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Abstract
This paper studies sample average approximation
(SAA) and its simple regularized variation in solv-
ing convex or strongly convex stochastic program-
ming problems. Under heavy-tailed assumptions
and comparable regularity conditions as in the
typical SAA literature, we show — perhaps for
the first time — that the sample complexity can
be completely free from any complexity measure
(e.g., logarithm of the covering number) of the
feasible region. As a result, our new bounds can
be more advantageous than the state-of-the-art in
terms of the dependence on the problem dimen-
sionality.

1. Introduction.
This paper is focused on a convex or strongly convex
stochastic programming (SP) problem of the following
form:

min
x∈X

F (x) := E[f(x, ξ)], (1)

where X ⊆ Rd is a non-empty convex feasible region with
integer d being the number of decision variables (a.k.a., di-
mensionality), ξ is a random vector of problem parameters
whose probability distribution P is supported on Θ ⊆ Rm,
and the cost function f : X ×Θ → R is deterministic and
measurable. Throughout this paper, we assume that f( · , ξ)
is everywhere differentiable for almost every ξ ∈ Θ, the
expectation E [f(x, ξ)] =

∫
Θ
f(x, ξ) dP(ξ) is well defined

for every x ∈ X , and F admits a finite minimizer x∗ on
X with a finite optimal cost. Furthermore, we also assume
the presence of some structure of a composite objective
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function; that is, there exist two deterministic and every-
where differentiable functions, denoted by F1 : X → R
and F2 : X → R such that

F (x) = F1(x) + F2(x), (2)

where F1 and F2 satisfy regularities in Assumption 1.1 be-
low:

Assumption 1.1. Given q ≥ 1, let ϱ = q/(q − 1). For
some scalars L ≥ 0, M ≥ 0, and any pair of vectors
(x1, x2) ∈ X 2,

∥∇F1(x1)−∇F1(x2)∥ϱ ≤ L · ∥x1 − x2∥q, (3)

and, simultaneously,

∥∇F2(x)∥ϱ ≤ M, ∀x ∈ X . (4)

Here, (3) means that the first component of the population-
level objective function F1 admits Lipschitz continuous
gradient. Meanwhile, (4) essentially imposes that the second
component of the population-level objective function F2 is
Lipschitz continuous. Results that apply to such a composite
objective function subsume the special cases of F being
smooth (with F2 = 0) and F being Lipschitz (with F1 =
0). Conditions closely similar to, if not more critical than,
Assumption 1.1 have been considered in much SP literature
(such as Ghadimi & Lan, 2012; 2013; Nemirovski et al.,
2009; Rakhlin et al., 2011; Lan, 2020).

The SP problem above has been widely applied and much
discussed (e.g., by Shapiro et al., 2021; Birge, 1997; Birge &
Louveaux, 2011; Ruszczyński & Shapiro, 2003; Lan, 2020,
to name only a few). Particularly, it has extensive connec-
tions with many machine learning problems (as per, e.g.,
Bartlett et al., 2006; Liu et al., 2019). Indeed, the subop-
timality gap in solving (1) can often be interpreted as the
excess risk, an important metric of generalizability, when
the SP problem is constructed for fitting/training a statisti-
cal or machine learning model. Due to the (increasingly)
frequent need to perform data-driven modeling or decision-
making in the presence of extreme values or outliers in data,
studying solution techniques for (1) under heavy-tailed-ness
becomes growingly more important (Oliveira & Thompson,
2023).
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This paper revisits one of the most traditional but popular so-
lution methods for the SP called the sample average approx-
imation (SAA). Following the SAA literature (Dupacová &
Wets, 1988; Ruszczyński & Shapiro, 2003; Kleywegt et al.,
2002; Shapiro et al., 2021; Oliveira & Thompson, 2023;
King & Wets, 1991, among many others), we particularly
focus on the canonical formulation of the SAA and one of
its simple, regularized variations — both in heavy-tailed
settings:

(i) In particular, the canonical SAA is as below:

min
x∈X

FN (x) := N−1
N∑
j=1

f(x, ξj), (5)

where ξ1,N := (ξj : j = 1, ..., N) is an i.i.d. random
sample of ξ. Our analysis on this formulation is cen-
tered around its effectiveness for strongly convex SP
problems.

(ii) On top of (5), we also consider the SAA that incorpo-
rates a Tikhonov-like regularization (referred to as the
RSAA) in the following:

min
x∈X

Fλ0,N (x) := FN (x) + λ0Vq′(x), (6)

where λ0 ≥ 0 is a tuning parameter, and Vq′ : X → R+

for a user’s choice of q′-norm (with q′ ∈ (1, 2]), is
defined as

Vq′(x) =
1

2
∥x− x0∥2q′ , (7)

for any initial guess x0 ∈ Rd that does not have to be
feasible to X . Particularly in the case of q′ = 2 and
x0 = 0, we have Vq′(x) = 0.5∥x∥22, which becomes
the canonical Tikhonov regularization (Golub et al.,
1999) commonly employed in ridge regression (Hoerl
& Kennard, 1970). The same type of regularziation
approach has been discussed in (R)SAA theories for
(general) convex SP, among others, by Hu et al. (2020),
Feldman & Vondrak (2019), and Shalev-Shwartz et al.
(2010; 2009) under Lipschitz continuity and by Lei &
Ying (2020) under gradient dominance. Similarly in
this paper, we also study the RSAA in (general) convex
SP problems.

Both (5) and (6) avoid the multi-dimensional integral in-
volved in (1) and thus render the SP problem to be solvable
as a “deterministic” nonlinear program, often improving the
tractability substantially (Shapiro et al., 2021).

Hereafter, consistent with the literature (e.g., Shapiro, 1993),
we refer to the random variable x̂ := x̃(ξ1,N ) for a
deterministic and measurable function x̃ : ΘN → X

such that x̃(ξ1,N ) ∈ arg minx∈X FN (x) (or x̃(ξ1,N ) ∈
arg minx∈X Fλ0,N (x)) as an optimal solution to (5) (or
(6), resp). Sufficient conditions for the measurability of x̃
have been established in different scenarios (Shapiro et al.,
2021; Rockafellar & Wets, 2009; Krätschmer, 2023). Par-
ticularly of our interest is the quality of solution x̂ in terms
of its sample complexity; how large the (finite) sample size
N should be in order to ensure that x̂ is within the set of
ϵ-suboptimal solutions to (1) with probability at least 1− β,
for a user-specified accuracy threshold ϵ > 0 and a given
significance level β ∈ (0, 1).

While much literature has studied the effectiveness of SAA
and its regularized variations (e.g., Artstein & Wets, 1995;
Dupacová & Wets, 1988; King & Rockafellar, 1993; King &
Wets, 1991; Pflug, 1995; 1999; 2003; Shapiro, 1989; 1993;
2003; Shapiro et al., 2021; Guigues et al., 2017; Liu et al.,
2016; 2022), most existing finite-sample (non-asymptotic)
results assume light-tailed-ness for the underlying random-
ness; that is, its pth moments are finite for all p ≥ 1. From
this body of literature, a typical non-asymptotic result is in
the form below:

A typical result under light-tailed-ness (e.g., as per
Shapiro et al., 2021): Given q ≥ 1, under the Lipschitz
assumption that, for all x,y ∈ X and every ξ ∈ Θ,

|f(x, ξ)− f(y, ξ)| ≤ M(ξ) · ∥x− y∥q, (8)

where M : Θ → R+ is some deterministic and measurable
function, the optimal solution to the SAA in (5), denoted
by x̂, admits the following sample complexity: For any
ϵ > 0, β ∈ (0, 1):

Prob [F (x̂)− F (x∗) ≤ ϵ] ≥ 1− β,

if N ≥ O

(
max

{
υ2
f (Γϵ(X ) + ln 1

β )

ϵ2
, υL ln

1

β

})
, (9)

where υf and υL are the parameters of the sub-Gaussian
(or subexponential) distributions assumed for random vari-
ables Yx,x′ := [f(x, ξ) − F (x)] − [f(x′, ξ) − F (x′)], for
any given solution pair (x,x′) ∈ X 2, and M(ξ), respec-
tively, and Γϵ(X ) is a complexity measure of the feasible
region. Here, sub-Gaussian and subexponential refer to
distributions whose tails vanish no slower than Gaussian or
exponential distributions, respectively.

