
Neural Operators with Localized Integral and Differential Kernels

Miguel Liu-Schiaffini * 1 Julius Berner * 1 Boris Bonev * 2 Thorsten Kurth 2 Kamyar Azizzadenesheli 2

Anima Anandkumar 1

Abstract
Neural operators learn mappings between func-
tion spaces, which is practical for learning solu-
tion operators of PDEs and other scientific model-
ing applications. Among them, the Fourier neural
operator (FNO) is a popular architecture that per-
forms global convolutions in the Fourier space.
However, such global operations are often prone
to over-smoothing and may fail to capture local
details. In contrast, convolutional neural networks
(CNN) can capture local features but are limited
to training and inference at a single resolution. In
this work, we present a principled approach to op-
erator learning that can capture local features un-
der two frameworks by learning differential opera-
tors and integral operators with locally supported
kernels. Specifically, inspired by stencil methods,
we prove that we obtain differential operators un-
der an appropriate scaling of the kernel values of
CNNs. To obtain local integral operators, we uti-
lize suitable basis representations for the kernels
based on discrete-continuous convolutions. Both
these approaches preserve the properties of oper-
ator learning and, hence, the ability to predict at
any resolution. Adding our layers to FNOs signif-
icantly improves their performance, reducing the
relative L2-error by 34-72% in our experiments,
which include a turbulent 2D Navier-Stokes and
the spherical shallow water equations.

1. Introduction
Deep learning holds the promise to greatly accelerate ad-
vances in computational science and engineering, which
often require numerical solutions of partial differential equa-

*Equal contribution 1Department of Computing and Mathe-
matical Sciences, California Institute of Technology, Pasadena
CA 91125 2NVIDIA, Santa Clara, CA 95051. Correspondence
to: Miguel Liu-Schiaffini <mliuschi@caltech.edu>, Julius Berner
<jberner@caltech.edu>, Boris Bonev <bbonev@nvidia.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Regular kernel

Local integral kernel

Differential kernel

h −−−−−→ h/2 −−−−−→ 0

Figure 1: Visualization of different limits of a convolution with a
discretized function v as the grid width h is refined, i.e., h → 0.
(Top) A regular convolution is collapsing to a pointwise linear op-
erator. (Middle) Instead, we can use a kernel that can be evaluated
at arbitrary resolutions and keep the receptive field unchanged, to
converge to a local integral operator, see Section 3.4. (Bottom)
Alternatively, we can let it collapse while constraining the kernel
appropriately, converging to a differential operator, see Section 3.2.

tions (PDEs) (Azizzadenesheli et al., 2024; Zhang et al.,
2023; Cuomo et al., 2022). Recent advances in deep learn-
ing have enabled applications such as weather forecast-
ing (Pathak et al., 2022; Bonev et al., 2023; Lam et al., 2023),
seismology (Sun et al., 2023; Shi et al., 2023), reservoir en-
gineering for carbon capture (Wen et al., 2022; 2023), and
many other applications with orders of magnitude speedup
over traditional methods.

Many of the above results are achieved by neural operators,
which learn mappings between function spaces, enabling

1

mailto:mliuschi@caltech.edu
mailto:jberner@caltech.edu
mailto:bbonev@nvidia.com

Neural Operators with Localized Integral and Differential Kernels

operator learning for function-valued data (Li et al., 2021;
Azizzadenesheli et al., 2024; Raonić et al., 2023). In partic-
ular, they are agnostic to the discretization of the input and
output functions—a vital property in the context of PDEs
where data is often provided at varying resolutions and high-
resolution data is costly to generate (Kovachki et al., 2021).
In contrast, standard neural networks such as convolutional
neural networks (CNN) (Ronneberger et al., 2015; Gupta &
Brandstetter, 2022) require the functions to be discretized
at a fixed resolution on a regular grid, which is limiting.

In the past few years, various architectures of neural op-
erators have been developed. Among them, the Fourier
neural operator (FNO) (Li et al., 2020a), which performs
global convolutions in Fourier space, has gained popularity
and shown good performance in a number of applications.
However, such global operations are often prone to over-
smoothing and may fail to capture local details. Several
other architectures instead learn global operators in physical
space (e.g., (Li et al., 2022b)), but they likewise lack the
inductive bias of local operations.

There are many applications that require a local neural op-
erator. For instance, solution operators of several relevant
PDEs are of local nature. Examples include hyperbolic
PDEs, which have real-valued characteristic curves (LeV-
eque, 1992). As a result, a solution at a given point will
only depend on the initial condition within a neighborhood
of that point. As such, their solution operators only have a
local receptive field and can, therefore, be efficiently learned
by locally supported kernels.

Further examples of local operators are differential opera-
tors, which can be expressed in terms of pointwise multi-
plication with the frequency in the spectral domain. Conse-
quently, they introduce large errors when approximated by a
finite number of parameters in Fourier space. In this context,
we note that the emulation of classical numerical methods to
solve partial differential equations, such as finite-difference
methods, relies on the usage of local stencils for differenti-
ation (Thomas, 2013). This calls for the presence of local
and differential operators in neural operator architectures.

Naturally, every local operation can also be represented
by a global operation. However, this is typically vastly
parameter-inefficient and does not provide a good inductive
bias for learning local operations. In the context of neural
operators, spectral variants of neural operators, such as the
FNO (Li et al., 2020a) and Spherical FNO (SFNO) (Bonev
et al., 2023), are theoretically able to approximate local
convolutions. However, representing local kernels requires
the approximation of a global signal in the spectral domain,
in turn demanding a large number of parameters (due to the
uncertainty principle (Cohen-Tannoudji et al., 1977)).

A few prior works have explored the usage of local oper-

Table 1: Comparison of different architectures for the solution of
PDEs. The top half enumerates architectures for planar domains
and the bottom half for spherical domains. Our proposed archi-
tectures are highlighted in bold and the differential and integral
kernels are detailed in Section 3.

Architecture Efficient Receptive no input
field downsampling

GNO ✗ local/global ✓
FNO ✓ global ✓
CNO / U-Net ✓ local ✗
FNO + integral ✓ local/global ✓
FNO + differential ✓ local/global ✓

SFNO ✓ global ✓
SFNO + integral ✓ local/global ✓

ations in the context of neural operators. Li et al. (2020b)
introduce graph neural operators (GNOs), which parameter-
ize local integral kernels with a neural network. However,
evaluating this network on all combinations of points to
compute the integrals can make GNOs computationally ex-
pensive and slower than hardware-optimized convolutional
kernels. Alternatively, Ye et al. (2022; 2023) propose local
neural operators by combining FNOs with convolutional
layers and, similarly, Wen et al. (2022) integrate U-Nets
and FNOs. Moreover, Raonić et al. (2023) propose convolu-
tional neural operators (CNOs) by leveraging U-Nets that
(approximately) respect the bandlimits.

However, since all of the above approaches rely on stan-
dard convolutional layers on equidistant grids, they have
the following shortcomings. First, such approaches do not
allow for a natural extension to unstructured grids or other
geometries, which are ubiquitous in PDE problems (Li et al.,
2023). Moreover, they can only be applied to higher res-
olutions by downsampling of the (intermediate) inputs to
the training resolution. Important high-frequency content
can be lost through downsampling, which is particularly
problematic for multi-scale data in the context of PDEs. In
contrast, we develop convolutional layers that can be ap-
plied at any resolution without downsampling. We achieve
this by appropriately scaling the receptive field or the values
of the kernel (see Figure 1).

To summarize, current neural operator architectures suf-
fer from at least one of the following limitations (see Ta-
ble 1): (1) they cannot succinctly represent operations with
a local receptive field, e.g., FNO, or (2) they cannot be
applied to different resolutions without relying on explicit
up-/downsampling which may degrade performance, e.g.,
CNO, or (3) they cannot be scaled to obtain sufficient expres-
sivity, since they incur prohibitively high computationally
costs, such as, for instance, GNOs.

2

Neural Operators with Localized Integral and Differential Kernels

Ours

FNO / SFNO

Conv. with differential kernel
(local)

Conv. with Fourier kernel
(global)

Conv. with integral kernel
(local)

Residual Connection
(pointwise)

Input Output

Figure 2: A single layer of our local neural operator. We add (up
to) two local operations using the convolutions with differential
kernel (Section 3.2) and local integral kernel (Section 3.4).

Our approach: In this work, we develop computationally
efficient and principled approaches to include operations
in neural operators that capture local receptive fields while
retaining the ability to approximate operators and, hence,
extend to multiple resolutions. We consider two kinds of lo-
calized operators: differential operators and integral kernel
operators with a locally supported kernel (see Figure 1).

For the first, we draw inspiration from stencils of finite-
difference methods. We derive conditions to modify con-
volutional layers such that they converge to a unique differ-
ential operator when the discretization is refined. For the
second case of local integral operators, we adapt discrete-
continuous (DISCO) convolutions (Ocampo et al., 2022)
to provide an efficient, discretization-agnostic framework
that can be applied to general meshes on both planar and
spherical geometries. To our knowledge, we are the first to
connect the DISCO framework to operator learning.

