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Abstract
This paper addresses the growing need for ef-
ficient large language models (LLMs) on mo-
bile devices, driven by increasing cloud costs
and latency concerns. We focus on designing
top-quality LLMs with fewer than a billion pa-
rameters, a practical choice for mobile deploy-
ment. Contrary to prevailing belief emphasiz-
ing the pivotal role of data and parameter quan-
tity in determining model quality, our investiga-
tion underscores the significance of model archi-
tecture for sub-billion scale LLMs. Leveraging
deep and thin architectures, coupled with embed-
ding sharing and grouped-query attention mech-
anisms, we establish a strong baseline network
denoted as MobileLLM, which attains a remark-
able 2.7%/4.3% accuracy boost over preceding
125M/350M state-of-the-art models. Addition-
ally, we propose an immediate block-wise weight-
sharing approach with no increase in model size
and only marginal latency overhead. The re-
sultant models, denoted as MobileLLM-LS,
demonstrate a further accuracy enhancement
of 0.7%/0.8% than MobileLLM 125M/350M.
Moreover, MobileLLM model family shows sig-
nificant improvements compared to previous sub-
billion models on chat benchmarks, and demon-
strates close correctness to LLaMA-v2 7B in API
calling tasks, highlighting the capability of small
models for common on-device use cases.

1. Introduction
Large language models (LLMs) are permeating various
facets of human life, influencing not only the way people

1Meta. Correspondence to: Zechun Liu <zechun-
liu@meta.com>.
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Figure 1: Average score on zero-shot common sense tasks
for LLMs smaller than 1B parameters. Each bubble’s area is
proportional to the model size of a variant in a model family.
The results of previous methods were evaluated using open-
source Hugging Face models to ensure consistent evaluation
procedures. The full list of tasks is in Table 3.

communicate and work but also shaping everyday entertain-
ment experiences. Prominent examples of contemporary
LLM products, such as ChatGPT and Perplexity AI, pri-
marily operate in cloud environments. Leading models
such as ChatGPT4 exceed 1 trillion parameters.1 However,
envisioning a future scenario characterized by widespread
human reliance on LLMs in both front-end conversational
interfaces and back-end operations like recommendation
system, equating to ∼5% of individuals’ daily time. In this
hypothetical scenario, employing GPT-4 at a processing rate
of 50 tokens/s entails the deployment of around one hundred
million H100 GPUs2, each capable of 60 TFLOPs/s3. This
computation scale, excluding communication and data trans-

1https://the-decoder.com/gpt-4-has-a-trillion-parameters
2Detailed calculation can be found in the appendix.
3https://www.nvidia.com/en-us/data-center/h100/
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MobileLLM:

SoC last level
Hardware Device memory size DRAM size
Apple A16 iPhone 15 24 MB 6 GB
Apple A15 iPhone 14 32 MB 6 GB

Google Pixel 8 8 MB 8 GB / 12 GB (pro)
QCOM Snapdragon 8 10 MB 8-12 GB

Table 9: Your caption

Table 10: Ablation: depth and layer sharing.

Model #Layer #Heads Dim #Params(M) ARC-e ARC-c BoolQ PIQA SIQA HellaSwag OBQA WinoGrande Avg.

130M

4 20 1280 163.2 42.3 26.3 61.1 62.1 41.6 32.9 33.0 51.7 43.9
6 16 1024 138.1 41.0 26.5 61.8 61.7 41.4 32.0 33.5 51.2 43.6
8 14 896 142.6 40.2 26.8 53.7 62.7 41.7 32.9 35.5 51.7 43.2

12 12 768 134.1 42.0 26.6 59.8 63.6 41.8 34.9 37.9 51.0 44.7
18 10 640 132.4 41.0 25.5 59.3 62.6 41.6 34.2 36.7 50.1 43.9
24 9 576 132.4 42.1 25.2 61.9 62.9 42.0 35.4 38.6 52.0 45.0
30 8 512 135.0 43.2 27.7 57.5 63.7 42.4 36.4 38.1 52.9 45.2
42 7 448 134.6 43.3 26.1 57.8 63.3 41.7 36.3 35.9 52.0 44.5
62 6 384 134.3 44.1 26.7 59.0 64.7 42.4 36.2 33.1 53.8 45.0

380M

5 32 2048 388.0 47.9 28.8 62.2 65.2 42.8 38.1 39.0 52.6 47.1
10 24 1536 381.4 49.1 29.6 60.6 67.1 44.0 42.7 41.2 54.4 48.6
12 22 1408 379.9 49.9 31.6 59.1 68.2 42.6 44.0 43.7 53.8 49.1
15 20 1280 386.7 49.2 30.6 59.1 67.7 44.3 43.2 41.0 54.2 48.7
19 18 1152 376.3 50.8 30.9 56.3 69.1 43.8 45.2 39.6 54.5 48.8
24 16 1024 373.8 50.7 33.8 58.8 68.6 43.5 45.0 40.0 54.9 49.4
28 15 960 371.1 49.7 30.5 59.5 68.1 45.1 44.9 43.4 55.5 49.6
32 14 896 380.3 51.7 33.2 57.6 67.9 42.9 46.0 37.7 53.9 48.9
46 12 768 374.7 50.7 31.4 59.4 67.8 43.3 46.2 43.8 56.2 49.8
66 10 640 376.2 50.5 31.8 61.0 67.4 43.8 46.0 40.1 55.6 49.5

130M

4 20 1280 155.6 42.1 26.9 61.4 62.2 41.3 34.3 35.1 51.5 44.3
6 16 1024 131.7 42.3 26.5 58.0 61.3 42.8 33.3 34.8 52.3 43.9
8 14 896 136.0 43.0 24.7 59.3 62.4 42.0 34.6 39.3 50.8 44.5

12 12 768 127.9 43.3 26.6 58.7 63.3 41.6 36.0 37.8 52.1 44.9
18 10 640 126.3 43.3 27.5 60.4 64.6 42.7 35.9 37.6 53.4 45.7
24 9 576 126.3 44.4 27.7 57.5 64.0 42.4 37.1 35.1 53.9 45.2
30 8 512 128.8 44.8 27.4 59.2 64.5 43.5 37.0 38.0 52.5 45.8
42 7 448 128.4 43.9 27.9 62.3 63.6 42.9 37.1 36.3 52.8 45.8
62 6 384 128.1 43.2 26.4 59.7 63.7 42.5 37.1 37.7 51.8 45.3

380M

5 32 2048 370.0 50.6 31.2 58.6 67.1 43.7 43.2 41.5 55.4 48.9
10 24 1536 363.8 50.5 32.0 60.0 68.3 42.7 45.9 40.3 56.9 49.6
12 22 1408 362.3 50.3 31.9 57.8 67.4 43.7 45.4 42.5 55.0 49.2
15 20 1280 368.8 53.4 32.1 61.9 68.0 43.5 46.6 41.5 54.9 50.2
19 18 1152 358.9 52.5 32.7 60.0 68.7 43.8 46.8 42.9 57.6 50.6
24 16 1024 356.5 50.7 31.1 59.2 69.1 42.7 46.4 40.9 53.7 49.2
28 15 960 353.9 49.1 30.9 58.7 68.2 44.3 46.0 40.5 54.9 49.1
32 14 896 362.7 51.5 32.0 60.9 68.7 43.6 46.7 42.1 55.3 50.1
46 12 768 357.4 51.9 31.6 60.4 69.2 43.7 47.2 43.8 54.0 50.2
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Figure 2: Memory hierarchy in prevalent mobile devices.
Despite adequate Flash storage, the operational memory for
executing high-speed applications predominantly resides in
DRAM, typically constrained to 6-12 GB.

mission overhead, is on par with 160 Meta-scale companies4.
The ensuing energy consumption and carbon dioxide emis-
sions would present staggering environmental challenges.
Consequently, it is imperative that we downsize LLMs.

Furthermore, considerations of portability and computa-
tional cost propel the necessity to deploy LLMs on smart-
phones and mobile devices. In the current landscape of
mobile technology, integrating an LLM like the LLaMA-
v2 7B (Touvron et al., 2023b) with 8-bit weights proves
prohibitively expensive due to limitations in main-memory
(DRAM) capacity source. A prevalent memory hierarchy
in mobile devices is depicted in Figure 2. With DRAM
capacities ranging from 6 GB for the iPhone 15 and 12 GB
for the Google Pixel 8 Pro (Hristov, 2022; Google, 2023),
a mobile app should not exceed 10% of the DRAM, since
DRAM is shared with the operating system and other ap-
plications (Malladi et al., 2012). This motivates deploying
sub-billion parameter LLMs. Additionally, factoring in
LLM energy consumption (0.1 J/token per billion in model
parameters (Han et al., 2016; Malladi et al., 2012)), a 7B-
parameter LLM consumes 0.7 J/token. A fully charged
iPhone, with approximately 50kJ of energy, can sustain this
model in conversation for less than 2 hours at a rate of 10
tokens/s, with every 64 tokens draining 0.2% of the battery.

These demands converge on a singular imperative: the adop-
tion of compact models for on-device execution. By uti-
lizing a sub-billion model, such as a 350M 8-bit model
consuming only 0.035 J/token, an iPhone can support con-
versational use an entire day. Moreover, the decoding speed
can be significantly enhanced, as exemplified by the bench-
mark results of the 125M model, capable of operating at 50
tokens/s, compared to the state-of-the-art iPhone App MLC
Chat utilizing the LLaMA 7B model at 3∼6 tokens/second5.
In light of these considerations, our paper is motivated by
the design and implementation of LLMs with parameters

4https://twitter.com/soumithchintala/status/1748074223187173724
5https://llm.mlc.ai

less than 1 billion.

We make the following contributions to build the most accu-
rate LLMs to date under 1 billion parameters.

• Contradictory to the scaling law (Kaplan et al., 2020),
we demonstrate that depth is more important than width
for small LLMs. A deep-and-thin model structure ex-
cels in capturing abstract concepts, resulting in superior
final performance.

• We revisit embedding sharing methods (Zhang et al.,
2022) and implement grouped query attention (Ainslie
et al., 2023) in small LLMs to maximize weight uti-
lization.

• We propose immediate block-wise weight sharing. In
scenarios where memory movement is the latency bot-
tleneck, weight sharing between two adjacent blocks
avoids weight movement, requiring only computing the
block twice and incurring minimal latency overhead.

