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Abstract
Cross-Domain Recommendation (CDR) have be-
come increasingly appealing by leveraging useful
information to tackle the data sparsity problem
across domains. Most of latest CDR models as-
sume that domain-shareable user-item informa-
tion (e.g., rating and review on overlapped users
or items) are accessible across domains. How-
ever, these assumptions become impractical due
to the strict data privacy protection policy. In this
paper, we propose Reducing Item Discrepancy
(RidCDR) model on solving Privacy-Preserving
Cross-Domain Recommendation (PPCDR) prob-
lem. Specifically, we aim to enhance the model
performance on both source and target domains
without overlapped users and items while pro-
tecting the data privacy. We innovatively pro-
pose private-robust embedding alignment mod-
ule in RidCDR for knowledge sharing across do-
mains while avoiding negative transfer privately.
Our empirical study on Amazon and Douban
datasets demonstrates that RidCDR significantly
outperforms the state-of-the-art models under the
PPCDR without overlapped users and items.

1. Introduction
Recommender systems have become increasingly appealing
in addressing the issue of information overload for users
(Chen et al., 2023b; Zhu et al., 2021a; 2023; Zang et al.,
2022; Li et al., 2024a; Liu et al., 2023b; Li et al., 2024c).
Meanwhile, most of current Cross-Domain Recommenda-
tion (CDR) models assume the presence of prior-known
overlapped users/items and the accessibility of intra-domain
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Figure 1. The illustration of privacy-preserving cross-domain rec-
ommendation problem without overlapped users and items.

information (e.g., user-item ratings and reviews). However,
these assumptions could be rather impractical with the in-
creasing law on privacy protection (Pramod, 2023; Li et al.,
2024c;b). In this scenario, user/item identities may undergo
anonymous process and thus it could be hard to determine
overlapped users or items (Zhang et al., 2021a). How to
leverage cross-domain information while considering the
aforementioned constraints remains a challenge for inclu-
sive public service.

In this paper, we focus on Privacy-Preserving Cross-Domain
Recommendation (PPCDR) problem as shown in Fig.1.
That is, we aim to resolve data sparsity problem and enhance
the model performance on both source and target domains
simultaneously. In each domain, user-item rating and re-
view information is available, while other domains do not
have access to these intra-domain contents. Moreover, we
assume that both users and items are non-overlapped across
domains which makes the problem even more challenging,
especially under the settings of data privacy protection.

Previous CDR methods cannot better solve PPCDR well.
On the one hand, conventional CDR and PPCDR models
should utilize domain-shareable contents (e.g., overlapped
users/items) as the bridges for knowledge sharing (Man
et al., 2017; Cao et al., 2023; Zhu et al., 2022). These model
performance could be severely degraded without the aid of
overlapped users/items which ultimately limits their poten-
tials in the real practice. On the other hand, items on differ-
ent domains are inherently diverse and heterogeneous which
leads to biases and discrepancies (Li et al., 2021). As the
illustration in Fig.1., movie items inherit scene and action
information while book items contain writing style. Mean-
while we should explore domain-invariant patterns (e.g.,
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theme and topic) among the movies and books to overcome
the domain drift. Previous CDR models always utilize do-
main adversarial training strategy with discriminator (Ganin
et al., 2016) for embedding adaptation in the latent space.
However such approach could be unstable and difficult to
train under certain circumstances (Shu et al., 2018). More
recently, (Yang et al., 2023b) further adopt optimal transport
method to align item embeddings for knowledge sharing.
Nevertheless, traditional optimal transport could be easily
affected by outliers and noise, thus leading to the negative
transfer phenomenon (Mukherjee et al., 2021; Balaji et al.,
2020; Le et al., 2021). In conclusion, how to reduce item
domain shift and discrepancy without domain-shareable
contents privately still need more investigation.

To address the aforementioned issues, in this paper, we pro-
pose Reducing Item Discrepancy model (RidCDR) for solv-
ing the PPCDR problem. RidCDR includes two modules,
i.e., rating prediction module and private-robust embedding
alignment module. Specifically, rating prediction module
is set for collaborative filtering in the single domain. To
further align relevant items with similar characteristics pri-
vately, we first propose private-robust embedding alignment
module in RidCDR. For that purpose, we propose Differ-
entially Private-Robust Adaptation (DPRA) method with
differentially private projection and robust reweighted sam-
ple adaptation components. That is, we initially employ
sample weight adjustment mechanism to filter out irrele-
vant items via unbalanced optimal transport privately. After
that we utilize sample reweighting optimal transport to
further measure and reduce domain discrepancy. By incor-
porating rating prediction module and private-robust embed-
ding alignment module, we can leverage useful information
across domains under the privacy-preserving constraints to
enhance the model performance on PPCDR problem.

We summarize the main contributions of this paper as fol-
lows: (1) We propose a novel framework, i.e., RidCDR, for
solving the PPCDR problem by combining intra-domain rat-
ing prediction and cross domain private-robust embedding
alignment. (2) We introduce the private-robust embedding
alignment module with the DPRA method, which incorpo-
rates differentially private projection and robust reweighted
sample adaptation. This approach ensures reliable knowl-
edge sharing across domains, even in the absence of over-
lapping users or items. (3) Extensive studies on Douban and
Amazon datasets show that RidCDR significantly improves
the state-of-the-art models in the PPCDR scenario.

2. Related Work

Cross Domain Recommendation. Cross-Domain Rec-
ommendation (CDR) mainly leverage source and target do-
mains to tackle the data sparsity problem (Zhao et al., 2020a;
Kang et al., 2019; Ju et al., 2024). Existing CDR models can

be divided into two types, i.e., domain-shareable methods
and non-domain-shareable methods. Specifically, domain-
shareable methods rely on overlapped users or items as the
bridges for knowledge sharing (Zhang et al., 2023; Zhao
et al., 2023; Xie et al., 2022). Some domain-shareable meth-
ods also adopt cross connect network (Hu et al., 2018) or
cross domain graph message propagation (Liu et al., 2020;
Zhao et al., 2019) to improve the model performance. Non-
domain-shareable methods tackle a more challenging sce-
nario when there is a lack of overlapping users/items (Choi
et al., 2022). Most non-domain-shareable models should
utilize auxiliary information (e.g., user-item reviews) (Choi
et al., 2022) for enhancing the results via Maximum Mean
Discrepancy (Liu et al., 2022a) or adversarial training strat-
egy (Hao et al., 2021). Recently, (Yang et al., 2023b) further
adopt the balance optimal transport technique for latent
embedding alignment to reduce domain shift. All these
methods should assume that both source and target data are
accessible during the training procedure. However, how
to realize robust knowledge sharing for the Non-domain-
shareable scenario privately still needs more exploration.