Finally, we devise efficient implementations of both layers
and show that the inductive bias of local operations (see Fig-
ure 2) can significantly improve the performance of FNOs
and SFNOs on three different benchmarks. In particular,
we learn a differential operator in a Darcy flow setting for
motivating the need for neural operators with local inductive
biases, and we improve over FNO by 87%. Additionally,
we improve over the baseline (S)FNO by 34% on turbulent
2D Navier-Stokes equations, by 72% on the shallow water
equations on the sphere, and by 63% on the 2D diffusion-
reaction equation. We also apply our method on modeling
a flow past a cylinder, discretized on an irregular grid. We
improve upon the best baseline by 42%.

Outline: The remainder of the paper is organized as fol-
lows: Section 2 outlines connections to other architectures
and ideas within the neural operator literature. Section 3

introduces the main ideas of the paper as well as the macro-
architecture of our proposed neural operator. Section 4
discusses numerical experiments and results, and Section 5
summarizes the findings of our work.

2. Related work and connections to other
frameworks

We strive to formulate local operations that are consistent
with the neural operator paradigm, which stipulates that
operations within the model are independent of the dis-
cretization of input functions (Kovachki et al., 2021). In
principle, this allows the evaluation of the neural operator
on arbitrary meshes1. Several discretization-independent
local operations have been introduced in the deep learning
literature. We outline the connections between these works
in the following.

GNOs and Hypernetworks: In general, local operations
can be provided by graph neural operators (GNOs) (Li et al.,
2020b). However, in their general form, GNOs are typically
slow, hard-to-train, and not equivariant w.r.t. the symmetry
group of the underlying domain (Li et al., 2020c). Taking a
convolutional kernel, GNOs subsume a series of works on
hypernetwork approaches for convolutional layers (Wang
et al., 2018; Shocher et al., 2020).

DISCO Convolutions: We show that DISCO convolu-
tions (Ocampo et al., 2022) represent special cases of GNOs
with a convolutional kernel, which enables generalization to
different geometries and an efficient implementation, since
the kernel can be pre-computed (see Section 3). In particular,
DISCO convolutions are typically implemented as learnable
linear combinations of fixed basis functions instead of neu-
ral networks. Also, they define maps that are equivariant up
to the error resulting from the quadrature rule.

Scale-Equivariant CNNs: In the area of computer vision,
there has been a series of adaptations of CNNs to be (locally)
scale-equivariant by using filter dilation, filter rescalings
in the discrete domain (Rahman & Yeh, 2023; Sosnovik
et al., 2021; Worrall & Welling, 2019) or the continuous
domain (Xu et al., 2014; Sosnovik et al., 2019; Ghosh &
Gupta, 2019), or input rescalings (Marcos et al., 2018).
Moreover, filter rescaling has also been explored for more
general group-convolutions (Bekkers, 2019).

Neural operators and convolutional layers: While neu-
ral operators have been developed independently of the
above approaches, one can leverage similar ideas. In partic-

1As long as they are suitable for the evaluation of the numerical
operations of the neural operator, such as the Discrete Fourier
Transform used in the Fourier neural operator (see Section 3).

3

Neural Operators with Localized Integral and Differential Kernels

ular, one can rescale (i.e., up- and downsample) input and
output functions of a convolutional layer or the kernel itself
to obtain neural operators. We note that these approaches
are, in principle, also applicable to a trained network (with-
out the need for retraining).

In combination with FNOs, interpolation of the input and
output functions has been explored by Wen et al. (2022).
Also, Ye et al. (2023; 2022) emphasized the need for local
convolutions in FNOs, however, they do not discuss the ap-
plication to different discretizations. Combined with correct
treatment of the bandlimit of the functions (based on Karras
et al. (2021)), the convolutional neural operator (Raonić
et al., 2023) also uses up- and downsampling of the input
and output functions to apply a U-Net architecture.

We note that for bandlimited functions sampled above the
Nyquist frequency, the discrete convolutions have a unique
correspondence to convolutions in function space, repre-
senting a special case of the DISCO framework. However,
downsampling the input function introduces errors in cases
where the function is not bandlimited.

3. Local Layers
In this section, we present two conceptually different types
of local layers for neural operators. First, we present effi-
cient integral transforms with local kernels. Then, we focus
on the approximation of differential operators. We consider
an input function

v : Rd ⊃ D → Rn

that is discretized on meshes Dh ⊂ D with width h on a
domain D ⊂ Rd. For notational convenience, we present
most ideas for the case d = 1, but it is straightforward to
extend them to higher-dimensional domains.

3.1. Motivation: Convolutional Layer

We take inspiration from convolutional layers since they
represent the prototypical version of an efficient, local op-
eration in neural networks. However, we will see that they
are not consistent in function spaces; in particular, they
converge to a pointwise linear operator when we refine the
discretization of the input function v.

Let us start by recalling the definition of a convolutional2

layer, specifically a stride-1 convolution with n input chan-
nels, a single3 output channel, and kernel K = (Ki)

S
i=1 ⊂

Rn of (odd) size S. Assuming a regular grid, i.e., Dh =
{xj}mj=1 ⊂ R with xj+1−xj = h, we can define the output

2In line with deep learning frameworks, we consider convolu-
tion with the reflected filter, also known as cross-correlation.

3This is for notational convenience; the extension to multiple
output channels is straightforward.

of the convolutional layer at y ∈ Dh as

ConvK [v](y) = (K ⋆ {v(xj)}mj=1)(y)

=

S∑
i=1

Ki · v(zi + y), (1)

with
zi = h

(
i− 1− S−1

2

)
, (2)

where we use zero-padding, i.e., v(x) = 0 for x /∈ D.

If we now take the same kernel K for finer discretizations,
i.e., h → 0, we see from (2) that zi → 0 and therefore,

lim
h→0

ConvK [v](y) = K̄ · v(y) with K̄ =

S∑
i=1

Ki,

given that the function v is continuous at y. In other words,
the receptive field with respect to the underlying domain
D is shrinking to a point, and the convolutional layer is
converging to a pointwise linear operator. One way to cir-
cumvent this issue would be to downsample the function v
appropriately to a pre-defined grid. This is done for previ-
ous approaches mentioned in Section 2, at the cost of losing
high-frequency information in the input.

In the following, we will present two ways of working
on different input resolutions, while not collapsing to a
pointwise operator, see also Figure 1. First, we show that
rescaling (1) by the reciprocal resolution 1

h and constraining
the kernel K leads to differential operators. Then, we define
the kernel K as the evaluation of a function over a fixed
input domain, leading to integral operators.

3.2. Differential Layer

In this section, we construct a layer that converges to a
differential operator when the width h of the discretization
Dh tends to zero. To prevent the operator from collapsing to
a pointwise operation, we constrain and rescale the values
of the kernel (according to the discretization width). Note
that without rescaling, we would again recover a pointwise
operator; however, due to the rescaling by a factor of 1

h , the
limit might not exist without constraining the values of the
kernel. The next proposition shows that it is sufficient to
subtract the average kernel value. See Appendix A.1 for a
more general statement and a corresponding proof.

Proposition 3.1 (First-order differential layer). Let Dh ⊂
Rd be a regular grid of width h and let v ∈ C1(D,Rn).
Then, for every kernel (Ki)

S
i=1 ⊂ Rn, there exists

(bj)
n
j=1 ⊂ Rd such that

lim
h→0

1

h
ConvK−K̄ [v](y) =

n∑
j=1

∇vj(y) · bj

for every y ∈ Dh , where K̄ =
∑S

i=1 Ki.

4

Neural Operators with Localized Integral and Differential Kernels

Proposition 3.1 shows that we can learn different directional
derivatives using an appropriate adaptation of standard con-
volutional layers as in Section 3.1. Specifically, we center
the kernel K by subtracting its mean K̄ and scale the result
by the reciprocal resolution 1

h . In Appendix A.2, we em-
pirically evaluate the convergence in resolution to a unique
differnetial operator on a simple example.
Remark 3.2 (Higher-order differential operator). Similarly,
we could approximate k-th order differential operator with
further constraints on the elements of K and a scaling factor
of 1

hk . However, we do not implement them in practice
since we can also approximate higher-order derivatives by
composing first-order differential layers.

3.3. Integral Kernel Layers

Instead of rescaling the kernel, we can also adapt the size of
the kernel such that the receptive field stays the same, i.e., is
independent of the resolution h. In this section, we begin at
the general graph neural operator and demonstrate how (con-
sidering the desirable properties of translation equivariance
and efficiency) we arrive at local convolutional layers with
adaptive kernel sizes using a fixed number of parameters.

Graph neural operator (GNO): One of the most general
instantiations of a neural operator is arguably the graph
neural operator (GNO)

GNOk[v](y) =

∫
U(y)

k(x, y) · v(x) dx (3)

≈
∑

x∈Dh∩U(y)

k(x, y) · v(x) qx, (4)

where k is a kernel (typically parametrized by a neural
network) and qx ∈ R are suitable quadrature weights. While
the GNO can represent local integral operators by picking
a suitably small neighborhood U(y) ⊂ D, the evaluation
of the kernel and aggregation in each neighborhood U(y)
is slow and memory-intensive for general kernels k : D ×
D → Rn. Moreover, for an arbitrary kernel, GNO is not
equivariant w.r.t. the symmetry group of the underlying
domain. In particular, we lose the translation equivariance
of convolutional layers for planar domains.

