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Abstract
Efficiently serving large language models (LLMs)
requires batching many requests together to re-
duce the cost per request. Yet, the key-value (KV)
cache, which stores attention keys and values
to avoid re-computations, significantly increases
memory demands and becomes the new bottle-
neck in speed and memory usage. This mem-
ory demand increases with larger batch sizes and
longer context lengths. Additionally, the infer-
ence speed is limited by the size of KV cache,
as the GPU’s SRAM must load the entire KV
cache from the main GPU memory for each to-
ken generated, causing the computational core
to be idle during this process. A straightforward
and effective solution to reduce KV cache size
is quantization, which decreases the total bytes
taken by KV cache. However, there is a lack of
in-depth studies that explore the element distri-
bution of KV cache to understand the hardness
and limitation of KV cache quantization. To fill
the gap, we conducted a comprehensive study on
the element distribution in KV cache of popular
LLMs. Our findings indicate that the key cache
should be quantized per-channel, i.e., group el-
ements along the channel dimension and quan-
tize them together. In contrast, the value cache
should be quantized per-token. From this anal-
ysis, we developed a tuning-free 2bit KV cache
quantization algorithm, named KIVI. With the
hardware-friendly implementation, KIVI can en-
able Llama (Llama-2), Falcon, and Mistral mod-
els to maintain almost the same quality while us-
ing 2.6× less peak memory usage (including the
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model weight). This reduction in memory us-
age enables up to 4× larger batch size, bringing
2.35× ∼ 3.47× throughput on real LLM infer-
ence workload. The source code is available at
https://github.com/jy-yuan/KIVI.

1. Introduction
Large Language Models (LLMs) have demonstrated strong
performance across a wide range of tasks (Brown et al.,
2020; Taylor et al., 2022; Yuan et al., 2023). However, their
deployment is very costly, requiring a large number of hard-
ware accelerators such as GPUs. Given these substantial
costs, one natural way to reduce the cost per request is to
combine a sufficient number of requests together for batch
processing. However, in this batch inference scenario, the
key-value cache (KV cache), which holds the attention keys
and values during generation to prevent re-computations, is
becoming the new memory and speed bottleneck. This bot-
tleneck becomes more pronounced with larger batch sizes
and longer context lengths. For instance, in 540B PaLM,
with a batch size of 512 and a context length of 2048, KV
cache alone can take 3TB. This is 3 times the size of the
model’s parameters (Pope et al., 2023). Also, the GPU
SRAM has to load the whole KV cache from the GPU de-
vice memory for every token generated, during which the
computational cores are idle. Thus, reducing KV cache size
in LLMs while maintaining accuracy is important.

Existing works towards this problem can be roughly divided
into three categories. First, some work suggests reducing
the number of heads in KV cache, such as multi-query
attention (Shazeer, 2019) and multi-group attention (Ainslie
et al., 2023). However, these methods require either training
the model from scratch or fine-tuning the existing model.
Second, another research line reduces KV cache size by
evicting unimportant tokens (Zhang et al., 2023). Third,
some other works try to solve this problem from the system
perspective, e.g., offloading KV cache (Sheng et al., 2023)
or extending virtual memory and paging techniques into the
attention mechanism (Kwon et al., 2023).

To reduce the size of KV cache, the most simple and ef-
fective way is to reduce the total bytes taken by KV cache,
namely, quantization. Unlike the well-studied weight quan-
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Figure 1: Definition of per-token and per-channel quantiza-
tion. X ∈ Rlprompt×d is key/value cache where lprompt is the
number of tokens and d is the number of channels. zX is
the zero-point, sX is the scaling factor.

tization (Lin et al., 2023; Xiao et al., 2023a; Zhao et al.,
2024), to the best of our knowledge, only a few studies
applied the vanilla 4bit round-to-nearest quantization to KV
cache (Sheng et al., 2023; Zhang et al., 2023; Zhao et al.,
2024) due to the streaming nature of KV cache or other
complications. There is a lack of in-depth studies that ex-
plore the element distribution of KV cache to understand
the hardness and limitation of KV cache quantization. To
fill the gap, we study the element distribution of KV cache.
Our analysis suggests:

• For the key cache, there are a few fixed channels whose
magnitudes are very large, which is consistent with
previous finding (Lin et al., 2023; Xiao et al., 2023a).
Thus, as shown in Figure 1 right, key cache should be
quantized per-channel, i.e., group elements along the
channel dimension and quantize them together. In this
way, it can confine the error to each individual channel,
without impacting the other normal channels.

• For the value cache, there is no obvious outlier pat-
tern. Although value cache has no obvious outlier
pattern, we experimentally show that it can only be
quantized per-token because it is used to calculate the
attention output, which is essentially a value cache
mixer. As shown in Figure 1 left, the per-token quan-
tization can confine the error inside each individual
token and ensure that the quantization of one token
does not adversely impact the others.