Privacy-Preserving Cross Domain Recommendation.
With the increasing emphasis on data privacy protection,
how to conduct CDR task privately has become a hot topic.
(Chen et al., 2022) first adopts differential private publishing
(Zhao et al., 2020b; Yang et al., 2023a) on the overlapped
user for knowledge distillation from rich to sparse domain.
(Liao et al., 2023) further adopts adversarial model (Xu
et al., 2020) to generative fake user-item for modelling.
Meanwhile (Chai et al., 2020; Meihan et al., 2022; Liu et al.,
2023a; Yan et al., 2022; Chen et al., 2023a) start to utilize
federated learning approach (McMahan et al., 2017) for pro-
tecting clients’ privacy via distributed learning. However,
these methods require prior identification of the overlapping
users or items across domains. Meanwhile, achieving such
requests can be challenging in privacy-preserving scenarios,
which ultimately restricts their potential.

3. Methodology
3.1. Framework of RidCDR

In this section, we will introduce the model details of pro-
posed RidCDR. There are two domains, i.e., source domain
S and target domain T involves. We use X to indicate
the domain index as X = {(src), (trg)} for simplification.
We assume each domain have NX

U users, NX
V items, and

RX ∈ RNX
U ×NX

V rating matrices to record user-item inter-
actions. For the i-th user and j-th item in the X -th domain,
it consists of the tuples (EX

U,i, E
X
V,j ,RX

ij , H
X
ij ). EX

U,i and
EX

V,j denote the one-hot ID vector for the i-th user and j-th
item respectively. RX

ij and HX
ij denote the rating and re-

view information respectively. Note that the users and items
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Figure 2. The framework of our proposed RidCDR.
are non-overlapped while user-item information (e.g, rating
and review) cannot be directly accessible due to the privacy
constraints. We wish to incorporate both source and target
useful information for boosting the model performance.

Then, we introduce the overview of RidCDR, as is illus-
trated in Fig. 2. RidCDR mainly has two modules, i.e., rat-
ing prediction module and private-robust embedding align-
ment module. The rating prediction module is set to model
user and item embeddings according to the interactions. The
private-robust embedding alignment module aims to reduce
the domain discrepancy among source and target domains
while protecting the data privacy. By incorporating these
two modules in RidCDR, we can leverage rich informa-
tion from source domain to boost the model performance
in the sparse target domain for knowledge sharing. We will
introduce these two modules in detail later.

3.2. Rating Prediction Module

Firstly, we will introduce the rating prediction module
for modelling intra-domain user-item embeddings. We
adopt a trainable lookup table to exploit the user/item
one-hot ID embedding as EXU,i = LookUp(EX

U,i) and
EXV,j = LookUp(EX

V,j) respectively. For the i-th user and
the j-th item, RX

i∗ and RX
∗j denote the historical rating

in domain X . We utilize the fully connected layers CXU

and CXV
to obtain user and item behavior embeddings as

CXU
(RX

i∗) = QX
i∗ and CXV

(RX
∗j) = QX

∗j . For the single re-
view information HX

ij , we adopt BERT (Devlin et al., 2018)
to obtain the review representations HX

ij = BERT(HX
ij ).

Then we collect the user/item review representations by av-
eraging the review representations given by the i-th users
or the j-th item as HX

i∗ and HX
∗j respectively. We also uti-

lize the fully connected layers KXU
and KXV

to obtain
user and item review embeddings as KXU

(HX
i∗) = OX

i∗
and KXV

(HX
∗j) = OX

∗j . We adopt the fully connected
layer as user mapping network FX

U (·), FX
V (·) to obtain the

user/item embedding for the X -th domain respectively. That
is, we concatenate one-hot ID embeddings, behavior em-
beddings, and review embeddings to obtain the user/item
embedding. Specifically, the user embedding can be ob-
tained via FX

U (EXU,i ⊕ QX
i∗ ⊕ OX

i∗) = UX
i ∈ RD where

⊕ denotes the concatenation operation and D denotes the

embedding dimension. Likewise, we can obtain item em-
bedding via FX

V (EXV,j ⊕QX
∗j ⊕OX

∗j) = V X
j ∈ RD. Finally,

we adopt the multi-layer perceptron GX (·) to model the
user-item ratings as rXi,j = GX (UX

i ⊕ V X
j ). We utilize

the commonly-used binary cross-entropy loss as the rating
prediction loss for collaborative filtering in domain X as:

min ℓXRating = −
∑
i,j

[RX
ij log r

X
i,j+(1−RX

ij) log(1−rXi,j)].

Utilizing rating prediction module with optimizing ℓXRating

in both source and target domains, one can model user/item
preferences using intra-domain data as shown in Fig.2.

3.3. Private-Robust Embedding Alignment Module

Although rating prediction module can model user-item
interactions in the source or target domains, it could still re-
sult in limited performance due to the data sparsity problem.
Therefore, it is essential to leverage useful dense source
domain knowledge to improve the recommendation results
in sparse target domain. Meanwhile we should notice that
the original user/item embeddings cannot be directly share
across domains due to the data privacy concerns. How to
reduce domain discrepancy while protect data privacy be-
come an urgent problem. To tackle the above issues, we will
introduce the proposed private-robust embedding alignment
module with newly proposed Differentially Private-Robust
Adaptation (DPRA) method. Specifically, DPRA includes
two main components, i.e., differentially private projection
and robust reweighted sample adaptation. Differentially pri-
vate projection component is set to enhance the data privacy
during the domain adaptation process. Robust reweighted
sample adaptation aims to further align similar item samples
while avoiding negative transfer among dissimilar items.

3.3.1. DIFFERENTIALLY PRIVATE PROJECTION

Firstly, we introduce differentially private projection compo-
nent. To strengthen data privacy, we adopt commonly-used
differential privacy techniques (Abadi et al., 2016; Lê Tien
et al., 2019a; Dwork, 2006; 2008) by adding the noise and
projection into the original data.

Definition 1. (The definition of differential privacy (Abadi
et al., 2016; Blocki et al., 2012; Lê Tien et al., 2019a)). A
randomized mechanism M : XN → Rd satisfied (ϵ, δ)-
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differential privacy if for any two datasets X,X ′ ∈ XN

differing by a single element and for any set of possible
output O ⊆ Range(M):

P(M(X) ∈ O) ≤ eϵP
(
M

(
X ′) ∈ O

)
+ δ. (1)

Specifically, we first generated a random projection matrix
Z ∈ RD×d on both source and target domains. Mean-
while, we also sample noise matrix ε(src) ∈ RN×d and
ε(trg) ∈ RN×d which generated from the normal distri-
bution N (0, σ2) respectively. σ denotes standard devia-
tion and d denotes the projection dimension. Then we can
transform origin item embeddings V (src) and V (trg) into
privacy-preserving ones V̂ (src) and V̂ (trg) as:

V (src)Z + ε(src) = V̂ (src),V (trg)Z + ε(trg) = V̂ (trg) (2)

Note that we only publish projection matrix Z and the noise
matrix ε(src), ε(trg) will be only stored in the local domain.
Theorem 1. Let χ > 1, δ ∈ [0, 1

2 ] and V ∈ RN×D be
the input data. Given a projection matrix Z ∈ RD×d

generated from N (0, 1
l ) and a noise matrix ε ∈ RN×d

generated from the normal distribution N (0, σ2), the trans-
formed data V̂ = V Z + ε satisfied (ϵ, δ)-differential pri-
vacy. Specifically, ϵ = χw(d,δ/2)

2σ2 + log(2/δ)
χ−1 and w(d, δ) =

d
D + Φ−1(1−δ)

d

√
2d(D−1)

d+2 where Φ(·) denotes the cumula-
tive distribution of distribution N (0, I).