Fourier Neural Operator (FNO): To retain translation
equivariance, we can consider kernels of the form

k(x, y) = κ(x− y)

and U(y) = y + supp(κ). Then, we can rewrite the GNO
as a convolution, i.e.,

GNOκ[v] = κ ⋆ v. (5)

If we are dealing with periodic functions on the torus D, we
can leverage the convolution theorem to compute (5), i.e.,

F [κ ⋆ v] = F [κ] · F [v], (6)

where F maps functions to their Fourier series coeffi-
cients. The Fourier Neural Operator (FNO) now di-
rectly parametrizes F [κ] and approximates F using the
fast Fourier transform given that Dh is an equidistant grid.
While this leads to an efficient version of (4), it assumes that
F [κ] has only finitely many nonzero Fourier modes—or,
equivalently, that the kernel κ has full support, making (5) a
global convolution.

Localized convolutions: To construct a locally supported
kernel κ, we can directly discretize the convolution in (5),
i.e.,

GNOκ[v](y) ≈
∑
x∈Dh

κ(x− y) · v(x) qx. (7)

Note that the sum can be taken only over the x ∈ Dh with

x− y ∈ supp(κ).

We remark that for an equidistant grid and constant4 quadra-
ture weights, q = qx, evaluating GNOκ[v] at y ∈ Dh

corresponds to a standard convolution as in (1) with kernel

Ki = qκ(zi), i = 1, . . . , S,

where zi is defined as in (2) and S is sufficiently large such
that supp(κ) ⊂ [z1, zS]. See Appendix B.2 for details.
However, the advantage of the formulation in (7) is the
fact that we can reuse the same kernel κ across different
resolutions (with the same receptive field supp(κ)).

The remaining question is centered around the parametriza-
tion of the kernel. One could draw inspiration from works
on hypernetworks in computer vision and parameterize it
using a neural network (Shocher et al., 2020). However,
this is significantly more costly than a standard convolution.
Another idea is to interpolate a fixed-sized kernel, e.g., using
sinc or bi-linear interpolation. A more general version of
the latter, based on a learnable linear combination of hat
functions, is also known as discrete-continuous (DISCO)
convolution and has shown to be effective in different appli-
cations (Ocampo et al., 2022). We note that this formulation
is closest to the original convolutional layer typically used in
computer vision. However, in the next section, we see that
it also allows us to use unstructured meshes and formulate
the operation on more general domains D ⊂ Rd.

3.4. General discrete-continuous convolutions

The local support of the kernel in equation (7) allows us
to efficiently evaluate local convolutions in subdomains

4This is, e.g., the case for the trapezoidal rule on a torus.

5

Neural Operators with Localized Integral and Differential Kernels

of Rd using sparse matrix-vector products. However, the
operation x− y, which shifts the convolution kernel, is not
well-defined on manifolds such as the sphere. To generalize
the previous discussion to a Lie group G, we first replace
the shift operator with the group action g and obtain the
so-called group convolution

GroupConvκ[v](g) = (κ ⋆ v)(g)

=

∫
G

κ(g−1x) · v(x) dµ(x), (8)

where g, x ∈ G and dµ(x) is the invariant Haar measure
on G. This formulation presents us with the challenge of
being non-trivial to discretize. The framework of DISCO
convolutions (Ocampo et al., 2022) achieves this by approx-
imating the integral with a quadrature rule while evaluating
the group action continuously:

(k ⋆ v)(gi) ≈
m∑
j=1

κ(g−1
i xj) · v(xj) qj

=

m∑
j=1

Kij · v(xj) qj . (9)

Here (xj)
m
j=1 ⊂ G represent quadrature points with corre-

sponding quadrature weights qj . For a given set of output
positions gi, we obtain the fully discrete formulation as
matrix-vector product with the matrix Kij = κ(g−1

i xj),
which is sparse due to the local support of the kernel. To
parameterize the kernel, we choose a linear combination
of basis functions κ(ℓ), such that κ =

∑L
ℓ=1 θ

(ℓ)κ(ℓ) with
trainable parameters θ(ℓ) ∈ R.

Although we have presented the general idea only for Lie
groups G, it is possible to construct the DISCO convolution
also on manifolds with a group action acting on them, such
as the 2-sphere S2. For a detailed discussion of DISCO
convolutions and a construction in one dimension, we point
the reader to Appendix B and Ocampo et al. (2022).
Remark 3.3 (Exact integration and equivariance). We note
that DISCO convolutions satisfy equivariance properties for
function classes that can be exactly integrated. For instance,
on planar domains, these could be polynomials when using
Legendre points. For equidistant grids on the torus, exact
integration holds for bandlimited functions that are sampled
above the Nyquist frequency.

3.5. Local neural operator architecture

To design our neural operator, we want to combine point-
wise, local, and global operations. To this end, we take
an FNO (or SFNO for spherical problems) as a starting
point, which already features global operations in Fourier
space and pointwise operations using its residual connec-
tions. Then, we augment the operators by incorporating our

initial condition

ground truth

prediction (5 steps)

(a) Navier-Stokes Eqns.

initial condition

ground truth

prediction (5 steps)

(b) Shallow Water Eqns.

Figure 3: Initial condition, ground truth, and corresponding autore-
gressive predictions of our proposed models for the Navier-Stokes
problem and the shallow water equations.

proposed local convolutions from the previous section as
additional branches in the respective layers (see Figure 2).
These four branches are summed pointwise within each lo-
cal neural operator layer. The resulting architecture can
be trained end-to-end with any standard operator learning
training procedure and loss.

4. Experiments
To validate the effectiveness of local operators, we evalu-
ate the architecture on five PDE problems. Figure 3 and
Figure 4 show samples on three of these problems. In all
five cases, we incorporate our proposed local operators into
existing FNO and SFNO architectures to demonstrate that a
significant improvement in performance can be achieved by
introducing the inductive bias of local convolutions. This

6

Neural Operators with Localized Integral and Differential Kernels

ground truth prediction

Figure 4: Ground truth and prediction of the horizontal velocity for the flow past a cylinder. The data is represented on an unstructured
mesh, which is visualized in gray color. Our proposed architecture can be readily applied to data on unstructured meshes such as this one.
For this figure, we learn the residual to the previous time step.

section describes the experimental setting for our problems.
We provide further experiments, specific implementation
details5, and hyperparameters in Appendix C.

4.1. Darcy flow

We first consider the steady-state, two-dimensional Darcy
flow equation

−∇ · (a∇u) = f, u|∂D = 0, (10)

on the domain D = (0, 1)2. In this problem, we motivate
the need to incorporate local operators as inductive biases
in neural operator architectures. To this end, we explicitly
construct a problem that requires approximating the forcing
function f for a given diffusion coefficient a and pressure
u in (10). In other words, the task consists of learning the
differential operator

u 7→ −∇ · (a∇u). (11)

Following the setup of Hasani & Ward (2024), we take

a(x) =

[
x2
1 sin(x1x2)

x1 + x2 x2

]
for x ∈ D. We then compare the performance of our pro-
posed models: FNO in parallel with differential kernels,
FNO with integral kernels, and FNO with both kernels. We
also compare with a baseline FNO and the U-Net archi-
tecture from Gupta & Brandstetter (2022). Moreover, we
perform zero-shot super-resolution on this problem; these
results can be found in Appendix C.6.

4.2. Navier-Stokes equations

Next, we consider the two-dimensional Navier-Stokes equa-
tion on the torus. In particular, we consider Kolmogorov
flows, which can be described by

∂tu+ u · ∇u− 1

Re
∆u = −∇p+ sin(my)x̂ (12)

∇ · u = 0

5Code is available in the neuraloperator li-
brary at github.com/neuraloperator/neuraloperator and the
torch-harmonics library at github.com/NVIDIA/torch-
harmonics.

on the spatial domain D = (0, 2π)2 equipped with periodic
boundary conditions. In the above, u and p denote the
velocity and pressure, and Re denotes the Reynolds number
of the flow. We want to learn the solution operator mapping
initial conditions u(·, 0) = u0 to the time-evolved solution
in vorticity form w(·, τ) at time τ ∈ (0,∞), where the
vorticity is given by

w = (∇× u)ẑ (13)

with ẑ being a unit vector normal to the plane.

We consider m = 4 and Re = 5000, and we emphasize
that learning the solution operator for such a high Reynolds
number is very challenging due to the turbulent nature and
small-scale features of the flow. We conjecture that the base-
line FNO is prone to over-smoothing over the finer scales,
consequently leading to a degradation of performance.

To validate this conjecture, we compare the performance of
the local neural operator with a baseline FNO and U-Net
and evaluate the effectiveness of our proposed differential
and integral kernels, respectively.

4.3. Diffusion-Reaction equation

Moreover, we consider the 2D Diffusion-Reaction equation
from Takamoto et al. (2022) which can, for instance, be used
for modeling biological pattern formation. In particular,
we want to predict the time-evolution of two non-linearly
coupled variables, i.e., the activator u and the inhibitor v,
solving the equation

∂tu = cu∆u+Ru(u, v), (14)
∂tv = cv∆v +Rv(u, v), (15)

for the spatial domain D = (−1, 1)2 with no-flow Neumann
boundary condition. The reaction functions Ru and Rv are
given by the Fitzhugh-Nagumo equation

Ru(u, v) = u− u3 − k − v, Rv(u, v) = u− v (16)

and we consider cu = 10−3, cv = 5·10−3, and k = 5·10−3.
The task is to learn the operator mapping the state (u, v) at
consecutive time-steps to the time-evolved state and we can
compare against the baselines from Takamoto et al. (2022).