• We propose a new family of models, MobileLLM,
showcasing SOTA performance. In a suite of zero-shot
tasks, MobileLLM outperforms the previous SOTA
125M/350M models by 2.7%/4.3%.

• In downstream tasks, such as Chat and API calling,
MobileLLM model family significantly outperforms
equivalently-sized models. In an API calling task,
MobileLLM-350M even achieves a comparable exact-
match score as a much larger LLaMA-v2 7B model.

• We further demonstrate that our design philosophy
scales effectively to larger models, with results for
MobileLLM-600M/1B/1.5B detailed in Appendix A.

2. Improving Sub-billion Scale LLM Design
In this section, we present the evolutionary path from a
baseline sub-billion parameter model to the new state-of-
the-art models (Figure 3). We explore both 125M and 350M
models and demonstrate consistent improvements in both
cases. For on-device use cases where model size is a major
constraint, how to allocate the limited weight parameters
effectively becomes more critical than ever. We first propose
a strong baseline model named MobileLLM by testing out
four model design techniques that are beneficial for sub-
billion scale LLMs, including (1) adopting SwiGLU FFN
(Dauphin et al., 2017); (2) forcing lanky (deep and thin) ar-
chitectures (3) revisiting embedding sharing method (Zhang
et al., 2022) (4) utilizing grouped query attention (Chowdh-
ery et al., 2023). Then we develop an immediate block-wise
layer-sharing method that further boosts accuracy without
incurring any additional memory overhead and with only
slight latency overhead in the memory-bounded LM decod-
ing process. We denote our model with layer sharing as
MobileLLM-LS.
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Figure 3: Design roadmap of sub-billion sized transformer
models. The foreground and background bars represent
the averaged accuracy on zero-shot common sense reason-
ing tasks for 125M and 350M models, respectively. The
125M model, initially a 12-layer 768-dimension structure,
is enhanced via improving feed-forward network design,
network depth adjustments, and weight-sharing strategies.
The detailed accuracy of each modification can be found in
the appendix.

2.1. Training Setup

Our experiments are conducted on 32 A100 GPUs, with
each GPU having a batch size of 32. We performed ex-
ploratory experiments with 120k iterations on 0.25T tokens.
Subsequently, the top models reported in Table 3 and Table
4, are trained with 480k iterations on 1T tokens.

We evaluate the pre-trained model on zero-shot com-
mon sense reasoning tasks, including ARC-easy, ARC-
challenge (Clark et al., 2018), BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), Hel-
laSwag (Zellers et al., 2019), OBQA (Mihaylov et al., 2018),
WinoGrande (Sakaguchi et al., 2021), as well as question an-
swering and reading comprehension tasks using TQA (Joshi
et al., 2017) and RACE dataset (Lai et al., 2017).

2.2. Building a Strong Baseline

2.2.1. FEED-FORWARD NETWORK CHOICE

We first investigate activation functions commonly used in
feed-forward networks (FFNs) and find that the state-of-
the-art SwiGLU (Dauphin et al., 2017) is also beneficial
for small models. By changing the vanilla FFN (FC →
ReLU → FC) to SwiGLU, The average performance on
zero-shot reasoning tasks is boosted from 42.6 to 43.9 for
the 125M model. Therefore, we use SwiGLU in FFN for

the experiments afterward.

2.2.2. ARCHITECTURE DEPTH VS WIDTH

A prevalent belief (Kaplan et al., 2020) in the field suggests
that the performance of transformer models is primarily
determined by the number of parameters, the size of the
training dataset, and the number of training iterations. This
belief posits that architectural designs have negligible im-
pact on the transformer model’s performance. However,
our findings indicate that this may not hold true for smaller
models.

Our experimental results, specifically for small models with
limited model capacity, reveals that going deeper is more
crucial than going wider for performance improvement. We
conducted an extensive study involving the training of 19
models, including 9 models with ∼125M parameters and
10 models with ∼350M parameters. Each model is de-
signed with a similar size but varied in terms of depth and
width. We experiment on eight zero-shot common sense
reasoning tasks, as well as question answering and read-
ing comprehension benchmarks. Our findings consistently
demonstrate that deeper and thinner models outperform
their shallower and wider counterparts. Figure 4 (a) and
(b) illustrate the superior performance of deeper networks
across most zero-shot reasoning tasks, including ARC-easy,
ARC-challenge, PIQA, HellaSwag, OBQA, WinoGrande.
Particularly, this trend is even more pronounced on the TQA
and RACE datasets, as shown in Figure 4 (c)-(f). Detailed
model configurations and results can be seen in the appendix.
Our findings suggest that models with 30 or even 42 layers
perform significantly better than those with 12 layers for
transformer models sized around 125M. This finding is sur-
prising considering the number of layers in most previous
125M models (Zhang et al., 2022; Black et al., 2022) is
limited to 12.

2.2.3. EMBEDDING SHARING

In sub-billion scale language models, the embedding lay-
ers constitute a significant portion of the parameter count.
For instance, with an embedding dimension of 512 and a
vocabulary size of 32k, the input and output embedding
layers each comprise 16 million parameters. Together, these
embedding layers account for more than 20% of the total
parameters of a 125M-parameter model. Contrastingly, this
proportion is considerably lower in larger language models.
For example, the input and output embeddings only account
for 3.7% of the total number of parameters in the LLaMA-
7B model (Touvron et al., 2023a) and a mere 0.7% in the
LLaMA-70B model. This disparity might elucidate why
embedding sharing was initially proposed and implemented
in OPT models (Zhang et al., 2022) but was subsequently
disregarded in recent designs of LLMs.
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(d) 350M model, TQA(c) 125M model, TQA

(e) 125M model, RACE (f) 350M model, RACE

(a) 125M model, Zero-shot reasoning (b) 350M model, Zero-shot reasoning

Figure 4: Under comparable model sizes, deeper and thinner models generally outperform their wider and shallower coun-
terparts across various tasks such as zero-shot common sense reasoning, question answering, and reading comprehension.

Table 1: Ablation study on input-output embedding sharing with a 30-layer model with 512 embedding dimension, on
zero-shot common-sense reasoning tasks. The increased depth (↑ depth) model has 32 layers.

Model # Params ARC-e ARC-c BoolQ PIQA SIQA HS OBQA WinoGrande Avg.
Without emb-share 135M 43.6 26.1 58.0 62.5 42.6 36.5 37.5 51.5 44.8
+ emb-share 119M 44.4 26.0 56.2 62.8 43.1 35.9 36.0 52.6 44.6
+ emb-share, ↑ depth 125M 43.3 26.4 54.4 64.7 43.5 36.9 38.5 52.6 45.0

In the development of sub-billion scale language models, we
revisit the concept of input-output embedding sharing. The
input embedding in LLM models maps the token ID in the
vocabulary to the corresponding token embedding and has a
dimension of (vocab_size, embedding_dim). Conversely,
the output fully-connected layer maps the embedding dimen-
sion back to the logits prediction across the vocabulary, with
a weight size of (vocab_size, embedding_dim). By shar-
ing the embedding, we reuse the input embedding weights
as the output fully connected layer weights, resulting in a
more efficient and compact model architecture.

We experiment on a 30-layer 125M model. In Table 1, we
demonstrate that sharing the input and output embeddings
reduces the number of parameters by 16M, approximately
11.8% of total parameters with a 0.2 points drop in aver-
age accuracy. The marginal accuracy drop can be readily
restored by reallocating the saved parameters to add more
layers. Increasing the depth to 32 layers produces a 0.4
points accuracy gain while still maintaining 10M fewer pa-
rameters compared to the original 135M model. Similar
results are also observed in 350M models. These findings
further suggest that embedding sharing is a valuable tech-
nique for maximizing weight utilization and optimizing
model performance given a limited model storage budget.

(a) 125M (b) 350M

Figure 5: Ablation study on number of heads and kv-heads.
Here, the ratio denotes the number of heads divided by
the number of kv-heads. Averaged accuracy on zero-shot
reasoning tasks is reported.

2.2.4. NUMBER OF HEADS AND KV-HEADS

We now investigate the optimal head size for small trans-
former models. The trade-off between more semantics per
head dimension and more non-linear combinations of multi-
ple heads is a key consideration in choosing the head size.
In addition, most previous studies have typically used an
identical number of key-value heads to query heads in sub-
billion parameter language models. Instead, we found that
grouped query attention, which is initially designed for re-
ducing key-value cache size in LLMs (Chowdhery et al.,
2023; Ainslie et al., 2023), can also effectively reduce re-
dundancy in key-value heads in small LMs. Grouped query
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attention can be viewed as another form of weight-sharing
for weight re-utilization, where the number of key-value
heads is 1/n that of query heads, and the kv-heads are re-
peated n times in computing attention scores and output
together with the query. Here, n ∈ Z+ denotes a positive
integer that the number of query heads are divisible by.

To establish a solid foundation for a state-of-the-art small
transformer model, we conducted experiments to determine
the desirable head size on 125M and 350M models. Results
in Figure 5 show that using 16 query heads produces the best
results. Additionally, reducing the number of kv-heads from
16 to 4 resulted in comparable accuracy for the 125M model
and only 0.2 points accuracy drop in the 350M model with
almost 10% model size reduction. These results serve as a
guideline in our model architecture design. By adopting the
grouped query attention (GQA) and meanwhile increasing
the embedding dimension to maintain the model size, the
accuracy of 125M further increases by 0.4 points, indicating
GQA as a favorable method to further squeeze out small
model’s potential.

In summary, we tested out four state-of-the-art techniques
beneficial to small model designs, including FFN with
SwiGLU, deep and thin architecture, embedding sharing,
and grouped query attention. Combining these techniques,
we build a strong baseline small LLM and we name it
MobileLLM.

2.3. Layer Sharing

The findings in Section 2.2.2 on the impact of layer depth
versus width suggest deeper layers are favorable for small
transformer models. This motivates us to investigate layer
sharing as a strategy to increase the number of hidden layers
without additional model storage cost. This approach is
particularly helpful in on-device scenarios where model size
is a major constraint.