Based on the above insights, we propose KIVI, a plug-and-
play extreme low-bit KV cache quantization method. KIVI
quantizes key cache per-channel and quantizes value cache
per-token. The per-token value cache quantization aligns
well with the streaming nature of auto-regressive inference,
allowing newly quantized tensors to be directly appended
to the existing quantized value cache by token dimension.
However, for per-channel key cache quantization, the quan-
tization process spans different tokens, which cannot be
directly implemented in this streaming setting. Since the

number of tokens in key cache can be arbitrary, our key idea
is to split key cache into two parts. The first part is the
grouped key cache, which contains several groups of tokens
and each group has a certain number of tokens. The second
part is the residual key cache, which does not have a suffi-
cient number of tokens to form a complete group. Similarly,
we split value cache into the grouped and residual parts to
maintain the accuracy. We only apply group-wise quanti-
zation to the grouped key cache and value cache, while the
residual key cache and value cache are kept in full precision.
The grouped and residual parts can be combined using tiled
matrix multiplication when computing attention scores. Our
contributions are summarized as follows:

• Extensive analysis regarding the outlier patterns
and quantization error of KV cache in commonly-
used LLMs. Our observations suggest that key cache
should be quantized per-channel and value cache
should be quantized per-token. We also explain in
depth why these caches require different quantization
approaches.

• A new plug-and-play 2bit KV cache quantization
algorithm without any fine-tuning, KIVI, with
hardware-friendly implementation. We conduct an
extensive evaluation for KIVI with Llama (Llama-
2), Mistral, and Falcon on popular generation tasks.
KIVI can efficiently compress KV cache to 2bit and
bring 2.6× peak memory usage reduction for Llama-
2-7B, with little to no accuracy drop. With our efficient
system implementation, this memory reduction, in re-
turn, enables up to 4× larger batch size and brings
2.35× ∼ 3.47× throughput.

2. Background: Attention Inference-Time
Workflow

The LLM attention inference-time workflow involves two
phases: i) the prefill phase, where the input prompt is used to
generate KV cache for each transformer layer of LLMs; and
ii) the decoding phase, where the model uses and updates
KV cache to generate the next token, one at a time.

Prefill Phase. Let X ∈ Rb×lprompt×d be the input tensor,
where b is the batch size, lprompt is the length of the input
prompt, and d is the model hidden size. For convenience,
we ignore the layer index here. The key, value tensors can
be computed by

XK = XWK ,XV = XWV ,

where WK ,WV ∈ Rd×d are the key and value layer weight,
respectively. After obtaining XK and XV , they are cached
in the memory for the ease of decoding.
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Decoding Phase. Let t ∈ Rb×1×d be the current input
token embedding. Let tK = tWK and tV = tWV be the
key and value layer output, respectively. We first update KV
cache:

XK ← Concat(XK , tK),

XV ← Concat(XV , tV ),

then calculate the attention output as:

tQ = tWQ,

A = Softmax(tQX⊤
K),

tO = AXV , (1)

where WQ is the weight matrix of the query layer. For ease
of illustration, we ignore the attention output layer and the
other parts of the inference workflow.

Memory and Speed Analysis. The above process is re-
peated until a special token indicating the sentence’s con-
clusion is reached. Let lgen be the number of generated
tokens. From the above analysis, the shape of KV cache is
b× (lprompt + lgen)× d. To get a sense of the scale, consider
the OPT-175B model with a batch size b 512, a prompt
length lprompt 512, and an output length lgen 32. The KV
cache requires 1.2TB, which is 3.8 times the model weights
(Sheng et al., 2023). Besides the memory, the inference
speed is also decided by the KV cache size. The GPU needs
to load KV cache from GPU main memory to GPU SRAM
once for every token generated during which the computa-
tional core of the chip is essentially idle (Pope et al., 2023;
Kwon et al., 2023).

3. Methodology
In scenarios with long contexts or batched inferences, the
memory and speed bottlenecks are storing and loading KV
cache. The most simple and effective way to alleviate this
problem is to reduce the total bytes occupied by KV cache,
specifically, quantization. Following this motivation, we
first evaluate the performance of the existing quantization
method in Section 3.1. Our observations suggest that key
and value cache should be quantized along different dimen-
sions. We analyze the rationale behind this observation
in Section 3.2. Then based on the analysis, we propose
KIVI, a new KV cache quantization method along with its
streaming data structure, detailed in Section 3.3.

3.1. Preliminary Study of KV Cache Quantization

As we analyzed in Section 2, KV cache functions as a
streaming data structure, where the new tensor arrives se-
quentially. Thus, optimization-based methods like GPTQ
(Frantar et al., 2022) are unsuitable for quantizing KV cache
due to the overhead. To the best of our knowledge, the

Table 1: The results of simulated KV cache group-wise
quantization with various configurations. The group size
is set as 32. C stands for per-channel quantization and T
stands for per-token quantization. Please check the whole
evaluation in Table 3.

Llama-2-13B CoQA TruthfulQA

16bit 66.37 29.53
4bit (K - T, V - T) 66.48 29.51

2bit (K - T, V - T) 52.93 24.98
2bit (K - C, V - C) 2.88 0.74
2bit (K - T, V - C) 2.80 0.26
2bit (K - C, V - T) 63.53 28.60

most flexible way for quantizing KV cache is the round-
to-nearest quantization. The B−bit integer quantization-
dequantization process can be expressed as:

Q(X) = ⌊X − zX
sX

⌉, X ′ = Q(X) · sX + zX ,

where zX = minX is the zero-point, sX = (maxX −
minX)/(2B −1) is the scaling factor, and ⌊·⌉ is the round-
ing operation. Here we ignore the batch size for ease of
understanding. As shown in Figure 1, X is quantized along
either the token or channel dimension group-wisely.