7

https://github.com/neuraloperator/neuraloperator
https://github.com/NVIDIA/torch-harmonics
https://github.com/NVIDIA/torch-harmonics

Neural Operators with Localized Integral and Differential Kernels

Table 2: Results for the 2D diffusion-reaction equation from PDEBench (Takamoto et al., 2022). We present their U-Net baseline results
and metrics. In particular, we report the RMSE errors for the low, medium, and high frequency ranges (fRMSE low/med./high), and the
(absolute) RMSE, the maximum error, RMSE errors at the boundary (bRMSE), as well as RMSE for the conserved values (cRMSE).

Model # Params Rel. L2-error fRMSE low fRMSE med. fRMSE high RMSE max. error bRMSE cRMSE

U-Net 7.8 · 105 8.4 · 10−1 1.7 · 10−2 8.2 · 10−4 5.7 · 10−2 6.1 · 10−2 1.9 · 10−1 7.8 · 10−2 3.9 · 10−2

FNO 9.3 · 105 8.3 · 10−2 6.2 · 10−4 5.6 · 10−4 2.4 · 10−4 5.2 · 10−3 7.3 · 10−2 1.5 · 10−2 1.2 · 10−3

FNO + loc. int (ours) 8.8 · 105 6.3 · 10−2 4.0 · 10−4 4.6 · 10−4 1.5 · 10−4 3.6 · 10−3 5.0 · 10−2 1.0 · 10−2 4.8 · 10−4

FNO + diff. (ours) 8.8 · 105 3.4 · 10−2 4.4 · 10−4 1.9 · 10−4 6.1 · 10−5 1.9 · 10−3 3.5 · 10−2 4.4 · 10−3 1.1 · 10−3

FNO + loc. int. + diff. (ours) 8.9 · 105 3.1 · 10−2 3.2 · 10−4 1.8 · 10−4 6.2 · 10−5 1.7 · 10−3 3.3 · 10−2 4.2 · 10−3 7.4 · 10−4

4.4. Shallow water equations

To test the approach on the sphere, we consider the shallow
water equations on the rotating sphere. They represent a
system of hyperbolic partial differential equations used to
model a variety of geophysical flow phenomena, such as
atmospheric flows, tsunamis, and storm surges. They can be
formulated in terms of the evolution of two state variables
φ and u (geopotential height and the tangential velocity of
the fluid column), governed by the equations

∂tφ+∇ · (φu) = 0,

∂t(φu) +∇ · F = f,
(17)

on the sphere D = S2 with suitable initial conditions
φ(·, 0) = φ0 and u(·, 0) = u0, a momentum flux tensor

Fij = φuiuj +
1

2
φ2, (18)

and a source term

f = −2Ωx× (φu), (19)

which models the Coriolis force due to the rotation of the
sphere with angular velocity Ω.

As baselines, we use a planar U-Net architecture, a spher-
ical U-Net, where convolutions are performed using local
integral kernels on the sphere, and an SFNO architecture.
On the sphere, we only consider the impact of the integral
kernel on the SFNO architecture, as it allows for a natural
extension to the sphere (see Section 3.4).

4.5. Flow past a cylinder

Due to the formulation of the discrete-continuous convolu-
tions, our approach can be readily generalized to unstruc-
tured meshes. To demonstrate this, we consider the Navier-
Stokes equations in a two-dimensional channel with a cylin-
drical structure and a membrane attached to it (see Rahman
et al., 2024). Figure 4 depicts a sample from the validation
dataset alongside predictions from our model.

The dataset considers the flow past the cylinder with
Reynolds number Re = 2000. Rahman et al. (2024) pro-
vide several baselines for a low-data regime (250 samples),

Table 3: Results for the cylinder flow problem in a low-data regime
with 250 training samples. Baseline results are taken from Rahman
et al. (2024) and all architecture including ours perform a direct
prediction (no residual prediction) of the velocity and pressure at
the next time step.

Model # Parameters MSE error

GINO 6 · 107 2.09 · 10−2

DeepONet 6 · 106 1.39 · 10−1

GNN 6 · 105 5.00 · 10−3

ViT 3 · 107 1.19 · 10−2

U-net 3 · 107 9.34 · 10−2

FNO + local integral kernel (ours) 10 · 106 2.88 · 10−3

where the task is to predict the velocity and pressure after
a given time step. To deal with the unstructured grid, we
adapt the architecture to utilize local integral operators as
encoders and decoders to transform the data into a latent
representation on an equidistant grid. Then, we can use an
FNO with our local integration layers in the latent space.

4.6. Results and discussion

The results of our numerical experiments are reported6 in Ta-
bles 2 to 4. We observe significant performance gains over
the baselines in all five problem settings. In particular, we
notice that the best performance in the reported relative L2-
errors is achieved with the inclusion of both global and local
operations, despite an overall reduction in parameter count
with respect to their corresponding FNO/SFNO baselines.
This is particularly pronounced for the Navier-Stokes and
shallow water equations, where errors can accumulate in
autoregressive roll-outs. We attribute this to our models’
inductive bias, allowing it to better capture the fine-grained
scales and thus achieve better performance. In Table 2, we
also show that our local layers achieve lower errors at high
frequencies for the diffusion-reaction equation, indicating
that local, high-frequency features are correctly captured.

The Navier-Stokes problem demonstrates the efficacy of

6In all settings, hyperparameters are chosen to result in macro-
architectures with similar parameter counts for the purpose of
comparability. The experimental setup, including the choice of
hyperparameters, is outlined in Appendix C in the Appendix.

8

Neural Operators with Localized Integral and Differential Kernels

Table 4: Experimental results for Darcy flow, Navier-Stokes, and the spherical shallow water problems. For all three problems, the test
error is reported in terms of the relative L2-error after a single step. For the time-dependent Navier-Stokes and shallow water equations,
we also predict the error after 5 autoregressive steps.

Model
Parameters Relative L2-Error

Layers # Modes Embedding # Parameters 1 step 5 steps

Darcy Flow

U-Net 17 - 18 2.850 · 106 1.380 · 10−2 -
FNO 4 20 41 2.715 · 106 5.867 · 10−2 -
FNO + diff. kernel (ours) 4 12 65 2.638 · 106 7.357 · 10−3 -
FNO + local integral kernel (ours) 4 20 40 2.617 · 106 6.034 · 10−2 -
FNO + local integral + diff. kernel (ours) 4 12 64 2.639 · 106 9.032 · 10−3 -

Navier-Stokes Equations

U-Net 17 - 56 2.758 · 107 1.674 · 10−1 5.115 · 10−1

FNO 4 40 65 2.711 · 107 1.381 · 10−1 2.360 · 10−1

FNO + diff. kernel (ours) 4 40 65 2.726 · 107 1.073 · 10−1 2.129 · 10−1

FNO + local integral kernel (ours) 4 20 129 2.716 · 107 1.110 · 10−1 2.183 · 10−1

FNO + local integral + diff. kernel (ours) 4 20 127 2.691 · 107 9.022 · 10−2 1.956 · 10−1

Spherical Shallow Water Equations

U-Net 17 - 32 2.898 · 106 1.341 · 10−3 1.226 · 10−2

Spherical U-Net (with local integral kernel) 17 - 32 1.639 · 106 6.160 · 10−4 3.265 · 10−3

SFNO 4 128 32 1.066 · 106 9.220 · 10−4 3.185 · 10−3

SFNO + local integral kernel (ours) 4 128 31 1.019 · 106 2.624 · 10−4 5.392 · 10−4

combining both differential and local integral kernels with
the global convolution of the FNO. Our proposed model
with these three components together outperforms models
with only two of these three operations. While hyperbolic
PDEs likely require only local receptive fields (due to finite
information propagation (LeVeque, 1992)) and elliptic prob-
lems instead require global information, we observe that
many practical problems involving a mixture of operators
benefit from a hybrid approach such as ours.

We note that the Darcy flow problem is meant to motivate
the need for our proposed differential kernels (and indeed,
our best-performing model achieves 87% lower relative L2-
error than FNO). Since the ground truth operator in (11)
is a differential operator, we expect (and observe) that for
high accuracies, very local (i.e., differential) kernels are
needed. In particular, we see that the baseline FNO per-
forms poorly, and the local integral kernels do not provide
additional benefits. However, we include them in Table 4
for completeness.

Finally, we perform super-resolution experiments, in which
we train the model at a given resolution and then evaluate it
at another resolution without fine-tuning. Figure 8 depicts
super-resolution results at twice the training resolution for
both the Darcy and shallow water equations. The corre-
sponding numerical results are listed in Table 5. We observe
that our approach generalizes well across resolutions and
outperforms the baselines across all tested resolutions. For
a detailed discussion of the super-resolution experiments,

we refer the reader to Appendix C.6.

5. Conclusion
In this paper, we have demonstrated a novel framework for
local neural operators. We have shown how convolutional
layers can be constrained to realize neural operators that
approximate differential operators in the continuous limit.
Moreover, we have derived convolutions with local integral
kernels from the general notion of an integral transform
and the related graph neural operator. Finally, we have con-
structed localized neural operators on the sphere by using
discrete-continuous convolutions (Ocampo et al., 2022).

The resulting neural operators introduce a strong inductive
bias for learning operators with local receptive fields. In
particular, their formulation ensures the same local operation
everywhere in the domain. This equivariance (w.r.t. the
underlying symmetry group) reduces the required number
of learnable parameters and improves generalization.