Note that a frequent choice of the complexity measure
Γϵ(X ) of the feasible region is the logarithm of the covering
number (or cardinality of the ϵ-net) for X . This complexity
measure grows polynomially with d in general. We also
note that the Lipschitz condition in (8) is comparable to, if
not more stringent than, Assumption 1.1.

Beyond the light-tailed assumptions, non-asymptotic sample
complexity of (R)SAA (in either (5) or (6)) is much less
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visited, especially when the consideration is under regularity
conditions comparable to (8) or Assumption 1.1. Among the
few, a very recent state-of-the-art result shows the below:

State-of-the-art result under heavy-tailed-ness (Oliveira
& Thompson, 2023): Suppose that, for all x,y ∈ X ∗,ϵ

(instead of X in (8)) and every ξ ∈ Θ, it holds, for some
given q ≥ 1, that

|f(x, ξ)− f(y, ξ)| ≤ M(ξ) · ∥x− y∥q, (10)

then for given p′ ≥ 2, ϵ > 0, and β ∈ (0, 1),

Prob[F (x̂)− F (x∗) ≤ ϵ] ≥ 1− β,

if N ≥ O

M2 ·
((

γ(X ∗,ϵ)
)2

+ (D∗,ϵ)2 · ln 1
β

)
ϵ2

+p′ ·

(
M̃p′

M2
+

υ̃x∗,p′

υx∗

)
· β−2/p′

 . (11)

where X ∗,ϵ is the set of ϵ-suboptimal solutions, γ(X ∗,ϵ) is
some complexity measure of the feasible region based on
generic chaining, D∗,ϵ denotes the diameter of X ∗,ϵ, M2 is
the second moment of M(ξ) in (10), υx∗ is the variance of
f(x∗, ξ), and M̃p′ and υ̃x∗,p′ are the p′th central moments
of [M(ξ)]2 and (f(x∗, ξ)− F (x∗))2, respectively.

Closest to our settings of consideration is (11) in its “most
heavy-tailed” scenario with p′ = 2; namely, when the sec-
ond central moment of [M(ξ)]2 is finite — and thus the
fourth moment of M(ξ) is also finite. In such a case, the
benchmark sample complexity bound in (11) is reduced to

Prob[F (x̂)− F (x∗) ≤ ϵ] ≥ 1− β,

if N ≥ O

M2 ·
((

γ(X ∗,ϵ)
)2

+ (D∗,ϵ)2 · ln 1
β

)
ϵ2

+

(
M̃2

M2
+

υ̃x∗,2

υx∗

)
· 1
β

 . (12)

The value of the complexity measure of the feasible region
γ(X ∗,ϵ) above can sometimes be opaque and hard to es-
timate. It is known that γ(X ∗,ϵ) ≤ O(

√
ln d) when the

feasible region is a simplex. Nonetheless, the best-known
upper bound is γ(X ∗,ϵ) ≤ O(

√
d · D∗,ϵ) in general. Fur-

thermore, it is also worth noting that D∗,ϵ is comparable to
the diameter of the feasible region X in general. Indeed,
particularly for general convex SP problems, it is easy to

construct scenarios where the largest distance between any
two ϵ-suboptimal solutions can be closely similar to the
largest possible distance between any two feasible solutions.
One such example is for the expected objective function to
be close to a constant. Likewise, in many cases, M(ξ) has
to be large enough such that (10) holds for all x, y ∈ X ,
making (10) not necessarily a significantly weaker condi-
tion than (8). Thus, (10) is also comparable to, if not more
critical than, Assumption 1.1.

In the results (9), (11), and (12) above — as well as in
most literature on SAA — a seemingly unavoidable term
in the sample complexity is Γϵ(X ), γ(X ∗,ϵ), or alike — the
complexity measure of the feasible region — which often
leads to a high dependence on problem dimensionality d.
Furthermore, their dependence on the problem quantities
tend to be opaque; other than some generic and conservative
upper bounds, how large the X -specific values are for the
complexity measures of X can be hard to assess in many
cases. In response to the observations above, this paper is
focused on the following research question:

Question: Does the SAA, or its simple variations, admit
complexity bounds that are completely free from any com-
plexity measure of the feasible region (even if the underlying
randomness is heavy-tailed)?

To the question above, the literature has provided positive
results in both strongly convex and (general) convex cases
under more critical regularity conditions than Assumption
1.1 or (8) through the notion of uniform stability and its vari-
ations (Bousquet & Elisseeff, 2002; Shalev-Shwartz et al.,
2010; 2009; Hu et al., 2020). (See some additional discus-
sions on this in Section 2). In contrast, this paper advances
those results and presents perhaps the first set of affirmative
answers under standard assumptions (Assumption 1.1) for
the SP, as summarized below in Main Theorems 1 and 2:

Main Theorem 1 (Informal statement of Theorem 4.8):
Let f(·, ξ) be µ-strongly convex (µ > 0) w.r.t. the q-norm
(q ≥ 1) for almost every ξ ∈ Θ, and F be a composite func-
tion satisfying Assumption 1.1 also w.r.t. the q-norm. Sup-
pose that the variance of the gradient ∇f(·, ξ) is bounded
as per

E[∥∇F (x)−∇f(x, ξ)∥2p] ≤ σ2
p , ∀x ∈ X , (13)

for some σp ≥ 1 and some p ∈
[
1, q

q−1

]
. Consider an

optimal solution x̂ to the SAA formulation in (5). Both
of the two inequalities below explicate the SAA’s sample
complexity: For any ϵ > 0,

E[F (x̂)− F (x∗)] ≤ ϵ,

if N ≥ O

(
max

{
L
µ
,
σ2
p +M2

µ · ϵ

})
; (14)
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and, meanwhile, for any ϵ > 0 and β ∈ (0, 1)

Prob [F (x̂)− F (x∗) ≤ ϵ] ≥ 1− β,

if N ≥ O

(
max

{
L
µ
,
σ2
p +M2

µ · ϵ · β

})
. (15)

Main Theorem 2 (Informal statement of Theorem 4.11):
Let f(·, ξ) be (general) convex for almost every ξ ∈ Θ.
Suppose that Assumption 1.1 holds w.r.t. the q-norm (q > 1).
For some tractable choices of the hyper-parameters, such as
q′ ∈ (1, 2] : q′ ≤ q in Vq′ , if (13) holds with p ∈

[
1, q

q−1

]
,

any solution x̂ to the RSAA in (6) entails the following
sample complexity: For any ϵ ∈ (0, 1],

E[F (x̂)− F (x∗)] ≤ ϵ,

if N ≥ O

(
Vq′(x

∗)

q′ − 1
·max

{
L
ϵ
,
σ2
p +M2

ϵ2

})
; (16)

and, meanwhile, for any ϵ ∈ (0, 1] and β ∈ (0, 1),

Prob [F (x̂)− F (x∗) ≤ ϵ] ≥ 1− β,

if N ≥ O

(
Vq′(x

∗)

q′ − 1
·max

{
L
ϵ
,
σ2
p +M2

ϵ2β

})
. (17)

Here, Vq′(x
∗) is half of the squared q′-norm distance be-

tween an optimal solution x∗ and a specified vector x0 as
hyper-parameters of Vq′ (defined in (7)).

Note that the assumption on the underlying randomness as
in (13) is a standard condition in much SP literature (e.g.,
Ghadimi & Lan, 2012; 2013; Lan, 2020). Nonetheless, non-
asymptotic analysis of SAA under this condition has been
scarcely visited, to our knowledge. Indeed, (13) allows for
the consideration of some even “heavier-tailed” scenarios
than the benchmark results as in (9) and (11) (or (12)). See
Remark 4.2 later for more discussions.

