second phase, it
generates pseudo offset labels {yT,i−f̂S(xT,i)}nT

i=1 and then
learns the f̂δ via KRR by replacing target labels by pseudo
offset labels. The main idea of OTL is that the fS can be
learned well given sufficiently large source samples, and
the offset fδ can be learned with much fewer target samples.
We formulate the OTL variant of KRR as Algorithm 1.

Algorithm 1 OTL-KRR
Input: Target and source training data {(xT,i, yT,i)}nT

i=1 ∪
{(xS,i, yS,i)}nS

i=1}; Self-specified KRR imposed kernel K
Output: Target function estimator f̂T = f̂S + f̂δ .
Phase 1:

f̂S = argmin
f∈HK

1

nS

nS∑
i=1

(yS,i − f(xS,i))
2 + λ1∥f∥2HK

Phase 2:

f̂δ = argmin
f∈HK

1

nT

nT∑
i=1

(yT,i−f̂S(xT,i)−f(xT,i))
2+λ2∥f∥2HK

Model Assumptions. We first state the smoothness as-
sumption on the offset function fδ := fT − fS .

The learning framework (Algorithm 1) reveals a smoothness-
agnostic nature: the imposed kernels K (also the associated
RKHSs) stay the same regardless of the level of smoothness
of fS and fδ. More specifically, based on Proposition 2.1,
the learning algorithm is rate-optimal when the smoothness
of both imposed RKHSs HK in both steps matches that of
fS , and fδ, i.e. the smoothness of fS and fδ stay the same.
However, in the transfer learning context, such a smoothness
condition on the offset function may not be precise enough.
One should rather consider the offset function smoother
than the target/source functions themselves to represent the
similarity between fS and fT .

To illustrate this point, consider the following example. Sup-
pose fT = fS + fδ where fS is a complex function with

low smoothness (less regularized) while fδ is rather simple
(well regularized), e.g. a linear function. Then fS can be
estimated well via larger nS while fδ is a highly smooth
function and can also be estimated well via small nT due
to its simplicity. In this example, the effectiveness of OTL
relies on the similarity between fT and fS , i.e., the off-
set fδ possessing a “simpler” structure than the target and
source models. Such “simpler” offset assumptions have
been proven to make OTL effective in other models, e.g.,
high-dimensional linear regression works (Bastani, 2021;
Li et al., 2022; Tian & Feng, 2022) assume the offset coeffi-
cient should be sparser than target/source coefficients. This
motivates our endeavor to introduce the following smooth-
ness assumptions to quantify the similarity between target
and source domains.

Assumption 2.2 (Smoothness of Target/Source). There ex-
ists an m0 ≥ d/2 such that fT and fS belong to Hm0 .

Assumption 2.3 (Smoothness of Offset). There exists an
m ≥ m0 such that fδ := fT − fS belongs to Hm.

Remark 2.4. The results of this paper are applicable not
only to Sobolev spaces but also to those general RKHSs
that are norm equivalent to Sobolev spaces. Thus, we can
assume that fS , fT , and fδ belong to RKHSs with different
regularity. Due to norm equivalency, our discussion is pri-
marily focused on Sobolev spaces, and we refer readers to
Appendix B.2 for the analysis pertaining to general RKHSs.

Assumption 2.2 is a very common assumption in nonpara-
metric regression literature, and Assumption 2.3 naturally
holds if Assumption 2.2 is satisfied. Compared to the offset
assumption in Wang et al. (2016) where fδ is assumed to
belong to the power space of Hm0 , our setting presents a
unique challenge. Since we consider the offset function
in a Sobolev space with higher smoothness, which doesn’t
necessarily share the same eigenfunctions with Hm0 , this
renders orthonormal basis modeling less promising. As-
sumption 2.3 also makes our setting conceptually align with
contemporary transfer learning models. For instance, in
prevalent pretraining-finetuning neural networks, the pre-
trained feature extractor tends to encompass a greater num-
ber of layers, while the newly added fine-tuning structure
typically involves only a few layers. In this analogy, m0 and
m in our setting are akin to the deeper pre-trained layers
and the shallow fine-tuned layers.

We also state a standard assumption that frequently appears
in KRR literature (Fischer & Steinwart, 2020; Zhang et al.,
2023) to establish theoretical results, which controls the
noise tail probability decay speed.

Assumption 2.5 (Moment of error). There are constants
σ,L > 0 such that for any r ≥ 2, the noise, ϵ, satisfies

E [|ϵp|r | x] ≤ 1

2
r!σ2Lr−2, for p ∈ {T, S}.

4



Smoothness Adaptive Hypothesis Transfer Learning

3. Target-Only KRR with Gaussian Kernels
3.1. Motivation for Employing Gaussian Kernel

To achieve optimality in Algorithm 1 under the smoothness
assumptions, an applicable approach is to employ distinct
kernels that can accurately capture the correct smoothness
of fS and fδ during both phases. This approach, however,
faces the practical challenge of identifying the unknown
smoothness m0 and m, which, in turn, induce different
kernels and RKHS; this is an issue also prevalent in the
target-only KRR context.

One potential solution is to leverage the robustness of
Matérn kernels, i.e., employ a misspecified Matérn kernel
as the imposed kernel in KRR. As indicated by Proposi-
tion 2.1, the optimal convergence rate is still attainable for
some appropriately chosen Matérn kernels and regulariza-
tion parameters. Nonetheless, this still faces two problems:

(1) The rate with misspecified Matérn kernel in Proposi-
tion 2.1 is still non-adaptive, i.e. one still needs to
know the true smoothness when tuning λ1 and λ2.

(2) The risk of the saturation effect of KRR happening in
both phases when a less smooth kernel is chosen.

While the former can be potentially addressed by cross-
validation or data-driven adaptive approach, the second one
is more fatal as one might end up choosing a less smooth
kernel and never be able to achieve the information-theoretic
lower bounds because of the saturation effect.

Hence, there is a clear demand for a kernel with a more
general and robust property, i.e., in the target-only KRR, for
the regression function that lies inHm0 with anym0 ≥ d/2,
employing such a kernel ensures that there’s always an opti-
mal λ such that the optimal convergence rate is achievable.
Motivated by the fact that the Gaussian kernel is the limit
of Matérn kernel Kν as ν → ∞ and the RKHS associated
with the Gaussian kernel is contained in the Sobolev space
Hν for any ν > d/2 (Fasshauer & Ye, 2011), we show that
the Gaussian kernel indeed possesses this desired property.

3.2. Theoretical Results

Consider the Target-Only learning KRR setting, where
f0 ∈ Hα0 (we use α0 to denote smoothness in target-only
context to distinguish from TL context) and the underlying
supervised learning model setup as

yi = f0(xi) + ϵi, i = 1, · · · , n.

First, we show the non-adaptive rate for the Gaussian kernel.
Theorem 3.1 (Non-Adaptive Rate). Under the Assump-
tions 2.5, let the imposed kernel, K, be the Gaussian ker-
nel with fixed bandwidth and f̂ be the corresponding KRR

estimator based on data {(xi, yi)}ni=1. If f0 ∈ Hα0 , by
choosing log(1/λ) ≍ n

2
2α0+d , for any δ ∈ (0, 1), when n is

sufficient large, with probability at least 1− δ, we have

∥f̂ − f0∥2L2
≤ C

(
log

4

δ

)2

n−
2α0

2α0+d ,

where C is a constant independent of n and δ.

Remark 3.2. Although Eberts & Steinwart (2013); Hamm &
Steinwart (2021) has studied the robustness of Gaussian ker-
nel on misspecified KRR, their results are built on variable
bandwidths, and the nearly rate-optimal results are estab-
lished given both bandwidth and λ decay polynomially in n.
In contrast, our result is built on fixed bandwidth Gaussian
kernels and achieves the optimal rate with the optimal λ that
behaves differently from theirs.

We note to the reader that while the RKHS associated with
the Matérn kernel coincides with a Sobolev space (i.e., they
are the same space with slightly different, though equivalent,
norms), the Gaussian kernel does not, making the behavior
of the optimal λ totally different compared to the misspeci-
fied Matérn kernel scenarios in Proposition 2.1. Particularly,
even if the Gaussian kernel is the limit of Matérn kernel
Kν as ν → ∞, setting the smoothness parameter m′

0 of
the imposed Matérn kernel as infinity in misspecified kernel
case of Proposition 2.1 will never yield analytical results but
only tells the optimal order of λ should converge to 0 faster
than polynomial (limm′

0→∞ n−2m′
0/(2m0+d) = 0). On the

other side, our result identifies that λ should converge to 0
exponentially in n.

The exponential decay form for the optimal λ originates
from managing the approximation error. The standard real
interpolation technique (like Proposition 2.1) is inadequate
for controlling this error when the intermediate term lies in
RKHS of Gaussian kernels. We address this by the Fourier
transform of the RKHS, which reveals this exponential form.
We refer readers to Appendix C.1 for more details. To
further highlight our findings, we compare our results with
existing state-of-the-art works on misspecified KRR and
refer readers to Appendix C.4 for a detailed discussion.

To develop an adaptive procedure without known α0, we
employ a standard training and validation approach (Stein-
wart & Christmann, 2008). To this end, we construct a finite
set that is an arithmetic sequence, i.e., A = {αmin < · · · <
αmax} where {αi} satisfy αmin > d/2, αmax large enough
such that α0 ≤ αmax and αi − αi−1 ≍ 1/ log n. Split
dataset D = {(xi, yi)}ni=1 into

D1 := {(x1, y1), · · · , (xj , yj)}
D2 := {(xj+1, yj+1), · · · , (xn, yn)}

The adaptive estimator is obtained by following the training
and validation approach.
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1. For each α ∈ A, obtain non-adaptive estimator f̂λα
by

KRR with dataset D1.

2. Obtain the adaptive estimator f̂λα̂
by minimizing em-

pirical L2 error on D2, i.e.

f̂λα̂
= argmin

α∈A

 1

n− j

n∑
i=j+1

(yi − f̂λα
(xi))

2

 .

When constructing the collection of non-adaptive estimators
over A, Theorem 3.1 suggests choosing the regularization
parameter λ = exp{−Cn2/2α+d} for some constant C.

The following theorem shows the estimator from the training
and validation approach achieves an optimal minimax rate
up to a logarithmic factor in n.

Theorem 3.3 (Adaptive Rate). Under the same conditions
of Theorem 3.1 and A = {α1, · · · , αN} with αj − αj−1 ≍
1/ log n. Then, for δ ∈ (0, 1), when n is sufficient large,
with probability 1− δ, we have

E(f̂λα̂
) ≤ C

(
log

4

δ

)2(
n

log n

)− 2α0
2α0+d

,

where C is a constant independent of n and δ.