The proof of Theorem 1 can be found in (Rakotomamonjy
& Liva, 2021). Based on Theorem 1, the transformed item
embeddings V̂ (src) and V̂ (trg) satisfied (ϵ, δ)-differential
privacy and thus they can protect data privacy (Kenthapadi
et al., 2012; Lê Tien et al., 2019b; Blocki et al., 2012; Dwork
et al., 2014; Wang et al., 2023). Thus we can conduct
domain adaptation tasks among V̂ (src) and V̂ (trg).

3.3.2. ROBUST REWEIGHTED SAMPLE ADAPTATION

After we obtain the transformed item embeddings V̂ (src)

and V̂ (trg), we should reduce the domain discrepancy for
knowledge sharing. Traditional domain adaptation meth-
ods (e.g. balanced optimal transport (Villani et al., 2009))
always treat all samples equally. That is, all data samples
should find a match during the calculation process. However,
such methods can lead to negative transfer by aligning dis-
similar items across domains. As illustrated in Fig.2, while
romantic books and love music are well aligned, there is still
a mismatch between horror books and soft music. Therefore,
it is important while challenging to filter out these dissim-
ilar items during domain adaptation for achieving more
robustness results. To fulfill this task, we propose robust
reweighted sample adaptation component with Unbalanced
Optimal Transport (UOT) which includes two main steps,
i.e., Sample Weight Adjustment Mechanism (SWAM) and
Sample Reweighting Optimal Transport (SROT). SWAM is
set to distinguish between items with similar or dissimilar
properties via optimizing UOT across two domains. In the

case of similar items, SWAM increases their sample weights
while decreasing the sample weights for dissimilar items.
SROT aims to further measure the discrepancy among the
reweighted samples across domains. In this section, we will
introduce the details of SWAM and SROT components.

Definition of UOT. To start with, we first illustrate the
definition of UOT. Unlike balanced optimal transport, which
imposes strict mass equality constraints across domains,
UOT relaxes these constraints while improving feasibility
in real-world applications (Benamou, 2003; Séjourné et al.,
2022). Specifically, the formulation of UOT is given as:

min
π≥0

JUOT =
[
⟨C,π⟩+ τKL(π1N∥a) + τKL(π⊤1N∥b)

]
,

where C ∈ RN×N denotes the cost matrix and it can be
calculated via Cij = ||V̂ (src)

i − V̂
(trg)
j ||22. a, b denote the

initial sample weights and we set them ai = bj = 1
N re-

spectively. KL(x||y) denotes the KL Divergence between
two d-dimensional data samples x ∈ Rd and y ∈ Rd

as KL(x||y) =
∑d

i=1

[
xi log

xi

yi
− xi + yi

]
. Here τ de-

notes the balanced hyper parameter. Many previous papers
involves entropy regularization term (Pham et al., 2020;
Séjourné et al., 2019) or proximal term (Xie et al., 2020)
into solving optimal π on UOT. However, it is worth noting
that entropy regularization and proximal term can become
numerically unstable during the iterations, leading to inaccu-
rate matching solutions (Blondel et al., 2018). To tackle the
optimization problem for JUOT, we first propose SWAM to
determine the importance on different data samples.

Optimization for SWAM. In this section, we will pro-
vide the technical details on solving JUOT for data sample
reweighting. Note that it could be difficult to directly opti-
mize JUOT without extra regularization terms (Pham et al.,
2020). To fulfill the task, we should consider the dual form
of JUOT. That is, the Fenchel-Lagrange conjugate form of
UOT with variables ζ, u and v as shown in Eq.(3):

min
v,u,ζ

LUOT = τ
[
e−

ζ
τ ⟨a, e−u

τ ⟩+ e
ζ
τ ⟨b, e− v

τ ⟩
]
,

s.t. ui + vj ≤ Cij .
(3)

Specifically, the source and target data samples can be
reweighted through ζ, u and v respectively:
N∑

j=1

πij = ai exp

(
−ui + ζ

τ

)
,

N∑
i=1

πij = bj exp

(
−vj − ζ

τ

)
.

The deduction details can be found in Appendix A. Thus
we switch from optimizing transportation matrix π to data
sample reweighting via optimizing variables ζ, u and v.

Theorem 2. Given the Fenchel-Lagrange conjugate form
of UOT in Eq.(3), it guarantees the sum of sample weights
are equal across domains. That is,

∑N
j=1 bj exp(−(v∗j −

ζ∗)/τ) =
∑N

i=1 ai exp(−(u∗
i + ζ∗)/τ) where ζ∗, u∗ and

v∗ denote the optimal solutions in Eq.(3) respectively.
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Proof. We first consider the Lagrange multipliers in Eq.(3):

max
γ≥0

min
v,u,ζ

L = LUOT +

N∑
i=1

N∑
j=1

γij(ui + vj − Cij). (4)

where γ is the Lagrange multipliers. Then we can take
the differentiation w.r.t on u and v respectively. We will
obtain the results

∑N
j=1 γij = ai exp(−(u∗

i + ζ∗)/ai) and∑N
i=1 γij = bj exp(−(v∗j − ζ∗)/bj) accordingly. There-

fore we can validate the correctness of Theorem 2.

Meanwhile we should also optimize multiple variables ζ,
u and v for sample reweighting. To further simplify the
optimization process, we adopt c-transform strategy (An
et al., 2022) to figure out the upper bound of v as vj =
infk∈[N ](Ckj−uk) by minimizing Eq.(3) while maintaining
the constraint of ui + vj ≤ Cij . At that time, we only need
to exploit the value of u and ζ as below:

min
u,ζ

LU = τ

e− ζ
τ

N∑
i=1

aie
−ui

τ + e
ζ
τ

N∑
j=1

bje
−

inf
k∈[N]

(Ckj−uk)
τ

 .