Our new sample complexity rates summarized above can
also be more advantageous than the concurrent results. More
specifically, in comparison with the benchmarks in (9) and
(12), observing that M2 ≈ maxx∈X∗,ϵ E[∥∇f(x, ξ)∥2p] is
comparable to σ2

p + M2 in general, we may see that our
results can be more appealing in the following aspects:

• First, both main theorems are independent of the com-
plexity measures of the feasible region, such as Γϵ(X )
in (9) and γ(X ∗,ϵ) in (12), which usually elevate the
dependence of the sample complexity on d. By avoid-
ing these complexity measures, our results are less
dimension-sensitive than both (9) and (12), as well as
than most existing results under comparable conditions.
(See more detail in Remark 4.15 subsequently). While

σ2
p may depend on d implicitly, as we clarify later in

Remark 4.16, this quantity may only grow with d2/p

when each dimension of ∇f(·, ξ) has a fixed upper
bound on the central moments to the pth order. Con-
sequently, if p > 2, the dependence on d becomes
better than any polynomial. When p ≥ c ln d, for some
constant c > 0, the sample complexity becomes dimen-
sion free (when the other quantities such as Vq′(x

∗), L
and/or M are fixed).

• Second, our results make use of the potential smooth-
ness of the objective function to obtain sharper bounds.
E.g., for (general) convex SP, in the more adversarial
case of L = 0, our derived complexity grows linearly
with M2, leading to comparable complexity rates be-
tween (12) and (17). Meanwhile, as L becomes more
dominant than M, the rates in our new complexity (17)
improves and becomes potentially more efficient than
the benchmark. A similar trend can also be observed
for the strongly convex case in (15). Particularly, in
the most desirable case of M = 0 and ϵ is reasonably
small, our sample complexities can be simplified into

Prob [F (x̂)− F (x∗) ≤ ϵ] ≥ 1− β,

ifN ≥


O
(

σ2
p

µ·ϵ·β

)
µ-strongly convex SP;

O
(

Vq′ (x
∗)

q′−1

σ2
p

ϵ2·β

)
general convex SP,

(18)

which identify a region of parameters free from the
impact of Lipschitz constants L and M (of ∇F1 and
F2, respectively).

• Third, in the case of strongly convex SP, the sam-
ple efficiency presented in Main Theorem 1 shows
a significant improvement in terms of dependence on
ϵ as compared to results in (9) — the margin of en-
hancement is by an order of magnitude. While this
advantage is made possible via better exploiting the
µ-strong convexity, there is no need to estimate µ
when constructing the SAA formulation. It is also
worth noting that, in the same µ-strongly convex case,
the benchmark in (12) can achieve a comparably ad-
vantageous rate with ϵ. To see this, one can show
that µ-strong convexity leads to (D∗,ϵ)2 ≤ 2µ−1ϵ.
Plugging this, as well as the fact that γ(X ∗,ϵ) ≤
O(

√
d · D∗,ϵ), into (12) leads to a sample requirement

of N ≥ O

(
M2(d+ln(1/β))

µϵ +

(
M̃p′

M2
+

υ̃x∗,2

υx∗

)
· 1
β

)
,

which, nonetheless, still exhibits a significantly higher
dependence on d than our result in (15).
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1.1. Organizations

The rest of this paper is organized as follows: Section 2
summarizes related works. Section 3 discusses preliminary
results. Our main theorems (Theorems 4.8 and 4.11) are
presented in Section 4. Finally, Section 5 concludes the
paper.

1.2. Notations

Denote by R the collection of all real numbers, and by
R+ that of the non-negative ones. 0 is the all-zero vec-
tor of some proper dimension. We at times use (xi) or
(xi : i = 1, ..., d) to denote a d-dimensional vector
x = (x1, · · · , xd)

⊤ for convenience. For a function g,
denote by ∇g the gradient and by ∇ig its ith element.
For any vector v = (vi : i = 1, ..., d) ∈ Rd, denote by

∥ · ∥p :=
(∑d

i=1 |vi|p
)1/p

the p-norm (p ≥ 1). Meanwhile,

we define the Lp-norm of a random vector ζ = (ζi) ∈ Rd

to be ∥ζ∥Lp :=
(∑d

i=1 Eζi

[∣∣ζi∣∣p ])1/p. Here, we use |v|
to denote the absolute value of v if it is a real number; oth-
erwise, |V| is the cardinality of V , when it is a set. E[ · ]
denotes the expectation over all the randomness in “·”. Fi-
nally, “w.r.t.” and “a.s.” are short-hands for “with respect to”
and “almost surely”, respectively.

2. Related work
There is a rich body of literature on (5) and (6). As a re-
sult, many (e.g., Artstein & Wets, 1995; Dupacová & Wets,
1988; King & Rockafellar, 1993; King & Wets, 1991; Pflug,
1995; 1999; 2003; Shapiro, 1989; 2003; Shapiro et al., 2021;
Guigues et al., 2017) have provided theoretical guarantees
on the efficacy of the (R)SAA. However, their results are
either asymptotic or focused on light-tailed problems (such
as summarized in (9)). In contrast, non-asymptotic sample
complexities under heavy-tailed-ness and comparable Lip-
schitz conditions as in (8) are much less. Among the few
available, the state-of-the-art — and E.q. (9)-comparable
— bound is proven very recently by Oliveira & Thomp-
son (2023) and summarized in (11) and (12). However,
the sample complexity benchmarks in both light-tailed or
heavy-tailed scenarios are mostly polynomial in the com-
plexity measures of the feasible region, such as Γϵ(X ) and
γ(X ∗,ϵ) in (9) and (11) (or (12)), respectively. The presence
of those complexity measures typically increases the SAA’s
predicted sample requirement w.r.t. the dependence on d.

Sample complexities free from the said complexity mea-
sures of the feasible region have actually been shown possi-
ble for to the (R)SAA under more critical conditions. Indeed,
through the argument of uniform stability or its variations,
it has been proven (e.g., by Bousquet & Elisseeff, 2002;
Shalev-Shwartz et al., 2010; 2009; Hu et al., 2020) that an

optimal solution x̂ to (R)SAA satisfies the below:

Prob [F (x̂)− F (x∗) ≤ ϵ] ≥ 1− β,

if N ≥


O( M

µ·ϵ·β ) µ-strongly convex SP;

O(
MVq′ (x

∗)

ϵ2·β ) general convex SP,

(19)

where Vq′ is the same as in (7), when it holds that, for all
x, y ∈ X and ξ ∈ Θ, and for some Lipschitz constant
M > 0,

|f(x, ξ)− f(y, ξ)| ≤ M · ∥x− y∥q′ . (20)

Meanwhile, high probability bounds (that are logarithmic in
1/β) are also obtained under the same Lipschitz condition as
in (20) (e.g., by Feldman & Vondrak, 2018; 2019; Bousquet
& Elisseeff, 2002; Feldman & Vondrak, 2018; Klochkov &
Zhivotovskiy, 2021, when their results are applied to the
analysis of (5) or (6)). Nonetheless, almost all these current
stability-based analyses on (R)SAA seem indicate the neces-
sity of the Lipschitz condition in (20), which can be overly
critical for many applications of the SP. Indeed, because
M is independent of ξ, this quantity can be undesirably
large and even unbounded under the counterpart condition
of (8) or Assumption 1.1 of our consideration. To see this,
one may consider a simple stochastic quadratic program of
min{E[(α⊤x)2] : x ∈ [−1, 1]d}, where α ∈ Rd is some
Gaussian random vector. While many applications can be
subsumed by simple variations of this SP problem, it does
not admit a finite “M” to satisfy (20). In contrast, in the
most comparable (and actually more adversarial) settings
of our results (i.e., when L = 0), our theorems only require
F (·) = E[f(·, ξ)] — the population-level objective func-
tion — to be Lipschitz continuous. This can sometimes be
a non-trivially weaker condition relative to (20).

This current paper frequently refers to existing complex-
ity bounds, e.g., by Shapiro et al. (2021); Shapiro (2003);
Shapiro & Nemirovski (2005), and Oliveira & Thompson
(2023) as benchmarks in order to explain the claimed ad-
vantages of our results. Yet, it is worth noting that those
concurrent works apply to many important scenarios that
are not covered by the results of this paper. For instance, the
SAA theores by Shapiro et al. (2021) and Oliveira & Thomp-
son (2023) can handle nonconvex problems. The findings
by Oliveira & Thompson (2023) further admit stochasticity
in the feasible region. Nonetheless, when applied to the
settings of our consideration — the convex SP problems
with deterministic constraints — the results by Shapiro et al.
(2021); Shapiro (2003); Shapiro & Nemirovski (2005) and
Oliveira & Thompson (2023) are known to be the best avail-
able benchmarks. We would like to also argue that the SP
problems considered herein are still flexible enough to cover
a very wide spectrum of applications, and that our proof
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arguments, which seem to differentiate from most SAA lit-
erature, may be further extended to nonconvex problems
and scenarios with uncertain constraints.