Our numerical experiments demonstrate consistent improve-
ments when existing neural operators with global receptive
fields are augmented with the proposed localized convolu-
tions, resulting in reductions in relative L2-error of up to
72% over the corresponding baselines. We thus expect local
neural operators to play an important role in solving real-
world scientific computing problems with machine learning.

9

Neural Operators with Localized Integral and Differential Kernels

Acknowledgements
The authors thank Md Ashiqur Rahman for useful discus-
sions about benchmarks and baselines. M. Liu-Schiaffini is
grateful for support from the Mellon Mays Undergraduate
Fellowship. J. Berner acknowledges support from the Wally
Baer and Jeri Weiss Postdoctoral Fellowship. A. Anandku-
mar is supported in part by Bren endowed chair and by the
AI2050 senior fellow program at Schmidt Sciences.

Impact Statement
The aim of this work is to advance the field of machine
learning and scientific computing. While there are many
potential societal consequences, none of them are immediate
to require specifically being highlight here.

References
Azizzadenesheli, K., Kovachki, N., Li, Z., Liu-Schiaffini,

M., Kossaifi, J., and Anandkumar, A. Neural operators
for accelerating scientific simulations and design. Nature
Reviews Physics, pp. 1–9, 2024.

Bekkers, E. J. B-spline CNNs on Lie groups. arXiv preprint
arXiv:1909.12057, 2019.

Bonev, B., Kurth, T., Hundt, C., Pathak, J., Baust, M.,
Kashinath, K., and Anandkumar, A. Spherical Fourier
neural operators: Learning stable dynamics on the sphere.
arXiv preprint arXiv:2306.03838, 2023.

Cohen, T. and Welling, M. Group equivariant convolutional
networks. In International conference on machine learn-
ing, pp. 2990–2999. PMLR, 2016.

Cohen-Tannoudji, C., Diu, B., and Laloë, F. Quantum
mechanics; 1st ed. Wiley, New York, NY, 1977. Trans.
of : Mécanique quantique. Paris : Hermann, 1973.

Cuomo, S., Di Cola, V. S., Giampaolo, F., Rozza, G., Raissi,
M., and Piccialli, F. Scientific machine learning through
physics–informed neural networks: Where we are and
what’s next. Journal of Scientific Computing, 92(3):88,
2022.

Driscoll, J. and Healy, D. Computing fourier transforms
and convolutions on the 2-sphere. Advances in Applied
Mathematics, 15:202–250, 6 1994.

Ghosh, R. and Gupta, A. K. Scale steerable filters for lo-
cally scale-invariant convolutional neural networks. arXiv
preprint arXiv:1906.03861, 2019.

Gupta, J. K. and Brandstetter, J. Towards multi-
spatiotemporal-scale generalized pde modeling. arXiv
preprint arXiv:2209.15616, 2022.

Hasani, E. and Ward, R. A. Generating synthetic data for
neural operators. arXiv preprint arXiv:2401.02398, 2024.

Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J.,
Lehtinen, J., and Aila, T. Alias-free generative adversarial
networks. Advances in Neural Information Processing
Systems, 34:852–863, 2021.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Learning maps between function spaces. arXiv
preprint arXiv:2108.08481, 2021.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger,
P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-
Rosen, Z., Hu, W., et al. Learning skillful medium-range
global weather forecasting. Science, 382(6677):1416–
1421, 2023.

LeVeque, R. J. Numerical Methods for Conservation Laws.
Birkhäuser Basel, 1992.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. arXiv preprint arXiv:2010.08895, 2020a.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Graph kernel network for partial differential
equations. arXiv preprint arXiv:2003.03485, 2020b.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Stuart,
A., Bhattacharya, K., and Anandkumar, A. Multipole
graph neural operator for parametric partial differential
equations. Advances in Neural Information Processing
Systems, 33:6755–6766, 2020c.

Li, Z., Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu,
B., Azizzadenesheli, K., and Anandkumar, A. Physics-
informed neural operator for learning partial differential
equations. arXiv preprint arXiv:2111.03794, 2021.

Li, Z., Liu-Schiaffini, M., Kovachki, N., Azizzadenesheli,
K., Liu, B., Bhattacharya, K., Stuart, A., and Anandku-
mar, A. Learning chaotic dynamics in dissipative systems.
Advances in Neural Information Processing Systems, 35:
16768–16781, 2022a.

Li, Z., Meidani, K., and Farimani, A. B. Transformer for
partial differential equations’ operator learning. arXiv
preprint arXiv:2205.13671, 2022b.

Li, Z., Kovachki, N. B., Choy, C., Li, B., Kossaifi, J., Otta,
S. P., Nabian, M. A., Stadler, M., Hundt, C., Azizzade-
nesheli, K., et al. Geometry-informed neural operator for
large-scale 3d pdes. arXiv preprint arXiv:2309.00583,
2023.

10

Neural Operators with Localized Integral and Differential Kernels

Marcos, D., Kellenberger, B., Lobry, S., and Tuia, D. Scale
equivariance in cnns with vector fields. arXiv preprint
arXiv:1807.11783, 2018.

Ocampo, J., Price, M. A., and McEwen, J. D. Scalable
and equivariant spherical CNNs by discrete-continuous
(DISCO) convolutions. arXiv preprint arXiv:2209.13603,
9 2022.

Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chat-
topadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z.,
Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., and
Anandkumar, A. FourCastNet: A global data-driven high-
resolution weather model using adaptive Fourier neural
operators. arXiv preprint arXiv:2202.11214, 2 2022.

Rahman, M. A. and Yeh, R. A. Truly scale-equivariant
deep nets with Fourier layers. arXiv preprint
arXiv:2311.02922, 2023.

Rahman, M. A., George, R. J., Elleithy, M., Leibovici, D.,
Li, Z., Bonev, B., White, C., Berner, J., Yeh, R. A., Kos-
saifi, J., et al. Pretraining codomain attention neural
operators for solving multiphysics PDEs. arXiv preprint
arXiv:2403.12553, 2024.

Raonić, B., Molinaro, R., Rohner, T., Mishra, S., and
de Bezenac, E. Convolutional neural operators. arXiv
preprint arXiv:2302.01178, 2023.

Ronneberger, O., Fischer, P., and Brox, T. U-Net: Convolu-
tional networks for biomedical image segmentation. In
Medical Image Computing and Computer-Assisted Inter-
vention, pp. 234–241. Springer, 2015.

Shi, Y., Lavrentiadis, G., Asimaki, D., Ross, Z. E., and
Azizzadenesheli, K. Broadband ground motion synthesis
via generative adversarial neural operators: Development
and validation. arXiv preprint arXiv:2309.03447, 2023.

Shocher, A., Feinstein, B., Haim, N., and Irani, M. From
discrete to continuous convolution layers. arXiv preprint
arXiv:2006.11120, 2020.

Sosnovik, I., Szmaja, M., and Smeulders, A. Scale-
equivariant steerable networks. arXiv preprint
arXiv:1910.11093, 2019.

Sosnovik, I., Moskalev, A., and Smeulders, A. Disco:
accurate discrete scale convolutions. arXiv preprint
arXiv:2106.02733, 2021.

Sun, H., Ross, Z. E., Zhu, W., and Azizzadenesheli, K.
Phase neural operator for multi-station picking of seis-
mic arrivals. Geophysical Research Letters, 50(24):
e2023GL106434, 2023.

Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D.,
Alesiani, F., Pflüger, D., and Niepert, M. PDEBench:
An extensive benchmark for scientific machine learning.
Advances in Neural Information Processing Systems, 35:
1596–1611, 2022.

Thomas, J. W. Numerical partial differential equations:
finite difference methods, volume 22. Springer Science &
Business Media, 2013.

Wang, S., Suo, S., Ma, W.-C., Pokrovsky, A., and Urta-
sun, R. Deep parametric continuous convolutional neural
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2589–2597,
2018.

Wen, G., Li, Z., Azizzadenesheli, K., Anandkumar, A., and
Benson, S. M. U-FNO—an enhanced Fourier neural
operator-based deep-learning model for multiphase flow.
Advances in Water Resources, 163:104180, 2022.

Wen, G., Li, Z., Long, Q., Azizzadenesheli, K., Anandku-
mar, A., and Benson, S. M. Real-time high-resolution
CO2 geological storage prediction using nested Fourier
neural operators. Energy & Environmental Science, 16
(4):1732–1741, 2023.

Worrall, D. and Welling, M. Deep scale-spaces: Equivari-
ance over scale. Advances in Neural Information Process-
ing Systems, 32, 2019.

Xu, Y., Xiao, T., Zhang, J., Yang, K., and Zhang, Z. Scale-
invariant convolutional neural networks. arXiv preprint
arXiv:1411.6369, 2014.

Ye, X., Li, H., Jiang, P., Wang, T., and Qin, G. Learning
transient partial differential equations with local neural
operators. arXiv preprint arXiv:2203.08145, 2022.

Ye, X., Li, H., Huang, J., and Qin, G. On the locality of
local neural operator in learning fluid dynamics. arXiv
preprint arXiv:2312.09820, 2023.

Zhang, X., Wang, L., Helwig, J., Luo, Y., Fu, C., Xie, Y.,
Liu, M., Lin, Y., Xu, Z., Yan, K., et al. Artificial intelli-
gence for science in quantum, atomistic, and continuum
systems. arXiv preprint arXiv:2307.08423, 2023.

11

Neural Operators with Localized Integral and Differential Kernels

A. General differential kernels
A.1. Theoretical construction

In the following, we present the general idea for irregular grids, from which Proposition 3.1 follows as a special case. Let us
first define the assumptions on our grids.