Considering the streaming nature of KV cache, previous
studies often apply per-token quantization to both key and
value cache since the newly quantized KV cache can be
naively added to the existing quantized one along the token
dimension (Sheng et al., 2023). While per-channel quanti-
zation is non-trivial, we have designed a padding method to
implement per-channel quantization to explore its effect on
both key and value cache.

Setting. In Table 1, we show the results of fake KV cache
group-wise quantization with different configurations on the
Llama-2-13B model for the CoQA and TruthfulQA tasks.
We use a group size of 32 for all configurations. Here fake
quantization means we simulate the quantization process
by first quantizing KV cache into lower precision and then
dequantizing it in the attention layer. For per-channel quan-
tization, if the number of tokens is not divided evenly into
groups, we add zero-padding to ensure it can be grouped
perfectly. In this way, we ensure that all tokens in KV cache
are quantized for a fair comparison. The detailed experi-
mental setting can be found in Section 4.1. Specifically, we
observe that:

OB 1. When using the commonly used per-token quanti-
zation to both key and value caches, INT4 precision can
maintain accuracy. However, reducing it to INT2 results in
a notable accuracy drop.

OB 2. When value cache is quantized per-channel, the
accuracy significantly worsens regardless of how key cache
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Figure 2: Magnitude of key and value cache for Llama-2-13B and Falcon-7B. We observe (1) for key cache, there are a few
channels whose magnitudes are very large. (2) for value cache, there is no obvious outlier pattern.

is quantized.

OB 3. When using a lower numerical precision such as
INT2, the most accurate approach is to quantize key cache
per-channel and value cache per-token.

3.2. Why Key and Value Cache Should Quantize Along
Different Dimensions?

In Table 1, we observe that quantizing key cache per-channel
and value cache per-token to 2bit results in a very small accu-
racy drop. Here we analyze why this configuration delivers
better accuracy. In Figure 2 we visualize the original KV
cache distribution at different layers. We observe that in
key cache, some fixed channels exhibit very large mag-
nitudes, whereas in value cache, there is no significant
pattern for outliers.

Analysis of Key Cache. The above observation for key
cache aligns with previous findings that certain fixed
columns in activations exhibit larger outliers (Dettmers et al.,
2022; Lin et al., 2023). The persistence of outliers within
each channel means that per-channel quantization can con-
fine the quantization error to each individual channel with-
out impacting the other normal channels. Thus, Figure 2
explains why key cache should be quantized per-channel.
In Table 2 we show key cache relative reconstruction error

∥XK−X′
K

XK
∥F , along with the relative attention score error

∥A−A′

A ∥F where A′ = Softmax(tQX
′⊤
K ). We observe that

the per-token quantization can lead to almost 5× larger at-
tention score error than per-channel quantization, which is
consistent with Figure 2.

Table 2: The relative error statistics averaged over all layers
and all heads

Llama-2-13B K Per-Token K Per-Channel

Avg. ∥XK−X′
K

XK
∥F 13.67 4.55

Avg. ∥A−A′

A
∥F 47.0 9.6

Attention sparsity 84.3%

V Per-Token V Per-Channel

Avg. ∥XV −X′
V

XV
∥F 4.57 3.73

Avg. ∆ 3.55 49.89

Analysis of Value Cache. Unlike key cache, value cache
does not show the channel-wise outlier pattern. Furthermore,
Figure 2 alone cannot explain OB2, which indicates value
cache should only be quantized per-token. This is because
Figure 2 implies that errors should be comparable for both
per-token and per-channel quantization, given the absence
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Quantization by Channel

Quantization by Token
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* we omit the value cache and
 attention output calculation

Full Precision Tensor

Low Precision Tensor

Figure 3: The overview of KIVI algorithm. For ease of illustration, we omit the value cache and attention output parts. The
detailed pseudo-code is provided in Algorithm 1. Here “Q_Matmul” is the mix-precision matrix multiplication which fuses
the dequantization with matrix multiplication at the tiling level.

of a clear pattern. As shown in Equation (1), value cache
is used to calculate the attention output tO. Instead of
analyzing the quantization error of value cache XV , in
Table 2 we analyze the relative error ∆ = ∥AXV −AX′

V

AXV
∥F

with different quantization configurations. Surprisingly, we
observe that the per-token quantization error is almost 15×
smaller than per-channel quantization, which explains why
OB2 happens. The intuition behind this observation stems
from the attention sparsity. Equation (1) can be written as:

[AXV ]i∗ =

lprompt∑
j=1

Aij [XV ]j∗, (2)

where [XV ]j∗ is the j-th row of XV . From Equation (2),
the attention output is the weighted summation of value
cache across various tokens, with the weights being the
attention scores. Since the attention score is highly sparse
(Tian et al., 2023), the output is just the combination of
value caches of a few important tokens. The per-token
quantization can confine the error to each individual token.
Thus, quantizing other tokens does not affect the accuracy
of important tokens. Consequently, per-token quantization
leads to a much smaller relative error ∆.