3. Preliminaries
In the SAA literature, two common ways to quantify the
complexity of the feasible region are: (i) the logarithm of the
covering number such as Γϵ(X ) in (9); and (ii) the “generic
chaining” functional such as γ(X ∗,ϵ) as in (11) (and in (12)
as well). Particularly for (i), the covering number of X
is the smallest number of closed balls that satisfy the two
requirements below: (a). their centers are in X and their
radii are equal to a prescribed (small) value; and (b). their
union is a superset of X . Provably tight overestimates of the
covering number (as is used, e.g., by Shapiro et al., 2021)
grow exponentially with the dimensionality d of the feasible
set X , causing Γϵ(X ), the logarithm of the covering number,
to grow polynomially with d. One may refer to Vershynin
(2018) for more comprehensive discussions.

The consideration of the “generic chaining” functional γ(·)
in the sample complexity analysis of the SAA has been
discussed by Oliveira & Thompson (2023). According to
them, the definition of γ(·) involves a notion called the
admissible sequences as discussed below. For a set S, a
sequence AS := {Aj}j≥0 is said to be admissible if each
Aj in this sequence is a partition of S and satisfies that{

|Aj | = 1 if j = 0;

|Aj | ≤ 22
j

if j ≥ 1.

For each j, denote by diammax(Aj) the largest diameter of
a set in partition Aj . Then, it is defined that

γ(S) := inf
AS

∑
j≥0

2
j
2 diammax(Aj),

where the infimum is taken over all admissible sequences.
While the definition of γ(S) is not in a closed form, it is
known that, when S is a simplex, γ(S) ≤

√
ln d; or other-

wise, γ(S) ≤
√
d ·D in general, given a finite diameter D of

S. Interested readers are referred to Oliveira & Thompson
(2023) and Talagrand (2014) for more detailed discussions.

Below, we discuss some useful properties of Vq′ for 1 <
q′ ≤ 2, as defined in (7). Note that this function is dif-
ferentiable and (q′ − 1)-strongly convex w.r.t. the q′-norm,
according to Ben-Tal et al. (2001). Therefore,

Vq′(x1)− Vq′(x2)− ⟨∇Vq′(x2), x1 − x2⟩

≥ q′ − 1

2
∥x1 − x2∥2q′ , ∀x1, x2 ∈ X . (21)

When f(·, ξ) is convex for almost every ξ ∈ Θ, we have
FN (·) also being convex for almost every ξ1,N ∈ ΘN . This

combined with the fact that Vq′ is (q′ − 1)-strongly convex
w.r.t. the q′-norm leads to the (q′ − 1)-strong convexity of
Fλ0,N (·) w.r.t. the same norm for almost every ξ1,N ∈ ΘN .
As an immediate result, we have that the following inequal-
ity holds for almost every ξ1,N ∈ ΘN :

Fλ0,N (x)− Fλ0,N (x̂) ≥ q′ − 1

2
∥x− x̂∥2q′ , ∀x ∈ X ,

where we recall that x̂ is the minimizer of Fλ0,N on X .

Another important property of Vq′ is its Lipschitz continuity
under mild conditions. To see this, one may observe that, for
any x ∈ X , it holds that Vq′ is differentiable. Furthermore,
for ϱ = q′/(q′ − 1), it holds that

∥∇Vq′(x)∥ϱ

= ∥x− x0∥2−q′

q′

(
d∑

i=1

(
|xi − x0

i |
)(q′−1)ϱ

)1/ϱ

= ∥x− x0∥2−q′

q′ ·

(
d∑

i=1

(
|xi − x0

i |
)q′)(q′−1)/q′

= ∥x− x0∥q′ . (22)

When the q′-norm diameter of the feasible region is bounded
by Dq′ , we can tell that Vq′ is Lipschitz continuous in the
following sense:

|Vq′(x)− Vq′(y)| ≤ Dq′ · ∥x− y∥q′ , ∀x,y ∈ X . (23)

4. Main Results
This section presents the formal statements of our results.
Subsection 4.1 discusses our assumptions, and then Sub-
section 4.2 provides our theorems, whose proofs are in the
appendices.

4.1. Assumptions

Our first assumption is on the underlying randomness; as
in (13), the variance of ∇f(·, ξ) is assumed to be bounded
everywhere on X . We formalize this condition below:

Assumption 4.1 (Bounded variance). For a given p ≥ 1,
there exists a scalar σp ≥ 1 such that

E
[
∥∇f(x, ξ)−∇F (x)∥2p

]
≤ σ2

p for every x ∈ X . (24)

Remark 4.2. We sometimes refer to this condition as “As-
sumption 4.1 w.r.t. the p-norm”, which is common in the
SP literature, especially in the discussions of stochastic first-
order methods (SFOM), a mainstream alternative solution
method for SP than the SAA (as discussed by, e.g., Ghadimi
& Lan, 2013; 2016; Lan, 2020). This assumption is more
general than the conditions on the underlying randomness
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imposed by the benchmark results mentioned in (9) and (11)
(or (12)). Indeed, the benchmark result in (9) imposes light-
tailed-ness. Meanwhile, (11) assumes a finite p′th central
moment of [M(ξ)]2 with p′ ≥ 2, which implies a bounded
fourth moment of ∥∇f(·, ξ)∥p. (Here, p = q/(q − 1) with
q given as in (10)). In contrast, Assumption 4.1 concerns
only the second moment of ∥∇f(·, ξ)−∇F (·)∥p and thus
applies to the case with p′ = 1, which is an unaddressed
scenario for (11) (as well as for (12)). A comparable con-
dition in the form of a finite second moment of M(ξ) has
also been considered by Oliveira & Thompson (2023), yet
the corresponding complexity bounds are not fully explicit
w.r.t. the dependence on β.
Remark 4.3. We hypothesize that the analyses in this paper
can be extended to scenarios where Assumption 4.1 is re-
placed by the following relatively more flexible condition:
E[∥∇F (x) − ∇f(x, ξ)∥2p] ≤ C · ∥x − x∗∥2q + σ2

p for all
x ∈ X , where C ≥ 0 is some problem quantity. Nonetheless,
we will leave the verification of this hypothesis to future
work.

Finally, we would also like to remark that the stipulation of
σp ≥ 1 is non-critical; it is only for the simplification of
notations in our results.

We formalize our assumptions of strong convexity and (gen-
eral) convexity below:

Assumption 4.4 (µ-strong convexity w.r.t. the q-norm).
The following inequality holds for every pair of solutions
x1, x2 ∈ X and almost every ξ ∈ Θ:

f(x1, ξ)− f(x2, ξ) ≥ ⟨∇f(x2, ξ), x1 − x2⟩

+
µ

2
· ∥x1 − x2∥2q, (25)

for some given µ > 0 and q ≥ 1.

Remark 4.5. We refer to the above as “Assumption 4.4
w.r.t. the q-norm” or “µ-strong convexity w.r.t. the q-norm”,
which is common in the SAA literature (e.g., by Milz, 2023;
Shalev-Shwartz et al., 2010). Some SP literature (e.g., by
Ghadimi & Lan, 2012) assumes a relatively more flexible
version of strong convexity than Assumption 4.4; more
specifically, the below is stipulated instead therein:

F (x1)− F (x2) ≥ ⟨∇F (x2), x1 − x2⟩

+
µ

2
∥x1 − x2∥2q, ∀x1, x2 ∈ X . (26)

This condition is considered mostly in the discussions of the
SFOM as an alternative SP’s solution method mentioned
above. Although one may easily verify that (26) is an im-
mediate result of Assumption 4.4, the seemingly higher
stringency in Assumption 4.4 does not make the SP prob-
lem much easier. Indeed, lower complexity bounds for the
SFOM (such as by Rakhlin et al., 2011; Agarwal et al.,

2009) are derived based on the identification of adversarial
problems that satisfy Assumption 4.4. Based on these ad-
versarial problems, one can infer that, when shifting from
the assumption of (26) to Assumption 4.4, typical SFOMs
may not achieve faster sample complexity rates in general.