Remark 3.4. If the marginal distribution of x, µ, is known,
one can also apply the well-known Lepski’s method (Lep-
skii, 1991) to obtain an adaptive estimator without known
α0, which also achieves optimal nonadaptive rate up to a
logarithmic factor as training and validation approach does.

4. Smoothness Adaptive Transfer Learning
We formally propose Smoothness Adaptive Transfer Learn-
ing in Algorithm 2.

Algorithm 2 Smoothness Adaptive Transfer Learning
(SATL)
Input: Target and source dataset DT and
DS ;

1: Let the smoothness candidate set for the source
model fS as MS = { Q1

log(nS) , · · · ,
Q1N1

log(nS)} and the
candidate set for the offset model fδ as Mδ =
{ Q2

log(nT ) , · · · ,
Q2N2

log(nT )} for some fixed positive number
Q1, Q2 and integer N1, N2.

2: Obtain the adaptive source model f̂S via the training
and validation with the Gaussian kernel and MS .

3: Generate the label êT,i = yT,i− f̂S(xT,i) and the offset
dataset as D̃T = {(xT,1, êT,1), · · · , (xT,nT

, êT,nT
))}.

4: Using the offset datasets D̃T to obtain the adaptive
offset model f̂δ via the training and validation with the
Gaussian kernel and Mδ .

While SATL can be viewed as a specification of the Algo-
rithm 1, the desirable property exhibited by the Gaussian
kernel surpasses all other misspecified kernel choices by
allowing estimators from both phases always to be able
to adapt to the true Sobolev smoothness of the functions
inherently even with unknown the true values of m0,m.

4.1. Theoretical Analysis

In order to provide concrete theoretical bounds, we assume
the offset function of fT and fS in the h-ball of Hm, i.e. fS
is said to be h-transferable to fT if ∥fδ∥Hm ≤ h. Hence,
the parameter space is defined as

Θ(h,R,m0,m) = {(ρT , ρS) :
∥fS∥Hm0 ≤ R, ∥fδ∥Hm ≤ h}

for some positive constantsR and h. We note that to achieve
rigorous optimality in the context of transfer learning under
the regression setting, such an upper bound for the distance
between parameters from both domains is often required,
e.g., ℓ1 or ℓ0 distance in high-dimensional setting (Li et al.,
2022; Tian & Feng, 2022; He et al., 2024), Fisher-Rao dis-
tance in low-dimensional setting (Zhang et al., 2022), RKHS
distance in functional setting (Lin & Reimherr, 2024), etc.

Theorem 4.1 (Optimality of SATL). Suppose the Assump-
tion 2.2, 2.3, and 2.5 hold, and nS and nT are sufficiently
large but still in transfer learning regime (nS ≫ nT ), we
have the lower bound for the transfer learning problem and
the upper bound of SATL as follows.

1. (Lower bound) For δ ∈ (0, 1), with probability 1− δ

inf
f̃

sup
Θ(h,R,m0,m)

P
{
∥f̃ − fT ∥2L2

≥ CδR2

(
n
− 2m0

2m0+d

S + n
− 2m

2m+d

T ξL

)}
≥ 1− δ,

where ξL ∝ h2/R2 and C is a constant independent of
nS , nT , R, h, and δ. The inf is taken over all possible
estimators f̃ based on the target and source data.

2. (Upper bound) Suppose that f̂T is the output of SATL.
For δ ∈ (0, 1), with probability 1− δ, we have

∥f̂T − fT ∥2L2
≤ C

(
log

8

δ

)2 (
R2 + σ2

S

)
{(

nS
log nS

)− 2m0
2m0+d

+

(
nT

log nT

)− 2m
2m+d

ξU

}
,

where ξU ∝ (h2+σ2
T )/(R

2+σ2
S) and C is a constant

independent of nS , nT , R, h, and δ.

Theorem 4.1 indicates that the convergence rate of excess
risk for SATL consists of two terms: the first term is the
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rough estimation error, and the second is the offset estima-
tion error. The first term represents the error of learning
fT with the source samples, while the second term is the
error of learning the offset function with the target samples.
The terms ξL and ξU control the transfer dynamic and ef-
ficacy; see discussion on Section 4.2, and we refer readers
to Appendix D for their origin. Besides, the upper bound
is tight up to logarithmic factors, which is a price paid for
adaptivity. Note that the upper bound can be exactly tight
when the Sobolev smoothness m0 and m are known.

Finally, it is also worth highlighting how the refinement of a
“simple” offset provides a better convergence rate compared
to homogeneous kernel regularization (Lin & Reimherr,
2024). Based on the saturation effort of KRR, using the
same Matérn kernel with smoothness m0 for both phases
in Algoritm 1 will lead the offset estimation error to be
n
−2γm0/(2γm0+d)
T , where γ = min{2,m/m0}, which is

never faster than n−2m/(2m+d)
T .

4.2. OTL Transfer Dynamic and Efficacy

In this part, we discuss some insights provided by our upper
bound into the transfer dynamic, i.e., how OTL benefits the
learning over the target domain, and the transfer efficacy,
i.e., whether the OTL is taking effect.

OTL Dynamic. For offset and source models, we term the
quantities h2 + σ2

T and R2 + σ2
S as the model total strength,

i.e., the sum of upper signal strength bound and noise vari-
ance. Then, ξU quantifies the relative model total strength
between the offset and source models. In comparison to
the convergence rate of the target-only baseline estimator,
n
−2m0/(2m0+d)
T , our results indicate that the transfer learn-

ing dynamic depends jointly on the sample size in source
domain nS , and the constant ξU . Specifically, when the
relative model total strength between offset and source is
small, the rough estimation error predominates, and thus,
the statistical convergence rate of f̂T is much faster than the
target-only baseline given nS ≫ nT . Conversely, a large ξU
will make the offset estimation error the dominant term, but
the statistical rate keeps the same as the target-only baseline
up to a constant.

OTL Efficacy. In earlier theoretical works, Wang et al.
(2016); Du et al. (2017) failed to identify the presence of ξU
in their statistical rates. The bounds in some recent works,
e.g., Li et al. (2022); Tian & Feng (2022), only identified
ξU ∝ h2, i.e., the corresponding upper bound should be

OP

((
nS

log nS

)− 2m0
2m0+d

+

(
nT

log nT

)− 2m
2m+d

h2

)
. (1)

This bound claimed that the OTL takes effect when the mag-
nitude of h is small while disregarding the influence of the

source model’s total strength. Conversely, our results re-
veal a new perspective: the transfer efficacy within the OTL
framework jointly depends on the properties of offset and
source models. This means that even with the same offset
model, whether OTL takes effect can differ given different
source models. Thus, the constant ξU can be viewed as a
similarity measure between source and target domains under
the OTL framework.

We further illustrate how our results provide a more accurate
interpretation of the OTL efficacy compared to the form (1)
via the following example. In Figure 1, we construct two
source-target pairs termed as (S0, T 0) and (S1, T 1) with
identical h. While with identical h, the two pairs possess
difference angle θ0 and θ1 given different source model’s to-
tal strength, thus implying the different degree of similarity
between source and target domains. Geometrically, one can
interpret ξU as a factor that approximately represents the an-
gle θ0 and θ1 between source and target domains. While the
form (1) suggests two pairs have the same OTL efficacy, our
upper bound indicates the set (S0, T 0) has higher efficacy,
which aligns with the fact that (S0, T 0) possesses higher
similarity.

Figure 1. Geometric illustration for how ξU will affect the OTL.
The circle represents a ball centered around the source with radius
h. The length of the red and blue lines represents the magnitude of
the model’s total strength. Two source-target pairs (denoted by red
and blue) possess the same offset while the source models’ total
strength is different, leading to different angles θ0 and θ1 between
domains.

Remark 4.2. It should be noted that the above geometric
interpretation of ξU is somewhat rough due to the use of
the upper bound of ∥fS∥Hm0 and ∥fδ∥Hm . As a result, ξU
cannot precisely reflect the exact angle between fT and fS
but only the angle between domains as we termed above.
However, with some additional assumptions, one can obtain
a fine-grained angle interpretation. For example, if one
uses the Sobolev norm of fS and fδ directly and assumes
the signal-to-noise ratio of source and offset models are
bounded below, then ξU ∝ ∥fδ∥2Hm/∥fS∥2Hm0 and thereby
is able to reflect the exact angle between fT and fS .
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5. Experiments
This section aims to confirm our theoretical results in the
target-only KRR and transfer learning sections. 1

5.1. Experiments for Target-Only KRR

Let X = [0, 1] and the marginal distribution of x be the uni-
form distribution over [0, 1]. Our objective is to empirically
confirm the adaptability of Gaussian kernels in target-only
KRR when f0 ∈ Hα([0, 1]) for different smoothness α.
Specifically, we explore cases where f0 belongs to H2 and
H3. To generate such f0 with the desired Sobolev smooth-
ness, we set f0 to be the sample path that is generated
from the Gaussian process with isotropic Matérn covari-
ance kernels Kν (Stein, 1999). We set ν = 2.01 and 3.01
to generate the corresponding f0 with smoothness 2 and
3, see Corollary 4.15 in Kanagawa et al. (2018) for detail
discussion about the connection between ν and α. For-
mally, we consider the following data generation procedure:
yi = f0(xi) + σϵi, where ϵi are i.i.d. standard Gaussian
noise, {xi}ni=1

i.i.d.∼ U([0, 1]) and σ = 0.5.
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Figure 2. Error decay curves of target-only KRR based on Gaus-
sian kernel, both axes are in log scale. The blue curves denote the
average generalization errors over 100 trials. The dashed black
lines denote the theoretical decay rates.

We verify both the nonadaptive and adaptive rate presented
in Theorem 3.1 and 3.3. The sample size ranges from
1000 to 3000 in intervals of 100. For different α, we set
λ = exp{−Cn

2
2α+1 } with a fixed C. To evaluate the adap-

tivity rate, we set the candidate smoothness as [1, 2, 3, 4, 5]
and split the dataset equally in size to implement training
and validation. The generalization error ∥f̂ − f∥L2 is ob-
tained by Simpson’s rule. For each combination of n and α,
we repeat the experiments 100 times and report the average
generalization error. To demonstrate the convergence rate

1The code to reproduce our experimental results is available at
https://github.com/haotianlin/SATL.

of the error is sharp, we regress the logarithmic average
generalization error, i.e. log(∥f̂ − f∥L2), on log(n) and
compare the regression coefficient to its theoretical counter-
part − 2α

2α+1 .