Surprisingly, the experimental findings show that accuracy
enhancement can be achieved by simply replicating trans-
former blocks, without necessitating architectural modifi-
cations or an enlargement of the model size. We further
examined three different weight-sharing strategies, illus-
trated in Figure 6. Results in Table 2 indicate that the repeat-
over layer-sharing strategy produces the best performance
among immediate block-wise repeat, repeat all-over, and re-
verse sharing strategies. However, considering the hardware
memory hierarchy (Figure 2), the SRAM for computing is
typically limited to around 20MB. This capacity is usually
only sufficient to hold a single transformer block. Therefore,
placing shared weights in the cache and computing them
twice immediately can avoid the need to transfer weights be-
tween the SRAM and DRAM, resulting in improved overall
execution speed for auto-regressive inference. Consequently,
we have opted for the immediate block-wise sharing strategy

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Input

Output

Input Input

Output Output
(b) (c) (d)

Block

Block

Block

Block

Block

Block

…

… …

(a)
Output

Block

Block

Block

…

Input

Block

MHSA+FFN

=

Figure 6: (a) Baseline model without layer sharing; (b)
Immediate block-wise sharing; (c) Repeat-all-over sharing;
(d) Reverse sharing. A transformer block contains the multi-
head self-attention (MHSA) and the feed-forward network
(FFN). While repeat-all-over sharing has slightly higher
performance, immediate block-wise sharing best utilizes the
cache because the shared weights can stay in the cache and
be immediately computed twice.

in our model design. We denote the proposed model with
layer sharing as MobileLLM-LS.

3. Experiments
3.1. Experimental Settings

We train MobileLLM from scratch using Adam optimizer
(Kingma & Ba, 2014) with a weight decay of 0.1. The
experiments are conducted using 32 A100 GPUs, with a
batch size of 32 on each GPU. The initial learning rate is set
to 2e-3 and follows a cosine learning-rate decay strategy. We
perform quick exploration experiments with 120k iterations
on 0.25T tokens and train the best models reported in Tables
3 and 4 with 480k iterations on 1T tokens.

3.2. Main Results

We compare the final performance on zero-shot common
sense reasoning tasks, question answering, and reading com-
prehension tasks. The results of baseline methods were
evaluated using their open-source Hugging Face models to
ensure consistent evaluation procedures.

Zero-shot Common Sense Reasoning Table 3 presents
a comparison between our proposed model, MobileLLM,
and state-of-the-art sub-billion parameter models, including
the early open-sourced LLMs, OPT (Zhang et al., 2022),
BLOOM (Scao et al., 2022), and recent releases such as
Galactica (Taylor et al., 2022), Cerebras (Dey et al., 2023),
GPT-neo (Black et al., 2022) as well as the LLM analyzing
suite Pythia (Biderman et al., 2023) and transformer variants
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Table 2: Ablation study of layer-sharing strategy on zero-shot common sense reasoning tasks.

Model Sharing method ARC-e ARC-c BoolQ PIQA SIQA HellaSwag OBQA WinoGrande Avg.

125M
baseline 41.6 25.7 61.1 62.4 43.1 34.4 36.9 51.6 44.6
Immediate block-wise share 43.9 27.9 61.5 64.3 41.5 35.5 35.1 50.2 45.0
Repeat-all-over share 43.6 27.1 60.7 63.4 42.6 35.5 36.9 51.7 45.2
Reverse share 43.8 26.0 58.9 62.9 42.2 35.2 36.8 52.2 44.8

350M
baseline 50.8 30.6 62.3 68.6 43.5 45.1 43.8 52.4 49.6
Immediate block-wise share 51.5 30.8 59.6 68.2 43.9 47.7 44.7 55.0 50.2
Repeat-all-over share 53.5 33.0 61.2 69.4 43.2 48.3 42.2 54.6 50.7
Reverse share 50.7 32.2 61.0 68.8 43.8 47.4 43.1 53.8 50.1

Table 3: Zero-shot performance on Common Sense Reasoning tasks. MobileLLM denotes the proposed baseline model
and MobileLLM-LS is integrated with layer sharing with the #layer counting layers with distinct weights.

Model #Layers #Params ARC-e ARC-c BoolQ PIQA SIQA HellaSwag OBQA WinoGrande Avg.
Cerebras-GPT-111M 10 111M 35.8 20.2 62.0 58.0 39.8 26.7 29.0 48.8 40.0
LaMini-GPT-124M 12 124M 43.6 26.0 51.8 62.7 42.1 30.2 29.6 49.2 41.9
Galactica-125M 12 125M 44.0 26.2 54.9 55.4 38.9 29.6 28.2 49.6 40.9
OPT-125M 12 125M 41.3 25.2 57.5 62.0 41.9 31.1 31.2 50.8 42.6
GPT-neo-125M 12 125M 40.7 24.8 61.3 62.5 41.9 29.7 31.6 50.7 42.9
Pythia-160M 12 162M 40.0 25.3 59.5 62.0 41.5 29.9 31.2 50.9 42.5
RWKV-169M 12 169M 42.5 25.3 59.1 63.9 40.7 31.9 33.8 51.5 43.6
MobileLLM-125M 30 125M 43.9 27.1 60.2 65.3 42.4 38.9 39.5 53.1 46.3
MobileLLM-LS-125M 30 125M 45.8 28.7 60.4 65.7 42.9 39.5 41.1 52.1 47.0
Cerebras-GPT-256M 14 256M 37.9 23.2 60.3 61.4 40.6 28.3 31.8 50.5 41.8
OPT-350M 24 331M 41.9 25.7 54.0 64.8 42.6 36.2 33.3 52.4 43.9
Pythia-410M 24 405M 47.1 30.3 55.3 67.2 43.1 40.1 36.2 53.4 46.6
RWKV-430M 24 430M 48.9 32.0 53.4 68.1 43.6 40.6 37.8 51.6 47.0
BLOOM-560M 24 559M 43.7 27.5 53.7 65.1 42.5 36.5 32.6 52.2 44.2
Cerebras-GPT-590M 18 590M 42.6 24.9 57.7 62.8 40.9 32.0 33.2 49.7 43.0
MobileLLM-350M 32 345M 53.8 33.5 62.4 68.6 44.7 49.6 40.0 57.6 51.3
MobileLLM-LS-350M 32 345M 54.4 32.5 62.8 69.8 44.1 50.6 45.8 57.2 52.1

Table 4: Performance on Trivia QA and RACE datasets for
question answering and reading comprehension tasks.

TQA (F1 score) RACE (Acc)
Model 1-shot 5-shot 64-shot middle high
Cerebras-GPT-111M 1.9 3.8 4.4 29.2 24.3
OPT-125M 8.7 9.6 8.2 34.7 27.5
GPT-Neo-125M 8.0 7.9 5.0 34.7 27.0
Pythia-160M 2.1 1.4 2.1 30.2 25.1
MobileLLM-125M 13.9 14.3 12.5 39.7 28.9
MobileLLM-LS-125M 14.2 14.8 14.6 40.7 29.6
Cerebras-GPT-256M 5.2 6.8 3.3 31.7 26.2
OPT-350M 11.0 12.3 10.4 37.1 28.0
Pythia-410M 12.4 13.8 12.8 39.1 29.7
BLOOM-560M 8.8 8.9 5.3 37.6 28.2
Cerebras-GPT-590M 6.4 9.1 4.9 34.6 27.4
MobileLLM-350M 22.0 23.9 24.2 45.6 33.8
MobileLLM-LS-350M 21.4 22.5 22.6 47.3 33.7

RWKV (Peng et al., 2023) on zero-shot common sense rea-
soning tasks. For the 125M model size, MobileLLM favor-
ably outperforms previous models such as OPT, GPT-Neo,
and Galactica at the same model size by a significant margin.
Additionally, MobileLLM-125M achieves 3.8 points and
2.7 points higher accuracy than Pythia-160M and RWKV-
169M while being 22% and 26% smaller, respectively. Fur-
thermore, incorporating layer-sharing in MobileLLM-LS-
125M results in an additional 0.7 points improvement in
accuracy. It is noteworthy that MobileLLM-LS-125M

achieves comparable or even higher results than most pre-
vious 350M models. In the 350M model size category,
MobileLLM surpasses previous state-of-the-art models by
more than 4 points with comparable or smaller model sizes.

To further validate our design principles under a wider range
of memory constraints, we extend our model to include
MobileLLM-600M, 1B, and 1.5B configurations. The com-
prehensive results are detailed in the Appendix A.

Question Answering and Reading Comprehension We
evaluate pre-trained models on the TQA question answering
benchmark (Joshi et al., 2017) and RACE reading compre-
hension benchmark (Lai et al., 2017). We follow the evalua-
tion setup from (Touvron et al., 2023a) and report the results
in Table 4. Comparing models of 125M size, MobileLLM-
125M demonstrates a noteworthy improvement of over 4.3
points on the TQA benchmark in contrast to its predecessor.
Moreover, the MobileLLM-350M model exhibits a sub-
stantial performance increase of approximately 10 points
compared to other 350M-sized models. For the reading
comprehension tasks, MobileLLM model family also ex-
hibits significantly higher scores than preceding sub-billion
parameter models.
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Table 5: Benchmark results on AlpacaEval (Evaluator: GPT-
4; Reference model: text-davinci-001) and MT-Bench.

Model MT-Bench(score) Alpaca Eval(win %)

number of parameters < 200M
OPT-125M 1.21 3.91
GPT-Neo-125M 1.06 1.01
Pythia-160M 1.01 0.63
MobileLLM-125M 2.33 24.07
MobileLLM-LS-125M 2.52 23.79

200M < number of parameters < 1B
OPT-350M 1.37 6.80
Pythia-410M 1.62 13.87
BLOOM-560M 1.73 10.29
MobileLLM-350M 3.28 47.08
MobileLLM-LS-350M 3.16 48.20

number of parameters > 1B

Pythia-1B 1.70 16.62
BLOOM-1.1B 2.37 19.90
Falcon-1.3B 2.54 30.38
OPT-1.3B 2.24 38.84

3.3. Downstream Tasks

To validate the effectiveness of sub-billion scale models for
on-device applications, we assess their performance in two
crucial on-device tasks: Chat and API calling.

3.3.1. CHAT

We fine-tune MobileLLM models, as well as previous
state-of-the-art (SoTA) models sourced from HuggingFace
checkpoints for chat-based tasks, and evaluate them un-
der identical settings to ensure consistency. We evaluate
two benchmarks: AlpacaEval (Li et al., 2023), a single-
run chat benchmark, and MT-Bench (Zheng et al., 2023),
a multi-run chat benchmark. The results presented in Ta-
ble 5 showcase that MobileLLM models significantly out-
perform previous state-of-the-art sub-billion scale models,
surpassing even models with 1 billion parameters. Notably,
MobileLLM-LS-350M achieves a remarkable win rate
of 48.2% when compared to the baseline GPT-3 model
(text-davinci-001). Considering the self-win rate of GPT-3
is 50%, it is noteworthy that MobileLLM-LS-350M ob-
tains comparable chat performance as this baseline model.
Visualizations of chat examples in the appendix also un-
derscore the impressive quality of responses generated by
MobileLLM models.