Our second result in this section relaxes the condition of
strong convexity in Assumption 4.4 into the condition of
(general) convexity below:
Assumption 4.6 (General convexity). The following in-
equality holds for all x1, x2 ∈ X and almost every ξ ∈ Θ:

f(x1, ξ)− f(x2, ξ) ≥ ⟨∇f(x2, ξ), x1 − x2⟩.

Remark 4.7. We would like to compare the above with a
counterpart assumption that the population-level objective
F (·) is convex, which is, again, a common condition in the
literature on the SFOM (e.g., by Nemirovski et al., 2009;
Ghadimi & Lan, 2012; 2013). Relative to this counterpart
condition, the incremental stringency in Assumption 4.6
does not make the SP problems much easier; this is because,
again, the adversarial problem instances used to prove lower
performance limits for SFOM for the (general) convex SP
problems (such as those constructed by Agarwal et al., 2009)
often satisfy Assumption 4.6. From such analysis, one can
see that changing from the assumption of F being convex
to Assumption 4.6 does not allow the SFOM to achieve a
better sample efficiency in general.

4.2. Sample complexity bounds

We are now ready to formalize the promised sample com-
plexity bounds in both strongly convex and (general) convex
cases below.
Theorem 4.8 (Sample complexity for strongly convex SP).
Suppose that Assumptions 1.1 and 4.4 hold both w.r.t. the
q-norm for a given q ≥ 1, and that Assumption 4.1 holds
w.r.t. the p-norm for some p : 1 ≤ p ≤ q

q−1 . Then any
optimal solution x̂ to the SAA in (5) satisfies the below: For
any ϵ > 0,

E [F (x̂)− F (x∗)] ≤ ϵ,

if N ≥ C1 ·max

{
L
µ
,
σ2
p +M2

µϵ

}
; (27)

and, meanwhile, for any ϵ > 0 and β ∈ (0, 1),

Prob
[
F (x̂)− F (x∗) ≤ ϵ

]
≥ 1− β,

if N ≥ C1 ·max

{
L
µ
,
σ2
p +M2

µϵβ

}
. (28)

Here, C1 > 0 is some universal constant.

Proof. See Section A.
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Remark 4.9. The theorem above confirms the promised
sample complexity in both (14) and (15) for strongly convex
SP problems.
Remark 4.10. The formulation of SAA for solving a µ-
strongly convex SP problem does not require estimating
the value of µ, nor is it necessary to estimate σp, M, or L.
This observation may lead to convenience in solving an SP
problem, especially when compared to some alternative SP
solution techniques such as the SFOM (e.g., as discussed
by Lan, 2020). The latter often requires a reasonably high-
fidelity estimation of at least some of those quantities in
order to achieve a comparable sample complexity.

Our next theorem is focused on (general) convex SP. Be-
fore its statement, we first introduce some choice of hyper-
parameters for the Tikhonov-like penalty term in (6) for a
given q > 1 and a user-specified accuracy threshold ϵ > 0:
We let

q′ ∈ (1, 2] : q′ ≤ q; R∗ ≥ max{1, Vq′(x
∗)};

and λ0 =
ϵ

2R∗ . (29)

Theorem 4.11 (Sample complexity for general convex SP).
Let q > 1. Suppose that the hyper-parameters q′, R∗, and
λ0 are specified as in (29). Assume that (i) Assumption 1.1
w.r.t. the q-norm, (ii) Assumption 4.1 w.r.t. the p-norm for
some p : 1 ≤ p ≤ q

q−1 , and (iii) Assumption 4.6 hold. Any
optimal solution to RSAA in (6), denoted by x̂, satisfies the
following inequalities: For any ϵ ∈ (0, 1],

E [F (x̂)− F (x∗)] ≤ ϵ,

if N ≥ C2R
∗

q′ − 1
·max

{
L
ϵ
,
σ2
p +M2

ϵ2

}
; (30)

and, meanwhile, for any ϵ ∈ (0, 1] and β ∈ (0, 1),

Prob
[
F (x̂)− F (x∗) ≤ ϵ

]
≥ 1− β,

if N ≥ C2R
∗

q′ − 1
·max

{
L
ϵ
,
σ2
p +M2

βϵ2

}
. (31)

Here, C2 > 0 is some universal constant.

Proof. See Section B.

Remark 4.12. We observe that the theorem above confirms
the promised sample complexity in both (16) and (17) for
(general) convex SP problems, if we notice that R∗ is com-
parable to Vq′(x

∗) therein.
Remark 4.13. The stipulation of q > 1 (and thus not includ-
ing the choice of q = 1) is non-critical. Indeed, in the non-
trivial case with d > 1, following the existing discussions

of SFOM in the 1-norm setting (Nemirovski et al., 2009),
the case where Assumption 1.1 holds for q = 1 can be sub-
sumed by the consideration of the case with q = 1+ 1

ln d > 1
by the fact that

∥v∥1+ 1
ln d

≤ ∥v∥1 ≤ e · ∥v∥1+ 1
ln d

,

where e is the base of natural logarithms.
Remark 4.14. A proper selection of λ0 for this theorem
relies on an overestimate of Vq′(x

∗), which is equal to half
of the squared q′-norm distance between the optimal solu-
tion x∗ and any user-specified initial guess x0. Assuming
(straightforward variations of) the knowledge of such a dis-
tance is not uncommon in related literature (e.g., as in Loh
& Wainwright, 2011; Loh, 2017; Liu et al., 2022). In prac-
tice, when little is known about the SP’s problem structure,
one may choose x0 to be any feasible solution and specify
R∗ to be coarsely large; e.g., one may let R∗ be half of
the squared q′-norm diameter of the feasible region, if it
is bounded. Starting from this coarse selection, one may
then perform some empirical hyper-parameter search for
better values of R∗ (and thus λ0) with the aid of cross val-
idation. Meanwhile, if some problem structure about the
SP problem is known, one may incorporate such a priori
knowledge into the construction of Vq′ . For instance, if it is
known that x∗ satisfies the weak sparsity condition (or the
budget/capacity constraint) that ∥x∗∥1 ≤ r for some known
r (Negahban et al., 2012; Bugg & Aswani, 2021), then, in
view of Remark 4.13, we may construct the regularization
term with q′ = 1 + 1

ln d and x0 = 0. Correspondingly,
R∗ = 0.5 · e2 · r2.
Remark 4.15. As mentioned in Section 1, most existing
sample complexity bounds grow polynomially with the com-
plexity measures of the feasible region, such as Γϵ(X ) in (9)
and γ(X ∗,ϵ) in (12). These complexity measures can signif-
icantly elevate the dependence on d in general. Resultantly,
if we fix all other quantities, the benchmark sample com-
plexity rates in (9) and (12) can be simplified, respectively,
into

O

(
Γϵ(ξ) + ln(1/β)

ϵ2

)
≈ O

(
d+ ln(1/β)

ϵ2

)
(32)

under light-tailed-ness, and

O

(
[γ(X ∗,ϵ)]

2
+ ln(1/β)

ϵ2
+

1

β

)

≈ O

(
d+ ln(1/β)

ϵ2
+

1

β

)
. (33)

In contrast, the two theorems (Theorems 4.8 and 4.11) in this
paper confirm that it is possible to achieve sample complex-
ity bounds completely free from any complexity measure of
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feasible region, leading to new sample complexity rates ofO
(

1
ϵ·β

)
strongly convex SP;

O
(

1
ϵ2·β

)
general convex SP.