We try different values of C lies in the equally spaced se-
quence [0.05, 0.1, · · · , 4], and report the optimal curve in
Figure 2 under the best choice of C. Remarkably, the em-
pirical data points align closely with the theoretical lines
for both nonadaptive and adaptive rates. The estimated re-
gression coefficients also closely agree with the theoretical
counterparts. Additionally, we also report the generalization
error decay estimation results for other values of C and refer
to Appedix E for more details.

5.2. Experiments for Transfer Learning

We now illustrate our theoretical analysis of SATL through
two experiments with synthetic data. We generate the tar-
get/source functions and the offset function as follows: (i)
The target function fT is a sample path of the Gaussian
process with Matérn kernel K1.01 such that fT ∈ H1; (ii)
The offset function fδ is a sample path of Gaussian process
with Matérn kernel Kν with ν = 2.01, 3.01, 4.01 such that
the offset fδ belongs to H2, H3, H4 respectively. Hence,
we consider the following data generation procedure:

{xi,T }nT
i=1, {xi,S}

nS
i=1

i.i.d.∼ U([0, 1])

yi,T = fT (xi,T ) + σϵi,T i = 1, · · · , nT
yi,S = fT (xi,S) + fδ(xi,S) + σϵi,S i = 1, · · · , nS

where ϵi,p are i.i.d. standard Gaussian noise and σ = 0.5.

To demonstrate the transfer learning effect, we consider two
different settings:

(1) Fixed nT scenario: Fix nT as 50 and vary nS .

(2) Varying nT scenario: Set nS = n
3/2
T while varying

nT , i.e., the source sample size grows in a polynomial
order of target sample size.

In the first scenario, it is expected that the generalization
error first decreases and then remains unchanged as nS
increases since the offset estimation error (a constant for
fixed nT ) eventually dominates. In the second scenario,

the generalization error satisfies E(f̂T ) = O(n
− 3m0

2m0+1

T +

n
− 2m

2m+1

T ξU ) = O(n
− 2m

2m+1

T ). We consider the finite basis
expansion (FBE) TL algorithm proposed in Wang et al.
(2016) as a competitor. The authors originally used the
Fourier basis in their paper, which produced weak results
in our setting. Therefore, we compared SATL to their al-
gorithm with Fourier basis and an additional modification
by employing Bspline. We refer to Appendix E for imple-
mentation details on different types of Fourier basis and the
other experiments’ details.
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Figure 3. Generalization error under different h and smoothness of fδ . Each curve denotes the average error over 100 trails, and the
shadow regions denote one standard error of the mean. The left figure contains results for fixed nT scenario while the right figure is for
varying nT scenario. In Figure 3b, the green line denotes the theoretical upper bound n

−2m/(2m+1)
T (up to constants).

Figure 3a presents the generalization error for the fixed nT
scenario. As nS increases, the generalization error initially
decreases and then gradually levels off, consistent with our
expectations. Furthermore, if the smoothness of the offset
function fδ is higher, a smaller error is obtained, which
agrees mildly with our theoretical analysis. Finally, com-
pared to the FBE approach, SATL achieves overall smaller
errors. Figure 3b presents the generalization error for the
varying nT scenario. Here, the error term is expected to

be upper bounded by n
− 2m

2m+1

T . One can see our empirical
error is consistent with the theoretical upper bound asymp-
totically in all settings. Besides, the SATL outperforms the
target-only learning KRR baseline in all settings.

6. Future Direction
Beyond Sobolev Space. In developing the optimality of
target-only KRR with Gaussian kernels, we use the Fourier
transform technique to control the approximation error (see
Appendix C.1), which is feasibly applied to RKHS that are
norm-equivalent to fractional Sobolev spaces. Although
this makes our results quite broadly applicable when one
is primarily interested in the smoothness of the functions,
it certainly doesn’t cover all possible structures of interest
(e.g., periodic functions, etc). It is of interest to develop
other mathematical tools to extend the current results for
Sobolev spaces to more general RKHS.

Few-Shot Transfer Learning. Theorem 4.1 is developed
based on the asymptotic rates of Theorem 3.3. Thus, the
validity of theoretical results of SATL requires both nT and
nS sufficiently large to allow some lower order terms van-

ish (note that although nT and nS need to be sufficiently
large, nS ≫ nT still remains, which shows that the settings
we consider are still within the regime of transfer learn-
ing). In the case when nT is extremely small, e.g., few-shot
transfer learning, one needs a non-asymptotic rate for KRR
with fixed bandwidth Gaussian kernel to develop the upper
bound.

7. Conclusion
We presented SATL, a kernel-based OTL that uses Gaussian
kernels as imposed kernels. This enables the estimators to
adapt to the varying and unknown smoothness in their cor-
responding functions. SATL achieves minimax optimality
(up to a logarithmic factor) as the upper bound of SATL
matched the lower bound of the OTL problem. Notably,
our Gaussian kernels’ result in target-only learning also
serves as a good supplement to misspecified kernel learning
literature.

Impact Statement
This paper aims to theoretically achieve hypothesis transfer
learning adaptively under a nonparametric regression setting
and provide corresponding statistical guarantees. It provides
insights about the transfer dynamic, i.e., when offset transfer
learning improves performance compared to target-only
learning, and the necessity of adaptive learning in statistical
transfer learning. Since the work is focused on a theoretical
perspective, there is no present immediate ethical impact
or societal implication that we feel must be specifically
highlighted here.
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Appendix
This appendix encompasses more discussions, experiments, and proofs of the theoretical results presented in the main body.
Appendix A provides the introduction of the notation we used. Appendix B provides basic concepts of RKHS, Sobolev
space, the interpolation space, and the results of norm-equivalence between RKHS and Sobolev space. Appendix C presents
the proofs of the results in the Target-Only KRR section, including non-adaptive rate (Theorem 3.1) and adaptive rate
(Theorem 3.3). A discussion of the comparison between this work and previous works is also presented. Appendix D
contains the proofs of the upper bound and lower bounds of SATL. We present additional experiment details in Appendix E.
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A. Notation
The following notations are used throughout the rest of this work and follow standard conventions. For asymptotic
notations: f(n) = O(g(n)) means for all c there exists k > 0 such that f(n) ≤ cg(n) for all n ≥ k; f(n) ≍ g(n) means
f(n) = O(g(n)) and g(n) = O(f(n)); f(n) = Ω(g(n)) means for all c there exists k > 0 such that f(n) ≥ cg(n)
for all n ≥ k. We use the asymptotic notations in probability OP(·). That is, for a positive sequence {an}n≥1 and a
non-negative random variable sequence {Xn}n≥1, we say Xn = OP(an) if for any δ > 0, there exist Mδ and Nδ such that
P(Xn ≤Mδan) ≥ 1− δ, ∀n ≥ Nδ . The definition of ΩP follows similarly.

For a function f ∈ L1(Rd), its Fourier transform is denoted as

F(f)(ω) = (2π)−d/2

∫
Rd

f(x)e−ixTωdx.

Since we assume µT = µS , we use L2(X , dµp) for p ∈ {T, S} to represent the Lebesgue L2 space and abbreviate it as L2

for simplicity when there is no confusion.

B. Foundation of RKHS
B.1. Basic Concept

In this section, we will present some facts about the RKHS that are useful in our proof and refer readers to Wendland (2004)
for more details.

Assume K : X × X → R is a continuous positive definite kernel function defined on a compact set X ⊂ Rd (with
positive Lebesgure measure and Lipschitz boundary). Indeed, every positive definite kernel can be associated with a
reproducing kernel Hilbert space (RKHS). The RKHS, HK , of K are usually defined as the closure of linear space
span{K(·, x), x ∈ X}. In a special case where the kernel function K(x, y) is equal to a translation invariant (stationary)
function Φ(x− y) = K(x, y) with Φ : Rd → R, we can characterize the RKHS of K in terms of Fourier transforms, i.e.

HK(Rd) =

{
f ∈ L2(Rd) ∩ C(Rd) :

F(f)√
F(Φ)

∈ L2(Rd)

}
.

When X is a subset of Rd, such a definition still captures the regularity of functions in HK(X ) via a norm equivalency
result that holds as long as X has a Lipschitz boundary.

For an integer m, we introduce the integer-order Sobolev space, Wm,p(X ). For vector α = (α1, · · · , αd), define |α| =
α1 + · · ·+ αd and D(α) = ∂|α|

∂x
α1
1 ···∂xαd

d

denote the multivariate mixed partial weak derivative. Then

Wm,p(X ) =
{
f ∈ Lp(X ) : D(α)f ∈ Lp(Rd),∀|α| ≤ m

}
,

where m is the smoothness order of the Sobolev space. In this paper, we only consider p = 2 and abbreviate Wm,2(X ) :=
Hm(X ). Later, in Appendix B.2, we will see one can define the Hm via Fourier transform of the reproducing kernel instead
of weak derivative.

We now introduce the power space of an RKHS. For the reproducing kernel K, we can define its integral operator
TK : L2 → L2 as

TK(f)(·) =
∫
T
K(s, ·)f(s)ds.

LK is self-adjoint, positive-definite, and trace class (thus Hilbert-Schmidt and compact). By the spectral theorem for
self-adjoint compact operators, there exists an at most countable index set N , a non-increasing summable positive sequence
{τj}j≥1 and an orthonormal basis of L2, {ej}j≥1 such that the integrable operator can be expressed as

TK(·) =
∑
j∈N

τj⟨·, ej⟩L2
ej .

13
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The sequence {τj}j≥1 and the basis {ej}j≥1 are referred as the eigenvalues and eigenfunctions. The Mercer’s theorem
shows that the kernel K itself can be expressed as

K(x, x′) =
∑
j∈N

τjej(x)ej(x
′), ∀x, x′ ∈ T ,

where the convergence is absolute and uniform.

We now introduce the fractional power integral operator and the composite integral operator of two kernels. For any s ≥ 0,
the fractional power integral operator Ls

K : L2 → L2 is defined as

T s
K(·) =

∑
j∈N

τsj ⟨·, ej⟩L2
ej .

Then the power space [HK ]s is defined as

[HK ]s :=

∑
j∈N

ajτ
s
2
j ej : (aj) ∈ ℓ2(N)


and equipped with the inner product

⟨f, g⟩[HK ]s =
〈
T

− s
2

K (f), T
− s

2

K (g)
〉
L2

.

For 0 < s1 < s2, the embedding [HK ]s2 ↪→ [HK ]s1 exists and is compact. A higher s indicates the functions in [HK ]s

have higher regularity. When HK = Hm with m > d/2, the real interpolation indicates [Hm]s ∼= Hms,∀s > 0.