To optimize LU, we first set ζ(0) = 0 for initialization. Then
we fix ζ(t−1) to optimize u(t) via FISTA method (Kim &
Fessler, 2018) at the t-th iteration. We calculate the sub-
gradient (Boyd & Vandenberghe, 2004) w.r.t u on LU as:

G(u(t)
i ) =− e

ζ(t−1)

τ

N∑
j=1

bje
−

inf
k∈[N]

(Ckj−u
(t)
k

)

τ · I(k∗ = i)

− aie
−

u
(t)
i

+ζ(t−1)

τ ,

where I(·) is the indicator function, which takes the value 1
when the condition inside is true, and 0 otherwise. After that,
we could adopt Armijo line-search strategy (de Oliveira &
Takahashi, 2021) to determine the step-size η on∇uiLU for
the following procedure. Then we could obtain the optimal
solution on u(t) and v(t) = infk∈[N ](Ckj−u(t)

k ), we further
optimize ζ(t) by considering∇ζ(t)LU = 0. Specifically, we
can obtain the exact value of ζ(t) via:

ζ(t) =
τ

2
log

〈
a, e−

u(t)

τ

〉
− τ

2
log

〈
b, e−

v(t)

τ

〉
. (5)

Apparently, we can easily verify that
∑N

j=1 bj exp(−(v
(t)
j −

ζ(t))/τ) =
∑N

i=1 ai exp(−(u
(t)
i + ζ(t))/τ) are satisfied

during each iterations. It also highlights the significance of
ζ in the optimization process. We can achieve the optimal
solution ζ∗, u∗ and v∗ after several iterations. Moreover,
we can observe that the KL-Divergence of KL(π1N∥a) and
KL(π⊤1N∥b) turns out to be constants once it converges
to optimum:

KL(π1N∥a) =
N∑
i=1

[(
1− u∗

i + ζ∗

τ

)
aie

−
u∗
i +ζ∗

τ + ai

]

KL(π⊤1N∥b) =
N∑

j=1

[(
1−

v∗j − ζ∗

τ

)
bje

−
v∗
j −ζ∗

τ + bj

]
.

Then we can find that the original unbalanced optimal trans-

Algorithm 1 The optimization procedure on SWAM
Input: C: The cost distance matrix; τ : Hyper parameters;
a, b: Given the source and target marginal probabilities.
Procedure:

1: Initialize t = 0, u(0) = (0, 0, · · · , 0).
2: repeat
3: Update u(t+1) = FISTA(u(t), LU,G(u(t))).
4: Update v(t+1) = infNk=1(Ckj − u

(t+1)
k ).

5: Update ζ(t+1) using u(t+1) and v(t+1) via Eq.(5).
6: Update t = t+ 1.
7: until Converge
8: Function: FISTA (u(t), LU,G(u(t))):
9: Initialize θ0 = 1 and t′ = 0.

10: repeat
11: Calculate the sub-gradient G(u(t)).
12: η = LineSearch(u(t), LU,G(u(t))).
13: Update û(t) = u(t) − ηG(u(t)).
14: Update θt′+1 = 1

2 (1 +
√

1 + 4θ2t′)

15: Update u(t) ← u(t) + θt′−1
θt′+1

(û(t) − u(t)).
16: Update t′ = t′ + 1.
17: until Converge.
18: Return: The optimal ζ∗, u∗ and v∗.

port problem has been transformed into classic optimal
transport problem. Specifically, we can obtain the Sam-
ple Reweighting Optimal Transport (SROT) as follows:
min
π≥0

JSROT = ⟨C,π⟩+ τ · Constant

s.t. π1N = a⊙ e−
u∗+ζ∗

τ = â, π⊤1N = b⊙ e−
v∗−ζ∗

τ = b̂,

where â and b̂ denote the update weights for source and tar-
get samples respectively. That is, we reweight the samples
with coefficients e−

u∗+ζ∗
τ or e−

v∗−ζ∗
τ accordingly. Sam-

ples that are more similar between the source domain and
the target domain receive higher weights. Meanwhile, the
weights of dissimilar samples will be reduced. Therefore,
dissimilar items will not get matched or transported to avoid
negative transfer, leading to more robust solutions. However,
we still cannot reach the exact value on domain discrep-
ancy. Hence we should further introduce the optimization
on SROT for domain adaptation and knowledge sharing.

Optimization for SROT. To obtain the optimal result
of JSROT in Eq.(6), we first consider the dual Fenchel-
Lagrange conjugate form of SROT as follows:

max
f ,g

ℓSROT = ⟨f , â⟩+ ⟨g, b̂⟩ s.t. fi + gj ≤ Cij . (6)

where f and g denote the Lagrange multipliers. Specif-
ically, we can set gj = infNk=1(Ckj − fk) according to
the c-transform theorem (Liu et al., 2023c). By taking c-
transform back into Eq.(6), we can achieve the Reweighting
Discrete Kantorovich Functional (RDKF) as follows:

max
f∈∆

ℓRDKF =

N∑
i=1

fiâi −
N∑
j=1

b̂j sup
k∈[N ]

(fk − Ckj). (7)
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Note that we only need to optimize f during the whole opti-
mization process. Meanwhile we also name f as reweight-
ing Kantorovich potential. Since Eq.(7) could have multiple
solutions (An et al., 2022), we further add zero-mean con-
straints on f as ∆ = {

∑N
i=1 fi = 0}. Likewise, we further

adopt FISTA algorithm to optimize Eq.(17) for finding the
optimal solution on f∗. The optimization details can be
found in Appendix.B. After we obtain f∗, the value of
ℓRDKF could better reflect the discrepancy across domains.

3.4. Putting Together

The total loss of RidCDR could be obtained by combining
the losses of rating prediction loss ℓXRating and the robust
reweighted sample adaptation loss ℓRDKF as follows:

min ℓXRidCDR = ℓXRating + λℓRDKF, (8)

where X = {(src), (trg)} denotes the source and target
domains. λ denotes the hyper parameter to balance these
two kinds of losses. The optimization process are provided
in Alg.2. In summary, we first adopt rating prediction mod-
ule to model user and item embeddings. Then we adopt
differentially private mechanism to protect the data privacy
in private-robust embedding alignment module. Note that
there is no need to adopt differential privacy in the rating
prediction module, since the computation is within each
domain and other domains will not directly get access to
these data. Once we need to transfer knowledge across do-
mains, therefore, we make projection and add noise to hide
original item embeddings to make the projected item embed-
dings V̂ (src) and V̂ (trg) to obey (ϵ, δ)-differential privacy.
By doing this procedure, we can prevent external attackers
from intercepting the original item information. Meanwhile,
other domains cannot restore the original item embeddings
and causes the data leakage. Moreover, differential pri-
vacy inherits the post-processing property (Dwork et al.,
2006; Qu et al., 2024; Wu et al., 2022; Qi et al., 2020), thus
the subsequent computing of privacy-preserved data is also
privacy-preserving. Finally we reweight source and target
data samples and filter out irrelevant ones accordingly for
figuring out the exact discrepancy across domains. Thus the
useful knowledge can be transferred while the intra-domain
information can be protected.

4. Experiments
In this section, we conduct experiments on several real-
world datasets to evaluate our proposed models.

4.1. Experimental setup

Datasets. We conduct extensive experiments on two pop-
uarly used real-world datasets, i.e., Amazon and Douban.
The Amazon dataset (Ni et al., 2019) has five datasets, i.e.,
Movie, Book, CD, Video, and Game. The Douban dataset

Algorithm 2 The training procedure of RidCDR
Procedure:

1: for epoch = 1 to K do
2: Sample N number of tuples (EX

U,i, E
X
V,j ,RX

ij , H
X
ij ).

