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Abstract
Machine learning models are susceptible to mem-
bership inference attacks (MIAs), which aim to
infer whether a sample is in the training set. Ex-
isting work utilizes gradient ascent to enlarge the
loss variance of training data, alleviating the pri-
vacy risk. However, optimizing toward a reverse
direction may cause the model parameters to os-
cillate near local minima, leading to instability
and suboptimal performance. In this work, we
propose a novel method – Convex-Concave Loss
(CCL), which enables a high variance of train-
ing loss distribution by gradient descent. Our
method is motivated by the theoretical analysis
that convex losses tend to decrease the loss vari-
ance during training. Thus, our key idea behind
CCL is to reduce the convexity of loss functions
with a concave term. Trained with CCL, neu-
ral networks produce losses with high variance
for training data, reinforcing the defense against
MIAs. Extensive experiments demonstrate the
superiority of CCL, achieving a state-of-the-art
balance in the privacy-utility trade-off.

1. Introduction
Deep Neural Networks (DNNs) have achieved tremendous
performance for various learning tasks, with sufficient ca-
pacity (Zhang et al., 2021). The powerful capability enables
models to memorize information of training data (Zhang
et al., 2017), therefore being highly susceptible to mem-
bership inference attacks (MIAs) (Shokri et al., 2017). In
particular, membership inference attacks are designed to
infer whether a sample is included in the training set of a
target model. Such attacks can increase the risks of vio-
lating privacy regulations, making it challenging to apply
machine learning techniques in sensitive applications, like
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health care (Paul et al., 2021), financial service (Mahalle
et al., 2018), and DNA sequence analysis (Arshad et al.,
2021). This gives rise to the importance of designing robust
algorithms to secure DNNs from MIAs.

In the literature, sample loss has been a representative met-
ric of membership inference attacks. In particular, a large
gap in the expected loss values on the member (training)
and non-member data is proved to be sufficient for attacks
(Yeom et al., 2018). Consequently, defenders can miti-
gate the privacy risk by reducing distinguishability between
the member and non-member loss distributions. Recently,
RelaxLoss (Chen et al., 2022) utilizes gradient ascent to
promote a high variance of training loss distribution, which
is shown to strengthen the defense against MIAs. How-
ever, optimizing toward a reverse direction may cause the
model parameters to oscillate near local minima, leading
to instability and suboptimal performance. This motivates
our method, which enables us to enlarge the training loss
variance via gradient descent.

In this work, we propose a novel and generalized method –
Convex-Concave Loss (CCL), by integrating a concave term
into convex losses. Our method is motivated by a theoretical
analysis of the connection between the convexity of loss
functions and the resulting loss variance. We demonstrate
that convex loss functions are optimized to encourage a
small loss variance (see Theorem 3.1), being vulnerable to
membership inference attacks. On the contrary, concave
functions can increase the loss variance during gradient
descent, which are expected to mitigate privacy risk.

Thus, our key idea behind CCL is to decrease the convex-
ity of loss functions for a large loss variance. This can be
achieved by incorporating a concave term into the original
convex losses, e.g., cross-entropy loss. In effect, the result-
ing loss weakens the convexity of the original convex loss at
the late stage of training and can converge to the optimum
of the convex loss. Trained with CCL, the network tends to
produce losses with high variance for training data, reducing
the differentiability of sample losses between the member
and non-member data.

To verify the effectiveness of our method, we conduct ex-
tensive evaluations on five datasets, including Texas100
(Texas Department of State Health Services, 2006), Pur-
chase100 (Kaggle, 2014), CIFAR-10/100 (Krizhevsky et al.,
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2009), and ImageNet (Russakovsky et al., 2015) datasets.
The results demonstrate our methods can improve utility-
privacy trade-offs across a variety of attacks based on neu-
ral network, metric, and data augmentation. For example,
our method formulated using a concave quadratic function,
significantly diminishes the attack advantage in loss-metric-
based from 29.67% to 18.40% - a relative reduction of
62.01% in privacy risk, whilst preserving the test accuracy
not worse than the vanilla model. Our code is available at
https://github.com/ml-stat-Sustech/ConvexConcaveLoss.

Our contributions are summarized as follows:

1. We introduce the concept of Convex-Concave Loss
(CCL), a generalized loss function that incorporates a
concave term into the original convex loss, i.e., Cross-
Entropy (CE) loss. This approach stands as a novel
and effective countermeasure against MIAs.