(34)

This perhaps marks the first explication of a universally
better sample efficiency intrinsic to the (R)SAA than its
existing benchmarks in (32) and (33), particularly in terms
of the dependence on d.
Remark 4.16. In some applications, the variance σ2

p may
also depend on dimensionality d. This dependence can
be further explicated under additional assumption that, for
some ϕp ≥ 0, it holds that ∥∇if(x, ξ)−∇iF (x)∥Lp ≤
ϕp for all x ∈ X and every i = 1, ..., d. Intuitively, this
additional assumption means that the component-wise pth
central moment of ∇f(x, ξ) is bounded by ϕp

p everywhere.
Because for p ≥ 2, the function (·)2/p is concave in ‘·’, one
may easily see that the following holds:

E[∥∇f(x, ξ)−∇F (x)∥2p]

=E

( d∑
i=1

|∇if(x, ξ)−∇iF (x)|p
)2/p


≤

(
d∑

i=1

E [|∇if(x, ξ)−∇iF (x)|p]

)2/p

≤ d2/p · ϕ2
p.

Namely, in this case, one may let σ2
p := d2/p · ϕ2

p, whose
dependence on dimensionality reduces when p increases.
Particularly, when it is admissible to let p > 2, the de-
pendence of σ2

p on d becomes better than any polynomial.
Meanwhile, when it is feasible to let p ≥ c ln d for some
constant c > 0, the quantity σ2

p becomes dimension-free.
Remark 4.17. An important component of our proofs re-
sorts to a seemingly novel argument based on the “average-
replace-one (average-RO) stability” (Shalev-Shwartz et al.,
2010), which is related to the average stability (Rakhlin
et al., 2005), uniform-RO stability (Shalev-Shwartz et al.,
2010), and uniform stability (Bousquet & Elisseeff, 2002).
While it is known that the average-RO stability can lead
to error bounds for learning algorithms (Shalev-Shwartz
et al., 2010), seldom is there a sample complexity bound
for (R)SAA based on such a stability type in comparable
settings of our consideration. In contrast, most existing
(R)SAA theories are based on either the “uniform conver-
gence” theories, such as the ϵ-net (Shapiro et al., 2021) and
the generic chaining (Oliveira & Thompson, 2023), or the
variations of uniform (RO-) stability theories, such as by
Feldman & Vondrak (2019); Shalev-Shwartz et al. (2010;
2009), and Klochkov & Zhivotovskiy (2021). Therefore, we
think that our average-RO stability-based proof approach
may also be of independent interest to some readers. One
may see more discussions on how the average-RO stabil-

ity is incorporated in our proofs from Remark A.1 in the
appendix.

5. Conclusion
This paper revisits the SAA and its simple variation that
incorporates the Tikhonov-like regularization. We particu-
larly study their sample complexity in strongly convex and
general convex SP problems under the assumptions of (i) the
smoothness/continuity of the objective function comparable
to, if not weaker than, the typical regularity conditions in the
(R)SAA literature; and (ii) the heavy-tailed assumption that
only the variance of the underlying randomness is bounded.
Our results show that the SAA and the said RSAA variation
exhibit new sample complexity rates that are — perhaps
for the first time — provably free from any complexity
measure of the feasible region. This marks a substantial
deviation from the benchmark rates in both light-tailed and
heavy-tailed scenarios, where a polynomial growth in the
complexity measures of feasible region seems to have been
unavoidable. Because such feasible set complexity mea-
sures can elevate the dependence of the sample complexity
on the problem dimensionality in general, our new sample
complexity bounds can be less dimension-sensitive than the
state-of-the-art results in many applications.
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A. Proof of Theorem 4.8
Proof. The proof of the first result of this theorem as in (27) takes two steps.

Step 1. Observe that

E [F (x̂)− F (x∗)] =E [F (x̂)− FN (x∗)] ≤ E [F (x̂)− FN (x̂)] . (35)

Therefore, it suffices to establish an upper bound on E [F (x̂)− FN (x̂)], which is the focus of Step 2 in this proof.

Step 2. With the observation from Step 1, we construct a sequence of alternative SAA formulations with
F

(j)
N (x) := 1

N

(
f(x, ξ′j) +

∑
ι ̸=j f(x, ξι)

)
, where ξ′j is an i.i.d. copy of ξ, for all j = 1, ..., N . Let ξ

(j)
1,N :=

(ξ1, ..., ξj−1, ξ
′
j , ξj+1, ..., ξN ), which is obtained by switching the jth entry of ξ1,N with ξ′j . Correspondingly, let

x̂(j) := x̃(ξ
(j)
1,N ) (and thus, by definition, x̂(j) ∈ argminx∈X F

(j)
N (x)). Below, we establish an overestimate of

N−1
∑N

j=1 E
[
∥x̂(j) − x̂∥2q

]
. This overestimate is to play a key role in bounding E [F (x̂)− FN (x̂)] .

To that end, we first observe that, for any j = 1, ..., N :

FN (x̂(j))− FN (x̂)

=
f(x̂(j), ξj)− f(x̂, ξj)

N
+
∑
ι̸=j

f(x̂(j), ξι)− f(x̂, ξι)

N
(36)

=
f(x̂(j), ξj)− f(x̂, ξj)

N
−

f(x̂(j), ξ′j)− f(x̂, ξ′j)

N
+ F

(j)
N (x̂(j))− F

(j)
N (x̂) (37)

≤f(x̂(j), ξj)− f(x̂, ξj)

N
−

f(x̂(j), ξ′j)− f(x̂, ξ′j)

N
. (38)

Here (36) and (37) are by the definitions of FN and F
(j)
N , and (38) is due to the fact that x̂(j) minimizes F (j)

N .

By Assumption 4.4, we have f(x̂(j), ξj) − f(x̂, ξj) ≤ ⟨∇f(x̂(j), ξj), x̂
(j) − x̂⟩ for almost every ξj ∈ Θ, as well as

f(x̂, ξ′j)− f(x̂(j), ξ′j) ≤ ⟨∇f(x̂, ξ′j), x̂− x̂(j)⟩ for almost every ξ′j ∈ Θ. Combining this with (38) leads to the below:

FN (x̂(j))− FN (x̂)

≤ 1

N
·
〈
∇f(x̂(j), ξj), x̂

(j) − x̂
〉
+

1

N
·
〈
∇f(x̂, ξ′j), x̂− x̂(j)

〉
, a.s.

=
1

N
·
〈
∇f(x̂(j), ξj)−∇F (x̂(j)), x̂(j) − x̂

〉
+

1

N
·
〈
∇f(x̂, ξ′j)−∇F (x̂), x̂− x̂(j)

〉
+

1

N
·
〈
∇F (x̂(j))−∇F (x̂), x̂(j) − x̂

〉
. (39)

Further invoking Young’s inequality and Assumption 1.1, which leads to〈
∇F (x̂(j))−∇F (x̂), x̂(j) − x̂

〉
=
〈
∇F1(x̂

(j))−∇F1(x̂), x̂
(j) − x̂

〉
+
〈
∇F2(x̂

(j))−∇F2(x̂), x̂
(j) − x̂

〉
≤L∥x̂− x̂(j)∥2q + 2M∥x̂− x̂(j)∥q, (40)

we may continue from the above to obtain, for all α > 0 and every j = 1, ..., N ,

FN (x̂(j))− FN (x̂) ≤ 1

2αµN2
·
∥∥∥∇f(x̂(j), ξj)−∇F (x̂(j))

∥∥∥2
p
+

1

2αµN2
·
∥∥∇f(x̂, ξ′j)−∇F (x̂)

∥∥2
p

+

(
L
N

+ αµ

)
∥x̂(j) − x̂∥2q +

16M2

µN2
+

µ

16
∥x̂(j) − x̂∥2q, a.s. (41)

By strong convexity of FN as in Assumption 4.4 as well as the fact that x̂ minimizes FN , we have that

FN (x̂(j))− FN (x̂) ≥ µ

2
· ∥x̂(j) − x̂∥2q, a.s. (42)

12
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Combining (41) and (42), we immediately obtain the below after some re-organization and simplification for all j = 1, ..., N :[(
7

16
− α

)
· µ− L

N

]
· ∥x̂(j) − x̂∥2q ≤ 1

2N2µα
·
∥∥∥∇f(x̂(j), ξj)−∇F (x̂(j))

∥∥∥2
p

+
1

2N2µα
·
∥∥∇f(x̂, ξ′j)−∇F (x̂)

∥∥2
p
+

16M2

µN2
, a.s. (43)

