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Abstract
Increasing works for antibody design are emerg-
ing to generate sequences and structures in Com-
plementarity Determining Regions (CDRs), but
problems still exist. We focus on two of them: (i)
authenticity of the generated structure and (ii)
rationality of the affinity maturation, and pro-
pose GEOAB as a solution. In specific, GeoAB-
Designer generates CDR structures with realistic
internal geometries, composed of a generative
geometry initializer (Geo-Initializer) and a po-
sition refiner (Geo-Refiner); GeoAB-Optimizer
achieves affinity maturation by accurately predict-
ing both the mutation effects and structures of
mutant antibodies with the same network archi-
tecture as Geo-Refiner. Experiments show that
GEOAB achieves state-of-the-art performance in
CDR co-design and mutation effect predictions,
and fulfills the discussed tasks effectively.

1. Introduction
Antibodies are immune proteins that can bind to a kind
of antigen protein so as to recognize and neutralize the
pathogen (Basu et al., 2019). There are two heavy chains
and two light chains in an antibody, leading the antibodies
to Y-shaped proteins. In each chain, three variable regions
determine the binding property of the antibody towards the
antigen, which are called Complementarity Determining
Regions (CDRs). Therefore, to design antibodies that bind
to specific antigens with desirable properties, the key prob-
lem is to establish computational approaches to accurately
identify the 3D structures and 1D sequence of the amino
acids in the CDRs because the large combinatorial space
of amino acid types results in infeasible and unaffordable
validation of wet-lab experiments.

Recently, deep learning has revolutionized fields like drug
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discovery and protein design (Jumper et al., 2021; Dauparas
et al., 2022; Lin et al., 2022; 2023). To be specific, increas-
ing works are emerging for antibody design, which consid-
ers antigens and conserved regions (non-CDRs) as context
information, to achieve the co-design of the sequence and
structure of the target CDRs (Kong et al., 2023a; Jin et al.,
2021). Besides, based on the co-design models, the opti-
mization of the antibody by mutating amino acids in the
CDRs to enhance the binding affinity can be realized, which
is called affinity maturation (Cai et al., 2023). Iterative Tar-
get Augmentation (ITA) is proposed to fulfill the affinity
maturation tasks (Yang et al., 2020), by iteratively adding
co-design models’ prediction of the mutant antibodies struc-
tures and sequences with higher affinity predicted by another
pretrained model to the training set and thus to guide and
retrain the co-design models to generate antibodies of high
affinity. However, several problems still exist, and we focus
on two of them: (i) authenticity of the generated structure
and (ii) rationality of the affinity maturation.

To illustrate problem (i), we claim that in the structure de-
sign of the CDRs, these methods usually ignore geometry
constraints of protein structures, such as peptide planar and
inflexible geometries like bond lengths (Robinson et al.,
2014), causing the unrealistic modeling of the CDR struc-
tures. Figure 1 gives an illustration of the distribution gap
between partial inflexible internal geometries (bond length,
angles, and inflexible torsions) and redundant ones (flexi-
ble torsions) of the structures generated by state-of-the-art
methods and real-world proteins (Sec. 5.1 gives details).

For problem (ii), these methods first employ a trained model
with sequences and structures as input to predict the change
in binding free energy (∆∆G) and exploit the ITA algo-
rithm to tackle the optimization. This procedure is irra-
tional due to two problems. First, the used ∆∆G-predictor
requires mutant types’ structures as input, while they are
usually unknown, so it uses predicted structures by meth-
ods like Rosetta programs (Park et al., 2016) as training
instances. However, the generated mutant antibodies by the
co-design models are of different domains from the training
ones, resulting in the unreliability of the predicted ∆∆G
(See Fig. 5 as an example). Secondly, the inaccurate pre-
diction of ∆∆G cannot guide the ITA reliably to generate
antibodies toward affinity maturation targets. The other ap-
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(d) Bond length distribution.

Figure 1: Distribution gap between several internal geometries of true protein structures as a reference and of generated ones.
Jensen–Shannon divergence (JSD) is used as a measurement. (a) gives a sketch of the demonstrated geometries. (b,c,d)
The torsion angle ‘C-N-Cα-C’ is a redundant (flexible) geometry, while the bond angle ‘N-Cα-C’ and length ‘N-Cα’ are
inflexible geometries. Internal geometries obtained from CDR structures generated by MEAN usually deviate from the true
distribution greatly. In comparison, GeoAB narrows the gap and generates more realistic and reasonable CDR structures.

proach for affinity maturation is to enumerate amino acid
types on the points of interest. Previous works show that
multiple-point mutations usually achieve successful affinity
maturation (Sulea et al., 2018), but the enumeration of muta-
tions on multiple points is unaffordable in wet-lab validation.
Therefore, it is urgent to establish an effective computational
method for narrowing down the search space for the task.

To address them, we proposed GEOAB. On antibody CDR
co-design, it can jointly sample CDR sequences and struc-
tures with realistic protein geometry, by using heteroge-
neous residue-level encoder and equivariant atom-level in-
teraction layers and employing energy-informed geometric
constraints. In detail, GeoAB-Designer consists of a ge-
ometry initializer (Geo-Initializer) and a position refiner
(Geo-Refiner). Geo-Initializer is a generative model with
informative prior, which samples the redundant internal
geometries and reconstructs the structures with NeRF (Par-
sons et al., 2005) . Further, Geo-Refiner as GNNs represents
the binding site as hierarchical graphs, in which a high-
level graph models heterogeneous residue-level relations
and a low-level one captures atoms’ interactions consider-
ing mechanics for bond lengths, bond angles, and torsion
angles. Equivariance is ensured in updating the atom posi-
tions. On mutation-based affinity maturation, we propose
a novel structure-aware GeoAB-Optimizer, based on the
proposed network architecture and geometric constraints. It
uses amino acid sequences and the context structures as in-
put, and generates both structures of the CDRs and ∆∆G, to
avoid the problem of domain differences in input CDR struc-
tures. Based on the fact that the representations obtained by
structure-related tasks usually assist energy-related predic-
tion (Jin et al., 2023), we propose a structure-aware joint
training strategy on paired labeled data (with ∆∆G labels)
and unpaired ones. Extensive experiments demonstrate the
superiority of GEOAB in both realistic generation and reli-

able affinity maturation for antibody CDRs.