3.3.2. API CALLING

API calling is a common on-device application, particularly
in collaboration with audio-to-text models for assistant func-
tionalities. Leveraging LLMs for API calling involves the
conversion of natural language inputs into JSON configura-

Table 6: API calling evaluation score. EMintent/EMstructure
measures the exact match in API calling. R1/RL refers to the
Rouge-1/-L score measuring the quality of agent response.

Model EMintent EMstructure R1 RL

OPT-350M 56.1 38.6 37.1 35.3
Pythia-410M 62.2 44.7 43.1 41.1
BLOOM-560M 64.7 37.9 36.9 34.6
MobileLLM-350M 65.3 48.8 46.8 44.6
LLaMA-v2 7B 62.8 50.9 56.5 54.3

tions to invoke corresponding APIs6. For instance, given the
input "Help me set an alarm at 7:30 AM" the model outputs
{API: "alarm(time="7:30 am")"}. Additionally, the model
generates an agent response: "Sure! Your alarm is set to
7:30 AM."

To adapt LLMs for this task, we create a synthetic dataset
with 5000 training samples and 2500 testing samples. Each
sample involves 8 conversation turns on average. Detailed
examples of this dataset are provided in the appendix. The
pre-trained models undergo fine-tuning on the training set
for 4 epochs, utilizing the Adam optimizer with a linear-
decay learning rate starting at 2e-5 and a weight decay of
0.01.

Table 6 shows that MobileLLM-350M demonstrates com-
parable intent and structure exact match scores to LLaMA-
v2 7B, where high intent scores indicate the correct pre-
diction of the API user intends to call, while structural
exact match scores reflect the proficiency in predicting con-
tent within API functions. Despite lower Rouge scores in
MobileLLM-350M compared to 7B models, it is crucial to
note that API calling prioritizes correct API invocation. The
results suggest that certain common scenarios in on-device
applications are not particularly challenging, and smaller
models like MobileLLM-350M can adeptly handle it.

3.4. Compatibility with Quantization

We further conduct per-token min-max post-training quan-
tization (PTQ) experiments on both MobileLLM and
MobileLLM-LS models with 125M and 350M model
sizes trained on 0.25T tokens. Figure 7 shows that em-
ploying W8A8 PTQ yields a modest accuracy reduction
of less than 0.5 points and remains compatible with layer
sharing.

3.5. Knowledge Distillation

So far, we trained compact models from scratch using next
tokens as hard labels. We explored Knowledge Distillation
(KD) of 125M and 350M models with LLAMA-v2 7B as

6https://platform.openai.com/docs/guides/function-calling
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Figure 7: Comparison between BFloat16 model and 8-bit
weight 8-bit activation post-training quantized model.

Table 7: Latency analysis of MobileLLM-125M (30
layers), MobileLLM-LS-125M (2×30 layers, adjacent
blocks sharing weights), and a 60-layer non-shared weight
model, with consistent configurations in all other aspects.

Load Init Execute

MobileLLM 39.2 ms 1361.7 ms 15.6 ms
MobileLLM-LS 43.6 ms 1388.2 ms 16.0 ms
60-layer non-shared 68.6 ms 3347.7 ms 29.0 ms

a teacher. Unfortunately, KD increases training time (slow-
down of 2.6 − 3.2×) and exhibits comparable or inferior
accuracy to label-based training (details in appendix).

3.6. On-device Profiling

We measure the latency for MobileLLM-125M and
MobileLLM-LS-125M FP16 models via ExecuTorch7 on
iPhone 13 (iOS 17.2.1), with Metal Performance Shaders
(MPS) backend8. Model loading, initialization, and execu-
tion time are reported in Table 7. Specifically, execution
time is averaged over 50 iterations.

Results in Table 7 reflects that through weight sharing and
doubling the number of layers, MobileLLM-LS incurs
only a 2.2% increase in loading and initialization time com-
pared to MobileLLM, attributable to their similar model
sizes. Execution time also experiences a mere 2.6% over-
head, benefitting from data locality. In contrast, a model
with a doubled number of layers without weight sharing
exhibits a substantial 143% rise in loading and initialization
time and an 86% increase in execution time.

4. Related Work
The excellent performance of LLMs has fostered its wide
applications. Considering the computational cost and energy

7https://pytorch.org/executorch-overview
8https://pytorch.org/executorch/stable/build-run-mps.html

consumption of LLMs, a new stream of research direction
have emerged to downsize LLMs to enable on-device infer-
ence. These methods include:

Model Compression. Numerous model compression meth-
ods are developed for LLMs, including pruning(Xia et al.,
2023b), sparsity (Sun et al., 2023; Xia et al., 2023a; Fran-
tar & Alistarh, 2023), and quantization (Liu et al., 2023a;
Dettmers et al., 2022; Kim et al., 2023; Frantar et al., 2022;
Xiao et al., 2023; Yao et al., 2022; Liu et al., 2023c;b; Fran-
tar et al., 2022). Our research is complementary to these
techniques. As also substantiated in Section 3.4, our method-
ology is compatible with quantization.

Small Model Design. A limited number of studies have
explored compact model architectures, such as TinyLLaMA
(Timiryasov & Tastet, 2023). However, even the smallest
TinyLLaMA exceeds 1 billion parameters, making them
still prohibitive for many on-device applications. Some
research proposes large model architectures alongside their
smaller LLM variants in a model family (Zhang et al., 2022;
Scao et al., 2022; Black et al., 2022; Dey et al., 2023) or an
analytical suite containing small LLM variants (Biderman
et al., 2023). However, these models are not optimized
under the constraint of sub-billion parameters and therefore
may not be optimal.

Neural Architecture Search. NAS has garnered substan-
tial attention in the realm of convolutional neural networks,
particularly in the context of vision tasks (Tan & Le, 2019;
Zoph & Le, 2016; Wu et al., 2019; Guo et al., 2020). In
contrast, within the transformer domain, the prevailing con-
sensus posits that the model architecture exerts minimal
influence on accuracy, provided the total number of pa-
rameters remains consistent (Kaplan et al., 2020). Only a
limited number of studies have developed NAS algorithms
for language transformers, targeting at BERT models (Xu
et al., 2021; Jawahar et al., 2023; Ganesan et al., 2021).
Our current investigation, focusing on the interplay between
depth and width, can be conceptualized as a meticulous
grid search within the depth space. The outcomes of that
study challenge the prevalent orthodoxy surrounding scaling
laws, proposing that deep and thin architectures demonstrate
higher performance for compact LLMs.

Weight Sharing. Weight sharing is an intuitive strategy for
optimizing model weight utilization within fixed parame-
ter constraints. While the OPT family (Zhang et al., 2022)
and subsequent works (Black et al., 2022) leverage weight
sharing between input and output embeddings, limited re-
search has explored weight sharing for intermediate layers
in transformers (Shen et al., 2022; Reid et al., 2021). Prior
efforts often entail specialized designs for shared layers. In
contrast, our contribution highlights a more straightforward
yet effective way of simply repeating transformer blocks,
yielding improved accuracy with a fixed model size and
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minimal latency increase.

Efficient Attention and Implementation. In the realm of
efficient transformer design, much research has focused on
optimizing attention computation through methods like low-
rank approximation (Wang et al., 2020; Katharopoulos et al.,
2020; Xiong et al., 2021) and sparse attention (Kitaev et al.,
2020; Roy et al., 2021). Another line of work explores
hardware scheduling and weight movement, exemplified
by works such as FlashAttention (Dao et al., 2022) and
FlexGen (Sheng et al., 2023). In contrast, our primary goal
is to optimize model size without introducing new attention
computation or efficient hardware implementation methods.

5. Conclusion
This study focuses on optimizing sub-billion scale mod-
els for on-device applications. Our findings indicate that,
for smaller models, prioritizing depth over width enhances
model performance. Furthermore, by leveraging advanced
weight-sharing techniques, including embedding sharing,
grouped query attention, and block-wise weight sharing,
we achieve significant enhancements in weight utilization
within storage-constrained scenarios. The resulting models
denoted as MobileLLM exhibit substantial advancements
in zero-shot commonsense reasoning, question answering,
and reading comprehension tasks compared to previous
SoTA methods. Last but not least, we demonstrate the ef-
fectiveness of the fine-tuned MobileLLM models in two
prevalent on-device use cases: chat and API calling, under-
scoring their adeptness in handling such tasks.
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Appendix

A. Scaling Up to Larger Model Architectures
In this paper, we primarily investigated two model sizes, MobileLLM-125M and MobileLLM-350M. In this section, we
extended our design principles—SwiGLU, deeper architecture, grouped-query attention, and embedding sharing—to larger
models, pre-training MobileLLM-600M, 1B, and 1.5B variants. This expansion facilitates a broader range of applications
across different memory constraints. Table 8 compares MobileLLM with various general-purpose9 pre-trained models,
including i.e. OPT (Zhang et al., 2022), BLOOM (Scao et al., 2022), GPT-neo (Black et al., 2022), Pythia (Biderman et al.,
2023), Falcon (Almazrouei et al., 2023), TinyLlama (Zhang et al., 2024), Cerebras-GPT (Dey et al., 2023), Galactica (Taylor
et al., 2022), RWKV (Peng et al., 2023), LaMini-GPT (Wu et al., 2023), Qwen (Bai et al., 2023) as well as a recent model
MobiLlama (Thawakar et al., 2024) released after MobileLLM.

The results in Table 8 demonstrate that MobileLLM consistently surpasses previous models of similar scale. Notably,
MobileLLM-1.5B achieves an average accuracy of 59.4 points on zero-shot commonsense reasoning tasks, outperforming
the previous state-of-the-art model, Qwen1.5-1.8B, by 2.9 points despite the latter having more parameters. The detailed
architecture specifications of MobileLLM can be found in Table 9.

Table 8: Zero-shot performance on Common Sense Reasoning tasks for MobileLLM-600M, 1B and 1.5B. The highest and
second-highest average scores within each model-size category are highlighted.