Note that x̂(j) and ξj are independent, so are x̂ and ξ′j . We therefore have E[∥∇f(x̂(j), ξj) − ∇F (x̂(j))∥2p] ≤ σ2
p and

E[∥∇f(x̂, ξ′j)−∇F (x̂)∥2p] ≤ σ2
p by Assumption 4.1. Further because we may let α = 1/4 and it is assumed that N ≥ C1L

µ ,
where we may as well let C1 ≥ 8, we have

E
[
∥x̂(j) − x̂∥2q

]
≤
[(

7

16
− α

)
· µ− L

N

]−1

·

(
σ2
p

N2µα
+

16M2

µN2

)
≤

64σ2
p

N2µ2
+

256M2

N2µ2
, ∀j = 1, ..., N ;

=⇒N−1
N∑
j=1

E
[
∥x̂(j) − x̂∥2q

]
≤

64σ2
p

N2µ2
+

256M2

N2µ2
. (44)

Because f(x̂, ξ′j) and f(x̂(j), ξj) are identically distributed — so are f(x̂, ξj) and f(x̂(j), ξ′j) — we then obtain that
E[f(x̂, ξ′j)] = E[f(x̂(j), ξj)] and that E[f(x̂, ξj)] = E[f(x̂(j), ξ′j)]. Therefore,

E[F (x̂)− FN (x̂)]

=E

 1

N

N∑
j=1

[F (x̂)− f(x̂, ξj)]

 = E

 1

N

N∑
j=1

[
f(x̂, ξ′j)− f(x̂, ξj)

] ,

=
1

2N

N∑
j=1

E
[
f(x̂, ξ′j)− f(x̂(j), ξ′j)

]
+

1

2N

N∑
j=1

E
[
f(x̂(j), ξj)− f(x̂, ξj)

]

≤ 1

2N

N∑
j=1

E
[
⟨∇f(x̂, ξ′j), x̂− x̂(j)⟩

]
+

1

2N

N∑
j=1

E
[
⟨∇f(x̂(j), ξj), x̂

(j) − x̂⟩
]

(45)

=
1

2N

N∑
j=1

E
[
⟨∇f(x̂, ξ′j)−∇F (x̂), x̂− x̂(j)⟩

]

+
1

2N

N∑
j=1

E
[
⟨∇f(x̂(j), ξj)−∇F (x̂(j)), x̂(j) − x̂⟩

]

+
1

2N

N∑
j=1

E
[
⟨∇F (x̂)−∇F (x̂(j)), x̂− x̂(j)⟩

]

≤ 1

2N

N∑
j=1

E
[

8

Nµ

∥∥∇f(x̂, ξ′j)−∇F (x̂)
∥∥2
p
+

8

Nµ

∥∥∥∇F (x̂(j))−∇f(x̂(j), ξj)
∥∥∥2
p

+

(
L+

Nµ

16

)
∥x̂− x̂(j)∥2q + 2M∥x̂− x̂(j)∥q

]
(46)

≤ 8

Nµ
σ2
p +

(
L
2
+

Nµ

16

)
N−1

N∑
j=1

E
[
∥x̂(j) − x̂∥2q

]
+

8M2

Nµ
(47)

≤
C · (σ2

p +M2)

Nµ
, (48)

for some universal constant C > 0. Here, (45) above is based on the strong convexity of f(·, ξ) for almost every ξ ∈ Θ as
per Assumption 4.4, (46) is by the combination of (40) (as a result of Assumption 1.1) and Young’s inequality, (47) is by
Assumption 4.1, and the last inequality in (48) is by (44) and the assumption that N ≥ C1L

µ .

13
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Eq. (48) above combined with (35) leads to the desired result in the first part of theorem as in (27). The second part of this
theorem as in (28) is then an immediate result by the Markov’s inequality, when it is combined with (35) and (48).

Remark A.1. An important component of this proof is to establish an upper bound on N−1
∑N

j=1 E
[
∥x̂(j) − x̂∥2q

]
as

in (44). This bound ensures that, if one data point is changed to a different i.i.d. copy of ξ in SAA, the output solution
does not change much, on average, in terms of the squared distance w.r.t. the q-norm. This is the manifestation of the
innate average-RO stability of SAA when it is applied to solving a strongly convex SP problem. This average-RO stability
serves as the pillar to the proof of our error bound in Theorem 4.8. The concept of average-RO stability is introduced by
Shalev-Shwartz et al. (2010). To our knowledge, our proof may have been the first to use the average-RO stability to analyze
the non-asymptotic sample complexity of the SAA.

B. Proof of Theorem 4.11
Proof. The proof below follows that of Theorem 4.8 with some important modifications. First, the RSAA in (6) can be
considered as the SAA to the following new SP problem:

min
x∈X

Fλ0
(x) := F (x) + λ0Vq′(x).

We repeat (35) to show that E [Fλ0
(x̂)− Fλ0

(x∗)] ≤ E [Fλ0
(x̂)− Fλ0,N (x̂)] with Fλ0,N as defined in (6). Then, by the

definition of Fλ0
, where λ0 = 0.5ϵ/R∗, an immediate result is that

E[F (x̂) + λ0Vq′(x̂)− F (x∗)− λ0Vq′(x
∗)] ≤ E [Fλ0

(x̂)− Fλ0,N (x̂)]

=⇒E[F (x̂)− F (x∗)] ≤ E [Fλ0
(x̂)− Fλ0,N (x̂)] + λ0Vq′(x

∗) ≤ E [Fλ0
(x̂)− Fλ0,N (x̂)] +

ϵ

2
. (49)

Let fλ0
(x, ξ) := f(x, ξ) + λ0Vq′(x). With any j = 1, ..., N , define that ξ

(j)
1,N := (ξ1, ..., ξj−1, ξ

′
j , ξj+1, ..., ξN ),

which is obtained by switching the jth entry of ξ1,N with ξ′j , an i.i.d. copy of ξ. Denote that x̂(j) := x̃(ξ
(j)
1,N ) ∈

argminx∈X N−1
[∑

ι̸=j fλ0(x, ξι) + fλ0(x, ξ
′
j)
]
. Under Assumption 4.6 and by the fact that Vq′(x) := 1

2∥x − x0∥2q′ ,
which is (q′ − 1)-strongly convex w.r.t. the q′-norm (Ben-Tal et al., 2001), we can follow Step 2 of the proof for Theorem
4.8. In particular, (39) therein implies that

Fλ0,N (x̂(j))− Fλ0,N (x̂)

≤ 1

N
·
〈
∇fλ0

(x̂(j), ξj)−∇Fλ0
(x̂(j)), x̂(j) − x̂

〉
+

1

N
·
〈
∇fλ0

(x̂, ξ′j)−∇Fλ0
(x̂), x̂− x̂(j)

〉
+

1

N
·
〈
∇Fλ0(x̂

(j))−∇Fλ0(x̂), x̂
(j) − x̂

〉
, a.s. (50)

Observe that 〈
∇Fλ0

(x̂(j))−∇Fλ0
(x̂), x̂(j) − x̂

〉
=
〈
∇F1(x̂

(j))−∇F1(x̂), x̂
(j) − x̂

〉
+
〈
∇F2(x̂

(j))−∇F2(x̂), x̂
(j) − x̂

〉
+
〈
λ0∇Vq′(x̂

(j))− λ0∇Vq′(x̂), x̂
(j) − x̂

〉
≤L

∥∥∥x̂(j) − x̂
∥∥∥2
q
+ 2M∥x̂− x̂(j)∥q + λ0 · (∥x̂(j) − x0∥q′ + ∥x̂− x0∥q′) · ∥x̂(j) − x̂∥q′ , (51)

where (51) is due to Assumption 1.1 and a property of Vq′(·) = 0.5∥ · −x0∥2q′ as in (22); that is, ∥∇Vq′(·)∥p′ = ∥ ·
−x0∥q′ for p′ = q′/(q′ − 1). Note that x̂(j) and ξj are independent, so are x̂ and ξ′j . Assumption 4.1 then implies that

E
[∥∥∇fλ0

(x̂(j), ξj)−∇Fλ0
(x̂(j))