2. Background
Notations. For a binding complex composed of an antigen-
antibody pair as C, which contains Naa amino acids, there
are Nag amino acids in the antigen and Ncdr and Nncdr

amino acids of a particular CDR and other non-CDRs
in the antibody. We represent their index set by Iag,
Icdr and Incdr according to the sequential orders, where
|Iab| = Nab, |Icdr| = Ncdr and |Incdr| = Nncdr. For a
protein, we consider four backbone atoms for each amino
acid, so one amino acid can be represented by its type
ai ∈ {1, . . . , 20} and atom coordinates of {N, Cα, C,
O} as (xi,1, . . . ,xi,4), where xi,j ∈ R3. Therefore,
C = {(ai,xi,1, . . . ,xi,4)}

Nag+Ncdr+Nncdr

i=1 can be split into
three sets as C = G ∪R∪N , according to the index sets of
antigen, CDR and non-CDR. For each C, Gibbs free energy
of association is the physical quantity used to measure the
binding affinity between antigens and antibodies, denoted
by ∆G = E(C). When mutations occur, C = C(wt) as wild
types will be changed into C(mt) as mutant types, with both
structures and sequences changed. The mutation effect is
usually measured by the change of Gibbs free energy as
∆∆G = E(C(mt))− E(C(wt)).

CDR co-design. For CDR co-design, our goal is to establish
a model to learn the distribution of CDRs conditioned on the
antigens and non-CDRs of the antibodies, i.e. p(R|G ∪ N ).
For realistic structure design, the internal geometries of the
protein structures generated by models should be close to
the true ones that are governed by physicochemical rules.
For example, the planarity of peptide bonds usually con-
strains the torsion angle of ‘O=C-N-Cα’ to be 0, and steric
collisions between atoms lead torsion angles of ϕ and ψ to
fall into defined regions in a graph called the Ramachandran
plot (Agnihotry et al., 2022) (Details in Appendix. A.1 ).
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Muation-based CDR affinity maturation. For affinity
maturation, we aim to develop a model that can generate
C(mt) that satisfies E(C(mt)) − E(C(wt)) < 0, based on
C(wt). Since E(·) is intractable and the mutation data is
limited, one key issue is the reliability of direct prediction
of ∆∆G(C(mt), C(wt)). Otherwise, the maturation is un-
reasonable given an inaccurate evaluation of the mutation
effects. In addition, as a single mutation of amino acid types
may affect the structures on a larger scale, it is also im-
portant to consider the structure flexibility of mutant types,
since their structures are usually unknown. Note that CDRs
make a disproportionately large contribution to the binding
interactions in the antigen-antibody complexes, so we fo-
cus on the mutation effects of points located in the CDRs.
Therefore, the problem can be formulated as to develop
a model q(R(mt)|C(wt)), s.t. ∆∆G(C(mt), C(wt)) < 0 for
R(mt) ∼ q, based on our assumption that the structures of
non-CDRs and antigens are inflexible.

3. Method
3.1. Graph Construction

We denote the antibody-antigen residue graph as heteroge-
neous graph (Vaa; E1, E2, E3), where the nodes are denoted
by the residues with Cα coordinates Vaa = {(ai,xi,2)}Naa

i=1 ,
and the edge sets are composed of three kinds: sequence
edge set E1 obtained by whether the two amino acids are
consecutive in the protein sequence, i.e. (i, j) ∈ E1 if they
are consecutive, intra- and inter-structure edge sets E2 and
E3 obtained by whether the two amino acids are close in
distance and belong to the same/different proteins. For atom
graph (Vat; Eat), the nodes are represented by its atom types
ej ∈ {1, 2, 3, 4} and positions xj as Vat = {(ej ,xj)}4Naa

j=1 ,
and the edge set Eat is constructed according to the chemical
bonds as Figure 1.(a) shows.

3.2. Geo-Refiner
Given the initial states of the backbone atom positions
and amino acid types which are often inaccurate, the Geo-
Refiner both refines the structures of the backbone atoms
and predicts the amino acid types in CDRs. The refinement
process is deterministic and includes two steps: residue-
level encoding and atom-level updating.

Heterogeneous residue-level encoding. In the residue-
level graph (Vaa; E1, E2, E3), we use a simple heterogeneous
GNN to encode the residues. Considering a L-layer hetero-
geneous residue encoder, the formulation of the l-th equiv-
ariant layer can be defined as follows:

h
(l+1)
i =

3∑
k=1

∑
(i,j)∈Ek

MLP
(l)
k

(
[h

(l)
i ;h

(l)
j ; d

(l)
i,j ]
)
;

x
(l+1)
i = x

(l)
i +

3∑
k=1

∑
(i,j)∈Ek

(x
(l)
i − x

(l)
j )(h

(l)
i Wk),

(1)

for 1 ≤ l ≤ L. x(l)
i is i-th node’s updated position of Cα

atom after (l− 1) layers, and x
(1)
i is the initialized Cα posi-

tions which can be obtained by an initializer (see Sec. 3.3).
MLP

(l)
k as a shallow multi-layer perceptron (MLP), en-

codes the i and j nodes’ embeddings and inter distance
d
(l)
i,j = ||x(l)

i − x
(l)
j ||2 as messages, and summation is used

to aggregate messages. Wk projects embeddings of high di-
mension into one. h(1)

i as the input of the GNN, is the initial
embedding of residues, which considers amino acid’s se-
quence position i, types ai, intra-residues’ bond lengths,
angles and torsion angles, and inter-residues’ distances,
angles, and dihedrals. hi = h

(L+1)
i is the output E(3)-

invariant representation, which will be used for updating the
atom representations and other downstream tasks.

Mechanics-informed atom-level updating. In the atom-
level graph (Vat; Eat), atom representations are first encoded
by yi = Emb(ei) + hi, for 1 ≤ i ≤ 4N , where Emb(·)
is a simple lookup table, and hi is the representation of
the residue which the atom belongs to, in Eq. 1. A three-
layer GAT (Veličković et al., 2018) is stacked for atom-level
message passing, as zi = GAT

(
yi, {yj}(i,j)∈Eat

)
.

In position updating, we generalize the graph mechanics
networks (Huang et al., 2022) to binary, ternary, and qua-
ternary interactions, and harness generalized coordinates to
describe the kinematics of the atoms. In specific, for a group
of connected atoms as S = {(zi,xi)}1≤i≤M , position and
velocity in the generalized coordinates as qi and q̇i, and
velocity in global coordinates as ẋi, the updating process is

q̇i =f

 M∑
j=1

zj , g({xj}1≤j≤M )

 q̇
(0)
i ;

ẋi =FK
(
{(q(1)

j , q̇j)}1≤j≤M )
) (2)

where q(1)
j is the initial atom position in generalized coordi-

nates, q̇(0)
i is velocity direction, g(·) obtains the representa-

tion of invariant intra-geometries in the group, f : R3 → R
is an arbitrary MLP, and forward kinematics FK(·) projects
the positions in updated generalized coordinates back to the
global states. We detail how to update the position states in
atom-level interaction layers for the three kinds.