3.3. KIVI: Algorithm and System Support

Algorithm. As we previously analyzed, key cache should
be quantized per-channel and value cache should be quan-
tized per-token. Recall that key and value cache of newly
generated tokens arrive sequentially. From the implemen-
tation perspective, per-token quantization aligns well with
streaming settings, allowing newly quantized tensors to be
directly appended to the existing quantized value cache
by token dimension. However, for per-channel quantiza-
tion, the quantization process spans across different tokens,
which cannot be directly implemented in the streaming set-
ting. As shown in Figure 3, our key idea to solve this prob-
lem is to group key cache every G tokens and quantize them
separately. Because the number of tokens in XK can be ar-
bitrary, we split XK into two parts, namely, the grouped part

XKg
= XK [: l− r] and residual part XKr

= XK [l− r :],
where l is the number of tokens inside the current key cache
XK , r is the number of residual tokens, where l − r can be
divisible by G.

Since XKg
can be evenly divided into (l − r)/G groups,

we only store Q(XKg ) with group-wise quantization, while
XKr is kept in full precision. During the decoding process,
each newly arrived key cache tK is added to XKr

and once
XKr

reaches R tokens, which is a hyperparameter - residual
length, we quantize and concatenate it with the previously
quantized Q(XKG

). Then we reset XKr to an empty tensor.
We note that R should be divisible by G. With tiled matrix
multiplication, the raw attention logits is then calculated as:

Ag = tQQ(X⊤
Kg

),

XKr
= Concat([XKr

, tK ]),

Ar = tQX
⊤
Kr

,

A = Concat([Ag,Ar]). (3)

For value cache, similar to key cache, we also split it into
two parts and keep the most recent value cache in full pre-
cision, namely, XVg

and XVr
. Specifically, we maintain a

queue and each newly arrived value cache is pushed into
the queue. Once the queue reaches the predefined residual
length R, the most outdated value cache is poped. Then the
poped value cache is quantized per-token and concatenated
with the previously quantized value cache along the token
dimension.

As shown in Figure 3, we also emphasize that during the
prefill phase, the exact key and value tensors are passed to
the next layers, although only the quantized KV cache is
retained in memory. The whole algorithm can be found in
Appendix A Algorithm 1.

Analysis. In KIVI, the grouped key cache XKg
and value

cache XVg is quantized, while the residual key cache XKr

and value cache XVr is kept in full precision. By design,
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there are at most R tokens inside XKr
or XVr

. In practice,
we set R ≤ 128 and the sequence length lprompt + lgen is
often much longer than R. Thus the memory overhead from
XKr

and XVr
is negligible when considering the benefit

from extreme low-bit quantization, especially for the long
context scenarios. Also, since the newly arrived key and
value tensors are added to XKr

and XVr
in full precision,

KIVI maintains a full precision KV cache sliding window
for the local relevant tokens. This window size is expected
to be R

2 for key cache, and R for value cache. Later in
the experiment section, we show that this full precision
sliding window is crucial for obtaining desirable perfor-
mance on hard tasks, such as GSM8K.

System Support. We provide a hardware-friendly imple-
mentation for running KIVI on GPUs. To minimize the
overhead, we have fused the dequantization process with
matrix multiplication, e.g., Q_MatMul in Figure 3, using
CUDA. We also implement the group-wise quantization ker-
nel in Triton. Our method is fully compatible with weight-
only quantization.

4. Experiments
4.1. Settings

Models. We evaluate KIVI using three popular model
families: Llama/Llama-2 (Touvron et al., 2023a;b)), Fal-
con (Penedo et al., 2023) and Mistral (Jiang et al., 2023).
Llama and Mistral model is based on multi-head attention,
while Falcon is based on multi-query attention (Shazeer,
2019). We use the Hugging Face Transformers codebase
and implement the KIVI algorithm upon it. Following
previous work (Sheng et al., 2023), the group size G in
Algorithm 1 for quantization is set as 32 across all experi-
ments, the residual length R for key and value cache is set
to 128.

Tasks. As we analyzed in Section 2, the KV cache size
grows larger with a longer context. Thus, we evaluate KIVI
under the normal context length and long context setting,
respectively. Specifically, we adopt generation tasks from
LM-Eval (Gao et al., 2021) for normal context length eval-
uation and LongBench (Bai et al., 2023) for long context
evaluation, respectively1. For LM-eval, we adopt CoQA
(Exact match accuracy), TruthfulQA (BLEU score), and
GSM8K (Exact match accuracy). For LongBench, we chose
tasks from four subgroups. Specifically, Qasper (F1 score)
is a Single-Document QA task; QMSum (ROUGE score)
and MultiNews (ROUGE score) are Summarization tasks;

1The closed-end tasks such as MMLU are not ideal to evaluate
KIVI since they only involve one decoding step and directly fetch
the output logits, which is not suitable for studying the impact of
compressed KV cache.

TREC (classification score), TriviaQA (F1 score), and SAM-
Sum (ROUGE score) are Few-shot Learning tasks; and LCC
(similarity score) and RepoBench-P (similarity score) is
Code Completion task. The maximum sequence length in
LongBench was set to 8192 for the Mistral model and 4096
for other models.