Model ARC-e ARC-c BoolQ PIQA SIQA HellaSwag OBQA WinoGrande Avg.
Qwen1.5-500M 54.7 32.1 46.9 68.9 46.0 48.8 37.7 55.0 48.8
BLOOM-560M 43.7 27.5 53.7 65.1 42.5 36.5 32.6 52.2 44.2
Cerebras-GPT-590M 42.6 24.9 57.7 62.8 40.9 32.0 33.2 49.7 43.0
MobiLlama-800M 52.0 31.7 54.6 73.0 43.3 52.3 42.5 56.3 50.7
MobileLLM-600M 58.1 35.8 61.0 72.3 44.9 55.9 47.9 58.6 54.3
Pythia-1B 49.9 30.4 58.7 69.2 43.3 47.4 38.6 52.2 48.7
MobiLlama-1B 59.7 38.4 59.2 74.5 44.9 62.0 43.7 59.0 55.2
Falcon-1B 59.5 38.4 63.9 74.6 44.6 62.9 45.6 60.9 56.3
BLOOM-1.1B 47.6 27.3 58.6 67.0 42.4 42.2 36.6 53.8 46.9
TinyLlama-1.1B 59.2 37.1 58.1 72.9 43.9 59.1 44.7 58.8 54.2
MobileLLM-1B 63.0 39.0 66.7 74.4 45.0 61.4 46.8 62.3 57.3
Cerebras-GPT-1.3B 47.4 28.3 57.3 66.9 43.1 38.2 38.4 52.1 46.5
Galactica-1.3B 59.8 34.3 61.4 63.9 42.0 40.9 33.8 54.9 48.9
GPT-neo-1.3B 51.3 33.0 61.8 70.9 43.7 48.6 41.2 54.5 50.6
OPT-1.3B 54.4 31.7 58.4 71.5 44.7 53.7 44.6 59.1 52.3
LaMini-GPT-1.5B 59.9 39.1 77.0 71.9 45.9 50.9 44.4 57.5 55.8
RWKV-1.5B 56.2 33.8 61.8 72.3 44.7 52.8 41.8 54.7 52.3
BLOOM-1.7B 50.9 31.2 61.7 70.0 43.2 47.2 36.2 56.1 49.6
Qwen1.5-1.8B 61.1 36.5 68.3 74.1 47.2 60.4 42.9 61.2 56.5
Cerebras-GPT-2.7B 53.8 32.3 55.0 71.0 43.3 48.9 40.6 55.7 50.1
GPT-neo-2.7B 55.8 34.3 62.4 72.9 43.6 55.6 40.0 57.9 52.8
OPT-2.7B 56.6 34.6 61.8 74.5 45.6 60.2 48.2 59.6 55.1
Pythia-2.8B 59.4 38.9 66.1 73.8 44.5 59.6 45.0 59.4 55.8
BLOOM-3B 55.1 33.6 62.1 70.5 43.2 53.9 41.6 58.2 52.3
RWKV-3B 60.1 39.1 58.6 74.5 45.1 59.8 44.6 59.1 55.1
MobileLLM-1.5B 67.5 40.9 65.7 74.8 46.4 64.5 50.5 64.7 59.4

Table 9: Detailed architecture specifications of MobileLLM. "Emb Dim" denotes the embedding dimension and "Hidden
Dim" represents the dimension inside the feed-forward network.

Model #Layer #Head #KV-Head Emb Dim Hidden Dim #Params
MobileLLM-125M 30 9 3 576 1536 124.6M
MobileLLM-350M 32 15 5 960 2560 345.3M
MobileLLM-600M 40 18 6 1152 3072 603.1M
MobileLLM-1B 54 20 5 1280 3584 1.0B
MobileLLM-1.5B 54 25 5 1600 4352 1.5B

9Models pre-trained for specific downstream tasks were excluded to ensure a fair comparison.

13



MobileLLM

B. Impact of Each Design Choice
This section presents comprehensive tabulated results for the improving sub-billion scale LLM design experiments, at the
model sizes of 125M and 350M. Looking at the results in Table 10, transitioning from the traditional Feedforward Network
(FC → ReLU → FC) to SwiGLU yields an accuracy improvement of 1.3% for both model sizes. Further increasing the
model depth enhances accuracy by 0.9%/1.1% for 125M/350M models, respectively. Then, introducing input and output
embedding sharing achieves a parameter reduction of approximately 10%, while with only marginal accuracy drops of
0.2% for 125M and 0.6% for 350M models. Additionally, following in findings in Section D, we incorporate grouped query
attention with a head dimension equal to 64, and a head number to near 4× to the kv-head number, while increasing the
embedding dimension to preserve model size. This modification further results in a performance boost of 0.4%/0.7% for
125M/350M models. Combining these techniques establishes a strong baseline network denoted as MobileLLM. Finally,
the immediate block-wise weight-sharing technique contributes an additional accuracy gain of 1.1% for models trained on
0.25 trillion tokens, resulting in the model MobileLLM-LS. Final models including MobileLLM and MobileLLM-LS
are trained with 1 trillion tokens.

Table 10: Ablation study on the impact of each design choice on the model accuracy on zero-shot common sense reasoning
tasks. Corresponding to the bar chart in Figure 3. Here, L, H, HKV denotes the number of layers, heads, kv-heads,
respectively, and dim denotes the embedding dimension.

Techniques L H HKV Dim #Params(M) ARC-e ARC-c BoolQ PIQA SIQA HellaSwag OBQA WinoGrande Avg.
125M
Baseline model 12 12 12 768 134.1 41.3 25.2 57.5 62.0 41.9 31.1 31.2 50.8 42.6
+ SwiGLU in FFN 12 12 12 768 134.1 43.1 28.9 58.1 62.3 42.3 34.6 31.5 50.1 43.9
+ Use deep-thin structure 30 8 8 512 135.0 43.6 26.1 58.0 62.5 42.6 36.5 37.5 51.5 44.8
+ Embedding share 30 8 8 512 118.6 44.4 26.0 56.2 62.8 43.1 35.9 36.0 52.6 44.6
+ Grouped-query attention 30 9 3 576 124.6 45.5 27.7 58.3 64.6 41.9 36.4 35.4 50.4 45.0

(Train on 1T token) 30 9 3 576 124.6 43.9 27.1 60.2 65.3 42.4 38.9 39.5 53.1 46.3
+ Layer sharing 30 9 3 576 124.6 44.4 27.0 61.5 65.1 43.0 37.6 37.8 52.0 46.1

(Train on 1T token) 30 9 3 576 124.6 45.8 28.7 60.4 65.7 42.9 39.5 41.1 52.1 47.0
350M
Baseline model 15 20 20 1280 376.8 50.3 27.6 53.8 68.1 44.1 42.6 40.1 52.4 47.4
+ SwiGLU in FFN 15 20 20 1280 386.7 49.2 30.6 59.1 67.7 44.3 43.2 41.0 54.2 48.7
+ Use deep-thin structure 32 14 14 896 380.3 50.7 31.4 59.4 67.8 43.3 46.2 43.8 56.2 49.8
+ Embedding share 32 14 14 896 351.6 49.9 32.0 60.3 67.9 43.2 47.0 38.9 54.8 49.2
+ Grouped-query attention 32 15 5 960 345.3 51.4 31.3 61.0 68.1 43.6 47.2 41.6 55.4 49.9

(Train on 1T token) 32 15 5 960 345.3 53.8 33.5 62.4 68.6 44.7 49.6 40.0 57.6 51.3
+ Layer sharing 32 15 5 960 345.3 51.9 35.2 59.6 68.9 43.4 47.2 43.3 58.4 51.0

(Train on 1T token) 32 15 5 960 345.3 54.4 32.5 62.8 69.8 44.1 50.6 45.8 57.2 52.1

C. Depth vs Width
We provide network depth versus width exploration results on zero-shot reasoning tasks in Table 11, as well as results on
question answering and reading comprehension tasks in Table 12. The findings indicate that shallow architectures with fewer
than 10 layers perform poorly in reasoning or handling comprehension tasks. Models with 10-20 layers exhibit improved
accuracy, while further increasing depth continues to provide significant benefits across all three tasks. Notably, the optimal
depth is found to be near 30 layers for sub-billion scale models.

D. Number of Heads and Key-Value Heads
We provide detailed experimental results assessing the impact of the number of attention heads and key-value heads on
zero-shot reasoning accuracy in Table 13. Our study involves two baseline architectures: an 8-layer 125M model with an
embedding dimension of 896, and a 15-layer 350M model with an embedding dimension of 1280. We conduct head size
sweeps in {8, 16, 32}. The findings shown in Table 13 indicate that using 16 heads, with a head dimension close to 64, and
4 key-value heads, yields the best accuracy and memory trade-off. This setting serves as a guiding principle in our model
architecture design.

E. Layer-Sharing Number Ablation
We extended our investigation to determine the optimal number of layer repetitions. The experiment involved the 8-layer
125M model with an embedding dimension of 896 and the 15-layer 350M model with an embedding dimension of 1280.
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Table 11: Ablation study on depth versus width in architecture design, illustrated in Figure 4 (a)(b). For compact models,
prioritizing depth over width yields superior performance, assessed through zero-shot common sense reasoning tasks.

#Layer #Heads Dim #Params(M) ARC-e ARC-c BoolQ PIQA SIQA HellaSwag OBQA WinoGrande Avg.
4 20 1280 163.2 42.0 26.1 61.0 61.5 41.3 32.9 31.4 49.8 43.3
6 16 1024 142.6 42.2 25.5 51.0 62.6 41.6 33.5 32.1 50.0 42.3
8 14 896 138.1 43.6 25.5 48.6 61.8 40.9 34.0 37.5 52.0 43.0
12 12 768 134.1 43.1 28.9 58.1 62.3 42.3 34.6 31.5 50.1 43.9
18 10 640 132.4 41.0 25.5 59.3 62.6 41.6 34.2 36.7 50.1 43.9
24 9 576 132.4 43.6 27.0 59.7 63.8 42.0 36.2 33.7 52.2 44.8
30 8 512 135.0 43.6 26.1 58.0 62.5 42.6 36.5 37.5 51.5 44.8
42 7 448 134.6 43.3 26.1 57.8 63.3 41.7 36.3 35.9 52.0 44.5
62 6 384 134.3 44.1 26.7 59.0 64.7 42.4 36.2 33.1 51.3 44.7
5 32 2048 388.0 47.9 28.8 62.2 65.2 42.8 38.1 39.0 52.6 47.1
10 24 1536 381.4 49.1 29.6 60.6 67.1 44.0 42.7 41.2 54.4 48.6
12 22 1408 379.9 49.9 31.6 59.1 68.2 42.6 44.0 43.7 53.8 49.1
15 20 1280 386.7 49.2 30.6 59.1 67.7 44.3 43.2 41.0 54.2 48.7
19 18 1152 376.3 50.8 30.9 56.3 69.1 43.8 45.2 39.6 54.5 48.8
24 16 1024 373.8 50.7 33.8 58.8 68.6 43.5 45.0 40.0 54.9 49.4
28 15 960 371.1 51.7 33.2 57.6 67.9 42.9 46.0 37.7 53.9 48.9
32 14 896 380.3 50.7 31.4 59.4 67.8 43.3 46.2 43.8 56.2 49.8
46 12 768 374.7 49.7 30.5 59.5 68.1 45.1 44.9 43.4 55.5 49.6
66 10 640 376.2 50.5 31.8 61.0 67.4 43.8 46.0 40.1 55.6 49.5

Table 12: Ablation study on depth vs. width in architecture design on TQA and RACE datasets, depicted in Figure 4 (c-f).