B.2. Norm Equivalency between RKHS and Sobolev Space

Now, we state the result that connects the general RKHS and Sobolev space.
Lemma B.1. Let K(x, x′) be the translation-invariant kernel and K̃ ∈ L1(Rd). Suppose X has a Lipschitiz boundary, and
the Fourier transform of K has the following spectral density of m, for m ≥ d/2,

c1(1 + ∥ · ∥22)m ≤ F(K)(·) ≤ c2(1 + ∥ · ∥22)m. (2)

for some constant 0 < c1 ≤ c2. Then, the associated RKHS of K, HK(X ), is norm-equivalent to the Sobolev space
Hm(X ).

Hence, we can naturally define the Sobolev space of order m (m > d
2 ) as

Hm(Rd) =
{
f ∈ L2(Rd) ∩ C(Rd) : F(f)(·)(1 + ∥ · ∥22)m ∈ L2(Rd)

}
.

One advantage of this definition over the classical way that involves weak derivatives is it does not require m to be an
integer, and thus one can consider the fractional Sobolev space, i.e. m ∈ R+. Such equivalence also holds on X by applying
the extension theorem (DeVore & Sharpley, 1993). As an implication, let Km,ν denotes the isotropic Matérn kernel (Stein,
1999), i.e.

Km,ν(x; ρ) =
21−ν

Γ(ν)

(√
2ν

∥x∥2
ρ

)ν

Kν

(√
2ν

∥x∥2
ρ

)
,

then the Fourier transform of Km,ν satisfies Equation 2 with m = ν + d
2 , and thus the RKHS associated with Km,ν is norm

equivalent to Sobolev space Hν+ d
2 (Wendland, 2004).

For a reproducing kernel that satisfies (2), we call it a kernel with Fourier decay rate m and denote it as Km. We further
denote its associated RKHS as HKm(X ). The Fourier decay rate m captures the regularity of HKm(X ).

Now, we are ready to define the function space of fS , fT and fδ via the kernel regularity
Assumption B.2 (Smoothness of Target/Source). There exists an m0 ≥ d/2 such that fT and fS belong to HKm0

.
Assumption B.3 (Smoothness of Offset). There exists an m ≥ m0 such that fδ := fT − fS belongs to HKm

.

The proof of all the theoretical results in Section 3 and 4 is built on the assumptions that the true functions are in Sobolev
space. Via the norm equivalency (Lemma B.1), the true functions also reside in RKHSs associated with kernel Km0 and
Km. Therefore, all the theoretical results still hold under Assumption B.2 and B.3.
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C. Target-Only KRR Learning Results
C.1. Proof Scheme

Before formally proving the theoretical results, we first illustrate the main scheme for the proof of Theorem 3.1.

For the given imposed Gaussian kernel K, we define its corresponding integral operator TK : L2(X ) → L2(X ) as

TK(f)(·) =
∫
X
f(x)K(x, ·)dρ(x)

where ρ(x) is the probability measure over X . We also note that the integral operator TK can also be viewed as a bounded
linear operator on HK .

We now consider its empirical version when the sample {(xi, yi)}ni=1 are available. For a x ∈ X , we define the sampling
operator as Kx : HK → R and its adjoint operator K∗

x : R → HK as

Kx : HK → R, f 7→ ⟨f,Kx⟩HK
and K∗

x : R → HK , y 7→ yKx.

Then we can define the empirical version of TK , termed sample covariance operator, as TK,n : HK → HK as

TK,n =
1

n

n∑
i=1

K∗
xi
Kxi .

With these notations, the KRR estimator can be written as

f̂ = (TK,n + λI)−1(
1

n

n∑
i=1

Kxiyi) := (TK,n + λI)−1gn

where gn = 1
n

∑n
i=1Kxi

yi ∈ HK and I is the identical operator. We further define the intermediate term as follows,

fλ := argmin
f∈HK

{
∥(f0 − f)∥2L2

+ λ∥f∥2HK

}
and one can show fλ = (TK + λI)−1TK(f0) = (TK + λI)−1g.

Then by triangle inequality, ∥∥∥f̂ − f0

∥∥∥
L2

≤
∥∥∥f̂ − fλ

∥∥∥
L2︸ ︷︷ ︸

estimation error

+ ∥fλ − f0∥L2︸ ︷︷ ︸
approximation error

.

The following paragraphs discuss the analysis for each of the error terms and how they differ from previous works.

Approximation error. In classical misspecified kernel methods, one typically controls the approximation error via
interpolation/power space technique. Specifically, the intermediate term fλ is placed in [Hα0 ]s while the true function in
Hα0 (here, s denotes the interpolation index). Therefore, one can expand fλ and f0 under the same basis since fλ lies
in the interpolation/power space of Hα0 , which typically controls the approximation error in the form of λs∥f0∥Hα0 and
makes the optimal order of λ in n takes polynomial pattern like Proposition 2.1. This technique is widely used in many
misspecified kernel literature like Theorem A.2 in Zhang et al. (2023) and etc.

However, since in our case, the intermediate term, fλ, lies in the RKHS associated with Gaussian kernels (s needs to be ∞),
one can’t expand fλ and f0 under the same basis and thus such a technique no longer holds. Therefore, the techniques we
used are the Fourier transform of the Gaussian kernel and Plancherel Theorem, which allows us to prove

∥fλ − f0∥2L2
≤ ∥fλ − f0∥2L2

+ λ∥fλ∥2HK
≤ Clog

(
1

λ

)−α0

∥f0∥2Hα0 .

Here, the second inequality is proved via the Plancherel Theorem, see Proposition C.2, and HK denote the RKHS associated
with Gaussian kernels. We also highlight that this is a technical contribution of this paper.
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Estimation error. Regarding the estimation error, we use the standard integral operator techniques origin from Smale &
Zhou (2007) and follow a similar strategy as Fischer & Steinwart (2020); Zhang et al. (2023). While most of the current
work deals with cases where the eigenvalue decay rate is polynomial, we refine the proof to handle the Gaussian kernel case,
whose eigenvalues decay exponentially.

C.2. Proof of Non-adaptive Rate (Theorem 3.1)

In the following proof, we will use C, C1, and C2 to represent constants that could change from place to place. Unless
specifically specified, we also omit the X in the norms or in the inner product notation. We use ∥ · ∥op to denote the operator
norm of a bounded linear operator.

In addition, we denote the effective dimension as

N (λ) = tr((TK + λ)−1TK) =

∞∑
j=1

sj
sj + λ

.

C.2.1. PROOF OF THE APPROXIMATION ERROR

For the approximation error, we can directly apply Proposition C.2, which leads to

∥fλ − f0∥2L2
≤ log(

1

λ
)−α0∥f0∥2Hα0 .

Then selecting log(1/λ) ≍ n
2

2α0+d leads to

∥fλ − f0∥2L2
≤ n−

2α0
2α0+d ∥f0∥2Hα0 .

C.2.2. PROOF OF THE ESTIMATOR ERROR

Theorem C.1. Suppose the Assumption (A1) to (A3) hold and ∥f0∥Lq ≤ Cq for some q. Then by choosing log(1/λ) ≍
n

2
2α0+d , for any fixed δ ∈ (0, 1), when n is sufficient large, with probability 1− δ, we have∥∥∥f̂ − fλ

∥∥∥
L2

≤ ln(
4

δ
)Cn−

α0
2α0+d

where C is a constant proportional to σ.

Proof. First, we notice that ∥∥∥f̂ − fλ

∥∥∥
L2

=
∥∥∥T 1

2

K

(
f̂ − fλ

)∥∥∥
HK

≤
∥∥∥T 1

2

K (TK + λI)
− 1

2

∥∥∥
op︸ ︷︷ ︸

A1

·
∥∥∥(TK + λI)

1
2 (TK,n + λI)

−1
(TK + λI)

1
2

∥∥∥
op︸ ︷︷ ︸

A2

·
∥∥∥(TK + λI)

− 1
2 (gn − (TK,n + λI) fλ)

∥∥∥
HK︸ ︷︷ ︸

A3

For the first term A1, we have

A1 =
∥∥∥T 1

2

K (TK + λI)
− 1

2

∥∥∥
op

= sup
i≥1

(
sj

sj + λ

) 1
2

≤ 1.
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For the second term, using Proposition C.3 with sufficient large n, we have

v :=
N (λ)

n
ln(

8N (λ)

δ

(∥TK∥op + λ)

∥TK∥op
) ≤ 1

8

such that ∥∥∥(TK + λI)
− 1

2 (TK − TK,n) (TK + λI)
− 1

2

∥∥∥
op

≤ 4

3
v +

√
2v ≤ 2

3

holds with probability 1− δ
2 . Thus,

A2 =
∥∥∥(TK + λI)

1
2 (TK,n + λI−1)(TK + λI)

1
2

∥∥∥
op

=

∥∥∥∥((TK + λI)−
1
2 (TK,n + λ) (TK + λI)−

1
2

)−1
∥∥∥∥
op

=

∥∥∥∥(I − (TK + λI)−
1
2 (TK,n − TK) (TK + λI)−

1
2

)−1
∥∥∥∥
op

≤
∞∑
k=0

∥∥∥(TK + λI)−
1
2 (TK − TK,n) (TK + λI)−

1
2

∥∥∥k
op

≤
∞∑
k=0

(
2

3

)k

≤ 3,

For the third term A3, notice∥∥∥(TK + λI)
− 1

2 (gn − (TK,n + λI) fλ)
∥∥∥
HK

=
∥∥∥(TK + λI)

− 1
2 [(gn − TK,n(fλ))− (g − TK(fλ))]

∥∥∥
HK

Using the Proposition C.4, with probability 1− δ
2 , we have

T3 =
∥∥∥(TK + λI)

− 1
2 (gn − (TK,n + λI) fλ)

∥∥∥
HK

≤ Cln(
4

δ
)n−

α0
2α0+d

where C ∝ σ. Combing the bounds for T1, T2 and T3, we finish the proof.

C.2.3. PROOF OF THEOREM 3.1

Based on the bounds of the approximation and estimation error, we finish the proof as follows,∥∥∥f̂ − f0

∥∥∥
L2

≤
∥∥∥f̂ − fλ

∥∥∥
L2

+ ∥fλ − f0∥L2

= OP

{
(σ + ∥f0∥Hα0 )n

− α0
2α0+d

}
.

C.2.4. PROPOSITIONS

Proposition C.2. Suppose fλ is defined as follows,

fλ = argmin
f∈HK(X )

{
∥f − f0∥2L2(X ) + λ∥f∥2HK(X )

}
.