To model the binary interaction with M = 2, we consider
the two connected atoms indexed by (i, j). The two atoms
connected by a chemical bond cannot form a generalized co-
ordinate, and thus we use the global coordinate for updating
the positions. The velocity direction q̇

(0)
i is parallel to the

bond for scaling the bond length, as q̇(0)
i =

xi−xj

||xi−xj ||2 , and
ẋi = q̇i. g(xi,xj) = ||xi − xj ||2 is the bond length. Note
that (i, j) can be commutative, and the binary interaction is
equivalent to vanilla EGNN (Satorras et al., 2021).

To model the ternary interaction with M = 3, we consider
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Figure 2: Workflows of GeoAB-Designer in antibody design task.

the three consecutively connected atoms indexed by (i, j, k).
To update the bond angle θ = θi,j,k, the center atom position
xj is fixed, and q̇

(0)
i =

(xi−xj)×(xk−xj)
||(xi−xj)×(xk−xj)||2 represents

unit angular velocity. g(xi,xj ,xk) = [sin (θ); cos (θ)] is
the angle encoding. The forward kinematics written as
ẋi = xj + rot(q̇i)(xi − xj) − xi model the velocity in
the global coordinates, where rot(q̇i) indicates the rotation
matrix around the direction of q̇i by absolute angle ||q̇i||.
The dynamic updates for atom k are similar.

To model the quaternary interaction with M = 4, the four
consecutively connected atoms are indexed by (i, j, k, l). To
update the torsion angle τ = τi,j,k,l, the atom positions xj

and xk are fixed, and the atoms i and l turn round on the
axis (xj −xk), so that q̇(0)

i =
xj−xk

||xj−xk||2 and q̇
(0)
k = −q̇

(0)
i

are unit torsion angular velocities. g(·) encodes torsion
angles by [sin |τ |; cos |τ |], in which the absolute values of
τ are taken to avoid parity (Jing et al., 2023). The FK(·) is
written as ẋi = xj + rot(q̇i)(xi −xj)−xi for atom i and
ẋl = xk + rot(q̇l)(xl − xk)− xl for atom l.

As each atom may belong to several groups, the final updates
of the positions in the global coordinates are the summation
of all the updates in different groups. Because the binary and
quaternary interaction layers are both linear combinations of
{xi}1≤i≤M , they are E(3)-equivariant (Villar et al., 2023);
The cross product operation in ternary interaction layer leads
it to be roto-translational but not reflectional equivariant
(Geiger & Smidt, 2022), i.e. SE(3)-equivariant. In practice,
we find Geo-Refiner does not need multi-round iterations,
i.e. One-shot prediction achieves comparable performance.

3.3. Geo-Initializer

For antigens and non-CDRs, the structures of ground truth
are used as initial states. For CDRs, linear interpolation

is usually used to initialize atom positions (Kong et al.,
2023a), where the equispaced atoms are distributed accord-
ing to the (min Icdr − 1)-th and (max Icdr + 1)-th amino
acids’ positions. However, the initialization cannot give any
informative prior knowledge for realistic structure genera-
tion.

To initialize realistic structures of CDRs, we propose Geo-
Initializer to directly generate internal geometries. We ob-
served that the redundant geometries in modeling the back-
bone atoms are three torsion angles of ‘N-Cα-C-N’, ‘Cα-C-
N-Cα’ and ‘C-N-Cα-C’ (Appendix. A.2). Therefore, we use
Von Mises distributions to generate the three torsion angles
(Swanson et al., 2023), since it is a continuous probability
distribution on the circle with support in [−π, π). As the
multi-modal nature of rotatable bond torsion angles in ‘N-
Cα-C-N’ and ‘C-N-Cα-C’ is observed (Appendix. B.1), a
mixture ofK von Mises distributions is employed to capture
the modality, as p(τ) =

∑K
k=1 wk

eκk cos (τ−µk)

2πI0(κk)
, in which τ

is the torsion angle, I0(·) is the modified Bessel function
of order 0, wk is the weight, µk is the mean, and κk is the
concentration of the i-th distribution. To obtain the parame-
ters of {wk, µk, κk}Kk=1, a shallow GAT is used to encode
the atom-level graph to obtain representation for each atom.
After summing the representations of the four atoms that
make up the torsion angle τ , three shallow MLPs project the
summation to K-dimensions, leading to 3×K predicted pa-
rameters in p(τ). To train the Geo-Initializer, we minimize
the negative log-likelihood of the ground truth torsion angle
samples for a given rotatable bond under a mixture of K
Von Mises distributions defined by the predicted parameters.

Geo-Initializer thus is a generative model from which the re-
dundant torsions of the backbones are sampled. For the rest
of the inflexible geometries, the ideal values are used. In this
way, NeRF is employed to reconstruct the backbone atom
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positions as the initial structures for further refinements.

3.4. Geometric Constraints

For structure refinement, the outputs of atom-level inter-
action layers are the backbone atom positions in CDRs in
global coordinates, denoted by X , and the superscripts 0 de-
note the true values to differentiate the predictions. Inspired
by AMBER (Maier et al., 2015), we propose to incorporate
the following energy terms as geometry constraints, to gov-
ern the generated structure with chemical rules, including
constraints on bond length, angles, and torsion angles.

Lossgeo =Ebon(X ) + Eang(X ) + Etor(X );

Ebon(X ) =
∑

(i,j)∈Eat

(di,j − d0i,j)
2;

Eang(X ) =
∑

(i,j)∈Eat,
(j,k)∈Eat

(θi,j,k − θ0i,j,k)
2;

Etor(X ) =
∑

(i,j),(j,k),
(k,l)∈Eat

(1− cos(τi,j,k,l − τ0i,j,k,l));

(3)

where di,j is the bond length between i, j, d0i,j denotes
the expected bond length between atom i, j, which can be
obtained by the true structures. For θi,j,k and θ0i,j,k, τi,j,k,l
and τ0i,j,k,l, the definitions are similar.

Besides, two loss functions are employed: (i) residual-level
error on Cα positions and (ii) atom-level error on all back-
bone atoms. Since the objective region for designing is
CDRs, for i ∈ Icdr, the loss for position can be written as

Losspos =Hub
(
{x(L+1)

i }, {x0
i,2}
)

+Hub
(
{(xi,1, . . . ,xi,4)}, {(x0

i,1, . . . ,x
0
i,4)}

)
,

(4)
where x

(L+1)
i is the predicted position of residue i, output

by L-layer residue-level encoders and defined as Cα’s posi-
tions in Eq.1, and x0

i,2 is the true Cα’s position of residue i;
(xi,1, . . . ,xi,4) is the four backbone atoms of residue i, ob-
tained by atom-level interaction layers, and (x0

i,1, . . . ,x
0
i,4)

is that of ground truth. Hub(·) is the Huber loss used for
training stability. The designated position loss aims first to
determine the coarse positions of residues and then refine
the grained positions of the backbone atoms.