2. We provide rigorous theoretical analyses to establish
a key insight: convex loss functions tend to decrease
the loss variance. In contrast, concave functions can
enlarge the variance of the training loss distribution.

3. We establish that CCL offers a state-of-the-art balance
in the privacy-utility trade-off, with extensive experi-
ments on Texas100, Purchase100, CIFAR-10/100, and
ImageNet datasets with diverse model architectures.

2. Background
Setup. In this paper, we study the problem of membership
inference attacks in K-class classification tasks. Let the
feature space be X ⊂ Rd and the label space be Y =
{1, . . . ,K}. Let us denote by (x, y) ∈ (X ×Y) an example
containing an instance x and a real-valued label y. Given a
training dataset S = {(xn, yn)}Ni=1 i.i.d. sampled from the
data distribution D, our goal is to learn a model hS ∈ H,
that minimizes the following expected risk:

R(L) = E(x,y)∼D[L(h(x), y)] (1)

where E(x,y)∼D denotes the expectation over the data dis-
tribution D and L is a conventional loss function (such as
cross-entropy loss) for classification.

Membership Inference Attacks. Given a data point
(x, y) and a trained target model hS , attackers aim to iden-
tify if (x, y) is one of the members in the training set
S, which is called membership inference attacks (MIAs)
(Shokri et al., 2017; Yeom et al., 2018; Salem et al., 2019).
In MIAs, it is generally assumed that attackers can query the
model predictions hS(x) for any instance x. Here, we focus
on standard black-box attacks (Irolla & Châtel, 2019), where
attackers can access the knowledge of model architecture
and the data distribution D.

In the process of attack, the attacker has access to a query
set Q = {(zi,mi)}Ji=1, where zi denotes the ith data point
(xi, yi) and m is the membership attribute of the given
data point (xi, yi) in the training dataset S, i.e., mi =
I[(xi, yi) ∈ S]. In particular, the query set Q contains
both member (training) and non-member samples, drawn
from the data distribution D. Then, the attacker A can be
formulated as a binary classifier, which predicts mi ∈ {0, 1}
for a given example (xi, yi) and a target model hS . To
quantify the performance of the attack model A, we use the
membership advantage (Yeom et al., 2018) :

Adv(A) := Pr(A(hS(x), y) = 1|m = 1)

− Pr(A(hS(x), y) = 1|m = 0) (2)
= 2Pr(A(hS(x), y) = m)− 1

Equivalently, Adv(A) can be seen as the difference between
A’s true and false positive rates.

Loss variance. In the literature, Theorem 3 in (Yeom
et al., 2018) shows that, for regression tasks, the membership
advantage can be approximated as erf(1/

√
2) − erf(σS/√

2σD), where erf(x) = 1√
π

∫ x

−z
exp(−t2)dt, σS and σD

denote the loss variances of member and non-member data
over examples, respectively. This suggests that increasing
the loss variance of training data σS can help decrease the
membership advantage, i.e., enhance the defense against
MIAs. We formally discuss the effect of loss variance on
the attack advantage in Section 6.

Recently, RelaxLoss (Chen et al., 2022) applies gradient
ascent to increase the loss variance of the training data,
thereby alleviating the privacy risk. However, optimizing
toward a reverse direction may cause the model parameters
to oscillate near local minima, preventing convergence to
the global optimum. Consequently, the inconsistency of
optimizing directions over iterations will result in the sub-
optimal performance of the trained model in utility (see
Figure 2). This motivates us to design a loss function that
increases σS during gradient descent.

3. Theoretical Motivation
In this section, we begin with a formal analysis to show that
cross-entropy loss tends to reduce σS due to its convexity.
Based on this, we propose concave functions, which are
theoretically shown to increase σS .