4.2. Accuracy and Efficiency Analysis

4.2.1. COMPARISON BETWEEN DIFFERENT
QUANTIZATION CONFIGURATIONS

We first utilize the fake quantization to demonstrate the effec-
tiveness of our asymmetric quantization, namely, quantizing
key cache per-channel and value cache per-token. Here fake
quantization is exactly the same as in Table 1. The results
are shown in Table 3. We observe that “2bit (K per-channel,
V per-token)” consistently achieves the best results com-
pared to all other configurations. This is consistent with
our previous analysis. We also note that for hard generation
tasks such as GSM8K, the fake “2bit (K per-channel, V
per-token)” quantization results are significantly worse than
the full precision counterparts. However, for KIVI in Table
3, we observe that the accuracy drop is only around 2% for
GSM8K across different models. As we analyzed in Section
3.3, the difference between fake “2bit (K per-channel, V
per-token)” quantization and KIVI is that KIVI maintains
a full precision key and value cache sliding window for
the local relevant tokens. This sliding window is crucial
to maintaining accuracy for hard generation tasks such as
mathematical reasoning.

4.2.2. ACCURACY COMPARISON ON GENERATION
TASKS

LM-Eval Results. We benchmark KIVI on CoQA, Truth-
fulQA, and GSM8K tasks using LM-Eval framework. All
dataset parameters were set to default. We compare the
standard 16bit configuration with our KIVI compression
techniques across Llama-2-7B, Llama-2-13B, Falcon-7B,
and Mistral-7B. As shown in Table 3, we observe that for
the Llama and Mistral model, KIVI only has up to 2% ac-
curacy drop despite the KV cache being stored in 2bit. For
instance, in the Llama-2-7B model, the transition from 16bit
to 2bit only slightly decreases accuracy. Similar trends are
observed in other Llama-family models. Since Falcon-7B
adopts multi-query attention and only has one head for KV
cache, it is already highly compressed compared to Llama-
based models. Thus, in Table 3, 4bit KIVI is needed to
maintain the accuracy, while 2bit KIVI may have a large
accuracy drop in this case.

LongBench Results. The performance of KIVI over vari-
ous models in the LongBench dataset is summarised in Table
4. We apply KIVI over Llama2-7B, Llama2-13B, Llama2-
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Table 3: Performance comparison between 16bit, 4-bit per-
token quantization, four fake 2bit KV cache quantization
similar to those in Table 1, KIVI-2 (2bit) / KIVI-4 (4bit)
across various models. We emphasize that unlike KIVI,
which preserves a small portion of full precision key cache
XKr

and value cache XVr
, all tokens in fake KV cache

quantization are quantized for a fair comparison. C stands
for per-channel quantization and T stands for per-token
quantization.

Model CoQA TruthfulQA GSM8K

Llama-2-7B

16bit 63.88 30.76 13.50
4bit (K - T, V - T) 64.82 29.85 12.28

2bit (K - C, V - T) 59.08 33.10 5.76
2bit (K - T, V - T) 39.88 18.29 0.83
2bit (K - C, V - C) 3.60 0.27 0.00
2bit (K - T, V - C) 1.30 0.49 0.08
KIVI-4 63.78 30.80 13.80
KIVI-2 63.05 33.95 12.74

Llama-2-13B

16bit 66.37 29.53 22.67
4bit (K - T, V - T) 66.73 29.14 20.92

2bit (K - C, V - T) 63.53 28.60 12.21
2bit (K - T, V - T) 52.93 24.98 4.55
2bit (K - C, V - C) 2.88 0.74 0.00
2bit (K - T, V - C) 2.80 0.26 0.08
KIVI-4 66.38 29.49 23.65
KIVI-2 66.23 29.84 20.77

Falcon-7B

16bit 59.83 23.20 4.55
4bit (K - T, V - T) 58.53 22.94 3.26

2bit (K - C, V - T) 43.93 20.82 1.29
2bit (K - T, V - T) 25.72 0.91 0.53
2bit (K - C, V - C) 41.95 17.11 1.52
2bit (K - T, V - C) 19.53 0.94 0.15
KIVI-4 59.67 22.58 4.47
KIVI-2 57.48 24.98 3.41

Mistral-7B

16bit 67.40 30.45 38.36
4bit (K - T, V - T) 67.80 29.83 36.85

2bit (K - C, V - T) 61.65 29.64 26.46
2bit (K - T, V - T) 54.55 25.86 5.00
2bit (K - C, V - C) 24.40 24.86 2.27
2bit (K - T, V - C) 10.73 19.12 0.99
KIVI-4 66.95 30.49 37.30
KIVI-2 66.35 32.17 36.01

7B-Chat, Llama2-13B-Chat, Falcon-7B and Mistral-7B. Ta-
ble 4 suggests that KIVI is an effective method for KV
cache compression with minimal impact on accuracy across
various hard long context generation tasks. We also present
additional results using Mistral-7B-v0.2 and LongChat-
7B-v1.5 on LongBench, which can be found in Table 8
and Table 9, respectively.

4.2.3. ABLATION

In this section, we benchmark KIVI on GSM8K, one of
the hardest generation tasks, to show the effect of hyperpa-
rameters group size G and residual length R on the model
performance. For full results of KIVI with a residual length
of 32, please refer to Appendix B.

Figure 4: Memory usage and throughput comparison be-
tween 2bit KIVI and 16bit baseline. KIVI can achieve
higher throughput by enabling a larger batch size.

The effect of group size. We fix the residual length at 128
and vary the group sizes to 32, 64, and 128. From Table 5,
we observe that group sizes 32 and 64 yield similar results,
whereas the performance significantly decreases when the
group size reaches 128. Note the zero-point and the scaling
factor mentioned in Section 3.1 are calculated according to
this group size; where the choice of group size will greatly
impact the KV cache compression effect under a long input.