3.5. Antibody CDR Co-Design

In the task of antibody CDR design, we aim to co-design
both the amino acid sequence and the backbone atom’s
structures in CDRs. For sequence design, a masked state
as an absorbing type is used to initialize the amino acid
types. For structure design, we propose two schemes for
the task: (i) GeoAB-Designer composed of ‘(pre-trained)
Geo-Initializer + Geo-Refiner’ as a generative model due to
the stochasticity of Geo-Initializer and (ii) GeoAB-Refiner

composed of ‘Linear Initialization + Geo-Refiner’ as a re-
finement model. By this means, the loss function is

Loss = α1Losstype + α2Losspos + α3Lossgeo. (5)

{αj}j=1,2,3 are loss weights. Losstype = CE({ĥi}, {a0i }),
in which {ĥi} are the logits, obtained by a linear classifier
stacked after the L-layer residue encoder, projecting h

(L)
i

from D-dimension to ĥi ∈ R20, {a0i } are the true amino
acid types in CDRs, and CE(·) is the cross entropy loss.

Dynamic weights. In GeoAB-Designer, the inflexible in-
ternal geometries in the initialized backbone structures are
almost identical to the real ones (see Appendix. C.3). To
preserve the initialized realisticity of the geometries, we
hope that in the training stage, the constraints on internal
geometries as Lossgeo can be more emphasized at the begin-
ning, and gradually decreasing losses in positions Losspos
in the training process can also lead to a further reduction
in Lossgeo, given that when the model can make perfect
predictions of position such that Losspos → 0, Lossgeo is
also minimized. Motivated by this, we use a training trick of
dynamic loss weights, by setting α3 large at the beginning
and gradually making it smaller with exponential moving
average (See Appendix. B.2), to keep the geometry from
deviating too much from the initial state during training.

3.6. Mutation-Based Affinity Maturation
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Figure 3: Workflows of GeoAB-Optimizer in antibody
affinity muturation task.

For affinity maturation, two sequences of amino acids are
given, the wild type and the mutant type. The reliable mat-
uration requires our model to accurately predict both the
structures and the mutation effect ∆∆G. To tackle the
problem, we propose an architecture composed of twin Geo-
Refiners with shared parameters and a joint training strategy
to make full use of the paired labeled and unpaired data.

In detail, we first assume that the mutant amino acid will
affect the surrounding structures around it, but keep the
rest unchanged, so we aim to predict the structure of the
surrounding Nflx residues. A simple ‘Linear Initialization’
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initializes the backbone atoms in the affected regions. For
an instance of paired data with two types of sequence, the
initial amino acid sequences as inputs are the true lists of
types, and we write the index set of mutant points as Imt.
Two Geo-Refiners with shared parameters will generate the
backbone structure of two types in the affected regions by
the atom-level interaction layers. Besides, following (Shan
et al., 2022), ∆∆G is predicted by

∆∆G = Proj

(
1

|Imt|
∑
i∈Imt

(h
(mt)
i − h

(wt)
i )

)
, (6)

in which Proj(·) is an MLP, projecting D-dimensional rep-
resentation to a scalar. In this way, the loss function reads

Loss = α1Lossddg + α2Losspos + α3Lossgeo, (7)

where Lossddg = MSE(∆∆G,∆∆G(0)), and ∆∆G(0)

is the labeled change in Gibbs free energy. Losspos and
Lossgeo are usually calculated with the structures of wild
types since the structures of the mutant ones are usually
unavailable. For an instance of unpaired data with a single
type of sequence that is usually defined as wild type, we
select a point of interest and mask its surrounding Nflx

residuals structure by the same initialization method. The
mutant type is defined as itself, and the loss on mutation
effect will change into Lossddg = MSE(∆∆G, 0).

Once the model is trained, we can obtain the mutant se-
quences and structures such that ∆∆G < 0 by enumerating
the other 19 amino acids and replacing the point of interest.

4. Related Work
Antibody Design. Classical works are usually based on
hand-crafted potential functions, including physical force-
field terms (Li et al., 2014; Lapidoth et al., 2015; Adolf-
Bryfogle et al., 2018) and statistical potential (Min-yi &
Andrej, 2006). This results in intensive computation and
unavoidable inaccuracy, as complex mechanisms of protein
structure cannot be described by simple potentials. Deep-
learning-based methods concentrated on 1D sequence de-
sign (Alley et al., 2019; Liu et al., 2020; Saka et al., 2021;
Akbar et al., 2022), and then, thanks to great process in
graph neural networks (Wu et al., 2021; Liu et al., 2021;
Wu et al., 2023) and protein modeling (Huang et al., 2023;
Wu et al., 2024; Tan et al., 2024; 2023), more works have
been focused on structure-sequence co-design. For example,
RefineGNN (Jin et al., 2021) auto-regressively generate the
amino-acid types and structures; HERN (Jin et al., 2022)
achieves co-design and docking tasks by using a hierarchical
graph; MEAN (Kong et al., 2023a) employ multi-channel
equivariant attention networks to generate CDRs with multi-
round refinements; DyMEAN (Kong et al., 2023b) similarly
can fulfill the co-design tasks, and simultaneously dock to

the epitope at a full-atom level. DiffAB as diffusion models
generates translation, orientation, and type variables (Luo
et al., 2022). HTP (Wu & Li, 2023) and ABGNN (Gao
et al., 2023) focus on antibody pretraining. These methods
hardly generate antibodies that conform to physicochemical
constraints, while GeoAB focuses on realistic generation.

Mutation Effect Prediction. Similarly, traditional ap-
proaches utilize energy functions to model the interactions
and compute the ∆∆G (Steinegger & Söding, 2017). Sta-
tistical methods rely on feature engineering and use the
invariant features and statistical learning methods to predict
mutation effects (Lei et al., 2023). In deep learning, the
effectiveness in predicting ∆∆G is validated. For exam-
ple, ESM-1v (Meier et al., 2021) proposes sequence-based
pretraining tasks and predicts mutation effects on protein
functions. DDG-Predictor (Shan et al., 2022) takes struc-
tures and sequences of both types as input, and predicts
the ∆∆G effectively. However, the structures of mutant
types are usually unknown, RDE-PPI (Luo et al., 2023)
avoids the problem and uses a structure-aware pretrained
network on side-chain rotamers to assist the prediction. Be-
sides, there are also works on designing pretraining tasks
for ∆∆G predictions (Hsu et al., 2022; Yang et al., 2023;
Cai et al., 2023). In comparison, GEOAB also considers
mutation effects attributing to structural flexibility but uses
joint training strategies instead of pretraining paradigms.