TQA (F1 score) RACE (Acc)
#Layer #Heads Dim #Params(M) 1-shot 5-shot 64-shot middle high

4 20 1280 163.2 2.0 3.9 3.9 33.2 26.0
6 16 1024 142.6 3.5 4.9 4.6 29.2 25.5
8 14 896 138.1 4.2 5.2 4.7 29.2 24.3
12 12 768 134.1 5.1 6.1 6.3 35.6 27.3
18 10 640 132.4 4.7 6.8 5.2 34.3 27.4
24 9 576 132.4 5.9 7.2 7.3 35.3 28.6
30 8 512 135.0 6.2 6.8 6.9 34.2 27.9
42 7 448 134.6 6.1 7.2 7.2 34.4 28.6
62 6 384 134.3 6.0 7.0 7.3 38.9 28.9
5 32 2048 388.0 5.6 7.8 8.6 38.1 29.0
10 24 1536 381.4 9.0 11.8 12.7 40.6 30.0
12 22 1408 379.9 11.7 12.9 13.3 42.4 31.5
15 20 1280 386.7 10.7 13.1 14.2 42.6 30.6
19 18 1152 376.3 11.3 13.3 13.5 42.6 32.4
24 16 1024 373.8 11.8 13.5 14.4 43.0 31.9
28 15 960 371.1 12.5 13.6 14.9 42.8 32.3
32 14 896 380.3 12.6 14.5 15.3 44.2 32.2
46 12 768 374.7 13.0 15.4 15.6 44.7 31.4
66 10 640 376.2 12.5 15.1 15.7 44.0 32.5

The results in Table 14 demonstrate that when we double the layer number and with each two transformer blocks sharing
weights, the accuracy is enhanced by 0.4-0.6%. However, as we further triple or quadruple the layer repetition times, this
accuracy enhancement effect diminishes. Consequently, in our experiments, we adopt a configuration where every two
blocks share weights, effectively doubling the total number of layers.

F. Compatibility with Quantization
This section explores the compatibility of quantization with the proposed model architecture and layer sharing. We employ
a straightforward per-token min-max quantization, quantizing both weight and activation to 8-bit using post-training
quantization (PTQ). Experiments are conducted on both MobileLLM and MobileLLM-LS with model sizes of 125M
and 350M, trained on 0.25T tokens. Results in Table 15 demonstrate that W8A8 PTQ results in a modest accuracy drop of
within 0.5% and is compatible with the proposed layer-sharing method.

G. Knowledge Distillation
The results of integrating knowledge distillation (KD) (Hinton et al., 2015) into small model pre-training are presented in
Table 16. LLaMA-v2 7B models serve as the teacher, and the KD loss is computed using cross-entropy between the logits

15



MobileLLM

Table 13: Ablation study investigating the impact of the number of attention heads and key-value heads.

Model #Heads #KV-Heads #Params(M) ARC-e ARC-c BoolQ PIQA SIQA HellaSwag OBQA WinoGrande Avg.
32 32 138.1 42.1 26.9 58.4 62.2 42.1 33.8 36.7 52.4 44.3
32 16 131.7 41.2 26.4 57.7 62.5 42.3 33.3 34.2 52.9 43.8
32 8 128.5 42.6 27.3 61.1 61.9 41.9 32.2 35.0 52.0 44.2
32 4 126.8 43.1 26.8 59.8 62.7 41.4 32.5 34.4 51.1 44.0
32 2 126.0 39.8 26.7 59.4 59.4 42.0 31.3 32.6 52.9 43.0
32 1 125.6 41.0 24.3 59.1 60.8 41.2 31.4 35.4 52.0 43.1

125M 16 16 138.1 41.6 25.7 61.1 62.4 43.1 34.4 36.9 51.6 44.6
# layers=8 16 8 131.7 42.4 26.4 60.7 63.4 41.9 33.5 34.7 51.5 44.3
dim=896 16 4 128.5 42.5 25.6 62.3 62.4 41.8 33.0 35.9 54.5 44.7

16 2 126.8 41.7 25.3 56.9 61.7 42.0 32.9 32.6 54.5 43.5
16 1 126.0 40.4 26.3 61.8 63.2 41.7 32.0 34.0 50.4 43.7
8 8 138.1 41.4 25.0 58.3 61.7 41.7 33.3 35.9 53.2 43.8
8 4 131.7 43.3 28.2 58.3 61.8 42.8 33.8 30.9 53.0 44.0
8 2 128.5 40.7 26.2 58.1 61.2 41.6 32.8 34.8 51.5 43.4
8 1 126.8 42.5 24.8 59.4 62.3 42.0 32.0 36.3 51.3 43.8
32 32 386.7 48.6 30.4 59.7 67.2 43.9 44.0 40.9 53.9 48.6
32 16 362.1 48.9 31.6 57.6 68.4 43.4 43.8 38.6 54.9 48.4
32 8 349.8 48.3 33.1 61.0 67.2 42.6 42.1 39.0 53.9 48.4
32 4 343.7 47.2 29.8 59.4 67.2 43.5 42.5 42.5 54.1 48.3
32 2 340.6 47.6 30.3 62.4 66.9 42.6 41.6 38.6 52.0 47.7
32 1 339.0 48.5 27.3 56.3 67.1 42.9 40.9 36.7 53.3 46.6

350M 16 16 386.7 50.8 30.6 62.3 68.6 43.5 45.1 43.8 52.4 49.6
# layers=15 16 8 362.1 48.5 30.7 59.4 67.3 43.8 43.8 41.3 53.3 48.5
dim=1280 16 4 349.8 49.9 30.6 60.0 69.2 43.5 44.2 41.8 55.8 49.4

16 2 343.7 49.3 28.4 55.0 67.3 42.7 42.6 40.3 54.5 47.5
16 1 340.6 49.2 29.3 58.8 67.4 43.5 42.1 39.9 52.8 47.9
8 8 386.7 51.0 33.2 58.2 67.0 43.9 43.9 42.6 54.7 49.3
8 4 362.1 50.0 31.3 60.2 66.0 42.7 43.7 40.9 53.7 48.6
8 2 349.8 49.3 30.4 59.9 67.9 42.8 43.5 38.9 53.8 48.3
8 1 343.7 48.0 27.7 61.5 67.1 43.1 42.5 37.3 54.7 47.8

Table 14: Ablation study on the impact of varying layer repetition numbers.

Model Size Repeat Times ARC-e ARC-c BoolQ PIQA SIQA HellaSwag OBQA WinoGrande Avg.

125M
baseline 41.6 25.7 61.1 62.4 43.1 34.4 36.9 51.6 44.6

block-wise share repeat ×2 43.9 27.9 61.5 64.3 41.5 35.5 35.1 50.2 45.0
block-wise share repeat ×3 43.3 27.6 60.9 63.0 42.3 35.6 34.1 52.9 45.0
block-wise share repeat ×4 42.0 26.6 62.3 64.4 41.5 36.2 35.8 53.9 45.3

350M
baseline 50.8 30.6 62.3 68.6 43.5 45.1 43.8 52.4 49.6

block-wise share repeat ×2 51.5 30.8 59.6 68.2 43.9 47.7 44.7 55.0 50.2
block-wise share repeat ×3 49.6 32.0 57.3 68.4 43.9 47.0 40.6 56.2 49.4
block-wise share repeat ×4 52.2 32.6 60.0 69.0 44.5 47.6 41.8 55.2 50.4

from the large pre-trained teacher model (i.e., LLaMA-v2 7B) and the small student network (i.e., 125M or 350M models):

LCE = − 1

n

∑
c

n∑
i=1

pTc (Xi) log(p
S
c (Xi)), (1)

Here, i denotes the ith sample in the current batch with n total samples in the batch, and c represents the number of classes,
which, in our case, equals the size of the vocabulary. T and S are the teacher and student networks, respectively.

The results in Table 16 indicate that adding KD loss is comparable to or even lower than solely using the next token as labels.
However, it’s noteworthy that the training time using KD is 2.6− 3.2× slower than training from scratch using labels. All
models are trained on 32 A100 80G GPUs with a batch size of 32 for 120k iterations. Consequently, we opt to use labels in
our experiments.

H. Datasets and Benchmarks
MobileLLM is assessed on zero-shot common sense reasoning (BoolQ, PIQA, SIQA, HellaSwag, Winogrande, ARC,
OBQA), question answering (TriviaQA), and reading comprehension (RACE) tasks. Additionally, we evaluate our chat
models on MT-Bench and AlpacaEval benchmarks. We also generated an API calling dataset to fine-tune and evaluate
models for this particular task.
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Table 15: Ablation study: 8-bit weight, 8-bit activation post-training quantization results on zero-shot common sense
reasoning tasks. Quantized models achieve accuracy gap of within 0.5% compared to the full-precision BF16 counterpart.