3: Obtain UX ,V X in domain X .
4: Minimize LX

R in domain X for rating prediction.
5: # Conducting DRPA method (Line 6-9)
6: Sample matrix Z and noise ϵX in domain X .
7: Transform item embeddings V XZ + ϵX = V̂ X .
8: Obtain u∗, v∗ and ζ∗ in SWAM for data reweighting.
9: Optimize f∗ in ℓRDKF for SROT.

10: Minimize the total loss function ℓXRidCDR.
11: end for
12: Return: The well-trained recommendation model.

(Zhu et al., 2019; 2021b) has three domains, i.e., Book, Mu-
sic, and Movie. The detailed statistics of these datasets are
given in Appendix.C. For each dataset, we binarize the rat-
ings higher or equal to 4 as positive. We also filter the users
and items with less than 5 interactions, following existing
research (Zhu et al., 2019; Liu et al., 2022b).

Baseline. We compare our proposed RidCDR with the
following state-of-the-art models. (1) NeuMF (He et al.,
2017) is the most famous single-domain model which adopts
neural network for collaborative filtering. (2) DeepCoNN
(Zheng et al., 2017) fuses ID information and user textual
features for recommendation. (3) NARRE (Chen et al.,
2018) utilizes CNN with attention module to extract review-
level information for user modelling. (4) DDTCDR (Li &
Tuzhilin, 2020) utilizes orthogonal transformation between
source and target user embeddings. (5) Rec-DAN (Wang
et al., 2019a) aligns user-item textual features via the ad-
versarial training strategy for transferring useful knowledge.
(6) CGN (Zhang et al., 2021b) adopts a cycle generation net-
works with dual-direction mapping for personalized CDR
tasks (7) TDAR (Yu et al., 2020) utilizes adversarial training
strategy on review text memory network for cross-domain
recommendation. (8) CDRIB (Cao et al., 2022) adopts
variational information bottleneck to exploit user prefer-
ences. (9) DisAlign (Liu et al., 2021) adopts Stein path
with probability estimation for reducing domain discrep-
ancy. (10) CFAA (Liu et al., 2022a) adopts the horizontal
and vertical attribute alignment for domain adaptation on
recommendation. (11) GWCDR (Li et al., 2022) carries
out Gromov-Wasserstein distance on graph matching for
knowledge sharing. (12) DURation (Lu et al., 2022) adopts
distribution variance and correlation alignment to obtain
unified representations. (13) SER (Choi et al., 2022) con-
siders review-based domain disentanglement model without
duplicate users for cross-domain recommendation. (14)
SRTrans (Li et al., 2023) clusters ratings and reviews for
cross-domain knowledge sharing. (15) MOTKD (Yang
et al., 2023b) utilizes classic optimal transport with proxy
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(Amazon) CD→Movie (Amazon) Movie→ CD (Amazon) Video→ Game
HR@10 NDCG@10 HR@20 NDCG@20 HR@10 NDCG@10 HR@20 NDCG@20 HR@10 NDCG@10 HR@20 NDCG@20

NeuMF 0.2773 0.1069 0.4540 0.1535 0.3317 0.1426 0.5292 0.1864 0.2781 0.1093 0.4628 0.1506
DeepCoNN 0.2910 0.1142 0.4729 0.1597 0.3466 0.1504 0.5438 0.2021 0.2853 0.1267 0.4805 0.1635

NARRE 0.2982 0.1257 0.4813 0.1754 0.3528 0.1589 0.5576 0.2105 0.2960 0.1343 0.4872 0.1711
DDTCDR 0.3154 0.1336 0.4957 0.1840 0.3703 0.1792 0.5711 0.2289 0.3225 0.1572 0.5004 0.1868
Rec-DAN 0.3249 0.1383 0.5024 0.1928 0.3774 0.1851 0.5786 0.2372 0.3331 0.1659 0.5165 0.2007

CGN 0.3331 0.1450 0.5115 0.1963 0.3892 0.1946 0.5827 0.2485 0.3612 0.1634 0.5279 0.2153
TDAR 0.3428 0.1544 0.5093 0.1971 0.3923 0.1929 0.5902 0.2466 0.3650 0.1744 0.5335 0.2182
CDRIB 0.3576 0.1590 0.5271 0.2113 0.3969 0.2007 0.5942 0.2535 0.3824 0.1820 0.5478 0.2261

DisAlign 0.3465 0.1637 0.5323 0.2152 0.4015 0.1970 0.6034 0.2494 0.3886 0.1859 0.5551 0.2302
CFAA 0.3617 0.1694 0.5362 0.2239 0.4076 0.2042 0.6108 0.2655 0.3937 0.1931 0.5610 0.2353

GWCDR 0.3642 0.1755 0.5538 0.2196 0.4024 0.2083 0.6061 0.2719 0.4045 0.2027 0.5664 0.2473
DURation 0.3683 0.1819 0.5621 0.2344 0.4178 0.2165 0.6127 0.2752 0.4023 0.2078 0.5715 0.2509

SER 0.3764 0.1853 0.5670 0.2382 0.4259 0.2231 0.6205 0.2746 0.4095 0.2164 0.5783 0.2571
SRTrans 0.3730 0.1861 0.5714 0.2425 0.4332 0.2296 0.6273 0.2807 0.4138 0.2219 0.5857 0.2620
MOTKD 0.3856 0.1902 0.5789 0.2467 0.4431 0.2348 0.6350 0.2845 0.4204 0.2275 0.5936 0.2668
RidCDR-B 0.3067 0.1304 0.4892 0.1815 0.3641 0.1655 0.5637 0.2163 0.3119 0.1428 0.4942 0.1776
RidCDR-D 0.3904 0.2035 0.5866 0.2451 0.4287 0.2264 0.6229 0.2751 0.4174 0.2237 0.5852 0.2680
RidCDR-U 0.3991 0.2076 0.5915 0.2503 0.4460 0.2375 0.6433 0.2873 0.4243 0.2306 0.5987 0.2727
RidCDR 0.4088 0.2228 0.5977 0.2590 0.4672 0.2477 0.6664 0.2980 0.4283 0.2340 0.6114 0.2768

(Amazon) CD→ Book (Amazon) Book→ CD (Amazon) Game→ Video
HR@10 NDCG@10 HR@20 NDCG@20 HR@10 NDCG@10 HR@20 NDCG@20 HR@10 NDCG@10 HR@20 NDCG@20

NeuMF 0.1729 0.0608 0.3571 0.1062 0.3081 0.1336 0.5128 0.1875 0.2414 0.0793 0.4082 0.1430
DeepCoNN 0.1938 0.0744 0.3726 0.1251 0.3272 0.1423 0.5215 0.2004 0.2590 0.0986 0.4207 0.1559