For a sample x ∈ X , we denote the distribution over dif-
ferent labels by q(k|x), the output probability of hS(x) by
p(k|x). For simplicity, we denote pk, qk as abbreviations
for p(k|x) and q(k|x), respectively. In particular, the confi-
dence in the true label p(y|x) is abbreviated as py .
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3.1. Convex function decreases the loss variance

Here, we provide a formal analysis to show how the loss
function influences the loss variance of training data. Given
a certain model, we can view py = p(y|x) as a random
variable, which depends on the pair of random variables
(x, y) ∼ D. Then, the training objective (1) with cross-
entropy loss ℓce can be rewritten as:

min
h

ED[− log py]

where ED denotes the expectation over the data distribution
D. Let 1− ϵ and σ2 be the mean and variance of py over the
data distribution D, where 0 < ϵ < 1. By Taylor expansion,
we have

ED(− log py) ⩾ ED[(1− py) +
1

2
(1− py)

2]

= ED[(1− py)] +
1

2
ED[(1− py)

2]

= ϵ+
1

2
(σ2 + ϵ2)

Thus, we obtain a lower bound for the expected value of
training loss, which depends on ϵ and σ2. It implies that
the training loss can be optimized toward a smaller value of
variance σ2, corresponding to a smaller loss variance 1.

Note that the above property of cross-entropy loss is depen-
dent on the positive coefficient of σ2, which can be calcu-
lated from the second-order derivation of cross-entropy loss.
In other words, the relationship between cross-entropy loss
and loss variance stems from its convexity. This insight can
be formalized as follows:

Theorem 3.1. Given a twice continuously differentiable
function ℓ ∈ C2(0, 1] such that ℓ(1) = 0 and ℓ′(x) <
0,∀x ∈ (0, 1]. If ℓ is strictly convex, then

ED[ℓ(py)] ⩾ Aϵ+
B

2
(ϵ2 + σ2)

where A = −ℓ′(1) > 0, B ⩾ 0 is a non-negative lower
bound of ℓ′′(x).

The detailed proof is presented in the Appendix A. By The-
orem 3.1, we show that the coefficient of σ2 is positive if
the loss function is strictly convex with respect to py. Sim-
ilar to cross-entropy loss, such convex loss functions will
be optimized to encourage a smaller loss variance, being
vulnerable to membership inference attacks.

To provide a straightforward view, we empirically verify
the connection between convexity and loss variance. In
particular, we introduce Focal Loss (Lin et al., 2017): ℓfl =
−(1−py)

γ log(1−py) with γ = 2, which exhibits stronger

1The monotonic relationship between loss variance and σ2 is
proved in Appendix C.
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Figure 1. The mean and variance of loss under different epochs.
Models are trained on CIFAR-10 with Resnet-34 using Cross-
entropy loss (CE) and Focal loss (FL).

convexity than cross-entropy loss, i.e., ℓ′′fl ⩾ ℓ′′ce,∀x ∈ (0, 1].
In Figure 1, we plot the dynamics of mean and variance of
losses for the training data during the training. Indeed, Fo-
cal loss results in a smaller loss variance than cross-entropy
loss, with a higher mean of losses. In this way, we verified
that the convexity of loss functions contributes to the de-
crease of loss variance, which may exacerbate the privacy
risk of neural networks. We proceed by exploring concave
functions, targeting this problem.

3.2. Can concave functions increase the loss variance?

In our previous analysis, we show that convex loss can en-
large the privacy risk with a small loss variance. Conversely,
we explore the properties of concave functions in the same
setting, as shown below.

Theorem 3.2. Given a twice continuously differentiable
function ℓ ∈ C2[0, 1] such that ℓ(1) = 0 and ℓ′(x) <
0,∀x ∈ [0, 1]. If ℓ is strictly concave, there must exist a
negative constant B ⩽ 0 such that

ED[ℓ(py)] = Aϵ+B(σ2 + ϵ2) (3)

where A = −ℓ′(1) > 0.

The detailed proof is presented in the Appendix B. Given
the above theorem, we find that the coefficient of σ2 is
negative if the loss function ℓ is strictly concave. In other
words, a concave loss function can increase the loss variance
during gradient descent, which is the expected property
for mitigating privacy risk. In what follows, we propose
a general framework that endows the robustness to cross-
entropy loss against membership inference attacks.

4. Our Proposed Method
Theorem 3.2 indicates that concave functions can be lever-
aged to design loss functions. To design our loss function,
we first introduce a formal definition of the concave term.

Definition 4.1 (Concave Term). We define a concave func-

3



Mitigating Privacy Risk in Membership Inference by Convex-Concave Loss

tion set as:

F = {f ∈ C2[0, 1] | f ′(x) < 0, f ′′(x) < 0,∀x ∈ [0, 1]}

In this definition, (1)f ′(x) < 0 ensures that the smaller the
objective loss, the larger the confidence of true label py,
which can preserve utility, (2) f ′′(x) < 0 ensures that this a
concave function that can help increase the variance of py .