5. Experiment
5.1. Antibody CDR Co-Design

Baselines. We select 6 methods as benchmarks. For re-
finement methods, RefineGNN, MEAN and DyMEAN are
used. Their variants of C-RefineGNN and C-DyMEAN
are included, meaning that the two methods use the same
contextual condition. RefineGNN only models the heavy
chains with less context and DyMEAN is designed for
both docking and co-designing with the unknown paratope.
For generative methods, we choose DiffAB as a base-
line, which generates translation, orientation, and type vari-
ables, with the intra-residue geometries fixed with ideal
values. As discussed in Sec. 3.5, we propose two vari-
ants of GeoAB. The first is GeoAB-Refiner in compari-
son with the refinement methods; the second is GeoAB-
Designer, as a generative model compared with DiffAB.
For GeoAB, our model is open to the public through
https://github.com/Edapinenut/GeoAB.

Setup. Following (Kong et al., 2023a), we use the SAbDab
(Dunbar et al., 2014) with complete antibody-antigen struc-
tures for training. IMGT scheme is used to renumber the
complexes (Lefranc et al., 2003). The splits of training, val-
idation and test sets are according to the clustering of CDRs
via MMSeqs2 (Steinegger & Söding, 2017). After the 10
cross-validations on SAbDab, we benchmark all methods
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Table 1: Metrics on generated CDR-H3 for RAbD compared with the
reference. ‘GeoAB-R’ is the refinement variant and ‘GeoAB-D’ is
the generative one. Values in bold are the best metrics.

Method AAR(↑) A-RMSD(↓) UA-RMSD(↓) lddt(↑) TM(↑)
RefineGNN 0.2965 3.6622 7.5417 0.8415 0.8312
C-RefineGNN 0.2990 3.3124 7.2014 0.8387 0.8320
MEAN 0.3706 1.5764 1.7866 0.9814 0.9819
DyMEAN 0.3926 1.6970 10.9927 0.9540 0.9617
C-DyMEAN 0.3928 1.5656 1.7641 0.9821 0.9824
GeoAB-R 0.4053 1.3978 1.5852 0.9860 0.9858

DiffAB
20% 0.2771 5.9337 9.4393 0.7029 0.6854
50% 0.2678 5.9528 9.6680 0.7081 0.6850
100% 0.2693 5.9372 9.8248 0.6953 0.6791

GeoAB-D
20% 0.3939 1.4027 1.5038 0.9848 0.9855
50% 0.3940 1.4119 1.5488 0.9844 0.9847
100% 0.3869 1.4217 1.6143 0.9857 0.9852

GeoAB-D

Seq: SEDTAVYYYCP
RMSD: 1.6933

MEAN

Seq: SEDTAVYYRCA
RMSD: 2.8890

Reference

Seq: SEDTAVYCVRP

Figure 4: Backbone atoms in CDR-H3 (shown
in sticks) on PDB-3nid, of the reference and
designed by GeoAB and MEAN. RMSDs are cal-
culated with all backbone atoms.

Table 2: Metrics on flexible and inflexible geometries obtained by generated CDR-H3 v.s. reference. Values in
bold are the best metrics, and in underline are the second. The full comparison is given in Appendix. C.3

JSD(↓) MAE/MCE(↓)
Geometry MEAN C-DyMEAN DiffAB GeoAB-R GeoAB-D MEAN C-DyMEAN DiffAB GeoAB-R GeoAB-D

Cα-C 0.7318 0.7673 0.1582 0.5286 0.5084 0.3209 0.5310 0.0298 0.2182 0.1883
C-N 0.6720 0.7350 0.6537 0.5916 0.5477 0.3824 0.4784 0.6202 0.3201 0.2537

N-Cα-C 0.6614 0.5646 0.3207 0.5354 0.5309 0.2512 0.1646 0.1239 0.1853 0.2207
Cα-C-N 0.6819 0.7583 0.6108 0.6031 0.5628 0.2368 0.5441 0.2181 0.1479 0.1908

O=C-N-Cα 0.6015 0.6670 0.4354 0.4193 0.3657 0.7799 0.9813 0.8524 0.3158 0.2992
C-N-Cα-C 0.6832 0.3506 0.4992 0.3180 0.3250 0.5611 0.9952 0.7277 0.3313 0.3634

with the 60 diverse complexes as RAbD (Adolf-Bryfogle
et al., 2018), and give comparisons. The training is still con-
ducted on the SAbDab dataset, but we eliminate all antibod-
ies from SAbDab whose CDR-H3s share the same cluster as
those in RAbD to avoid potential data leakage. We use AAR
metrics to evaluate amino-acid recovery ratio; A-RMSD and
UA-RMSD as the RMSD between Cα with/without Kabsch
alignment; lddt and TM-score measuring global structural
similarities. For the generative methods, group comparisons
are made by selecting percentile of 20%, 50%, and 100%
according to UA-RMSD. For details see Appendix. C.1.

Results. Table. 1 gives results on RAbD CDR-H3 designing,
and for 10-fold cross-validation on SabDab, it is given in Ap-
pendix. C.2. It shows that in refinement models, GeoAB-R
achieves the overall best performance, especially in struc-
ture evaluation, with 10.71% and 10.02% improvements in
A-RMSD and UA-RMSD respectively over state-of-the-art
C-DyMEAN. In generative models, GeoAB-D also outper-
forms DiffAB in all aspects by a large margin.

Geometry analysis. Since GeoAB aims to generate real-
istic structures, we analyze internal geometries. We use
Jensen–Shannon divergence (JSD) to evaluate the distribu-
tion differences and use mean absolute error (MAE) and
mean cosine error (MCE) as two metrics to measure the
instance differences in lengths and angles, respectively. In
specific, MCE is written as MCE(θ0, θ) = 1− cos(θ0 − θ),
reaching 0 when θ = θ0( mod 2π). Table. 2 gives the com-
parison, including inflexible geometries like bond lengths
‘Cα-C’ and ‘C-N’, bond angles ‘N-Cα-C’ and ‘Cα-C-N’,

and torsion angles ‘O=C-N-Cα’ and flexible torsions ‘C-
N-Cα-C’. GeoAB-D generates the most realistic internal
geometries in overall evaluations. For inflexible geometries,
because DiffAB regards the residues as rigid bodies, the
intra-residue geometries are set as ideal values, leading to
the least deviation from references in ‘Cα-C’ and ‘N-Cα-C’.
However, in inter-residue geometries such as ‘C-N’ and ‘C-
N-Cα-C’, GeoAB shows superiority over DiffAB. Further,
GeoAB-D as a generative model, initialized by the prior
torsion angle initializer, outperforms GeoAB-R in JSD, but
is less competitive in MAE/MCE due to its stochasticity.
Figure. 1 shows the distribution gap between GeoAB-R and
MEAN; Figure. 4 gives an example to show that GeoAB-D
generates more realistic CDR-H3 structures than MEAN.