The effect of residual length. We fix the group size at 32
and vary the residual length across 32, 64, 96, and 128. As
shown in Table 5, there is no consistent pattern between
residual lengths and model accuracy. Namely, while a resid-
ual length of 128 achieves good results, 32 and 96 yield
similar outcomes, but a residual length of 64 results in the
worst performance. We emphasize that while we observe no
significance among residual lengths of {32, 96, 128}, hav-
ing a reasonably large residual length is important; as
it brings much performance boosts on hard tasks like
GSM8K, again as shown in Table 5.

4.2.4. EFFICIENCY COMPARISON

To evaluate the wall-clock time efficiency of KIVI, follow-
ing vLLM (Kwon et al., 2023), we synthesize workloads
based on ShareGPT (sha, 2023), which contain input and
output texts of real LLM services. On average, the data
set has an input prompt length lprompt of 161 and an output
length lgen of 338 (Kwon et al., 2023). We increase the batch
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Table 4: Performance evaluation of KIVI on various models across a range of benchmarks in LongBench. We highlight the
average performance of our method. More similar results on Mistral-7B-v0.2 and LongChat-7b-v1.5 can be found in
Table 8 and Table 9

Model Qasper QMSum MultiNews TREC TriviaQA SAMSum LCC RepoBench-P Average

Llama2-7B
16bit 9.52 21.28 3.51 66 87.72 41.69 66.66 59.82 44.52
KIVI-4 9.28 21.42 3.88 66 87.72 41.82 66.8 59.83 44.59
KIVI-2 9.31 20.5 1.14 66 87.42 42.71 66.88 60.23 44.27

Llama2-13B
16bit 9.32 21.38 3.71 70 87.87 43.55 66.61 56.42 44.85
KIVI-4 9.16 20.86 3.21 69 86.97 44.26 65.3 57.08 44.48
KIVI-2 8.58 20.69 6.19 69.5 87.78 44.3 65.08 55.46 44.69

Llama2-7B-Chat
16bit 19.65 20.54 26.36 63 84.28 41.12 59.75 52.93 45.95
KIVI-4 19.62 20.7 25.49 63 84.13 40.87 59.27 53.56 45.83
KIVI-2 19.32 20.46 25.48 63 84.84 40.6 58.71 52.97 45.67

Llama2-13B-Chat
16bit 24.18 20.37 25.69 67.5 86.9 42.18 50.23 50.64 45.96
KIVI-4 23 20.36 26.06 67.5 87.2 42.04 52.55 52.77 46.44
KIVI-2 23.59 20.76 25.25 67.5 87.17 41.56 49.93 48.45 45.52

Falcon-7B
16bit 1.48 2.35 11.09 13 5.84 2.44 23.86 9.69 8.71
KIVI-4 1.04 2.41 11.98 13 5.84 2.36 23.72 9.92 8.78
KIVI-2 1.98 3.61 6.78 10 6.24 2.73 22.18 10.12 7.95

Mistral-7B
16bit 8.12 19.98 19.99 67.5 89.8 41.69 66.59 58.99 46.58
KIVI-4 7.89 20.06 20.58 67.5 89.8 41.56 66.45 58.62 46.56
KIVI-2 6.92 19.71 17.92 66.5 89.63 41.66 65.52 58.99 45.85

Table 5: Ablation study of KIVI by changing group size G
and residual length R.

Model Group Size GSM8K

Llama2-13B
32 20.77
64 21.00

128 17.29

Model Residual Length GSM8K

Llama2-13B

32 20.62
64 19.86
96 20.55

128 20.77

size until out of memory and report the peak memory usage
and throughput between KIVI (with residual length 32 and
128) and FP16 baseline for the Llama-2-7B model. The
hardware here is a single NVIDIA A100 GPU (80GB).

As shown in Figure 4, with similar maximum memory us-
age, KIVI enables up to 4× larger batch size and gives
2.35× ∼ 3.47× larger throughput. This throughput num-
ber can grow larger with longer context length and output
length. We also note that this speed-up can be greatly
increased if we further fuse the KV cache quantization
process with previous operations. We leave it as one of
future work.

5. Related Work
Many machine learning system work have been proposed
to scale up LLM training and inference process (Pope

et al., 2023; Wang et al., 2023; 2022). Among them,
quantization techniques have been widely applied (Fran-
tar et al., 2022; Lin et al., 2023; Kim et al., 2023; Xu
et al., 2023). A main branch of LLM quantization is
weight-only quantization, which involves the quantization of
model weights to lower precision. For instance, AWQ (Lin
et al., 2023) cleverly quantizes model weights to INT4 and
INT3 using an activation-aware manner. GPTQ (Frantar
et al., 2022) utilizes approximate second-order informa-
tion to quantize model weights both accurately and effi-
ciently. SqueezeLLM (Kim et al., 2023) adopts the concept
of sensitivity-based non-uniform quantization along with
Dense-and-Sparse decomposition. This line of work is or-
thogonal to ours, as they can be combined together.