Then, under the regularized conditions, the following inequality holds,

∥fλ − f0∥2L2(X ) + λ∥fλ∥2HK(X ) ≤ Clog

(
1

λ

)−α0

∥f0∥2Hα0 .
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Proof. Since X has Lipschitz boundary, there exists an extension mapping from L2(X ) to L2(Rd), such that the smoothness
of functions in L2(X ) get preserved. Therefore, there exist constants C1 and C2 such that for any function g ∈ Hα0(X ),
there exists an extension of g, ge ∈ Hα0(Rd) satisfying

C1∥ge∥Hα0 (Rd) ≤ ∥g∥Hα0 (X ) ≤ C2∥ge∥Hα0 (Rd).

Denote
fλ,e = argmin

f∈HK(Rd)

{
∥f − f0,e∥2L2(Rd) + λ∥f∥2HK(Rd)

}
Then we have,

∥fλ − f0∥2L2(X ) + λ∥fλ∥2HK(X ) ≤ ∥fλ,e|X − f0∥2L2(X ) + λ∥fλ,e|X ∥2L2(X )

≤ C2

(
∥fλ,e − f0,e∥2L2(Rd) + λ∥fλ,e∥2L2(Rd)

)
.

where fλ,e|X is the restriction of fλ,e on X . By Fourier transform of the Gaussian kernel and Plancherel Theorem, we have

∥fλ,e − f0,e∥2L2(Rd) + λ ∥fλ,e∥2HK(Rd)

=

∫
Rd

|F (f0,e) (ω)−F (fλ,e) (ω)|2 dω + λ

∫
Rd

|F (fλ,e) (ω)|2 exp{C∥ω∥22}dω

=

∫
Rd

(
|F (f0,e) (ω)−F (fλ,e) (ω)|2 + λ |F (fλ,e) (ω)|2 exp{C∥ω∥22}

)
dω

=

∫
Rd

λexp{C∥ω∥22}
1 + λexp{C∥ω∥22}

|F (f0,e) (ω)|2 dω

≤
∫
Ω

λexp{C(1 + ∥ω∥22)}
1 + λexp{C(1 + ∥ω∥22)}

|F (f0,e) (ω)|2 dω +

∫
ΩC

λexp{C(1 + ∥ω∥22)}
1 + λexp{C(1 + ∥ω∥22)}

|F (f0,e) (ω)|2 dω

≤
∫
Ω

λexp{C(1 + ∥ω∥22)} |F (f0,e) (ω)|2 dω +

∫
ΩC

|F (f0,e) (ω)|2 dω

where Ω = {ω : λexp{C(1 + ∥ω∥22)} < 1} and ΩC = Rd\Ω, and the third equality follows the definition of f∗e . Over ΩC ,
we notice that

(1 + ∥ω∥22) ≥
1

C
log

(
1

λ

)
=⇒ Cα0 log

(
1

λ

)−α0

(1 + ∥ω∥22)α0 ≥ 1.

Over Ω, we first note that the function h(ω) = exp{C(1+ ∥ω∥22)}/(1+ ∥ω∥22)α0 reaches its maximum Cα0λ−1log( 1λ )
−α0

if λ satisfies λ < exp{−α0} and λlog( 1λ )
α0 ≤ Cα0exp{−C}. One can verify when λ → 0 as n → 0, the two previous

inequality holds. Then

λexp{C(1 + ∥ω∥22)} ≤ Cα0 log

(
1

λ

)−α0

(1 + ∥ω∥22)α0 ∀ω ∈ Ω.

Combining the inequality over Ω and ΩC ,

∥f∗e − f0,e∥2L2(Rd) + λ ∥f∗e ∥
2
HK(Rd)

≤
∫
Ω

λexp{C(1 + ∥ω∥22)} |F (f0,e) (ω)|2 dω +

∫
ΩC

|F (f0,e) (ω)|2 dω

≤Cα0 log

(
1

λ

)−α0
∫
Rd

(1 + ∥ω∥22)α0 |F(f0,e)(ω)|2dω

=Cα0 log

(
1

λ

)−α0

∥f0,e∥2Hα0 (Rd)

≤C
′
log

(
1

λ

)−α0

∥f0∥2Hα0 (X )

which completes the proof.
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Proposition C.3. For all δ ∈ (0, 1), with probability at least 1− δ, we have∥∥∥(TK + λI)
− 1

2 (TK − TK,n) (TK + λI)
− 1

2

∥∥∥
op

≤ 4N (λ)B

3n
+

√
2N (λ)

n
B

where

B = ln(
4N (λ)

δ

(∥TK∥op + λ)

∥TK∥op
).

Proof. Denote Ai = (TK + λI)−
1
2 (TK − TK,xi

)(TK + λI)−
1
2 , applying Lemma C.7, we get

∥Ai∥op ≤
∥∥∥(TK + λI)

− 1
2 TK,x (TK + λI)

− 1
2

∥∥∥
op

+
∥∥∥(TK + λI)

− 1
2 TK,xi (TK + λI)

− 1
2

∥∥∥
op

≤ 2E2
KN (λ)

Notice
EA2

i ⪯ E
[
(TK + λI)

− 1
2 TK,xi

(TK + λI)
− 1

2

]2
⪯ E2

KN (λ) E
[
(TK + λI)

− 1
2 TK,xi

(TK + λI)
− 1

2

]
= E2

KN (λ)(TK + λI)−1TK := V

where A ⪯ B denotes B −A is a positive semi-definite operator. Notice

∥V ∥op = N (λ)
∥TK∥op

∥TK∥op + λ
≤ N (λ), and tr(V ) = N (λ)2.

The proof is finished by applying Lemma C.8 to Ai and V .

Proposition C.4. Suppose that Assumptions in the estimation error theorem hold. We have∥∥∥(TK + λI)
− 1

2

(
gn − (TK,n + λI)

−1
fλ

)∥∥∥
HK

≤ Cln(
4

δ
)n−

α0
2α0+d

where C is a constant.

Proof. Denote
ξi = ξ(xi, yi) = (TK + λI)

− 1
2 (Kxi

yi − TK,xi
fλ)

ξx = ξ(x, y) = (TK + λI)
− 1

2 (Kxy − TK,xfλ),

then it is equivalent to show ∥∥∥∥∥ 1n
n∑

i=1

ξi − E ξx

∥∥∥∥∥
HK

≤ Cln(
4

δ
)n−

α0
2α0+d

Define Ω1 = {x ∈ X : |f0| ≤ t} and Ω2 = X\Ω1. We decompose ξi and ξx over Ω1 and Ω2, which leads to∥∥∥(TK + λI)
− 1

2

(
gn − (TK,n + λI)

−1
fλ

)∥∥∥
HK

≤

∥∥∥∥∥ 1n
n∑

i=1

ξiIxi∈Ω1
− E ξxIx∈Ω1

∥∥∥∥∥
HK︸ ︷︷ ︸

I1

+

∥∥∥∥∥ 1n
n∑

i=1

ξiIxi∈Ω2

∥∥∥∥∥
HK︸ ︷︷ ︸

I2

+ ∥E ξxIx∈Ω2
∥HK︸ ︷︷ ︸

I3

.

For I1, applying Proposition C.5, for any δ ∈ (0, 1), with probability 1− δ, we have

I1 ≤ log(
2

δ
)

(
C1

√
N (λ)

n
M̃ +

C2

√
N (λ)√
n

+
C1log(

1
λ )

−α0
2

√
N (λ)

√
n

)
(3)
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where C1 = 8
√
2, C2 = 8σ and M̃ = L + (N (λ) + 1)t. By choosing log(1/λ) ≍ exp{−Cn

2
2α0+d } and applying

Lemma C.6, we have

• for the second term in (3),
C2

√
N (λ)√
n

≍ n−
α0

2α0+d .

• for the third term,
C1log(

1
λ )

−α0
2

√
N (λ)

√
n

≲
C2

√
N (λ)√
n

≍ n−
α0

2α0+d .

• for the first term,

C1

√
N (λ)

n
M̃ ≤

C1L
√

N (λ)

n
+
C1tN (λ)

3
2

n
≲ n−

α0
2α0+d given t ≤ n

2α0−d

2(2α0+d) .

Combining all facts, if t ≤ n
2α0−d

2(2α0+d) , with probability 1− δ we have

I1 ≤ Cln(
2

δ
)n−

α0
2α0+d .

For I2, we have

τn := P

(
I2 >

√
N (λ)√
n

)
≤ P (∃xi s.t. xi ∈ Ω2)

= 1− P (x /∈ Ω2)
n

= 1− P (|f0(x)| ≤ t)
n

≤ 1−
(
1− (Cq)

q

tq

)n

.

Letting τn → 0 leading t≫ n
1
q . That is to say, if t≫ n

1
q holds, we have τn = P (I2 > I1) → 0.

For I3, we have
I3 ≤ E ∥ξxIx∈Ω2

∥HK

≤ E

[∥∥∥(TK + λI)−
1
2K(x, ·)

∥∥∥
HK

|(y − f0(x)) Ix∈Ω2
|
]

≤ E2
KN (λ) E |(y − f0(x)) Ix∈Ω2

|
≤ E2

KN (λ) (E |(fλ − f0(x)) Ix∈Ω2
|+ E |ϵIx∈Ω2

|)
Using Cauchy-Schwarz inequality yields

E |(fλ − f0(x)) Ix∈Ω2
| ≤ ∥f0 − fλ∥L2

P (x ∈ Ω2) ≤ log(
1

λ
)−

α0
2 (Cq)

qt−q

In addition, we have
E |ϵIx∈Ω2 | ≤ σE |Ix∈Ω2 | ≤ σ(Cq)

qt−q.

Together, we have

I3 ≤ log(
1

λ
)−

α0
2 (Cq)

qt−q + σ(Cq)
qt−q.

Notice if we pick q ≥ 2(2α0+d)
2α0−d , there exist t such that with probability 1− δ − τn, we have

I1 + I2 + I3 ≤ Cln(
2

δ
)n−

α0
2α0+d .

For fixed δ, as n→ ∞, τn is sufficiently small such that τn = o(δ), therefore without loss of generality, we can say with
probability 1− δ − τn, we have

I1 + I2 + I3 ≤ Cln(
2

δ
)n−

α0
2α0+d .
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Proposition C.5. Under the same conditions as the Proposition, we have∥∥∥∥∥ 1n
n∑

i=1

ξiIxi∈Ω1 − E ξxIx∈Ω1

∥∥∥∥∥
HK

≤ log(
2

δ
)

(
C1

√
N (λ)

n
M̃ +

C2

√
N (λ)√
n

+
C1log(

1
λ )

−α0
2

√
N (λ)

√
n

)

where C1 = 8
√
2, C2 = 8σ and M̃ = L+ (N (λ) + 1)t.