Regular discrete refinement: Let ∥ · ∥ be a norm on Rd and denote by Bh(x) ⊂ Rd the ball of radius h ∈ (0,∞)
around x ∈ Rd w.r.t. ∥ · ∥. Further, let D ⊂ Rd be a domain and let (hℓ)ℓ∈Z be a sequence that converges to zero. We call
(Dℓ)ℓ∈Z ⊂ D a regular discrete refinement with widths (hℓ)ℓ∈Z if there exists N ∈ N such that for all ℓ ∈ Z and x ∈ Rd

we have that

|Bhℓ
(x) ∩Dℓ| ≤ N and span

({[
1
y

]
−
[
1
x

]
: y ∈ Bhℓ

(x) ∩Dℓ

})
= Rd+1.

The second assumption states that we can find an affinely independent subset in each ball. Note that, for instance, equidistant
grids satisfy these assumptions.

First-order differential operator: We want to find bounded kernels k(x, y) : Rd × Rd → R with the following property:
There exist c ∈ R and b ∈ Rd such that for all v ∈ C1(D,R), all y ∈ Rd, and any regular discrete refinement (Dℓ)ℓ∈Z ⊂ Rd

with widths (hℓ)ℓ∈Z it holds that

lim
ℓ→∞

∑
x∈Bhℓ

(y)∩Dℓ

k(x, y)v(x) = cv(y) +∇v(y) · b. (20)

We will now investigate which additional assumptions are needed. Let us fix y ∈ Rd and enumerate

(xj)
m
j=1 := Bhℓ

(y) ∩Dℓ.

Then, we can use Taylor’s theorem to show that

∑
x∈Bhℓ

(y)∩Dℓ

k(x, y)v(x) =

m∑
j=1

k(xj , y) (v(y) +∇v(y) · (xj − y) +O(hℓ)) (21)

= v(y)

m∑
j=1

k(xj , y) +∇v(y) ·

 m∑
j=1

k(xj , y)(xj − y)

+O(m∥k∥L∞hℓ). (22)

Since the kernel and m are bounded (uniformly over ℓ ∈ N), we have that O(m∥k∥L∞hℓ) = O(hℓ). As we want to
guarantee convergence to cv(y) +∇v(y) · b for suitable c ∈ R and b ∈ Rd (independent of y), we need to satisfy that

c =

m∑
j=1

k(xj , y) (23)

and that

b =

m∑
j=1

k(xj , y)(xj − y) (24)

This yields the linear7 system [
1 . . . 1

x1 − y . . . xm − y

]
︸ ︷︷ ︸

∈R(d+1)×n

k(x1, y)
...

k(xm, y)

 =

[
c
b

]
. (25)

Our assumptions on the refinement guarantee that we can find linearly independent columns such that we can solve the
system. However, generally and by abuse of notation, the value of k(xj , y) depends on all the points (xj)

m
j=1. However, for

an equidistant grid, one can directly see that the convolutional kernel given in Proposition 3.1 satisfies (25) with c = 0.

12

Neural Operators with Localized Integral and Differential Kernels

26 29 212

Resolution

0.0

0.2

0.4

0.6

0.8

1.0

L2 e
rro

r

c = 1
c = 2
c = 4
c = 16

(a) Convergence (b) Ground truth (c) Low-res prediction (d) Medium-res prediction (e) High-res prediction

Figure 5: Empirical evaluation of the proposed differential kernel. (a) L2 errors at various resolutions and quadratic coefficient scales c.
(b) True differential operator for c = 1. (c) Output of the differential kernel at a resolution of 32 × 32. (d) Output of the differential
kernel at a resolution of 64× 64. (e) Output of the differential kernel at a resolution of 4096× 4096.

A.2. Empirical evaluation

In this section, we empirically evaluate the convergence of our proposed differential kernels to a differential operator as the
resolution increases. In particular, we consider a randomly-initialized differential kernel satisfying the constraints discussed
in Section 3.2 (mean zero and scaled by the resolution 1

h , where h is the width of each grid cell in an equidistant grid).

To be able to compute the theoretical differential operator in closed form, we consider a simple parabola v : [0, 1]2 → Rn,
given by

x 7→ ∥x∥2
[
c1, . . . , cn

]⊤
, (26)

with coefficients c1, . . . , cn.

We define a randomly-initialized first-order differential kernel K = (Kij)
3,3
i,j=1 ⊂ Rn (i.e., one differential kernel for each

of the n input channels) subject to the constraints described in Section 3.2. Let bj ∈ Rn denote the direction corresponding
to the directional derivative corresponding to the differential kernel for channel j, see Appendix A.1. With the parabola as
defined in (26), the output function of the true differential operator corresponding to K is given by

x 7→ 2

n∑
i=j

x · bj . (27)

In this simple experiment, we set n = 10 and generate c1, . . . , cn uniformly on the unit interval, multiplied by some scaling
factor c ∈ {1, 2, 4, 16}. We discretize the parabola in (26) over different resolutions, convolve the kernel K with each of
these discretizations, and compute the L2 error with respect to the true differential operator. Figure 5 shows the L2 error
for these values of c and resolutions, as well as visualizations of the true differential operator and the one outputted by the
differential kernel at three different resolutions.

From Figure 5, we observe a clear convergence to the differential operator as the resolution increases. For a fixed resolution,
convergence is slower for greater magnitudes of the second derivative (i.e., larger c). This can be theoretically shown by
estimating the remainder of the Taylor expansion in Appendix A.1.

B. Discrete-continuous convolutions
B.1. General Ideas

The following section outlines the basic ideas behind discrete-continuous convolutions as introduced by (Ocampo et al.,
2022). To generalize the (continuous) convolution (5) to Lie groups and quotient spaces of Lie Groups, we consider the
group convolution (see e.g. Cohen & Welling (2016)).

Definition B.1 (Group Convolution). Let κ, v : G → R be functions defined on the group G. The group convolution is
given by

(κ ⋆ v)(g) =

∫
κ(g−1x) · v(x) dµ(x), (8)

7For fixed y.

13

Neural Operators with Localized Integral and Differential Kernels

where g, x ∈ G and dµ(x) is the invariant Haar measure on G.

Remark B.2. In some cases, signals are not defined on a group but rather on a quotient space G/H , where H is a subgroup
of G. In such cases, a convolution may still be defined by taking g ∈ G/H . For an example, see spherical convolutions
(Driscoll & Healy, 1994; Ocampo et al., 2022).

While group convolutions can typically be computed by generalized Fourier transforms on the corresponding manifolds,
their usage is generally preferred if the convolutions are non-local operators, i.e., the convolution kernel κ is not compactly
supported. On the periodic domain Td (i.e., Euclidean space with periodic boundaries), such convolutions are typically
computed discretely by directly sliding the kernel.

Definition B.3 (DISCO convolutions). Given a quadrature rule with quadrature points xj ∈ G and quadrature weights qj ,
we approximate the group convolution (8) with the discrete sum

(κ ⋆ v)(g) =

∫
κ(g−1x) · v(x) dµ(x) ≈

m∑
j=1

κ(g−1xj) · v(xj) qj . (28)

In particular, the group action g is applied analytically to the kernel function κ, whereas the integral is approximated using
the quadrature rule.

For a discrete set of output locations gi, this becomes a straight-forward matrix-vector multiplication

m∑
j=1

κ(g−1
i xj) · v(xj) qj =

m∑
j=1

Kij · v(xj) qj (29)

with Kij = κ(g−1
i xj). In the case where κ is compactly supported, Kij is a sparse matrix with the number of non-zero

entries per row depending on the resolution of the grid xj and the support of κ. To obtain a learnable filter, κ is parametrized
as a linear combination of a chosen set of basis functions.

B.2. DISCO convolutions in one dimension

For the sake of simplicity, we discuss the simple one-dimensional case on D = [0, 1] with periodic boundary conditions. We
note that this corresponds to the circle group (or the torus) T. For any element y ∈ D, the corresponding group operation Ty

is the translation Ty : D → D, x 7→ x⊕ y, where we denote by x⊕ y a modular shift such that the result remains in D.

Then, the DISCO convolution in one dimension, for Lebesgue square-integrable functions v and κ becomes

(κ ⋆ v)(y) =

∫
[0,1]

κ(T−1
y x)v(x) dx =

∫
[0,1]

κ(x− y)v(x) dx ≈
m∑
j=1

κ(xj − y) v(xj) qj , (30)

for suitable quadrature points Dh = {xj}mj=1 with corresponding quadrature weights {qj}mj=1.

To parameterize the filter κ, we pick a finite support [0, xcutoff] with L equidistant collocation points ξ(ℓ) ∈ [0, xcutoff] and
corresponding hat functions. The ℓ-th hat function is then defined as

κ(ℓ)(x) =

x−ξ(ℓ−1)

ξ(ℓ)−ξ(ℓ−1) for ξ(ℓ−1) ≤ x < ξ(ℓ)

ξ(ℓ+1)−x
ξ(ℓ+1)−ξ(ℓ)

for ξ(ℓ) ≤ x < ξ(ℓ+1)

0 else,

(31)

where ξ(0), ξ(L+1) ∈ [0, xcutoff] are suitable boundary points. The resulting filter is obtained as a linear combination
κ =

∑L
ℓ=1 θ

(ℓ)k(ℓ) with trainable parameters θ(ℓ). Plugging this into (29), we obtain the trainable DISCO convolution

m∑
j=1

κ(xj − yi) v(xj) qj =

L∑
ℓ=1

m∑
j=1

θ(ℓ) κ(ℓ)(xj − yi) v(xj) qj =

L∑
ℓ=1

m∑
j=1

θ(ℓ)K
(ℓ)
ij v(xj) qj , (32)

where K
(ℓ)
ij = κ(ℓ)(xj − yi) are the shifted filter functions.