Model Precision ARC-e ARC-c BoolQ PIQA SIQA HellaSwag OBQA WinoGrande Avg. Gap
MobileLLM-125M BF16 45.5 27.7 58.3 64.6 41.9 36.4 35.4 50.4 45.0 –
MobileLLM-125M W8A8 45.2 27.1 58.3 65.0 41.7 36.2 33.6 51.0 44.8 0.2
MobileLLM-LS-125M BF16 44.4 27.0 61.5 65.1 43.0 37.6 37.8 52.0 46.1 –
MobileLLM-LS-125M W8A8 44.0 27.5 60.9 64.6 43.1 37.7 37.7 51.0 45.8 0.3
MobileLLM-350M BF16 51.4 31.3 61.0 68.1 43.6 47.2 41.6 55.4 49.9 –
MobileLLM-350M W8A8 51.4 32.1 61.1 68.8 43.1 47.1 40.6 55.1 49.9 0.0
MobileLLM-LS-350M BF16 51.9 35.2 59.6 68.9 43.4 47.2 43.3 58.4 51.0 –
MobileLLM-LS-350M W8A8 51.3 33.8 59.5 69.1 43.7 47.2 43.0 57.0 50.6 0.4

Table 16: Ablation study on employing LLaMA-v2 7B teacher’s output as soft labels for knowledge distillation (KD).
Results indicate a slight degradation in performance when incorporating KD loss compared to only using hard labels.

Model Training Loss Training Time ARC-e ARC-c BoolQ PIQA SIQA HellaSwag OBQA WinoGrande Avg.
125M model Label 29h 43.1 28.9 58.1 62.3 42.3 34.6 31.5 50.1 43.9
125M model Label + KD 93h 41.8 28.5 58.5 61.6 41.1 34.5 32.7 51.6 43.8
350M model Label 42h 50.2 31.8 56.9 67.7 44.3 45.8 40.8 55.5 49.1
350M model Label + KD 109h 48.7 31.8 60.7 67.4 43.2 45.9 38.9 53.7 48.8

H.1. Zero-shot Common Sense Reasoning tasks

BoolQ (Clark et al., 2019) is a reading comprehension dataset focused on naturally occurring yes/no questions. Each
instance includes a question (Q), an excerpt from a passage (P), and an answer (A), with an added explanation for enhanced
clarity.

PIQA (Bisk et al., 2020), abbreviated for Physical Interaction: Question Answering, serves as a benchmark for evaluating
and studying the capacity of natural language models in comprehending physical commonsense understanding.

SIQA (Sap et al., 2019), abbreviated for Social Interaction Question Answering, is designed to measure the social and
emotional intelligence of computational models through multiple-choice question answering.

HellaSwag (Zellers et al., 2019) serves as a benchmark for physically situated commonsense natural language inference. It
comprises four-way multiple-choice problems that are considered trivial for humans (>95% accuracy) but pose a challenge
for language models.

WinoGrande (Sakaguchi et al., 2021) is a benchmark for commonsense reasoning. It consists of a set of 273 expert-crafted
pronoun resolution problems, deliberately designed to be unsolvable for statistical models relying on selectional preferences
or word associations.

ARC (Clark et al., 2018), the AI2 Reasoning Challenge, is a compilation of 7787 natural science questions. It is divided into
a Challenge Set and an Easy Set, with the Challenge Set exclusively comprising questions that were answered incorrectly by
both a retrieval-based algorithm and a word co-occurrence algorithm.

OBQA (Mihaylov et al., 2018) is a dataset consisting of approximately 6000 questions designed for open-book question
answering. The task involves integrating a corpus of provided science facts (open book) with external broad common
knowledge. Providing correct answers necessitates leveraging simple common knowledge beyond the core facts provided.

H.2. Question Answering Tasks

TriviaQA (Joshi et al., 2017) is a closed-book question answering benchmark. It encompasses over 650,000 question-answer
evidence triples derived by combining 95,000 question-answer pairs authored by Trivia enthusiasts. Each question is
supported by an average of six evidence documents.
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H.3. Reading Comprehension Tasks

RACE (Lai et al., 2017) is a large-scale reading comprehension dataset with more than 28,000 passages and nearly 100,000
questions. The dataset is collected from English examinations in China, which are designed for middle school and high
school students.

H.4. Chat Benchmarks

AlpacaEval (Li et al., 2023) is a single-turn benchmark featuring 805 questions across various topics. In the evaluation of
this paper, models generate responses and are scored by GPT-4, with the ultimate metric being the pairwise win rate against
a baseline model (text-davinci-001).

MT-Bench (Zheng et al., 2023) is a multi-turn benchmark comprising 160 questions spanning eight diverse knowledge
domains. In this evaluation, models are tasked with answering an initial question and subsequently providing a second
response to a predefined follow-up question. Each model response is rated by GPT-4 on a scale from 1 to 10, and the final
score is determined by the mean over the two turns.

H.5. API Calling Dataset

The API calling dataset is generated by instructing a language model to simulate a conversation between a human and an
agent. This process instructs the language model to explicitly mention tasks that should be performed using designated APIs
throughout the simulated conversation. Examples of a conversation turn in the generated dataset are shown in the following
boxes.

{"role": "USER", "message": "Can you help me send a SMS message: We are looking forward to seeing
you"},
{"role": "PARSER", "message": "style_transfer(text = "We are looking forward to seeing you", style =
["sms"], contact = None)"},
{"role": "AGENT", "message": "Sure! Here’s a possible SMS message: Hey [name], we are looking
forward to seeing you! Wishing you all well."},

{"role": "USER", "message": "How did the S&P 500 perform last month?"},
{"role": "PARSER", "message": "get_stock_information(company_name = "S&P 500", ticker_symbol =
"GSPC", date_time = "last month", financial_metrics = "price")"},
{"role": "AGENT", "message": "The S&P 500 closed at $2,977.94 last month, with a monthly return of
2.5%."},

{"role": "USER", "message": "Is the San Diego Zoo open during the winter months?"},
{"role": "PARSER", "message": "get_local_information(point_of_interest = "San Diego Zoo", attributes =
"hours of operation")"},
{"role": "AGENT", "message": "The San Diego Zoo is open year-round, but the hours of operation vary
depending on the time of year. During the winter months, the zoo is open from 9:00 AM to 5:00 PM."},
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{"role": "USER", "message": "What is the most recent news concerning aliens?"},
{"role": "PARSER", "message": "news(query = "latest alien news")"},
{"role": "AGENT", "message": "According to recent news articles, NASA has announced the discovery of a
new planet outside of our solar system that has the potential to support alien life. The planet, named Kepler-
186f, is located in the constellation Cygnus and is the first known Earth-sized planet to be found in the
habitable zone of a star. While this news does not necessarily prove the existence of aliens, it does provide
hope for the possibility of finding life beyond Earth. Additionally, a recent study published in the journal
Nature has suggested that the universe may be teeming with alien civilizations, with estimates suggesting
that there could be tens of billions of intelligent civilizations in the observable universe. However, it’s
important to note that these findings are still being researched and debated in the scientific community."},

{"role": "USER", "message": "Who won the last Super Bowl?"},
{"role": "PARSER", "message": "get_sports_information(match = "", sport_type = "NFL", metric =
"winner")"},
{"role": "AGENT", "message": "The last Super Bowl was won by the Kansas City Chiefs."},
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I. Approximate calculation of envisioned future GPU consumption
#GPUs = 7.88×109 (population size) ×5% (individual time10) × 220×109 (approximating FLOPs/token for 220B GPT-4
model with one expert activated11) ×50 (token/s) ×24 (h) ×3600 (s) / (60×1012 (FLOPs/s, H100 computation capacity )
×24 (h) ×3600 (s)) ≈ 1× 108

This assumes short sequence lengths (i.e. hundreds of tokens, not tens of thousands of tokens), where the compute is
dominated by linear layers. For very long sequences, the self-attention computation would dominate, and this would
necessitate a more complicated formula.

J. Chat Generations from MobileLLM

We show several examples of chat output generated with MobileLLM while responding to various questions.

Input:
Are there any particular physical benefits to mindful walking, such as improved posture or increased physical
fitness?

Output (MobileLLM-125M):
Yes, there are several physical benefits to mindful walking. Here are a few:
1. Improved Posture: Mindful walking can help improve your posture by promoting good alignment and reducing
stress on the joints. This can lead to better posture and reduced back pain.
2. Increased Flexibility: Mindful walking can also help increase flexibility in your body, which can reduce the
risk of injury and improve overall health.
3. Better Sleep: Mindful walking can help you fall asleep more easily and stay asleep longer, which can improve
your sleep quality.
4. Reduced Stress: Mindful walking can help reduce stress levels by promoting relaxation and reducing tension
in the body.
5. Enhanced Mental Health: Mindful walking has been shown to have positive effects on mental health, including
reducing symptoms of depression and anxiety.
Overall, mindful walking is an excellent way to improve your physical health and well-being. It’s a simple and
effective way to get moving and enjoy the benefits it offers. If you’re interested in trying mindful walking, I
would recommend starting with shorter walks and gradually increasing the duration over time. You may also
want to consider incorporating mindfulness into your daily routine to further enhance your experience.
In conclusion, mindful walking is a great way to improve your physical health and well-being. With its numerous
physical benefits, it’s easy to see why it’s becoming increasingly popular among people looking for a fun and
sustainable way to get moving. So go ahead and give it a try!

10According to the statistics that YouTube users spend an average of 23 hours per month (source) and Instagram users dedicating 12
hours monthly to the app (source), we have reason to believe the interaction with LLM can easily surpass the cumulative engagement of
these platforms in the future.

11https://the-decoder.com/gpt-4-has-a-trillion-parameters/
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Output (MobileLLM-350M):
Yes, there are several physical benefits of mindful walking. Firstly, it can improve your posture by reducing the
amount of tension in your muscles and joints. Secondly, it can increase your physical fitness by improving your
cardiovascular health, strengthening your core muscles, and increasing your flexibility. Additionally, mindful
walking can help you to stay more focused on the present moment, which can lead to better sleep quality and
reduced stress levels. Finally, it can also help you to develop a greater sense of awareness and appreciation for
the world around you, which can enhance your overall well-being.
Overall, mindful walking is a great way to improve your physical health and well-being, while also promoting
relaxation and mindfulness. Whether you’re looking to reduce stress, improve your posture, or simply enjoy a
peaceful walk, mindful walking can be a rewarding and fulfilling experience.
If you’re interested in trying out mindful walking, there are many resources available that can guide you through
the process. Some popular options include guided meditations, apps that offer mindful walking exercises, and
classes that teach you how to practice mindful walking. With a little bit of effort and dedication, anyone can start
incorporating mindful walking into their daily routine and reap the many benefits it offers.
In conclusion, mindful walking is a simple yet powerful tool that can help you to improve your physical health,
reduce stress, and cultivate a deeper sense of awareness and appreciation for the world around you. So why not
give it a try and see what kind of benefits you can achieve? Your body and mind will thank you!