∥∥2
p

]
≤ σ2

p and E
[∥∥∇fλ0

(x̂, ξ′j)−∇Fλ0
(x̂)
∥∥2
p

]
≤ σ2

p. Further noting that q′ ≤ q, we

14
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may then continue from (50) above to obtain, for any α > 0:

E[Fλ0,N (x̂(j))− Fλ0,N (x̂)]

≤E
[

1

2α(q′ − 1)λ0N2
·
∥∥∥∇fλ0

(x̂(j), ξj)−∇Fλ0
(x̂(j))

∥∥∥2
p
+

1

2α(q′ − 1)λ0N2
·
∥∥∇fλ0

(x̂, ξ′j)−∇Fλ0
(x̂)
∥∥2
p

]
+

(
L
N

+
(q′ − 1)λ0

16
+ 2αλ0 · (q′ − 1)

)
E∥x̂(j) − x̂∥2q +

16M2

λ0 · (q′ − 1)N2

+
λ0

4αN2 · (q′ − 1)
· E
[
(∥x̂(j) − x0∥q′ + ∥x̂− x0∥q′)2

]
≤

σ2
p

α(q′ − 1)λ0N2
+

(
L
N

+
(q′ − 1)λ0

16
+ 2αλ0 · (q′ − 1)

)
E∥x̂(j) − x̂∥2q′ +

16M2

λ0 · (q′ − 1)N2

+
λ0

αN2 · (q′ − 1)
· E[∥x̂− x0∥2q′ ], (52)

where the last inequality is due to the relationship that E[∥x̂−x0∥2q′ ] = E[∥x̂(j)−x0∥2q′ ] and the assumption that 1 < q′ ≤ q.
Let α = 1/32 and recall the assumption that N ≥ C2L

(q′−1)λ0
, where we may as well let C2 ≥ 8. We may further invoke the

[(q′ − 1)λ0]-strong convexity of Fλ0,N in the sense of Assumption 4.4 as well as the fact that x̂ minimizes Fλ0,N to obtain:

E
[
∥x̂(j) − x̂∥2q′

]
≤

128σ2
p + 64M2

(q′ − 1)2λ2
0N

2
+

128

N2(q′ − 1)2
E[∥x̂− x0∥2q′ ]. (53)

We observe that fλ0
(x̂, ξ′j) and fλ0

(x̂(j), ξj) are identically distributed, so are the pair of fλ0
(x̂, ξj) and fλ0

(x̂(j), ξ′j).
Therefore,

E[Fλ0
(x̂)− Fλ0,N (x̂)]

=E

 1

N

N∑
j=1

[Fλ0(x̂)− fλ0(x̂, ξj)]

 = E

 1

N

N∑
j=1

[
fλ0(x̂, ξ

′
j)− fλ0(x̂, ξj)

]
=

1

2N

N∑
j=1

E
[
fλ0

(x̂, ξ′j)− fλ0
(x̂(j), ξ′j)

]
+

1

2N

N∑
j=1

E
[
fλ0

(x̂(j), ξj)− fλ0
(x̂, ξj)

]

≤ 1

2N

N∑
j=1

E
[
⟨∇fλ0

(x̂, ξ′j)−∇Fλ0
(x̂), x̂− x̂(j)⟩

]
+

1

2N

N∑
j=1

E
[
⟨∇fλ0

(x̂(j), ξj)−∇Fλ0
(x̂(j)), x̂(j) − x̂⟩

]

+
1

2N

N∑
j=1

E[⟨∇Fλ0
(x̂)−∇Fλ0

(x̂(j)), x̂− x̂(j)⟩] (54)

≤ 1

2N

N∑
j=1

E
[

8

N(q′ − 1)λ0

∥∥∇fλ0
(x̂, ξ′j)−∇Fλ0

(x̂)
∥∥2
p
+

8

N(q′ − 1)λ0

∥∥∥∇Fλ0
(x̂(j))−∇fλ0

(x̂(j), ξj)
∥∥∥2
p

+2M∥x̂− x̂(j)∥q′ +
(
N(q′ − 1)λ0

16
+ L

)
∥x̂− x̂(j)∥2q′

+ λ0 · (∥x̂(j) − x0∥q′ + ∥x̂− x0∥q′) · ∥x̂(j) − x̂∥q′
]

(55)

≤ 1

2N

N∑
j=1

E
[

8

N(q′ − 1)λ0

∥∥∇fλ0
(x̂, ξ′j)−∇Fλ0

(x̂)
∥∥2
p
+

8

N(q′ − 1)λ0

∥∥∥∇Fλ0
(x̂(j))−∇fλ0

(x̂(j), ξj)
∥∥∥2
p

+
8M2

N(q′ − 1)λ0
+

(
N(q′ − 1)λ0

4
+ L

)
∥x̂− x̂(j)∥2q′

+
4λ0

N(q′ − 1)
· (∥x̂(j) − x0∥q′ + ∥x̂− x0∥q′)2

]
, (56)
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where (54) is due to Assumption 4.6 as well as the convexity of Vq′ , (55) is due to (51), the Hölder’s and Young’s inequalities,
and the assumption that q′ ≤ q. Recall that (i) it has been assumed that N ≥ C2L

(q′−1)λ0
, where we may let C2 ≥ 8; (ii) x̂(j)

and x̂ are identically distributed; and (iii) Assumption 4.1. We then may continue from (53) and (56) above to obtain

E[Fλ0
(x̂)− Fλ0,N (x̂)]

≤
8σ2

p + 4M2

N(q′ − 1)λ0
+

3N(q′ − 1)λ0

16
E[∥x̂− x̂(j)∥2q′ ] +

8λ0

N(q′ − 1)
· E[∥x̂− x0∥2q′ ]

≤
32σ2

p + 16M2

(q′ − 1)λ0N
+

32λ0

N(q′ − 1)
E[∥x̂− x0∥2q′ ] (57)

=
32σ2

p + 16M2

(q′ − 1)λ0N
+

64λ0

N(q′ − 1)
E[Vq′(x̂)], (58)

where (57) holds as a result of (53), and (58) holds by the definition of Vq′ . In view of (58) and the definition of x̂,

0 ≥E[Fλ0,N (x̂)− Fλ0,N (x∗)] = E[FN (x̂) + λ0Vq′(x̂)− FN (x∗)− λ0Vq′(x
∗)]

=E[FN (x̂) + λ0Vq′(x̂)− F (x∗)− λ0Vq′(x
∗)]

Eq. (58)
≥ E[F (x̂) + λ0Vq′(x̂)− F (x∗)− λ0Vq′(x

∗)]−
32σ2

p + 16M2

(q′ − 1)λ0N
− 64λ0

N(q′ − 1)
E[Vq′(x̂)]

≥E[λ0Vq′(x̂)− λ0Vq′(x
∗)]−

32σ2
p + 16M2

(q′ − 1)λ0N
− 64λ0

N(q′ − 1)
E[Vq′(x̂)].

Because of the assumption that R∗ ≥ 1, σp ≥ 1 and 0 < ϵ ≤ 1, we have N ≥ C2
(σ2

p+M2)R∗

(q′−1)ϵ =⇒ N ≥ 320
q′−1 for

any C2 ≥ 320. Resultantly, re-arranging the inequality above, we immediately have the below, in view of the fact that
λ0Vq′(x

∗)= ϵ
2R∗ · Vq′(x

∗) ≤ ϵ
2 :

4

5
E[λ0Vq′(x̂)] ≤ E[λ0Vq′(x

∗)] +
32σ2

p + 16M2

(q′ − 1)λ0N
≤ ϵ

2
+

32σ2
p + 16M2

(q′ − 1)λ0N
.

This inequality, combined with (58), leads to

E[Fλ0
(x̂)− Fλ0,N (x̂)] ≤

32σ2
p + 16M2

(q′ − 1)λ0N
+

64

N(q′ − 1)
·

(
5ϵ

8
+

40σ2
p + 20M2

(q′ − 1)λ0N

)

≤
40σ2

p + 20M2

(q′ − 1)λ0N
+

ϵ

8
. (59)

where the last inequality above is due to N ≥ 320
q′−1 again. Combining (49) and (59), after some re-organization, we then

obtain (30) as claimed.

Furthermore, if we invoke Markov’s inequality together with (49) and (59), we then have shown (31) as desired.
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