5.2. Mutation-Based Remodeling

Baselines. We compare our method with 4 basedline ∆∆G-
predictors, including Rosetta ddG (Alford et al., 2017; Le-
man et al., 2020), FoldX (Delgado et al., 2019), DDG-Pred
and RDE-PPI. The first two are classical energy-based, and
the last two are structure-based deep models. Note that all
these methods are not pretrained, and RDE-PPI is tested as
an unpretrained version for fair comparisons.

Performance Evaluation. Following (Luo et al., 2023), we
use SKEMPI2 (Jankauskaitė et al., 2019) as the evaluation
datasets. The datasets are split into three folds by structure,
in which two of them are used for training and validation,
and the rest are used for testing. Cross-validation is evalu-
ated for ∆∆G-predictors. Four metrics including Pearson
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Table 3: Metrics for cross-validation evaluation of ∆∆G
prediction on SKEMEPI2 dataset. Results of the methods
with ‘*’ are from RDE-PPI (Luo et al., 2023). Values in bold
are the best metrics, and in underline are the second.

Per-Structure Overall

PCC(↑) SRCC(↑) PCC(↑) SRCC(↑) RMSE (↓) MAE (↓)
Rosetta* 0.3284 0.2988 0.3113 0.3468 1.6173 1.1311
FoldX* 0.3789 0.3693 0.3120 0.4071 1.9080 1.3089
RDE-PPI 0.3924 0.3529 0.6368 0.4761 1.6071 1.1492
DDG-Pred* 0.3750 0.3407 0.6580 0.4687 1.4998 1.0821
GeoAB 0.3936 0.3610 0.6324 0.4972 1.4758 1.0611

Table 4: The results for struc-
ture and ∆∆G prediction on
SKEMEPI2 test set and affinity
maturation on RAbD CDR-H3.

SKEMPI2 RAbD

A-RMSD 3.4733 1.5982
UA-RMSD 2.6785 1.4006

Per-Stru PCC 0.3977 /
SRCC 0.3845 /

Overall PCC 0.6657 /
SRCC 0.5122 /

Optimized ∆∆G / -3.1598
Optimized ∆∆G (ITA) / -7.2816

Seq: ARSDPTCYLFPY
 G: -3.8152

GeoAB-Optimizer

 

Seq: TSGDATVYYYRY
G: -12.3190

ITA with MEAN

Figure 5: Optimized CDR-
H3s for PDB-4u6h.

correlation coefficient (PCC), Spearman’s rank correlation
coefficient (SRCC), RMSE, and MAE are used to measure
the accuracy of predictions. Besides, the per-structure PCC
and SRCC are calculated in each structure of the protein
complex. Table. 3 shows that GeoAB achieves competi-
tive performance in the ∆∆G prediction tasks. In addition,
GeoAB does not require the structures surrounding the mu-
tant points as input, and predicts both the structures and
∆∆G, so the domain difference problems resulting from
the unavailability of mutant types’ structures are avoided.

Affinity Maturation. After ensuring our models’ ability
of reliably predicting ∆∆G, we retrained it with the joint
training strategy. In detail, we divide the SKEMPI2 datasets
into two sets, where the test instances are the antibody-
antigen complexes that appear in the RAbD, and the rest
of SKEMPI2 as paired data together with the training in-
stances in SAbDab as unpaired data make up of the training
set. PDB-REDO (Joosten et al., 2014) are also used as un-
paired data included in the training set. For training instance
in SKEMPI2, we set Nflx ∼ U(11, 15) which mimics the
length of CDR-H3 regions and masks the structures of the
Nflx residues surrounding the mutant points by linear inter-
polation initialization, and Geo-Refiner is used to predict the
masked structures and ∆∆G as discussed in Sec. 3.6. For
the training instance in SAbDab, the masked region is CDR-
H3, and the mutant types are regarded the same as the wild
types, leading to ∆∆G = 0. For PDB-REDO, we randomly
select one residue on a chain and mask the surrounding Nflx

residues’ structures for prediction, utilizing more data to
enable the model to perceive the local structures.

Maturation Results. Table. 4 gives performance on the
accuracy of predicting ∆∆G and structures on the test set
on SKEMPI2. For affinity maturation tasks, we conduct the
optimizing processes as shown in Figure. 3, by randomly
choosing 1 or 2 points in the CDR-H3 regions and enumer-
ating the sequences as the model inputs 400 times for each
antibody-antigen complex. The sequences and the predicted
structures with the lowest ∆∆G predictions are selected as
the optimized samples with affinity maturation. We also
give the average ∆∆G of the maturation results on the 60
complexes in Table. 4, with results of ITA with GeoAB-
Refiner also provided. Figure. 5 gives a sample optimized
by GeoAB-Optimizer, and an unrealistic sample optimized

by MEAN with ITA, where ∆∆G is predicted by DDG-
Pred in ITA. It shows that the training set of ∆∆G-predictor
(generated by Rosetta) is of great difference from the testing
instance (generated by MEAN), so it gives a low ∆∆G even
if the generated structure is very unrealistic (broken chains
in CDRs). In comparison, our GeoAB-Optimizer avoids
the problem because it does not need the mutant type’s struc-
tures as input. Besides, the detailed results of ITA are given
in Appendix. C.4 for fair comparisons.

6. Analysis
We test if each proposed technique is necessary in GeoAB.
We conduct ablation studies on SAbDab training and RAbD
testing following the setup in Table. 1. In Table. 5, ‘w/o
Bin/Ter/QuaIL’ means GeoAB-R without Binary or Ternary
or Quaternary interaction layers for position update; ‘w/o
Bon/Ang/TorGC’ means GeoAB-R without Bond length
or Angle or Torsion geometric constraints; ‘w/o DyLW’
means training GeoAB with or without dynamic loss weight
tricks; Besides, we also conduct experiments on the effects
of ESM pretraining embedding, as ’w/o ESM‘. We choose
representative metrics including AAR, UA-RMSD, and JSD
in ‘Cα-C’, ‘Cα-C-N’, and ‘C-N-Cα-C’ to illustrate how
these techniques affect the designation. It can be concluded
from Table. 5 that (1) The interaction layers help to improve
UA-RMSE through a better prediction on flexible torsion
angle of ‘C-N-Cα-C’ except that ‘TerIL’ contributes little ;
(2) Realistic inflexible geometries are usually generated by
models with corresponding geometric constraints, according
to ‘w/o BonGC’ and ‘w/o AngGC’. ‘TorGC’ also benefits
the torsion angle prediction; (3) ESM embedding brings
little improvements to the co-design tasks; (4) ‘DyLW’ helps
GeoAB-G to generate more realistic inflexible geometries,
since the JSDs are close to GeoAB-R when it is removed.