14

Neural Operators with Localized Integral and Differential Kernels

Let us now consider the special case of an equidistant grid Dh, i.e., xj+1 − xj = h, and a trapezoidal quadrature rule
qj = h. Let us further assume that the output points yi coincide with the grid points and that the collocation points ξ(ℓ) are
given as the first L grid points. Then, due to the property of the hat functions, K(ℓ)

ij can only contain either 0 or 1 and we
obtain the circulant convolution matrices given by

K(1) = (e1, e2, e3, . . . , em), K(2) = (e2, e3, . . . , em, e1), K(3) = (e3, . . . , em, e1, e2), . . .

where ei ∈ Rm is the i-th standard basis vector. For regular grids on planar geometries, we can thus efficiently implement
the DISCO convolution in (32) in terms of highly-optimized CUDA kernels based on common-place convolutional layers.
This observation also generalizes to higher dimensions, where the same discrete kernel is obtained when the kernel is
continuously shifted on the grid.

B.3. DISCO convolutions on the sphere

For general group actions g ∈ SO(3), the outcome of the group convolution (8) will be a function defined on SO(3).
This is due to S2 not being a group but rather a manifold on which SO(3) acts. We can see this by fixing the north-pole
n = [0, 0, 1]⊤ and applying any rotation g ∈ SO(3) to it. This will trace out the whole sphere despite the north pole
eliminating one of the Eulerian rotation angles. Therefore, to ensure that the result of the convolution is still a function
defined on S2, we can simply restrict g in (8) to rotations in SO(3)/SO(2), which is isomorphic to S2. Formally, this can
be achieved by fixing the first of the three Euler angles parameterizing g to 0.

As basis functions, we pick a set of piecewise linear basis functions as in (31). To accommodate anisotropic kernels,
collocation points are distributed in an equidistant manner along both radius and circumference. More precisely, the first
collocation point lies at the center, and for each consecutive ring, a fixed amount of collocation points is distributed along
the circumference. The resulting basis functions are illustrated in Figure 6, for a cutoff radius of rcutoff = 0.1π.

(a) ℓ = 1 (b) ℓ = 2 (c) ℓ = 3 (d) ℓ = 4 (e) ℓ = 5

Figure 6: Radial, piecewise linear basis functions for the approximation of anisotropic filters on the sphere.

C. Implementation details
A numerical comparison of our methods with baseline FNO and U-Net architectures can be found in Table 4. In this section,
we outline the implementation details for our numerical experiments.

For Darcy flow, Navier-Stokes, and the shallow water equations, training is conducted by minimizing the squared L2-loss
until convergence is reached. Our U-Net baseline is adapted from the model and code of the PDE Arena benchmark (Gupta
& Brandstetter, 2022). For the FNOs (Li et al., 2020a) and SFNOs (Bonev et al., 2023), we use the implementation in the
neuraloperator and torch-harmonics libraries. Moreover, for all experiments, GELU activation functions and
the Adam optimizer are used.

For these three problems, we trained the FNO/SFNO-based models with varying widths and modes, while keeping the
overall number of parameters approximately constant. We present the best results for each problem and macro-architecture
in Table 4. For the models with local layers, we found that a larger embedding dimension and fewer modes can often
improve performance. We conjecture that the increased embedding dimension confers additional expressivity to the local
kernels. This also suggests that local operators are an important inductive bias for these problems. When supplementing the
FNO/SFNO blocks with additional branches, we also observed improved convergence by scaling the initial parameters or the
output by n−1/2, where n is the number of branches. A detailed experimental setup is outlined for these three datasets in the

15

Neural Operators with Localized Integral and Differential Kernels

following subsections. We also present results for the 2D diffusion-reaction equation and for super-resolution experiments
on Darcy flow and the shallow water equations.

C.1. 2D Darcy flow equation

In the 2D Darcy flow setting, we generate our data as described in Section 4.1. For the input functions, we consider random
linear combinations of eigenfunctions of the Laplace operator with zero Dirichlet boundary conditions, i.e.,

u(x) =

20∑
i,j=1

cij√
(iπ)2 + (jπ)2

sin(iπx1) sin(jπx2), x ∈ D,

with i.i.d. cij ∼ N (0, 1/(i+ j)). We train and test our models and baselines with data discretized onto a 256× 256 regular
grid. We use 10000 training samples and 2000 testing samples. As a baseline, we compare our proposed models with
FNO (Li et al., 2020a) and the U-Net architecture of Gupta & Brandstetter (2022). We note that this U-Net architecture
is not agnostic to the discretization (Kovachki et al., 2021), see also Section 3.1. We compare these baselines against our
proposed models: the architecture using convolutions with Fourier (i.e., FNO), differential, and integral kernels (Figure 2),
as well as architectures using only FNO and differential kernels or only FNO with the proposed integral kernels. Figure 7
compares the predictions of each model.

We choose all hyperparameters such that the overall number of parameters of all compared models is similar. The number
of layers, number of Fourier modes, and embedding dimension are shown in Table 4. Models using convolutions with
differential and local integral kernels use these layers in parallel to the Fourier layers and pointwise skip connection on
all layers. We use reflective padding for the convolutional operations in the differential and local integral kernels. For
all relevant models, the local integral kernels use a radius cutoff of 0.007 on [−1, 1]2, and they are parameterized by five
radial, piecewise linear basis functions for the approximation of anisotropic filters (analogous to Figure 6 on the plane). The
differential kernels are parameterized as 3× 3 convolutional kernels over the regular grid. For our U-Net baseline, we use
3× 3 convolutional kernels with 2 residual blocks for each resolution (two downsampling and two upsampling) and three
layers within each block, with channel multipliers of 1, 2, 4 for each layer within a block.

Training is conducted by minimizing the squared L2-loss for 70 epochs on a single NVIDIA P100 GPU, which is sufficient
to achieve convergence on all models. We use a step learning rate decay scheduler, starting at 10−3 and halving every 10
epochs. The results are shown in Table 4.

(a) Input (b) Ground truth (c) Ours (d) FNO (e) U-Net

Figure 7: Comparison of models from Table 4: The outputs of our best-performing model, FNO, and U-Net on a randomly selected input
pressure function from the Darcy flow problem. Edge artifacts are very prevalent in the FNO predictions, and they are less dominant in
the U-Net predictions.

C.2. 2D Navier-Stokes Equations

For the 2D Navier-Stokes equations (Kolmogorov flows), we use the same experimental setup and dataset as Li et al. (2022a),
which sets m = 4 and Re = 5000 in (12) and uses a temporal discretization of τ = 1 on a 128 × 128 regular grid. The
initial conditions are sampled from a Gaussian measure as described in Li et al. (2022a), and the equation is solved with a
pseudo-spectral solver. We compare the same five models as in the Darcy experiment.

As in the Darcy setting, we choose all hyperparameters such that the overall number of parameters for all the models is
similar. The number of layers, number of Fourier modes, and embedding dimension are shown in Table 4. Models using
convolutions with differential and local integral kernels use these layers in parallel to the Fourier layers and pointwise skip

16

Neural Operators with Localized Integral and Differential Kernels

connection on all layers. We enforce periodic boundary conditions during padding for the convolutional operations in the
differential and local integral kernels. For all relevant models, the local integral kernels use a radius cutoff of 0.05π on the
torus, and they are parameterized by five radial, piecewise linear basis functions for the approximation of anisotropic filters
(analogous to Figure 6 on the plane). The differential kernels are parameterized as 3 × 3 convolutional kernels over the
regular grid. Our U-Net baseline is set up in the same way as in the Darcy experiment.

Training was performed for 136 epochs on a single NVIDIA RTX 4090 GPU with an exponentially decaying learning rate,
starting at 10−3 and halving every 33 epochs. The results are shown in Table 4.

C.3. Diffusion-Reaction equation

For the 2D Diffusion-Reaction equation, we use the same experimental setup and dataset as Takamoto et al. (2022). The
reference solution is computed using a finite-volume method in space and a fourth-order Runge-Kutta method in time.
The dataset consists of 900 training samples and 100 validation samples discretized on a 128× 128 regular grid with 100
equidistant time-steps in the interval [0, 5] and Gaussian initial conditions. The task is to predict the state of the variables
(u, v) at the next time-step from the states at the previous 10 steps. The errors are measured for the full autoregressive
roll-out as in the implementation of PDEBench at github.com/pdebench/PDEBench.

We use the same experimental setup and implementation as Takamoto et al. (2022) and only adapt the learning rate, the
number of modes, and the embedding dimension. We then add our proposed layers to (a subset of) the FNO blocks and
experiment with both reflective and replicate padding. In particular, we parametrize the local integral kernels by five radial,
piecewise linear basis functions and use 3× 3 convolutional kernels for the differential kernels.