Proof. In order to use Bernstein inequality (Lemma C.9), we first bound the m-th moment of ξxIx∈Ω1 .

E ∥ξxIx∈Ω1∥
m
HK

= E
∥∥∥(TK + λI)

− 1
2 Kx (y − fλ(x)) Ix∈Ω1

∥∥∥m
HK

≤ E

(∥∥∥(TK + λI)
− 1

2 K(x, ·)
∥∥∥m
HK

E (|(y − fλ(x)) Ix∈Ω1
|m | x)

)
.

Using the inequality (a+ b)m ≤ 2m−1 (am + bm), we have

|y − fλ(x)|m ≤ 2m−1
(∣∣fλ(x)− f∗ρ (x)

∣∣m +
∣∣f∗ρ (x)− y

∣∣m)
= 2m−1

(∣∣fλ(x)− f∗ρ (x)
∣∣m + |ϵ|m

)
.

Combining the inequalities, we have

E ∥ξxIx∈Ω1
∥mHK

≤ 2m−1 E

(∥∥∥(TK + λI)
− 1

2 K(x, ·)
∥∥∥m
HK

∣∣(fλ(x)− f∗ρ (x)
)
Ix∈Ω1

∣∣m)︸ ︷︷ ︸
B1

+ 2m−1 E

(∥∥∥(TK + λI)
− 1

2 K(x, ·)
∥∥∥m
HK

E (|ϵIx∈Ω1
|m | x)

)
︸ ︷︷ ︸

B2

.

We first focus on B2, by Lemma C.7, we have

E
∥∥∥(TK + λI)

− 1
2 K(x, ·)

∥∥∥m
HK

≤
(
E2

KN (λ)
)m

2 .

By the error moment assumption, we have

E (|ϵIx∈Ω1
|m | x) ≤ E (|ϵ|m | x) ≤ 1

2
m!σ2Lm−2,

together, we have

B2 ≤ 1

2
m!
(√

2σ
√

N (λ)
)2

(2LN (λ))
m−2

. (4)

Turning to bounding B1, we first have

∥(fλ − f0)Ix∈Ω1
∥L∞

≤ ∥fλIx∈Ω1
∥L∞

+ ∥f0Ix∈Ω1
∥L∞

≤
∥∥(TK + λI)−1TK(f0)Ix∈Ω1

∥∥
L∞

+ ∥f0Ix∈Ω1
∥L∞

≤
(∥∥(TK + λI)−1TK

∥∥
op

+ 1
)
∥f0Ix∈Ω1

∥L∞

≤ (N (λ) + 1) t :=M.

With bounds on approximation error, we get the upper bound for B1 as

B1 ≤ 2m−1N (λ)
m
2 ∥(fλ − f0)Ix∈Ω1

∥m−2
L∞

∥(fλ − f0)Ix∈Ω1
∥2L2

≤ 2m−1N (λ)
m
2 Mm−2log(

1

λ
)−α0

≤ 1

2
m!

(
2log(

1

λ
)−

α0
2

√
N (λ)

)2 (
2M
√
N (λ)

)m−2

.

(5)
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Denote
L̃ = 2(L+M)

√
N (λ)

σ̃ =
√
2σ
√
N (λ) + 2log(

1

λ
)−

α0
2

√
N (λ)

and combine the upper bounds for B1 and B2, i.e. (5) and (4), then we have

E ∥ξxIx∈Ω1
∥mHK

≤ 1

2
m!σ̃2L̃m−2.

The proof is finished by applying Bernstein inequality i.e. Lemma C.9.

C.2.5. AUXILIARY LEMMA

Lemma C.6. If sj = C1 exp(−C2j
2), by choosing log(1/λ) ≍ n

2
2α0+d , we have

N (λ) = O
(
n

d
2α0+d

)
Proof. For a positive integer J ≥ 1

N (λ) =

J∑
j=1

sj
sj + λ

+

∞∑
j=J+1

sj
sj + λ

≤ J +

∞∑
j=J+1

sj
sj + λ

≤ J +
C1

λ

∫ ∞

J

exp{−C2x
2}dx

≤ J +
1

λ

C1exp{−C2J
2}

2C2J

where we use the fact that the eigenvalue of the Gaussian kernel decays at an exponential rate, i.e. sj ≤ C1 exp{−C2j
2}

and the inequality ∫ ∞

x

exp{−t
2

2
}dt ≤

∫ ∞

x

t

x
exp{−t

2

2
}dt ≤

exp{−x2

2 }
x

.

Then select J = ⌊n
d

2α0+d ⌋ and λ = exp{−C ′
n

2
2α0+d } with C ′ ≤ C2 leads to

N (λ) = O
(
n

d
2α0+d

)
.

Lemma C.7. For µ-almost x ∈ X , we have∥∥∥(TK + λI)
− 1

2 K(x, ·)
∥∥∥2
HK

≤ E2
KN (λ), and E

∥∥∥(TK + λI)
− 1

2 K(x, ·)
∥∥∥2
HK

≤ N (λ).

For some constant EK . Consequently, we also have∥∥∥(TK + λI)
− 1

2 TK,x (TK + λI)
− 1

2

∥∥∥
op

≤ E2
KN (λ).

Proof. We first state a fact on the Gaussian kernel. If K is a Gaussian kernel function with fixed bandwidth, then there
exists a constant EK such that the eigenfunction of K is uniformly bounded for all j ≥ 1, i.e. supj≥1 ∥ej∥L∞ ≤ EK . This
is indeed the so-called “uniformly bounded eigenfunction” assumption that usually appears in nonparametric regression
literature, especially for those who consider misspecified kernel in KRR, see Mendelson & Neeman (2010); Wang & Jing
(2022). Based on the explicit construction of the RKHS associated with the Gaussian kernel (Steinwart et al., 2006), we
know the uniformly bounded eigenfunction holds for the Gaussian kernel.
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Based on the fact of uniformly bounded eigenfunction, we know e2j (x) ≤ E2
K for all x ∈ X and j ≥ 1. Then, we prove the

first inequality by the following procedure,

∥∥∥(TK + λI)
− 1

2 K(x, ·)
∥∥∥2
HK

=

∥∥∥∥∥∥
∑
j=1

1√
sj + λ

sjej(x)ej(·)

∥∥∥∥∥∥
2

HK

=

∞∑
j=1

sj
sj + λ

e2j (x)

≤ E2
KN (λ).

The second inequality follows given the fact that E e2j (x) = 1. The third inequality comes from the observation that for any
f ∈ HK

(TK + λI)
− 1

2 TK,x (TK + λI)
− 1

2 (f) =
〈
(TK + λI)

− 1
2 K(x, ·), f

〉
HK

(TK + λI)
− 1

2 K(x, ·)

and ∥∥∥(TK + λI)
− 1

2 TK,x (TK + λI)
− 1

2

∥∥∥
op

= sup
∥f∥Hk

=1

∥ (TK + λI)
− 1

2 TK,x (TK + λI)
− 1

2 (f)∥HK

=
∥∥∥(TK + λI)

− 1
2 K(x, ·)

∥∥∥2
HK

The following lemma provides the concentration inequality about self-adjoint Hilbert-Schmidt operator-valued random
variables, which is widely used in related kernel method literature, e.g., Theorem 27 in Fischer & Steinwart (2020), Lemma
26 in Lin & Cevher (2020) and Lemma E.3 in Zhang et al. (2023).

Lemma C.8. (Lemma E.3 in Zhang et al. (2023)) Let (X ,B, µ) be a probability space, and H be a separable Hilbert
space. Suppose A1, · · · , An are i.i.d. random variables whose values in the set of self-adjoint Hilbert-Schmidt operators. If
EAi = 0 and the operator norm ∥Ai∥ ≤ L µ-a.e. x ∈ X , and there exists a self-adjoint positive semi-definite trace class
operator V with EA2

i ⪯ V . Then for δ ∈ (0, 1), with probability at least 1− δ, we have∥∥∥∥∥ 1n
n∑

i=1

Ai

∥∥∥∥∥ ≤ 2Lβ

3n
+

√
2∥V ∥β
n

,

where β = log(4tr(V )/δ∥V ∥).
Lemma C.9. (Bernstein inequality) Let (Ω,B, P ) be a probability space, H be a separable Hilbert space, and ξ : Ω → H
be a random variable with

E ∥ξ∥mH ≤ 1

2
m!σ2Lm−2

for all m > 2. Then for δ ∈ (0, 1), ξi are i.i.d. random variables, with probability at least 1− δ, we have∥∥∥∥∥ 1n
n∑

i=1

ξi − E ξ

∥∥∥∥∥
H

≤ 4
√
2 log

(
2

δ

)(
L

n
+

σ√
n

)

C.3. Proof of Adaptive Rate (Theorem 3.3)

Proof. To simplify the notation, for a given smoothness α and sample size n, we define

ψn(α) =

(
n

log n

)− 2α
2α+d

.
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First, we show that it is sufficient to consider the true Sobolev space α in A = {α1, · · · , αN} with αj − αj−1 ≍ 1/ log n.
If α0 ∈ (αj−1, αj), then Hαj ⊂ Hα0 ⊂ Hαj−1 . Therefore, since ψn(α0) is squeezed between ψn(αj−1) and ψn(αj), we
just need to show ψn(αj−1) ≍ ψn(αj). By the definition of ψn(α), the claim follows since

log
ψn(αj−1)

ψn(αj)
=

(
− 2αj−1

2αj−1 + d
+

2αj

2αj + d

)
log

n

log n
≍ (αj − αj−1) log n ≍ 1.

Therefore, we assume f0 ∈ Hαi where i ∈ {1, 2, · · · , N}.

Let m = ⌊n
2 + 1⌋, i.e. m ≥ n

2 , by Theorem 3.1, for some constants C that doesn’t depend on n, we have

E(f̂λα,D1
) ≤

(
log

4

δ

)2

(E(λα,m) + A(λα,m)) (6)

for all α ∈ A simultaneously with probability at least 1 − Nδ. Here, E(λ, n) and A(λ, n) denote the estimation and
approximation error that depends on the regularization parameter λ and sample size n in non-adaptive rate proof.

Furthermore, by Theorem 7.2 in Steinwart & Christmann (2008) and Assumption 2.5, we have

E(f̂λα̂
) < 6

(
inf
α∈A

E(f̂λα
)

)
+

128σ2L2
(
log 1

δ + log(1 +N)
)

n−m

< 6

(
inf
α∈A

E(f̂λα
)

)
+

512σ2L2
(
log 1

δ + log(1 +N)
)

n

(7)

with probability 1− δ, where the last inequality is based on the fact that n−m ≥ n
2 − 1 ≥ n

4 .