7. Concusion and Limitation
A method called GeoAB is proposed, which focuses on
realistic CDR structure design and reliable affinity matura-
tion. Two models are established as solutions. GeoAB-
Designer is able to generate realistic CDR structures;
GeoAB-Optimizer used for affinity maturation is able to pre-
dict ∆∆G accurately and generate CDR structures, avoiding
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Table 5: Ablation on proposed techniques. Geometries like
‘Cα-C’ are JSDs of them. Values in bold are the best, and
values in underline deviate from GeoAB-R obviously.

Ablation AAR UA-RMSD Cα-C Cα-C-N C-N-Cα-C

GeoAB-R 0.4053 1.5852 0.5286 0.6031 0.3180
w/o BinIL 0.3994 1.6695 0.5414 0.5986 0.3786
w/o TerIL 0.3893 1.6101 0.5370 0.6133 0.3382
w/o QuaIL 0.3849 1.6779 0.5251 0.6022 0.4274
w/o BonGC 0.3990 1.6134 0.6136 0.6357 0.4412
w/o AngGC 0.4016 1.6073 0.5427 0.6941 0.3437
w/o TorGC 0.4019 1.6477 0.5376 0.5801 0.5696
w/o ESM 0.4096 1.5824 0.5297 0.6118 0.3177

w/o DyLW 0.3814 1.6231 0.5428 0.6152 0.3218

the problem of domain differences in input structures.

Still, limitations exist. First, the proposed interaction heads
require more computational complexity than the vanilla
EGNN, for each requires extra O(m) updates on atoms’
positions, for a CDR composed of m corresponding groups.
Secondly, the accuracy of prediction ∆∆G is not as good
as the models with structure-aware pretraining paradigms
like RED-PPI, which will be our future concentration.
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(a) Protein backbone topology and structure. (b) Ramachandran Plot.

Figure 6: Illustration of peptide planar and the redundant geometry.

A. Protein Backbone Geometry Analysis
A.1. Flexible and Inflexible Geometries

The topology of a part of proteins consists of residues, which are shown in Figure. 6(a) (Lieberman, 2014). The bond lengths
and bond angles are ideally inflexible and governed by physicochemical laws, with the ideal values shown in Figure. 6(a).
However, in molecules, the torsion angles are usually flexible, leading to the conformation flexibility of biomolecules. In the
protein backbones, there are four main torsion angles, including ϕ as ‘C-N-Cα-C’, ψ as ‘N-Cα-C-N’, ω as ‘Cα-C-N-Cα’,
and ‘C-N-Cα=O’. Besides, ‘C-N’ as the peptide bond, usually has two states: trans, ω ≈ 180◦, and cis, ω ≈ 0◦. In the
trans configuration, the two alpha carbon atoms of the connected amino acids are on the opposite sides of the peptide bond,
whereas in cis configuration they are on the same side of the peptide bond. In most cases, the peptide bonds in proteins are
trans. This preference can be explained by the steric clashes that occur between groups attached to the alpha carbon atoms
in cis form, which hinder the formation of this configuration. G.N. Ramachandran recognized that steric collisions between
atoms prevent some combination of ϕ and ψ angles and, for the trans configuration, ranges of ϕ and ψ angles fall into
defined regions in a graph called the Ramachandran plot as Figure. 6(b) shows. According to permitted ϕ ψ and ω angles,
preferred conformations of the main chain lead to recurrent structures in proteins namely alpha helix, beta sheets, and turns
(Cacabelos et al., 2014). Besides, due to the peptide planar, the ‘Cα-C-N-Cα’ torsion angles are also restricted as 0◦.

In this way, we can conclude that the flexibility of the backbone is mainly determined by the fluctuations in torsion angles,
specifically ϕ and ψ, and the four flexible torsion angles degenerate into two. However, in real-world observation, ω are not
strictly 0◦ or 180◦, generating a deviation of ±7◦ from ideal values, which is also redundant geometry in accurate backbone
generation tasks (MacArthur & Thornton, 1996). By this means, to generate a backbone, one can establish a generative
model on the three torsion angles, such as FoldingDiff (Wu et al., 2022). Together, with the ideal values of inflexible
geometries and generated redundant torsions, the protein backbone structures can be reconstructed by NeRF (Parsons et al.,
2005), by sequentially placing the atom in the local coordinate systems, where the positions are determined by the length as
distance, angles and dihedrals in the spherical coordinate systems.

A.2. Analysis on SAbDab CDRs

Beyond the general proteins, we now focus on the antibodies’ CDRs structures, to figure out if the highly flexible regions
follow the same rules as the former conclusions.

We first intercept the CDRs of all antibodies in the training set, and obtain empirical and kernel density estimated distributions
of the chemical bond lengths, bond angles, and torsion angles of individual fragments, in Figure. 7.

It shows that the internal geometries basically follow the conclusions obtained in the last section. Distributions of ϕ , ψ and
ω show the highest stds among all the 12 geometries, and all the ω torsion is trans. Besides, we give the statistical values
on MAE between the ideal values and the observed ones and stds of each distribution, to further prove the conclusions in
Table. 6. The same conclusion can be reached.

B. Method
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(a) Empirical and estimated bond length distribution.
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(b) Empirical and estimated bond angle distribution.
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(c) Empirical and estimated torsion angle distribution.

Figure 7: Distributions of flexibile and inflexible geometries obtained by CDRs in SabDab datasets.

Table 6: Statistics of flexible and inflexible geometries.

Geometry Cα-N(Å) Cα-C(Å) C=O(Å) C-N(Å) N-Cα-C(◦) Cα-C=O(◦) Cα-C-N(◦) C-N-Cα(◦) Cα-C-N-Cα(◦) O=C-N-Cα(◦)

Ideal Value 1.32 1.53 1.24 1.47 114 121 110 123 180 0
MAE 0.0158 0.0128 0.0111 0.0851 2.7286 2.9057 5.0941 4.5620 7.6987 3.6468
Std 0.0108 0.0107 0.0086 0.0852 2.6354 2.8098 4.8009 6.4211 5.8353 2.9836

14



GeoAB: Towards Realistic Antibody Design and Reliable Affinity Maturation

B.1. Geo-Initializer

The multi-modality of the redundant torsions is shown in Figure. 7(c), with ‘N-Cα-C-N’ and ‘C-N-Cα-C’ demonstrating 3
to 4 peeks in the estimated distributions. In this mean, we select K = 4 in the von Mises mixtures. Besides, the encoders
mapping the atom-level graph (Vat; Eat) is a three-layer GAT in implementation. Since the edge sets are composed of the
bonds, the inter-chain messages cannot be passed. Therefore, the Geo-Initializer focuses more on the single-chain structure,
leading the RMSDs to high values because of insufficient contextual conditions.