We train on a single NVIDIA RTX 4090 GPU for 500 epochs with early stopping (using the same criteria as Takamoto et al.
(2022)). Moreover, we use an exponentially decaying learning rate, starting at 10−4 and halving every 100 epochs. We
present our best results in Table 2 and refer to Takamoto et al. (2022) for details on the metrics. We compare against the
baselines by Takamoto et al. (2022) and note that we also improve their FNO baseline results. However, our local integral
and differential kernels still provide a significant improvement with fewer parameters. Specifically, we reduced the modes
from 24 to 16 and increased the embedding dimension from 20 to 29.

C.4. Shallow water Equations

For the shallow water equations, we use the dataset presented by Bonev et al. (2023), which uses a Gaussian random field
to generate initial conditions on an equiangular lat-lon-grid on the sphere at a resolution of 256× 512 and solves for φ, u
at a lead time of one hour. The target solution is computed using a spectral solver, which takes 24 Euler steps8. Physical
constants such as the sphere’s radius or the Coriolis force are set to match those of Earth. The numerical solver uses 150
explicit Euler steps to advance the solution 1 hour in time. The right-hand side is discretized using the spectral basis provided
by the Spherical Harmonics. For a detailed description of the dataset, we refer the reader to Bonev et al. (2023) and the
corresponding implementation in the torch-harmonics package.

As a baseline for our experiments, we use the SFNO architecture as presented by Bonev et al. (2023), where the embedding
dimension is adjusted to 32 to obtain a manageable parameter count. Moreover, we adapt the U-Net architecture by Gupta
& Brandstetter (2022) to the spherical domain by replacing all spatial (i.e., not the 1 × 1) convolutions with DISCO
convolutions on the sphere. Therefore, the resulting architecture is a spherical U-Net similar to the architecture presented by
Ocampo et al. (2022). Moreover, due to the DISCO convolutions’ discretization-agnostic nature, this architecture can be
interpreted as a neural operator. Finally, we augment the SFNO architecture with local DISCO convolutions to obtain the
proposed architecture; see Section 3.5.

For all three architectures, hyperparameters were chosen to achieve roughly similar parameter counts. The learning rates for
each architecture were determined with a quick parameter sweep, resulting in 3 · 10−4 for the spherical U-Net and 3 · 10−3

for both neural operators. As a learning rate scheduler, we use the policy of halving the learning rate upon a plateauing of
the loss. Training was performed for 100 epochs on a single NVIDIA RTX A6000 GPU, which was sufficient to achieve
convergence on all considered models.

8Dataset and solver are taken from the torch-harmonics package at github.com/NVIDIA/torch-harmonics.

17

https://github.com/pdebench/PDEBench/
https://github.com/NVIDIA/torch-harmonics

Neural Operators with Localized Integral and Differential Kernels

(a) Input pressure (b) Ground truth forcing (c) Predicted forcing

(d) Initial geopotential height (e) Ground truth at 1h (f) Prediction at 1h

Figure 8: Randomly selected super-resolution samples for the Darcy flow (top row) and shallow water (bottom row) problems.

C.5. Flow past a cylinder

To demonstrate the capability of dealing with unstructured representations, we use the dataset provided by Rahman et al.
(2024) to train a model for predicting velocity and pressure fields for a Navier-Stokes problem in a channel with a suspended
cylinder and attached membrane (see Figure 4). We use the dataset with a viscosity of µ = 1.0, which corresponds to a
Reynolds number of Re = 2000. To deal with the unstructured data, we employ a local integral convolution layer in both the
encoder and decoder with a cutoff radius of rcutoff = 0.052 and 5 piecewise-linear basis functions. This layer transforms the
unstructured data to a regularly spaced grid of 48× 192 in the internal representation. The processor part of the architecture
then consists of 4 FNO blocks with local integral kernels, which have the same filter basis as the convolutions used in the
encoder/decoder. The embedding dimension is fixed at 16 and all Fourier modes are kept in the internal representation.
Overall, this leads to a parameter count of 9.6 · 106. The architecture is trained on a dataset of 250 samples for 50 epochs
using the Adam optimizer and a learning rate of 2 · 10−3. The results alongside baselines from Rahman et al. (2024) are
reported in Table 3.

C.6. Zero-shot super-resolution results

In this paper, we propose two methods to embed the inductive bias of locality into neural operator architectures. The key
distinction between our proposed methods and CNN-based architectures is that our methods are agnostic to the discretization
of the input function. In this section, we present and discuss the super-resolution capabilities of our proposed models.
In particular, we focus on two examples: (1) the Darcy flow equation to showcase our differential layers on a regular
Cartesian grid and (2) the shallow water equation to demonstrate super-resolution for our local integration on the sphere.
The experimental setting that we consider is that of zero-shot super-resolution. In particular, suppose that the model has
been trained at a particular training resolution (or at multiple different resolutions). Given input at a higher resolution than
the training resolution, the task of zero-shot super-resolution is to then predict the output function at this higher resolution
and evaluate the resulting model error.

In the Darcy flow setting, we use the same setup and dataset as described in Section 4.1. We train two models on data
sampled at a 256× 256 regular grid and evaluate on a 128× 128 regular grid (12x resolution and 1

4x the number of points),
512× 512 grid (2x super-resolution), and 1024× 1024 grid (4x super-resolution). For the shallow water equations, a similar
approach is taken. We take the models in Section 4.4 which were trained at a resolution of 256× 512 and apply them to
data generated at a resolution of 128× 256, 512× 1024, and 1024× 2048.

18

Neural Operators with Localized Integral and Differential Kernels

Table 5: Zero-shot super-resolution results for Darcy flow and the spherical shallow water problems. The validation error is reported in
terms of relative L2-error at various resolutions. Autoregressive rollouts are super-resolved in the sense that the rollout is performed at the
high resolution.

Model
Parameters Relative L2-Error

Layers # Modes Embedding # Parameters
resolution (relative to training resolution)

1/2× 1× 2× 4×
Darcy Flow

FNO 4 20 41 2.715 · 106 1.475 · 10−1 5.867 · 10−2 8.646 · 10−2 7.731 · 10−2

FNO + diff. (ours) 4 20 40 2.599 · 106 1.174 · 10−1 5.851 · 10−2 7.774 · 10−2 6.681 · 10−2

Spherical Shallow Water Equations

Spherical U-Net 17 - 32 1.639 · 106 5.586 · 10−3 6.160 · 10−4 3.386 · 10−3 4.102 · 10−3

SFNO 4 128 32 1.066 · 106 1.342 · 10−3 9.220 · 10−4 3.830 · 10−3 4.419 · 10−3

SFNO + loc. int. (ours) 4 128 31 1.019 · 106 8.673 · 10−4 2.624 · 10−4 3.341 · 10−3 4.097 · 10−3

Table 5 provides the details of the models we used for these experiments as well as the results of our super-resolution
experiments with our proposed models. In the Darcy setting, we compare the baseline FNO to the FNO augmented with the
differential kernel. On the sphere, we make use of the fact that the spherical U-Net presented in (Ocampo et al., 2022) is
already a neural operator due to its discretization-independence. As such, we can use it alongside the SFNO as a baseline for
zero-shot super-resolution on the sphere.

As with all neural operator architectures, during training there is the possibility of overfitting to the training resolution.
For instance, FNO may learn features in Fourier space that are intrinsically tied to the resolution of the input function.
Similarly, it is possible that our proposed differential and integral convolutional operators will learn a function of the training
discretization. This effect can be remedied by using high-resolution training data where the local details are fully resolved.
This minimum required resolution of the training data is thus a function of the smoothness of the input function. For this
reason, we decided to exclude the 2D Navier-Stokes problem from our super-resolution experiments, since training at a
resolution that sufficiently resolves the local dynamics would be prohibitvely expensive.

In our experiments, we noticed that our differential layers tend to incur some discretization errors when trained on data
that is not of sufficiently high resolution. If differential convolutions are present in consecutive layers in the model, this
error can propagate quickly. As such, we found that the best-performing model on zero-shot super-resolution for the Darcy
flow problem is a model with a differential convolution in only the first layer. Using fewer differential layers in our model
reduces the expressivity, but we find that the super-resolution capabilities are still better than the baseline FNO.

Lastly, we would like to note that in our experiments, FNO had a larger error near the boundary in non-periodic problems, as
the FFT used in FNO assumes periodic boundary conditions. We note that our proposed differential layer can help reduce
the error at the boundary caused by FNO, but some of these effects may still be present (see Figure 8).

C.7. Computational efficiency of differential and local integral kernels

On equidistant grids, our differential and local integral kernels can be implemented as standard convolutional kernels, which
are heavily optimized for GPU performance. The computational complexity of our differential kernels is linear in the
number of grid points since the size of the convolutional kernel remains constant regardless of resolution. In contrast, the
size of the discretized local integral kernels does increase with input resolution. While this may be expensive for some
high-resolution datasets, in our experiments, we found that the heavily-optimized convolutions in deep learning libraries
can help reduce this computational burden. As a consequence, local integral kernels are more efficient than GNO (Li et al.,
2020b) and other graph-based approaches on equidistant grids.

Moreover, the local integral kernels can also be applied to irregular grids, where they are implemented as sparse matrix
multiplications. This tends to outperform GNOs (Li et al., 2020b), which need to evaluate a neural network on the graph.
The complexity of the local integral layer is linear with a constant that depends on the sparsity of the matrix. This, in turn,
depends on the support of the local kernel; choosing a fixed support will scale quadratically with the resolution, whereas a
support that matches the resolution will scale linearly in practice.

19