Combining (6) and (7), we have

E(f̂λα̂
) < 6

(
log

4

δ

)2(
inf
α∈A

E(λα,m) + A(λα,m)

)
+

512σ2L2
(
log 1

δ + log(1 +N)
)

n

≤ 6C

(
log

4

δ

)2

m− 2α0
2α0+d +

512σ2L2
(
log 1

δ + log(1 +N)
)

n

≤ 12C

(
log

4

δ

)2

n−
2α0

2α0+d +
512σ2L2

(
log 1

δ + log(1 +N)
)

n

with probability at least 1− (1 +N)δ. With a variable transformation, we have

E(f̂λα̂
) ≤ 12C

(
log

4(1 +N)

δ

)2

n−
2α0

2α0+d +
512σ2L2

(
log 1+N

δ + log(1 +N)
)

n
(8)

with probability 1− δ. Therefore, for the first term

12C

(
log

4(1 +N)

δ

)2

n−
2α0

2α0+d ≤ 24C

{(
log

4

δ

)2

log2(1 +N) + 1

}
n−

2α0
2α0+d

≤ 24C ′
(
log

4

δ

)2(
n

log n

)− 2α0
2α0+d

+ 24Cn−
2α0

2α0+d

(9)

where the first inequality is based on the fact that a+ b < ab+ 1 for a, b > 1, while the second inequality is based on the
fact that log(x) ≤ x

α0
2α0+d for some n such that log(log n)/ log n < 1/4. For the second term,

512σ2L2
(
log 1+N

δ + log(1 +N)
)

n
≤

512σ2L2
(
log 1

δ + 1 + 2 log(1 +N)
)

n

≤
512σ2L2

(
log 1

δ + 1 + 2 log n
)

n

(10)

The proof is finished by combining (8), (9) and (10).
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C.4. Comparison to Previous Work

In Table 1, we compare our results with some state-of-the-art works (to the best of our knowledge) that consider gen-
eral/Matérn misspecified kernels and Gaussian kernels in target-only setting KRR. For a detailed review of the optimality of
misspecified KRR, we refer readers to Zhang et al. (2023).

Wang & Jing (2022) considered the true function lies in Hα0 while the imposed kernels are misspecified Matérn kernels.
On the other hand, Zhang et al. (2023) considered the minimax optimality for misspecified KRR in general RKHS, i.e.,
the imposed kernel is K while the true function f0 ∈ [HK ]s for s ∈ (0, 2]. However, when the RKHS is specified as
the Sobolev space, the results in both papers are equivalent by applying the real interpolation technique in Appendix B.
Therefore, we place them in the same row. Unlike the necessary conditions that the imposed RKHS must fulfill α′

0 > α0/2
to achieve optimality (Wang & Jing, 2022; Zhang et al., 2023), our results circumvent this requirement, thereby being more
robust. Compared to other works on Gaussian kernel-based KRR, our result shows that the optimality can be achieved only
via a fixed bandwidth Gaussian kernel.

We would like to note that our statistical rates and Eberts & Steinwart (2013); Hamm & Steinwart (2021) might not be
directly comparable. Our results are derived under bounded moment assumption, i.e., Assumption 2.5, while results of
Eberts & Steinwart (2013); Hamm & Steinwart (2021) are derived from bounded response assumption, i.e., there exists a
constant such that Y ∈ [−M,M ]. Moreover, Hamm & Steinwart (2021) considers a broader space (Besov space) and both
regression/classification problems, while whether these hold on fixed bandwidth settings is still unknown. Although with
slightly different settings, the table highlights the difference in optimal order of λ (and γ) for fixed and variable bandwidth
settings.

Table 1. Comparison of generalization error convergence rate (non-adaptive) between our result and the prior literature. Here, we assume
the mean function f0 belongs to Sobolev space Hα0 , imposed RKHS means the RKHS that f̂ belongs to. “−” in column γ means the
bandwidth is fixed during training and does not have an optimal order in n. HK means the RKHS associated with the Gaussian kernel
while Hα′

0 means the Sobolev space with smoothness order α′
0.

Paper Imposed RKHS Rate λ γ

Wang & Jing (2022), Zhang et al. (2023) Hα′
0 , α′

0 >
α0

2 n−
2α0

2α0+d n−
2α′

0
2α0+d −

Eberts & Steinwart (2013) HK n−
2α0

2α0+d+η,∀η > 0 n−1 n−
1

2α0+d

Hamm & Steinwart (2021) HK n−
2α0

2α0+d logd+1(n) n−1 n−
1

2α0+d

This work HK n−
2α0

2α0+d exp{−Cn
2

2α0+d } −

D. Smoothness Adaptive Transfer Learning Results
D.1. Proof of Lower Bound

In this part, we proof the alternative version for the lower bound, i.e.

inf
f̃

sup
Θ(h,m0,m)

P
(
∥f̃ − fT ∥2L2

≥ CδR2
(
(nS + nT )

− 2m0
2m0+d + n

− m
2m+d

T ξL

))
≥ 1− δ

for some constant C that are independent of nS , nT , R, h and δ, and ξL ∝ h2/R2.

This alternative form is also used to prove the lower bound in other transfer learning contexts like high-dimensional linear
regression or GLM, see Li et al. (2022); Tian & Feng (2022). However, the upper bound we derive for SATL can still be

sharp since in the transfer learning regime, it is always assumed nS ≫ nT , and leads to (nS + nT )
− 2m0

2m0+d ≍ n
− 2m0

2m0+d

S .

On the other hand, one can modify the first phase in OTL by including the target dataset to obtain f̂S , which produces

an alternative upper bound (nS + nT )
− 2m0

2m0+d + n
− 2m

2m+d

T ξL, and mathematically aligns with the alternative lower bound
we mention above. However, we would like to note that such a modified OTL is not computationally efficient for transfer
learning since for each new upcoming target task, OTL needs to recalculate a new f̂S with the combination of the target and
source datasets.
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Note that any lower bound for a specific case will immediately yield a lower bound for the general case. Therefore, we
consider the following two cases.

(1) Consider h = 0, i.e. both source and target data are drawn from ρT . In this case, the problem can be viewed as obtaining
the lower bound for classical nonparametric regression with sample size nT + nS and prediction function as fT ∈ Hm0

with ∥fT ∥Hm0 ≤ R. Then using the Proposition D.1, we have

inf
f̃

sup
Θ(h,m0,m)

P
(
∥f̃ − fT ∥2L2

≥ C1δR
2(nT + nS)

− 2m0
2m0+d

)
≥ 1− δ,

where C1 is independent of δ, R, nS and nT .

(2) Consider fS = 0, i.e. the source model has no similarity to fT and all the information about fT is stored in the target
dataset. By the assumptions, we have fT ∈ {f : f ∈ Hm, ∥f∥Hm ≤ h}. Again, using the Proposition D.1, we have

inf
f̃

sup
Θ(h,m0,m)

P
(
∥f̃ − fT ∥2L2

≥ C2δh
2(nT )

− 2m
2m+d

)
≥ 1− δ,

where C2 is independent of δ, h, and nT .

Combining the lower bound in case (1) and case (2), we obtain the desired lower bound.

Discussion. Here, we prove the asymptotic lower bound as

ΩP

(
R2(nT + nS)

− 2m0
2m0+d + h2(nT )

− 2m
2m+d

)
. (11)

By factoring out the R2, we obtain the form in Theorem 4.1, i.e.,

ΩP

(
(nT + nS)

− 2m0
2m0+d + ξL(nT )

− 2m
2m+d

)
, (12)

where the constant should be proportional to R2. We present the results in form (12) instead of the form (11) as we would
like to emphasize how the transfer dynamic and efficacy depend on both h and R, compared to the form (1) in most existing
OTL works. The constant ξU in the upper bound is designed in the same philosophy.

D.2. Proof of Upper Bound

The final estimator for target regression function is f̂T = f̂S + f̂δ . By triangle inequality

∥∥∥f̂T − fT

∥∥∥
L2

≤
∥∥∥f̂S − fS

∥∥∥
L2

+
∥∥∥f̂δ − fδ

∥∥∥
L2

(13)

For the first term in the r.h.s. of (13), since the marginal distribution over X are equivalent for both target and source,
applying Theorem 3.3 directly leads to with probability at least 1− δ

∥∥∥f̂S − fS

∥∥∥
L2

≤ C

(
log

4

δ

)
·
(

nS
log nS

)− m0
2m0+d

,

where C is independent of nS and δ, and proportional to
√
σ2
S + ∥fS∥2Hm0 and thus

√
σ2
S +R2.

For the second term, we modify the proof of Theorem 1 with the same logic. Note that the estimated offset function has the
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following expression

f̂δ = (TK,nT
+ λ2I)

−1

(
1

nT

nT∑
i=1

KxT,i

(
yT,i − f̂S(xT,i)

))

= (TK,nT
+ λ2I)

−1

(
1

nT

nT∑
i=1

KxT,i

(
fS(xT,i)− f̂S(xT,i) + fδ(xT,i) + ϵT,i

))

= (TK,nT
+ λ2I)

−1

(
1

nT

nT∑
i=1

KxT,i

(
fS(xT,i)− f̂S(xT,i)

))
︸ ︷︷ ︸

f̂δ1

+ (TK,nT
+ λ2I)

−1

(
1

nT

nT∑
i=1

KxT,i
(fδ(xT,i) + ϵT,i)

)
︸ ︷︷ ︸

f̂δ2

.

We decompose the estimated offset function f̂δ into f̂δ1 and f̂δ2 since in the second phase, we are using estimated source
function f̂S to generate pseudo label instead of the true source function. Therefore, the term f̂δ1 counts the introduced bias
of using the estimated version of fS . By triangle inequality, one has∥∥∥f̂δ − fδ

∥∥∥
L2

≤
∥∥∥f̂δ1∥∥∥

L2︸ ︷︷ ︸
D1

+
∥∥∥f̂δ2 − fδ

∥∥∥
L2︸ ︷︷ ︸

D2

.

For D2, since the label is observed from true offset function fδ with noise, we can directly apply Theorem 3.3. Define the
intermediate term fδ,λ as

fδ,λ = (TK + λ2I)
−1

(TK(fδ))

To control the approximation error, using Proposition C.2 with the fact that ∥fδ∥Hm ≤ h, we have

∥fδ,λ − fδ∥2L2
≤ log(

1

λ2
)−mh2.