SmoothQuant (Xiao et al., 2023a) is a post-training quan-
tization method that is more closely related to our work.
This method uses equivalent transformations to balance
the quantization complexity for both activation and weight,
making the activation easier to quantize. SmoothQuant can
compress KV cache to 8bit with minor performance loss.
However, it faces a significant accuracy drop when scaled
down to 4bit or less (Zhao et al., 2024). FlexGen adopts
4-bit per-token quantization for both key and value cache.

One important recipe of KIVI is the per-channel quanti-
zation scheme designed base on observation made in Sec-
tion 3.2 and Figure 2. ATOM (Zhao et al., 2024) also identi-
fies that the Key cache exhibits more outliers compared to
the Value cache. KIVI provides further extensive analysis
and leverages this observation to implement per-channel
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quantization. A similar observation and approach have been
independently discovered and developed in the concurrent
work KVQuant (Hooper et al., 2024).

vLLM (Kwon et al., 2023) and S3 (Jin et al., 2023) are
system-level works, which include memory management
through the use of PagedAttention or memory usage pre-
diction. They can lower the memory requirements of KV
cache and simultaneously increase model throughput. This
research direction is orthogonal to our work, since system-
level optimizations can also be applied upon our algorithm.

Several other works also consider compressing KV cache
by evicting tokens. H2O (Zhang et al., 2023) retains only
a small portion of tokens that contribute significantly to
the attention scores. Similarly, Scissorhands (Liu et al.,
2024) exploit the persistence of the importance hypothesis
in KV cache sparsification. StreamingLLM (Xiao et al.,
2023b) is based on the observation of “attention sink” and
maintains only a few initial tokens to preserve performance.
Unlike these works, our KIVI retains all input tokens and
compresses them into lower precision. This line of work is
orthogonal to ours, as they also can be combined together.

6. Conclusion and Future Work
In this paper, we systematically analyze KV cache element
distribution in popular LLMs. We conclude that key cache
should be quantized per-channel and value cache should
be quantized per token. Based on these observations, we
propose KIVI, a plug-and-play 2bit KV cache quantization
algorithm without the need for any tuning. In real LLM
workload, KIVI allows up to 4× larger batch sizes and
3.47× throughput. In the future, we will further optimize
the implementation to reduce the overhead of quantization
process during the prefill and decoding phase.
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A. Detailed Implementations
In this section, we present the algorithm for KIVI as discussed in Section 3.3. Specifically, we provide the pseudocode for
KIVI when calculating the attention output in the prefill and decoding phases.

Algorithm 1: The KIVI Prefill & Decoding Algorithm
parameter: group size G, residual length R
procedure Prefill:

Input: X ∈ Rlprompt×d

XK = XWK ,XV = XWV

XVg = XV [: lprompt −R],XVr = XV [lprompt −R :]
Q(XVg

)← GroupQuant(XVg
, dim=token, numGroup=d//G)

Q(XKg
),XKr

← KeyQuant(XK)
KV cache← Q(XKg

),XKr
, Q(XVg

),XVr

return XK ,XV

end
procedure Decoding:

Input: KV cache, t ∈ R1×d

tQ = tWQ, tK = tWK , tV = tWV

Q(XKg ),XKr , Q(XVg ),XVr ← KV cache
XKr

← Concat([XKr
, tK ], dim=token)

XVr
← Concat([XVr

, tV ], dim=token)
if len(XKr

) = R then
Q(XKr ), _←KeyQuant(XKr )
Q(XKg

)← Concat([Q(XKg
), Q(XKr

)], dim=token)
XKr

← empty tensor.
end
if len(XVr

) > R then
Q(XV ′

r
)← GroupQuant(XVr

[: −R], dim=token, numGroup = d//G)
Q(XVg )← Concat([Q(XVg ), Q(XV ′

r
)], dim=token)

XVr ←XVr [−R :]
end
A← Concat([tQQ(XKg

)⊤, tQX
⊤
Kr

], dim=token)
Ag = Softmax(A)[: −R],Ar = Softmax(A)[−R :]
tO ← AgQ(XVg ) +ArXVr

KV cache← Q(XKg
),XKr

, Q(XVg
),XVr

return tO
end
function KeyQuant(XK ∈ Rl×d):

r = l%R,
XKg

= XK [: l − r],XKr
= XK [l − r :]

Q(XKg
)← GroupQuant(XKg

, dim=channel, numGroup=l//G)
return Q(XKg ),XKr

end

B. More Experimental Results
In our efficiency evaluation, we observe that with a residual length of 32, KIVI achieves a significantly higher memory
compression rate, which in turn leads to increased throughput. Additionally, our ablation study reveals that changing the
residual length from 128 to 32 does not result in a substantial performance gap. We demonstrate KIVI with a residual
length of 32 across all benchmark datasets. As shown in Tables 6 and 7, KIVI with a residual length of 32 also delivers
performance comparable to that of the 16-bit full model.

We also present additional results using Mistral-7B-v0.2 and LongChat-7B-v1.5 on LongBench, which can be found in
Table 8 and Table 9, respectively.
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Table 6: Performance comparison between 16bit, KIVI-2 (2bit) / KIVI-4 (4bit) with residual length 128 and 32 across
various models. R32 stands for residual length 32.