Convex-concave loss. We propose to add a concave term
into the original loss function (e.g., cross-entropy loss),
which is called Convex-Concave Loss (CCL):

ℓccl = αℓ̂+ (1− α)ℓ̃ (4)

where ℓ̂ is the origin convex function, ℓ̃ ∈ F is a concave
term, and α ∈ [0, 1] denotes a hyperparameter to adjust
the trade-off between privacy and utility flexibly. In this
paper, we just consider cross-entropy loss as the original loss
function. The experiments with other convex loss functions
are provided in Appendix E.

Theorem 3.2 indicates that concave functions can be lever-
aged to design loss functions. However, in the early stages
of training epochs, this approach tends to result in a smaller
step size in the gradient ascent process. Consequently, we
employ CE loss to facilitate better convergence (Zhang &
Sabuncu, 2018) and more effective learning.

For specific concave functions, it is possible to select com-
monly used monotonic non-linear functions for their design.
For instance, we can take the negative of the exponential
function as Concave Exponential Loss (CEL):

ℓ̃exp = − exp(py) (5)

Alternatively, we can just employ a quadratic polynomial
function as Concave Quadratic Loss (CQL):

ℓ̃qua = −py −
1

2
p2y (6)

These two concave terms are all in F . We denote these two
concave functions integrated with ℓce as CCEL and CCQL.

Gradient analysis. There we derive the gradients of CCL.
Consider the case of a single true label, we obtain the gradi-
ent of the concave term l̃ ∈ F w.r.t the logits zj as follows:

∂ℓ̃

∂zj
=

∂py
∂zj

ℓ̃′(py) (7)

=

{
py(1− py) · ℓ̃′(py) ⩽ 0, j = y

−pjpy · ℓ̃′(py) ⩾ 0, otherwise
(8)

As for CE loss ℓce, the gradient is

∂ℓce
∂zj

=

{
py − 1 ⩽ 0, j = y

pj ⩾ 0, otherwise
(9)

It is clear that the gradient of the concave term in F has the
same sign with CE loss for each j, so does the complete
loss function ℓccl:

∂ℓccl
∂zj

=

{
(py − 1)[α− (1− α)py ℓ̃

′
(py)] ⩽ 0, j = y

pj [α− (1− α)py ℓ̃
′(py)] ⩾ 0, otherwise

(10)

= [α− (1− α)py ℓ̃
′(py)]

∂ℓce
∂zj

(11)

where α − (1− α)py ℓ̃
′(py) ⩾ 0. Considering the concav-

ity of ℓ̃, it follows that a greater py will result in a larger
magnitude of |py ℓ̃′(py)|. This can be interpreted such that
α−(1−α)py ℓ̃

′(py) acts as an acceleration coefficient. That
is, for these samples with higher py, this coefficient serves
to increase py more rapidly. Consequently, this leads to a
broadening in the range of confidence distributions.

Furthermore, we provide bounds of the gradient of ℓccl.
Proposition 4.2. For any input x and any α > 0, the
gradient of ℓccl w.r.t logits zj is bounded above and below
as follows:

α
∂ℓce
∂zj

⩽
∂ℓccl
∂zj

⩽ [α+A(1− α)]
∂ℓce
∂zj

(12)

where A = −ℓ̃′(1) > 0.

From Proposition 4.2, the gradient of ℓccl is bounded by the
scaled gradient of ℓce in each dimension. Therefore, the
gradient of the proposed loss ∂ℓccl

∂zj
will approach zero when

CE loss achieves its optimum (∂ℓce∂zj
= 0). This indicates that

our approach is capable of converging in the same region
where CE achieves its optimum.

5. Experiments
In this section, we validate the effectiveness of our CCL
across a wide range of datasets with diverse models, various
attack models, and multiple defense baselines.