Output (llama-v2-7b-chat):
Mindful walking can have a range of physical benefits, including:
1. Improved posture: By focusing on the sensation of each step and the movement of the body, mindful walking
can help improve posture and reduce slouching or hunching.
2. Increased physical fitness: Mindful walking can help improve cardiovascular fitness, increase muscle strength
and endurance, and boost overall physical fitness.
3. Better balance and coordination: By paying attention to the body’s position in space and the movement of the
legs and feet, mindful walking can help improve balance and coordination.
4. Reduced stress and tension: Mindful walking can help reduce stress and tension in the body, which can lead to
improved physical relaxation and well-being.
5. Improved flexibility: By focusing on the movement of the body and the sensation of each step, mindful walking
can help improve flexibility and range of motion.
6. Boosted immune system: Studies have shown that mindfulness practices, including mindful walking, can help
boost the immune system and reduce inflammation.
7. Improved sleep: Mindful walking can help improve sleep quality and duration by reducing stress and promoting
relaxation. 8. Reduced pain: Mindful walking can help reduce pain by focusing on the sensation of each step and
the movement of the body, rather than the pain itself.
9. Improved mood: Mindful walking can help improve mood and reduce symptoms of depression and anxiety by
promoting relaxation and reducing stress.
It’s important to note that the physical benefits of mindful walking may vary depending on the individual and the
frequency and duration of the practice. However, with regular practice, mindful walking can have a range of
positive effects on physical health and well-being.

Input:
How do I wrap a present neatly?
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Output (MobileLLM-125M):
1. Choose the right size gift: The size of the present you want to give will depend on your budget and personal
preference. If you are looking for a small gift, consider buying a small box or card with a single-use plastic bag.
2. Prepare the present: Make sure all the items in the present are clean and tidy. You can use a cleaning kit or a
tissue paper to remove any dirt or debris from the present.
3. Arrange the presents: Place the present in a place where it is easy to see and touch. Use a pencil to draw a line
around the present and arrange it in a way that makes sense to you.
4. Add decorations: Decorate the present with stickers, ribbons, or other decorative items. This will add some
personality to the present and make it more visually appealing.
5. Enjoy the present: Take time to enjoy the present and let yourself feel the warmth and comfort of the present.
Smile at yourself and take a moment to appreciate the present.
Remember, the most important thing is to have fun and enjoy the present! Happy gift-giving!
If you’re feeling adventurous, try making a surprise gift for someone special by wrapping the present in a cute
and colorful gift basket. Or, if you’re feeling adventurous, try making a gift for a friend who needs a little extra
help with their homework. Whatever you choose, remember to be creative and have fun with your present!
With these tips, you’ll be able to create a beautiful and thoughtful present that will last for years to come. Happy
gift-giving!

Output (MobileLLM-350M):
1. Start by wrapping the present in a decorative gift wrap or ribbon.
2. Use a small amount of glue or tape to secure the gift wrap or ribbon to the surface of the present.
3. Place the gift wrap or ribbon around the present, making sure it is centered and evenly distributed.
4. Use a small amount of glue or tape to secure the gift wrap or ribbon to the surface of the present.
5. Once the gift wrap or ribbon is securely attached, you can add any additional decorations or embellishments to
the present.
6. If you want to add a personal touch, you can write a message or a special message on the gift wrap or ribbon.
7. Finally, enjoy your beautifully wrapped present!
Remember, wrapping a gift is a fun and creative way to show your loved one how much you care. Have fun and
enjoy the process!

Output (llama-v2-7b-chat):
Wrapping a present neatly can be a bit of a challenge, but with a few simple tips and tricks, you can create a
beautifully wrapped gift that your recipient will love. Here are some tips to help you wrap a present neatly:
1. Use the right wrapping paper: Choose a wrapping paper that complements the gift and is the right size for the
present. You can also use a patterned paper or a solid color, depending on your preference.
2. Measure the gift: Before you start wrapping, measure the gift to make sure you have enough wrapping paper.
You can also use a piece of scrap paper to measure the gift and mark the edges with a pencil.
3. Use a flat surface: Make sure you have a flat surface to work on, such as a table or countertop. This will help
you keep the wrapping paper flat and prevent it from wrinkling.
4. Start with the edges: Begin by folding the edges of the wrapping paper over the gift, making sure they are even
and smooth. You can use tape to secure the edges if needed.
5. Roll the gift: Once you have the edges in place, roll the gift into the center of the wrapping paper. Make sure
the gift is securely in place before moving on to the next step.
6. Tuck in the edges: As you wrap the gift, tuck the edges of the wrapping paper under the gift, smoothing them
out as you go. Make sure the edges are even and smooth, and use tape to secure them if needed.
7. Add a ribbon or bow: Once you have the gift wrapped, add a ribbon or bow to the top. This will not only make
the gift look more festive, but it will also help to keep the wrapping paper in place.
8. Practice makes perfect: Wrapping a present neatly takes a bit of practice, so don’t be discouraged if it doesn’t
come out perfectly the first time. Keep practicing, and you’ll get the hang of it in no time!
By following these tips, you can create a beautifully wrapped present that your recipient will love. Happy
wrapping!
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Input:
What are the best exercises for beginners?

Output (MobileLLM-125M):
1. Push-ups: This is a classic exercise that can be done anywhere, anytime. It’s easy to do and requires no
equipment.
2. Dumbbell Rows: These rows are great for building strength in your legs and core.
3. Squats: Squats are a great way to build strength in your legs and core.
4. Lunges: Lunges are a great way to improve balance and stability.
5. Plank: A plank is a great way to build strength in your back and core.
6. Jumping Jacks: Jumping jacks are a fun and effective way to build strength in your legs and core.
7. Burpees: Burpees are a great way to build strength in your legs and core.
8. Mountain Climbers: Mountain climbers are a great way to build strength in your legs and core.
9. Deadlifts: Deadlifts are a great way to build strength in your legs and core.
10. Tricep Dips: Tricep dips are a great way to build strength in your triceps.
Remember, it’s important to start with simple exercises and gradually increase the intensity as you get stronger.
Don’t push yourself too hard or you may find it difficult to maintain proper form. With consistent practice, you
will see improvements in your strength and overall fitness.
If you have any questions about exercises or healthy living, don’t hesitate to talk to a doctor or physical therapist.
They can help you develop a personalized plan that works best for you.
In conclusion, there are many exercises that can be done at home, but it’s important to start slowly and gradually
increase the intensity over time. Remember to listen to your body and take breaks when needed. And most
importantly, enjoy the process!

Output (MobileLLM-350M):
Beginners should start with exercises that are easy to do and don’t require a lot of strength or endurance. Here are
some exercises that are great for beginners:
1. Push-ups: This is a great exercise for beginners because it’s a simple exercise that can be done anywhere. Start
with a push-up on your knees and then lower yourself down to the ground.
2. Squats: Squats are a great exercise for building leg strength and endurance. Start with a squat on your knees
and then lower yourself down to the ground.
3. Lunges: Lunges are a great exercise for building leg strength and endurance. Start with a lunge on your front
foot and then lower yourself down to the ground.
4. Plank: Planks are a great exercise for building core strength and stability. Start with a plank on your forearms
and then lower yourself down to the ground.
5. Bicycle crunches: Bicycle crunches are a great exercise for building upper body strength and stability. Start
with a bicycle crunch on your upper back and then lower yourself down to the ground.
6. Plank with leg lifts: This exercise is great for building leg strength and stability. Start with a plank on your
forearms and then lift your legs off the ground and hold for a few seconds before lowering them back down.
7. Jumping jacks: Jumping jacks are a great exercise for building cardiovascular endurance and strength. Start
with a jumping jack on your feet and then jump up and spread your legs.
Remember to start with a weight that is comfortable for you and gradually increase the weight as you get stronger.
It’s also important to warm up before exercising and to stretch after your workout to prevent injury.
In conclusion, beginners should start with exercises that are easy to do and don’t require a lot of strength
or endurance. These exercises are great for building leg strength and endurance, and can be done anywhere.
Remember to start with a weight that is comfortable for you and gradually increase the weight as you get stronger.
Warming up and stretching after your workout are also important to prevent injury.
Following these exercises can help you build strength, endurance, and improve your overall fitness level.
Remember to always consult with a healthcare professional before starting any new exercise program.
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Output (llama-v2-7b-chat):
Exercise is an essential part of a healthy lifestyle, but for beginners, it can be intimidating and overwhelming.
Here are some of the best exercises for beginners:
1. Bodyweight exercises: These exercises are great for beginners because they don’t require any equipment.
Examples include push-ups, squats, lunges, and planks.
2. Yoga: Yoga is a low-impact exercise that can help improve flexibility, balance, and strength. It’s also great for
reducing stress and improving overall well-being.
3. Brisk walking: Walking is a simple and accessible form of exercise that can be done anywhere. It’s a great
way to get your heart rate up and improve cardiovascular health.
4. Swimming: Swimming is a low-impact exercise that can help improve cardiovascular health and strengthen
muscles. It’s also easy on the joints, making it a great option for beginners.
5. Cycling: Cycling is another low-impact exercise that can be done indoors or outdoors. It’s a great way to
improve cardiovascular health and build leg strength.
6. Resistance band exercises: Resistance bands are lightweight and portable, making them easy to use at home or
on the go. They can help improve strength and flexibility in the upper body, lower body, and core.
7. Pilates: Pilates is a form of exercise that focuses on core strength, flexibility, and body control. It’s a great
option for beginners because it’s low-impact and can help improve posture and balance.
8. Dance-based workouts: Dance-based workouts, such as Zumba or Hip Hop Abs, are fun and energetic ways to
get in shape. They often involve aerobic exercise and strength training, making them a great option for beginners.
9. Jumping rope: Jumping rope is a high-intensity exercise that can help improve cardiovascular health and burn
calories. It’s also easy to do at home with a simple jump rope.
10. Kettlebell exercises: Kettlebells are small weights that can be used to perform a variety of exercises, including
swings, squats, and presses. They’re a great way to improve strength and cardiovascular health.
Remember to always consult with a doctor before starting any new exercise program, especially if you’re a
beginner. It’s also important to start slowly and gradually increase the intensity and duration of your workouts as
you become more comfortable.
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