For estimation error, the same proof the same proof procedure of Theorem C.1 can be directly applied. Finally, by applying
Theorem 3.3, we have

D2 =
∥∥∥f̂δ2 − fδ

∥∥∥
L2

≤ C

(
log

4

δ

)
·
(

nT
log nT

)− m
2m+d

.

where C is independent of nT and δ, and proportional to
√
σ2
T + ∥fδ∥2Hm and thus

√
σ2
T + h2.

Turning to D1, ∥∥∥f̂δ1∥∥∥
L2

=
∥∥∥(TK,nT

+ λ2I)
−1
(
TK,nT

(
fS − f̂S

))∥∥∥
L2

≤
∥∥∥(TK,nT

+ λ2I)
−1
TK,nT

∥∥∥
op

∥∥∥fS − f̂S

∥∥∥
L2

≤
∥∥∥fS − f̂S

∥∥∥
L2

.

For the second inequality, we used the fact that the upper bound of the largest eigenvalue of (TK,nT
+ λ2I)

−1
TK,nT

is
bounded by 1.

Finally, the proof is finished by combining the result of f̂S and f̂δ and noticing the results hold with probability at least
(1− δ) · (1− δ) ≥ 1− 2δ.

D.3. Propositions

Proposition D.1 (Lower bound for target-only KRR). In target-only KRR problem, suppose the observed data are
{(xi, yi)}ni=1 and the underlying true function f0 ∈ {f ∈ Hm0 : ∥f∥Hm0 ≤ R} := Bm0(R). Then, when n is sufficiently
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large, one has

inf
f̃

sup
f∈Bm0 (R)

P
(
∥f̃ − f∥2L2

≥ Cδn− 2m0
2m0+d

)
≥ 1− δ,

where the constant C is proportional to R2 and independent of δ and n.

Remark D.2. The proof for the lower bound in target-only KRR is standard and can be found in many works. However,
while most of the works omit the property of constant C, we prove it is proportional to R2.

Proof. For every f ∈ Bm0(R), define the probability distribution Pf on X × Y so that y = f(x) + ϵ, where ϵ ∼ N(0, σ̄2)
and σ̄ = min(σ, L). Such form of σ̄ ensures the Assumption 2.5 holds.

We construct a series function, term f0, f1, · · · , fN ∈ Bm0(R), as follows,

fi =
C0√
M

2M∑
k=M+1

θ
(i)
k T

1
2

K(ϕk).

Here, K denotes the reproducing kernel of Hm0 and ϕk represents the k-th eigenfunction. We set M the smallest integer
great than n

d
2m0+d , and θ(0), θ(1), · · · , θ(N) ∈ {0, 1}M for some N ≥ 2M/8 such that the for all 0 ≤ i ≤ j ≤ N , the

Hamming distance between θ(i) and θ(j) greater than M/8. One can then verify fi ∈ Bm0(R)

∥fi∥2Hm0 =

2N∑
i=N+1

(θ
(i)
k−NC0)

2

N

∥∥∥T 1
2

K(ϕi)
∥∥∥2
Hm0

≤ R2,

by having C0 ≤ R.

Denote sj as the j-th eigenvalue of K and by the properties of Sobolev space, we have

C1j
− 2m0

d ≤ sj ≤ C2j
− 2m0

d , ∀j ≥ 1,

where C1 and C2 are some constants.

With Lemma D.4,

KL(Pn
fi , P

n
fj ) =

n

2σ̄2
∥fi − fj∥L2

≤ n

2σ̄2

C2
0

M
sMH(θ(i), θ(j))

≤ n

2σ̄2
C2

0sM

≤ C2C0
n

2σ̄2
M− 2m0

d ,

where the first inequality use the fact that sM ≥ · · · , s2M , the second inequality based on the fact that θ(i) and θ(j) are
elements in {0, 1}M , and the third inequality based on the property of the eigenvalue of K. Notice we take M the smallest
integer great than n

d
2m0+d , for a fixed a ∈ (0, 1/8), letting

KL(Pn
fi , P

n
fj ) ≤ C2C

2
0

n

2σ̄2
M− 2m0

d ≤ C2
C2

0

2σ̄2
M ≤ a

log 2

8
M ≤ a logN,

leads to

C2C
2
0

σ̄2
≤ a

log 2

4
.
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Besides,

∥fi − fj∥2L2
=
C2

0

M

2M∑
k=M+1

(
θ
(i)
k − θ

(j)
k

)2
sk

≥ C2
0

M
s2MH

(
θ
(i)
k , θ

(j)
k

)
≥ C2

0

8
s2M

≥ C2
0C1

8
(2M)−

2m0
d

≥ C2
0C1

8
2−

2m0
d n−

2m0
2m0+d ,

where the second inequality is based on Lemma D.5.

To use Lemma D.3, we set C0 = αR
√
a for some positive α, thus for any fixed R and a ∈ (0, 1/8), we can choose an α

such that

C0 ≤ R and C2
0 ≤ σ̄2

4

log 2

C2
a

are satisfied. Therefore, by applying Lemma D.3,w e have

inf
f̃

sup
f∈Bm0 (R)

P
(
∥f̃ − f∥2L2

≥ C ′R2an−
2m0

2m0+d

)
≥

√
N

1 +
√
N

(
1− 2a−

√
2a

logN

)
,

where C ′ = (α22−
2m0
d C1)/8. When n is sufficiently large so that N is sufficiently large, the L.H.S. of the above inequality

holds a probability greater than 1− 3a. For δ ∈ (0, 1), choose a = δ/3 completes the proof.

D.4. Lemma

We provide some Lemma that are important for proving the lower bound. All these lemmas are standard for proving the
lower bound and can be found in extensive works.

Lemma D.3. Suppose that there is a non-parametric class of functions Θ and a (semi-)distance d(·, ·) on Θ. {Pθ, θ ∈ Θ} is
a family of probability distributions indexed by Θ. Assume that N ≥ 2 and suppose that Θ contains elements θ0, θ1, · · · , θN
such that,

(1) d (θj , θk) ≥ 2s > 0, ∀0 ≤ j < k ≤ N ;

(2) Pj ≪ P0, ∀j = 1, · · · , N , and

1

N

N∑
j=1

K (Pj , P0) ≤ a logN,

with 0 < a < 1/8 and Pj = Pθj , j = 0, 1, · · · , N . Then

inf
θ̂

sup
θ∈Θ

Pθ(d(θ̂, θ) ≥ s) ≥
√
N

1 +
√
N

(
1− 2a−

√
2a

logN

)
.

Lemma D.4. Suppose that µ is a distribution on X and fi ∈ L2(X , µ). Suppose that

y = fi(x) + ϵ, i = 1, 2,

where ϵ ∼ N (0, σ2) are independent Gaussian random error. Denote the two corresponding distributions on X × Y as
ρi, i = 1, 2. The KL divergence of two probability distributions on Ω is

K (P1, P2) :=

∫
Ω

log

(
dP1

dP2

)
dP1,
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if P1 ≪ P2 and otherwise K (P1, P2) := ∞. Then we have

KL (ρn1 , ρ
n
2 ) = nKL (ρ1, ρ2) =

n

2σ2
∥f1 − f2∥2L2(X ,dµ) ,

where ρni denotes the independent product of n distributions ρi, i = 1, 2.

Lemma D.5 (Varshamov-Gilbert bound (Varshamov, 1957)). Denote Ω = {ω = (ω1, · · · , ωM ) , ωi ∈ {0, 1}} = {0, 1}M .
Let m ≥ 8, there exists a subset

{
ω(0), · · · , ω(M)

}
of Ω such that ω(0) = (0, · · · , 0),

H
(
ω(i), ω(j)

)
:=

M∑
k=1

∣∣∣ω(i)
k − ω

(j)
k

∣∣∣ ≥ M

8
, ∀0 ≤ i < j ≤ N,

and N ≥ 2M/8. Here H
(
ω(i), ω(j)

)
is the Hamming distance between ω(i) and ω(j).

E. Additional Simulation Results
E.1. Additional Results for Target-Only KRR with Gaussian kernels

In Section 5.1, we only present the best lines with the optimal C. In this part, we report the generalization error decay curve
for different C. We report the results in Figure 4. Each subfigure contains 7 different lines that center around the optimal
line. One can see even with different C, the empirical error decay curves are still aligned with the theoretical ones.
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Figure 4. Error decay curves of target-only KRR based on Gaussian kernel, both axes are in log scale. The curves with different colors
correspond to different C and denote the average logarithmic generalization errors over 100 trials. The dashed black lines denote the
theoretical decay rates.

E.2. Additional Details for TL Algorithm Comparison

Implementation of Finite Basis Expansion: Denote the finite basis estimator (FBE) for a regression function as

f̂M (x) =

M∑
j=1

βjBj(x)

where Bj are given finite basis or spline functions with a different order, and M denotes the truncation number, which
generally controls the variance-bias trade-off of the estimator. Then, the transfer learning procedure proposed in Wang et al.
(2016) can be summarized by the following 4 steps.

1. Estimate fS using the FBE and source data, output f̂S,M1

2. Produce the pseudo label ŷT,i using f̂S,M1 and xT,i, obtain the offset estimation as yT,i − ŷT,i.

3. Estimate the offset function using the FBE with {(yT,i − ŷT,i, xT,i)}NT
i=1, output f̂δ,M2

.

4. Return f̂S,M1 + f̂δ,M2 as the estimator for fT .
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Regularization Selection in SATL: In target-only KRR results, for all n, we fixed the constant C and reported the best
generalization error decay curves in Figure 2 and other error decay curves for other Cs in Figure 4. In SATL, one can also
conduct a similar tuning strategy and select the best performer C. However, this can be computationally insufficient. For
example, if one has 40 candidates for C, then there would be a total of 402 constants combinations in a two-step transfer
learning process. Such a problem also appeared in FBE approaches where one needs to tune the optimal M (number of
bases or the degree of B-spline).

Therefore, for each α, we determine the constant C in exp{−Cn−
1

2α+d } via following cross-validation (CV) approach. We
consider the largest sample size in the current setting, i.e., largest nS while estimating the source model and largest nT
while estimating the offset, and the estimate C is obtained by the classical K-fold CV, then the estimated Ĉ is used for all
sample size in the experiments.

Additional Results for different basis in FBE: In this part, we provide a detailed description of the implementation for
the comparison between SATL and FBE in Figure 3a and 3b. In our implementation, we consider the finite basis as (1)
Fourier basis Bj(x) =

√
2cos(π ∗ k ∗ x) (which was used in Wang et al. (2016)) and (2) Bj being the j-th order B-spline.

In Wang et al. (2016), the authors use m1 = m2 = 500, but we notice this will hugely degrade the algorithm performance.
Therefore, we use CV to select m1 and m2 to optimize the FBE algorithm performance.
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