B.2. Dynamic Weights

The weight of Lossgeo as α3 is changed gradually with exponential moving average updating (EMA). For the α3 in t-th
iteration, it reads

α
(t)
3 = max{exp(−βt)α(1)

3 + γα
(t−1)
3 , αmin}, (8)

In which αmin is set as the minimum bond of the weight, t is the training iteration, γ and β are two decayed coefficients,
which are hyper-parameters, set as 0.999 and 0.9999 in practice.

C. Experiments
C.1. Hyper-parameters

Heterogeneous residue-level encoder is parameterized as 9 layers of heterogeneous GNNs. In each layer, the MLP
is constructed by ‘Linear + SiLu + Linear’, with Dropout probability equaling 0.1 to avoid over-fitness. The
embedding dim is set as 128.

Equivariant atom-level interaction layers are composed of a 3-layers GAT. For each, the function f is parameterized by a
three-layer MLP.

Training weights. α1, α2 are set as 1.0 and 0.8 respctively for co-design models. α3 is set as 0.4 in GeoAB-R and dynamic
as Appendix. B.2 discussed. For ∆∆G prediction, α1 is set as 1.0, and α2 and α3 are set as 0.4, because we hope the model
can focus more on predicting accuracy and perceiving the structures gradually.

Training parameters. The learning rate lr is 5e− 4. In all training, the max training epoch is 20. LambdaLR schedule is
used, with lr lambda is set as 0.95× lr.

Epitope selection. In our main experiments on antibody CDR design, we select the 48 residues of the antigen closest to the
antibody in terms of the Cα distance as the epitope like (Jin et al., 2021).

C.2. 10-Cross Validation Results on SAbDab

Here we give the 10-CV evaluation results in SAbDab to show that GeoAB achieves the state-of-the-art performance in
Table 8.

Table 7: Results of ∆∆G optimized
by ITA with different methods.

Region ∆∆G - H3

Random 1.25
RefineGNN -3.41
C-RefineGNN -3.66
Mean -5.79
C-Dymean -6.56

GeoAB-R -7.28

Table 8: Results of 10-cross validation on different baselines. GeoAB-R
and GeoAB-D reach overall the best performance.

CDR-H1 CDR-H2 CDR-H3

Methods AAR RMSD AAR RMSD AAR RMSD

RefineGNN 39.40 3.22 37.06 3.64 21.13 6.00
C-RefineGNN 33.19 3.25 33.53 3.69 18.88 6.22
C-HERN 47.36 1.45 41.45 1.20 28.47 2.64
MEAN 58.29 0.98 47.15 0.95 36.38 2.21
C-DyMEAN 61.13 0.89 53.14 0.87 37.09 2.09

GeoAB-R 64.87 0.82 56.09 0.74 37.58 1.94
GeoAB-D 64.03 0.84 54.98 0.75 37.09 1.97
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Table 9: JSDs of the compared methods for different geometries v.s. the reference. GeoAB-I is the Geo-initializer.

JSD C-RefineGNN Mean C-Dymean GeoAB-R Diffab GeoAB-G GeoAB-I

N-CA 1.6648 0.7318 0.7673 0.5286 0.1582 0.5084 0.1314
CA-C 1.5251 0.7579 0.7635 0.5359 0.2252 0.4949 0.1487
C=O 1.6801 0.7130 0.7509 0.5744 0.1289 0.6834 0.1106
C-N 1.5546 0.6720 0.7325 0.5916 0.6537 0.5477 0.1465

N-CA-C 0.8325 0.6614 0.5646 0.5354 0.3207 0.5309 0.0907
CA-C=O 0.8280 0.7209 0.7019 0.6767 0.2693 0.6456 0.1114
C-N-CA 0.8325 0.6468 0.7496 0.5574 0.5624 0.6123 0.0876
CA-C-N 0.8326 0.6819 0.7583 0.6031 0.6108 0.5628 0.0904
O=C-N 0.6721 0.7075 0.7382 0.6128 0.6384 0.5749 0.1451

N-CA-C-N 0.3892 0.3121 0.4230 0.2717 0.4249 0.2470 0.2289
CA-C-N-CA 0.4566 0.5231 0.6704 0.2994 0.4278 0.3011 0.2061
C-N-CA-C 0.5468 0.6832 0.3506 0.3180 0.4992 0.3250 0.1980
O=C-N-CA 0.7352 0.6015 0.6670 0.4193 0.4354 0.3657 0.2194

C.3. Complete Analysis on Internal Geometries

We give the complete analysis of the generated internal geometries in Table. 9.

C.4. ITA Results of GeoAB-R

Here we also conduct experiments on ITA with GeoAB-R, following the protocol of MEAN (Kong et al., 2023a). To ensure
the expected generalizability, we select a total of 53 antibodies from SKEMPI V2.0 training set for affinity optimization and
split SAbDab into training and validation sets in a ratio of 9:1 for pretraining the model. The results of ITA for antibody
optimization are given in Table. 7, following the protocol of MEAN (Kong et al., 2023a).

C.5. Computational Comparison

We have conducted a comparison of our models with others on the CDR3 co-design task to address this concern. ‘Batch size’
is set to 8, layer number is 6 and the embed size is all set to 128 for a fair comparison. Table. 10. gives the complexity
analysis. We can conclude that: In comparison to MEAN, which costs the least computational resources, our model has
comparable GPU memory cost and training time, especially in GeoAB-R, because MEAN takes multi-head attention as
its graph updating modules, while GeoAB-R uses a faster and simpler MLP-based heterogenous GNN. However, in the
atom-updating layer, it is the key to increasing the training time because of a larger parameter number. For GeoAB-D, the
initialization takes more time than Linear Initialization in GeoAB-R, which leads to more time in training and inference.
However, since the initializer is pertained, so the trainable parameter number and GPU memory cost are of tiny significance
compared with GeoAB-R. Note that DiffAB as a diffusion-based method, usually requires more training epochs and the
iterative denoising process leads the inference time much longer than others.

Methods GPU Memory
(MiB)

Inference Time
(s/100samples)

Training Time
(s/epoch)

Paramater
Number

MEAN 5594 14 81 1349515
DyMEAN 16122 48 201 2250270
DiffAB 19041 212 124 3995270
GeoAB-R 5934 18 96 1984663
GeoAB-D 6033 25 154 1984663

Table 10: Complexity comparison of the included models.
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