NARRE 0.2040 0.0823 0.3819 0.1316 0.3403 0.1495 0.5337 0.2086 0.2654 0.1132 0.4261 0.1628
DDTCDR 0.2212 0.0902 0.3983 0.1470 0.3546 0.1638 0.5459 0.2241 0.2803 0.1218 0.4471 0.1754
Rec-DAN 0.2377 0.0969 0.4108 0.1525 0.3632 0.1740 0.5584 0.2335 0.2865 0.1270 0.4658 0.1704

CGN 0.2525 0.1040 0.4247 0.1663 0.3715 0.1866 0.5731 0.2472 0.3039 0.1384 0.4816 0.1823
TDAR 0.2568 0.1073 0.4319 0.1724 0.3672 0.1785 0.5763 0.2414 0.2986 0.1351 0.4792 0.1776
CDRIB 0.2709 0.1225 0.4434 0.1756 0.3963 0.1911 0.5875 0.2547 0.3114 0.1482 0.4938 0.1921

DisAlign 0.2734 0.1262 0.4459 0.1788 0.3971 0.1965 0.5947 0.2523 0.3152 0.1513 0.5007 0.1941
CFAA 0.2771 0.1324 0.4510 0.1832 0.4065 0.2016 0.5998 0.2561 0.3138 0.1547 0.5091 0.2003

GWCDR 0.2956 0.1431 0.4642 0.1885 0.4097 0.2064 0.6053 0.2588 0.3210 0.1626 0.5173 0.2059
DURation 0.3043 0.1475 0.4691 0.1906 0.4150 0.2132 0.6114 0.2615 0.3287 0.1695 0.5229 0.2080

SER 0.3017 0.1526 0.4758 0.1963 0.4144 0.2157 0.6039 0.2662 0.3351 0.1729 0.5244 0.2105
SRTrans 0.3096 0.1573 0.4825 0.2044 0.4189 0.2203 0.6112 0.2638 0.3389 0.1774 0.5310 0.2166
MOTKD 0.3120 0.1699 0.4784 0.2021 0.4253 0.2223 0.6148 0.2720 0.3455 0.1801 0.5367 0.2212
RidCDR-B 0.2085 0.0876 0.3922 0.1369 0.3471 0.1534 0.5410 0.2153 0.2742 0.1197 0.4405 0.1674
RidCDR-D 0.3154 0.1618 0.4835 0.2092 0.4237 0.2246 0.6186 0.2737 0.3446 0.1766 0.5359 0.2190
RidCDR-U 0.3283 0.1757 0.4923 0.2177 0.4282 0.2289 0.6202 0.2770 0.3565 0.1825 0.5436 0.2275
RidCDR 0.3359 0.1787 0.5007 0.2199 0.4384 0.2343 0.6299 0.2826 0.3627 0.1903 0.5645 0.2413

(Douban) Movie (Douban) Book (Douban) Music
HR@10 NDCG@10 HR@20 NDCG@20 HR@10 NDCG@10 HR@20 NDCG@20 HR@10 NDCG@10 HR@20 NDCG@20

NeuMF 0.1936 0.0875 0.2693 0.1288 0.2451 0.1067 0.3001 0.1544 0.3115 0.1396 0.3478 0.1650
DeepCoNN 0.2281 0.0997 0.2805 0.1364 0.2616 0.1229 0.3175 0.1760 0.3202 0.1483 0.3690 0.1752

NARRE 0.2407 0.1113 0.2974 0.1459 0.2762 0.1281 0.3393 0.1825 0.3277 0.1542 0.3765 0.1834
DDTCDR 0.2569 0.1254 0.3082 0.1592 0.2838 0.1373 0.3541 0.1885 0.3556 0.1709 0.3984 0.1910
Rec-DAN 0.2775 0.1324 0.3191 0.1676 0.2901 0.1439 0.3659 0.1962 0.3623 0.1797 0.4082 0.1965

CGN 0.2858 0.1439 0.3240 0.1734 0.2957 0.1462 0.3686 0.2013 0.3671 0.1825 0.4163 0.2031
TDAR 0.2834 0.1395 0.3378 0.1754 0.2980 0.1483 0.3614 0.1979 0.3688 0.1862 0.4141 0.2086
CDRIB 0.2922 0.1557 0.3446 0.1710 0.3165 0.1524 0.3772 0.2026 0.3739 0.1853 0.4180 0.2169

DisAlign 0.2956 0.1531 0.3487 0.1762 0.3193 0.1557 0.3763 0.2070 0.3765 0.1944 0.4239 0.2212
CFAA 0.2998 0.1586 0.3522 0.1831 0.3254 0.1618 0.3879 0.2146 0.3750 0.1893 0.4305 0.2268

GWCDR 0.3067 0.1610 0.3573 0.1894 0.3226 0.1645 0.3837 0.2169 0.3822 0.2001 0.4292 0.2317
DURation 0.3139 0.1673 0.3648 0.1955 0.3316 0.1697 0.3924 0.2201 0.3887 0.2075 0.4424 0.2335

SER 0.3185 0.1644 0.3590 0.1868 0.3279 0.1732 0.3913 0.2087 0.3866 0.2021 0.4342 0.2380
SRTrans 0.3261 0.1708 0.3712 0.2003 0.3397 0.1776 0.3980 0.2232 0.3915 0.2064 0.4373 0.2329
MOTKD 0.3353 0.1769 0.3781 0.2077 0.3462 0.1834 0.4026 0.2290 0.3945 0.2128 0.4411 0.2376
RidCDR-B 0.2475 0.1164 0.3021 0.1502 0.2793 0.1348 0.3530 0.1867 0.3469 0.1655 0.3926 0.1889
RidCDR-D 0.3314 0.1735 0.3766 0.2050 0.3478 0.1809 0.4081 0.2323 0.3943 0.2072 0.4459 0.2407
RidCDR-U 0.3390 0.1782 0.3833 0.2126 0.3521 0.1877 0.4135 0.2389 0.4004 0.2215 0.4509 0.2441
RidCDR 0.3572 0.1836 0.3905 0.2184 0.3639 0.1953 0.4218 0.2462 0.4131 0.2290 0.4587 0.2525

Table 1. Experimental results on Douban and Amazon datasets.
(Amazon) Video→ Game

HR@10 NDCG@10 HR@20 NDCG@20
RidCDR 0.4283 0.2340 0.6114 0.2768
RidCDR++ 0.4369 0.2385 0.6176 0.2820

(Amazon) Game→ Video
HR@10 NDCG@10 HR@20 NDCG@20

RidCDR 0.3627 0.1903 0.5645 0.2416
RidCDR++ 0.3678 0.1966 0.5723 0.2474

Table 2. Method extension results on Amazon datasets.

distributions for feature alignment across domains which is
the state-of-the-art cross-domain recommendation model.