Model CoQA TruthfulQA GSM8K

Llama-2-7B
16bit 63.88 30.76 13.50
KIVI-2 R128 63.05 33.95 12.74
KIVI-2 R32 62.85 33.01 13.57

Llama-2-13B
16bit 66.37 29.53 22.67
KIVI-2 R128 66.23 29.84 20.77
KIVI-2 R32 66.57 29.35 20.62

Falcon-7B

16bit 59.83 23.20 4.55
KIVI-4 R128 59.67 22.58 4.47
KIVI-4 R32 59.73 22.96 3.94
KIVI-2 R128 57.48 24.98 3.41
KIVI-2 R32 57.50 25.70 2.20

Mistral-7B
16bit 67.40 30.45 38.36
KIVI-2 R128 66.35 32.17 36.01
KIVI-2 R32 65.90 31.21 34.34

Table 7: Performance evaluation of KIVI with residual length 128 and 32 on various models across a range of benchmarks
in LongBench. R32 stands for residual length 32.

Model Qasper QMSum MultiNews TREC TriviaQA SAMSum LCC RepoBench-P Average

Llama2-7B
16bit 9.52 21.28 3.51 66 87.72 41.69 66.66 59.82 44.52
KIVI-2 R128 9.31 20.5 1.14 66 87.42 42.71 66.88 60.23 44.27
KIVI-2 R32 9.26 20.53 0.97 66 87.42 42.61 66.22 59.67 44.08

Llama2-13B
16bit 9.32 21.38 3.71 70 87.87 43.55 66.61 56.42 44.85
KIVI-2 R128 8.58 20.69 6.19 69.5 87.78 44.3 65.08 55.46 44.69
KIVI-2 R32 8.38 20.74 7.01 69.5 87.78 44.43 64.89 55.31 44.75

Llama2-7B-Chat
16bit 19.65 20.54 26.36 63 84.28 41.12 59.75 52.93 45.95
KIVI-2 R128 19.32 20.46 25.48 63 84.84 40.6 58.71 52.97 45.67
KIVI-2 R32 19.1 20.08 25.33 63 85.04 39.8 57.91 52.38 45.33

Llama2-13B-Chat
16bit 24.18 20.37 25.69 67.5 86.9 42.18 50.23 50.64 45.96
KIVI-2 R128 23.59 20.76 25.25 67.5 87.17 41.56 49.93 48.45 45.52
KIVI-2 R32 23.56 20.9 25.45 67.5 87.42 41.4 48.93 48.81 45.49

Falcon-7B

16bit 1.48 2.35 11.09 13 5.84 2.44 23.86 9.69 8.71
KIVI-4 R128 1.04 2.41 11.98 13 5.84 2.36 23.72 9.92 8.78
KIVI-4 R32 1.03 2.45 11.99 13.5 5.84 2.46 23.88 9.95 8.88
KIVI-2 R128 1.98 3.61 6.78 10 6.24 2.73 22.18 10.12 7.95
KIVI-2 R32 2.28 3.23 6.73 10 6.31 2.88 22.71 10.45 8.07

Mistral-7B
16bit 8.12 19.98 19.99 67.5 89.8 41.69 66.59 58.99 46.58
KIVI-2 R128 6.92 19.71 17.92 66.5 89.63 41.66 65.52 58.99 45.85
KIVI-2 R32 6.84 19.81 17.2 66.5 89.63 42.82 65.13 58.06 45.74
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Table 8: The results of LongChat-7B-v1.5-32K with KIVI on LongBench. The model has 32K context length. We use a 32
group size and 128 residual length for both KIVI-2 and KIVI-4 The baseline is of full precision.

NarrativeQA Qasper MultiFieldQA HotpotQA MuSiQue 2WikiMQA GovReport QMSum

Baseline 20.65 29.42 43.15 33.05 14.66 24.14 30.85 22.84
w./ KIVI-2 20.79 28.69 41.02 32.91 13.82 23.00 30.47 22.59
w./ KIVI-4 20.49 28.90 43.24 33.07 14.66 24.86 31.40 22.84

MultiNews LCC RepoBench-P TriviaQA SAMSum TRec PR Avg

Baseline 26.55 54.83 58.94 83.99 40.75 66.50 30.50 38.72
w./ KIVI-2 26.28 54.11 57.62 83.19 41.28 66.50 32.25 38.30
w./ KIVI-4 26.52 54.06 58.77 83.88 40.62 67.00 31.50 38.79

Table 9: The results of Mistral-7B-Instruct-v0.2 with KIVI on LongBench. The model has 32K context length and applies
group query attention, which uses 8 heads for KV Cache instead of the full 32 heads. We use a 32 group size and 128
residual length for both KIVI-2 and KIVI-4 The baseline is of full precision.

NarrativeQA Qasper MultiFieldQA HotpotQA MuSiQue 2WikiMQA GovReport QMSum

Baseline 21.02 29.41 47.13 36.53 19.13 21.76 32.59 23.99
w./ KIVI-2 20.61 28.73 44.88 35.47 17.95 20.68 32.55 23.65
w./ KIVI-4 20.97 29.41 46.52 36.25 19.53 21.66 32.97 24.06

MultiNews LCC RepoBench-P TriviaQA SAMSum TRec PR Avg

Baseline 27.09 53.49 51.40 86.23 43.04 71.00 89.33 43.54
w./ KIVI-2 26.54 53.03 51.16 86.00 43.34 71.00 80.83 42.43
w./ KIVI-4 26.89 53.33 51.41 86.23 43.34 71.00 89.42 43.53
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