Implemented details. We provide the implemented details
of our proposed RidCDR. We set batch size N = 256 and
embedding dimension as D = 128 across different domains.
We set d = D

2 = 64 and δ = 1
1.2N according to the previous

experimental protocol (Papernot et al., 2016). Then we set
the privacy budget ϵ = 4 in differentially private projection
module. Note that σ can be obtained using the RDP based
moment accountant following (Rakotomamonjy & Liva,

2021). We set τ = 0.5 for SWAM in robust reweighted
sample adaptation. Finally we set λ = 0.1 for ℓRDKF on
the total loss of RidCDR. We choose Adam (Kingma &
Ba, 2014; Zhu et al., 2020) as optimizer, and adopt Hit
Rate (HR), and NDCG (Wang et al., 2019b) as the eval-
uation metrics. For all the experiments, we perform five
random experiments and report the average results. We re-
port the results measured by the commonly used metrics as
{Top@10,Top@20} in both Douban and Amazon datasets.

4.2. Recommendation Performance

The comparison results on Douban and Amazon datasets
are shown in Table 1. From it, we can observe that: (1)
Only utilizing single domain information (e.g., NeuMF and
DeepCoNN) cannot achieve better results since they fail to
resolve the data sparsity problem. (2) Involving cross do-
main information could improve the model performance by
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Source Item Embedding Target Item Embedding

(a) DeepCoNN (b) TDAR (c) MOTKD (d) RidCDR

Figure 3. The T-SNE plot on item embeddings (Amazon Movie and Amazon CD) for DeepCoNN, TDAR, MOTKD, and RidCDR.

Figure 4. The experimental results on varying ϵ.

(a) The model performance on 𝜏 (b) The model performance on 𝜆

Figure 5. The experimental results on varying τ and λ.

knowledge sharing. However, conventional methods (e.g.,
DDTCDR and GWCDR) cannot fully explore useful textual
representations and limits their potentials. (3) Adopting
both rating and review for collaborative filtering can even
enhance the output results. Nevertheless, current models
(e.g., TDAR and SER) usually adopt adversarial training
strategy which could be unstable (Shu et al., 2018) and hard
to train in real practice. (4) Our proposed RidCDR achieves
the best performance which indicating the efficacy of DPRA
method for alleviating domain discrepancy in private-robust
embedding alignment module. Moreover, RidCDR with
differentially private projection can further protect data pri-
vacy during the training procedure. Furthermore, we also
adopt T-SNE (Van der Maaten & Hinton, 2008) to visual-
ize the latent item embeddings among Amazon Movie and
CD as shown in Fig.3(a)-(d). We can find that the domain
discrepancy are exist in Fig.3(a) while DeepCoNN cannot
better resolve. Thus single-domain recommendation models
cannot realize knowledge sharing for tackling the data spar-
sity problem. Although TDAR attempts to narrow the gap
between the source and target domains using feature discrim-
inators, it is still evident that the embeddings have not been
effectively aligned together in Fig.3(b). MOTKD further

adopts standard optimal transport for embedding adaptation
with better results than TDAR in Fig.3(c). Moreover, our
proposed RidCDR can even filter out irrelevant samples in
Fig.3(d), thereby avoiding negative transfer in MOTKD for
enhancing the model’s representation capability.

4.3. Analysis

Ablation study. To study how does each module of
RidCDR contribute on the final performance, we com-
pare RidCDR with its several variants, including RidCDR-
B, RidCDR-D, and RidCDR-U on Douban and Amazon
datasets. Specifically, RidCDR-B only utilizes rating pre-
diction module for the recommendation. RidCDR-D and
RidCDR-U adopt DP-Sliced OT (Rakotomamonjy & Liva,
2021) and entropic UOT (Pham et al., 2020) for aligning
item embeddings across domains. From that we can ob-
serve: (1) RidCDR-B cannot provide satisfied results since
it cannot share useful knowledge among source and tar-
get domains to alleviate the data sparsity problem. (2)
RidCDR-D and RidCDR-U achieve much better results
than RidCDR-B, indicating that it is essential to reduce do-
main bias and discrepancy. However, RidCDR-D cannot
filter out irrelevant items and thus leads to the negative trans-
fer. RidCDR-U with entropy regularization term could lead
to inaccurate mapping solution (Blondel et al., 2018) which
hurdle the model performance. (3) Comparing RidCDR-
D, RidCDR-U, and RidCDR, we conclude that utilizing
DPRA for private-robust embedding alignment can boost
the model potentials.

Method Extension. We also investigate the method ex-
tension on our proposed RidCDR. That is, we conduct the
differentially private-robust adaptation method on both users
and items embeddings as RidCDR++. We conduct the ex-
periments on Amazon Game and Video and report the re-
sults on Table.2. From this observation, it can be noted
that RidCDR++ not only slightly improves the model per-
formance compared to RidCDR, but also suggests that the
proposed method can be effectively and privately employed
for knowledge sharing on both users and items.

Parameter sensitivity. We further study the effects of
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hyper-parameters on model performance. We first vary ϵ in
ϵ ∈ {1, 2, 4, 6, 10} for the analysis on differential privacy
on Douban datasets. We report the results of HR@10 and
NDCG@10 as shown in Fig.4. We can observe that our
proposed RidCDR can be suitable for different kinds of
privacy budgets to obtain satisfying performance. That is,
larger ϵ value could yield superior results, while a smaller
ϵ value can provide better protection for data privacy. To
balance the data privacy protection capacity and the model
performance, we set it as ϵ = 4 empirically. We also vary
τ in τ ∈ {0.05, 0.1, 0.5, 1, 10} on Amazon CD and Ama-
zon Movie and report the results of HR@10 in Fig.5(a).
Smaller τ will lead to a decrease in sample matching while
too large τ will fail to filter out potential unrelated item
samples. Therefore we set τ = 0.5. Finally we vary λ in
λ ∈ {0.01, 0.05, 0.1, 0.5, 1, 10} on Amazon CD and Ama-
zon Movie and report the results of HR@10 in Fig.5(b). The
bell-shaped curve demonstrates a proper trade-off between
intra-domain rating prediction and cross-domain private-
robust embedding alignment and we set λ = 0.1.

5. Conclusion
In this paper, we propose Reducing Item Discrepancy
(RidCDR) model on solving Privacy-Preserving Cross-
Domain Recommendation (PPCDR) problem for inclusive
public service. RidCDR involves rating prediction module
and private-robust embedding alignment module for knowl-
edge sharing privately. Specifically, we propose Differen-
tially Private-Robust Adaptation (DPRA) method in private-
robust embedding alignment module with two components,
i.e., differentially private projection and robust reweighted
sample adaptation. We reweight the data samples to filter
out irrelevant items and utilize sample reweighted optimal
transport for measuring the domain discrepancy. We also
conduct extensive experiments to demonstrate the superior
performance of our proposed RidCDR models.
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Lê Tien, N., Habrard, A., and Sebban, M. Differentially pri-
vate optimal transport: Application to domain adaptation.
In IJCAI, pp. 2852–2858, 2019a.
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Appendix

A. Dual Form of UOT
To start with, we first illustrate the definition of UOT. Unlike balanced optimal transport, which imposes strict mass equality
constraints across domains, UOT relaxes these constraints while improving feasibility in real-world applications (Benamou,
2003; Séjourné et al., 2022). Specifically, the formulation of UOT is given as:

min
π≥0

JUOT =
[
⟨C,π⟩+ τKL(π1N∥a) + τKL(π⊤1N∥b)

]
,

where C ∈ RN×N denotes the cost matrix and it can be calculated via Cij = ||V̂ (src)
i − V̂

(trg)
j ||22. a, b denote the

initial sample weights and we set them ai = bj = 1
N respectively. KL(x||y) denotes the KL Divergence between two

d-dimensional data samples x ∈ Rd and y ∈ Rd as KL(x||y) =
∑d

i=1

[
xi log

xi

yi
− xi + yi

]
. Here τ denotes the balanced

hyper parameter.

Then we deduce the Fenchel-Lagrange conjugate form of UOT.

min
π≥0

J = ⟨C,π⟩+ τKL (π1N∥a) + τKL(π⊤1M∥b)

s.t. π1N = α, π⊤1M = β,
(9)

where α and β denote the marginal probabilities for source and target domains respectively. The Lagrange multipliers of
UOT with KL-Divergence is given as:

max
u,v,s,ζ

min
π≥0
J = ⟨C,π⟩+ τKL (π1N∥a) + τKL(π⊤1M∥b) + ⟨u+ ζ,π1N −α⟩+ ⟨v − ζ,π⊤1M − β⟩ − ⟨s,π⟩

= τKL (π1N∥a) + ⟨u+ ζ,π1N ⟩+ τKL(π⊤1M∥b) + ⟨v − ζ,π⊤1M ⟩+
∑
i,j

(Cij − ui − vj − sij)πij ,

(10)
where u, v and ζ denote as the multipliers. Note that sijπij = 0 and sij ≥ 0. Meanwhile we should notice that (using
KL(π1N ||a) as an example):

∂

∂πij
(KL(π1N ||a)) =

∂

∂πij


M∑
i=1


N∑
j=1

πij log

N∑
j=1

πij

ai
−

N∑
j=1

πij + ai




=
∂

∂
N∑
j=1

πij


M∑
i=1


N∑
j=1

πij

ai
log

N∑
j=1

πij

ai
−

N∑
j=1

πij

ai
+ 1

 ai


∂

N∑
j=1

πij

∂πij

= log

N∑
j=1

πij

ai
.

(11)

By taking the differentiation on πij :

∂J
∂πij

=

τ log
N∑
j=1

πij

ai
+ ui + ζ

+

τ log
N∑
i=1

πij

bj
+ vj − ζ

+ (Cij − ui − vj − sij)

= Cij + τ log

N∑
j=1

πij

ai
+ τ log

N∑
i=1

πij

bj
− sij

= 0.

(12)
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We can observe that:
N∑
j=1

πij = ai exp

(
−ui + ζ

τa

)
and

N∑
i=1

πij = bj exp

(
−vj − ζ

τb

)
and Cij − ui − vj − sij = 0. (13)

Then we take them back into KL-Divergence as (using τKL (π1N∥a) + ⟨u+ ζ,π1N ⟩ as an example):

τKL (π1N∥a) + ⟨u+ ζ,π1N ⟩

= τKL

(〈
a, exp

(
−u+ ζ

τ

)〉
∥a
)
+

〈
u+ ζ,a exp

(
−u+ ζ

τ

)〉

= τ

N∑
i=1

ai exp(−ui + ζ

τ

)
log

ai exp
(
−ui+ζ

τ

)
ai

− ai exp

(
−ui + ζ

τ

)
+ ai

+

N∑
i=1

(ui + ζ)ai exp

(
−ui + ζ

τ

)

=

N∑
i=1

[
−τai exp

(
−ui + ζ

τ

)
+ τai

]
.

(14)
Therefore, we can obtain the Fenchel-Lagrange conjugate form of UOT with variables ζ, u and v as:

min
v,u,ζ

LUOT = τ
[
e−

ζ
τ ⟨a, e−u

τ ⟩+ e
ζ
τ ⟨b, e− v

τ ⟩
]

s.t. ui + vj ≤ Cij .
(15)

Algorithm 3 The optimization procedure on ℓRDKF via FISTA
Input: ℓRDKF: The function should be optimized.
Procedure:

1: Initialize t = 0, f (0) = (0, 0, · · · , 0) and θ0 = 1.
2: repeat
3: Calculate the sub-gradient G(f (t)) as:

G(f (t)
i ) = −âi +

N∑
j=1

δi

(
sup
k∈[N ]

(
f
(t)
k − Ckj

))
· b̂j where δi

(
sup
k∈[N ]

(
f
(t)
k − Ckj

))
=

{
1, k∗ = i

0,Others
(16)

.
4: Find Step via ηt = LineSearch(f (t), ℓRDKF(f

(t)),G(f (t))).
5: Update f̂ (t+1) = f (t) − ηtG(f (t)).
6: Update θt+1 = 1

2 (1 +
√
1 + 4θ2t )

7: Update f (t+1) = f (t) + θt−1
θt+1

(f̂ (t+1) − f (t)).

8: Make projection f (t+1) ←
[
f (t+1) −mean(f (t+1))

]
.

9: Update t = t+ 1.
10: until Converge
11: Return: The optimal fo = f (T ) after T -th iteration.

B. FISTA Algorithm of SROT
The Reweighting Discrete Kantorovich Functional (RDKF) as given as below:

max
f∈∆

ℓRDKF =

N∑
i=1

fiâi −
N∑
j=1

b̂j sup
k∈[N ]

(fk − Ckj) (17)

Note that we only need to optimize f during the whole optimization process. We further add zero-mean constraints on f as
∆ = {

∑N
i=1 fi = 0}. Likewise, we further adopt FISTA algorithm to optimize Eq.(17) for finding the optimal solution on

f∗. The optimization details can be found in Algo.3.
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Datasets Users Items Ratings Density
Douban Movie 20,464 18,173 446,821 0.12%
Douban Book 18,867 17,019 311,250 0.09%
Douban Music 16,230 13,647 224,541 0.10%
Amazon Movie 19,736 18,224 124,383 0.034%
Amazon Book 20,569 19,827 131,945 0.032%
Amazon CDs 15,041 11,955 46,348 0.025%

Amazon Videos 9,625 8,568 11,676 0.014%
Amazon Games 13,222 10,080 13,377 0.010%

Table 3. Statistics of Douban and Amazon datasets.

C. Datasets

Datasets. We conduct extensive experiments on two popuarly used real-world datasets, i.e., Amazon and Douban. The
Amazon dataset (Ni et al., 2019) has five datasets, i.e., Movie, Book, CD, Video, and Game. The Douban dataset (Zhu
et al., 2019; 2021b) has three domains, i.e., Book, Music, and Movie. The detailed statistics of these datasets are given in
Table.3. For each dataset, we binarize the ratings higher or equal to 4 as positive. We also filter the users and items with less
than 5 interactions, following existing research (Zhu et al., 2019; Liu et al., 2022b).
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