5.1. Setups

Datasets. In our evaluation, we employ five datasets:
Texas100 (Texas Department of State Health Services,
2006), Purchase100 (Kaggle, 2014), CIFAR-10, CIFAR-
100 (Krizhevsky et al., 2009), and ImageNet (Russakovsky
et al., 2015). For standard training methods, we split each
dataset into four subsets, with each subset serving alter-
nately as the training or testing set for the target and shadow
models. As for adversarial training algorithms that incorpo-
rate adversary loss—such as Mixup+MMD (Li et al., 2021)
and adversarial regularization (Nasr et al., 2018)—we di-
vide the datasets into five subsets. The additional subset is
specifically utilized to generate adversary loss.
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Figure 2. Comparisons of seven defense mechanisms on CIFAR-10 dataset utilizing Resnet34 architecture. Each subplot is allocated to a
distinct attack method, wherein individual curves represent the performance of a defense mechanism under different hyperparameter
settings. The horizontal axis represents the target models’ test accuracy (the higher the better), and the vertical axis represents the
corresponding attack advantage (defined in Definition 2, the lower the better). To underscore the disparity between the defense methods
and the vanilla (undefended model), we plot the dotted line originating from the vanilla results.

Training details. We train the models using SGD with a
momentum of 0.9, a weight decay of 0.0005, and a batch
size of 128. We set the initial learning rate as 0.1 and drop
it by a factor of 10 at each decay epoch. For CIFAR-10 and
CIFAR-100, we conduct training using a 34-layer ResNet
(He et al., 2016) and a 121-layer DenseNet (Huang et al.,
2017), with decay milestones set at 150, 225 over a total of
300 epochs. In the case of Imagenet, we employ a 121-layer
DenseNet with decay milestones at {30, 60}, spanning a
total of 90 epochs. For Texas100 and Purchase100, training
is performed using MLPs as described in previous studies
(Nasr et al., 2018; Jia et al., 2019), with decay milestones at
{50, 100} across 120 total epochs.

5.2. Hyperparameter Tuning

In our approach to hyperparameter tuning, we align with
the protocols established by previous work (Chen et al.,
2022). In particular, we employ hyperparameter tuning fo-
cused on a single hyperparameter, α defined in 4. Through
a detailed grid search on a validation set, we adjust α to
achieve an optimal balance. This process involves evalu-
ating the privacy-utility implications at various levels of α
and then selecting the value that aligns with our specific
privacy/utility objectives, thereby enabling precise manage-
ment of the model’s privacy and utility. Following focal
loss (Lin et al., 2017), we set a scalar factor on our loss
functions. Specifically, for CIFAR-10, the scale factor is
0.01; for CIFAR-100, it is 0.05. For other datasets, we set

it as 1. As for our hyperparameter α, we vary it across
{0.1, . . . , 0.9}.

Attack methods. In our study, we experiment with three
classes of MIA: (1) Neural Network-based Attack (NN)
(Shokri et al., 2017; Hu et al., 2022a), which leverages the
full logits prediction as input for attacking the neural net-
work model. (2) Metric-based Attack, employing specific
metrics computation followed by a comparison with a preset
threshold to ascertain the data record’s membership status.
The metrics we chose for our experiments include Correct-
ness, Loss (Yeom et al., 2018), Confidence, Entropy (Salem
et al., 2019), and Modified-Entropy (M-entropy) (Song &
Mittal, 2021). (3) Augmentation-based Attack (Choquette-
Choo et al., 2021), utilizing prediction data derived through
data augmentation techniques as inputs for a binary classi-
fier model. In this category, we specifically implemented
rotation and translation augmentations.

For the details of the attack, we assume the most powerful
black-box adaptive attack scenario: the adversary has com-
plete knowledge of our defense mechanism and selected
hyperparameters. To implement this, we train shadow mod-
els with the same settings used for our target models.

Defense baselines. We compare CCL with seven defense
methods: RelaxLoss (Chen et al., 2022), Mixup+MMD
(Li et al., 2021), Adversary regularization (Adv-Reg) (Li
& Zhang, 2021), Dropout (Srivastava et al., 2014), Label
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Figure 3. Comparisons of seven defense mechanisms on CIFAR-100 dataset utilizing Densenet121 architecture. Each subplot is allocated
to a distinct attack method, wherein individual curves represent the performance of a defense mechanism under different hyperparameter
settings. The horizontal axis represents the target models’ test accuracy (the higher the better), and the vertical axis represents the
corresponding attack advantage (defined in Definition 2, the lower the better). To underscore the disparity between the defense methods
and the vanilla (undefended model), we plot the dotted line originating from the vanilla results.

Smoothing (Guo et al., 2017), Confidence Penalty (Pereyra
et al., 2017), and Early Stopping (Yao et al., 2007).

Evaluation Metrics. To comprehensively assess our
method’s impact on privacy and utility, we employ three
evaluation metrics that encapsulate utility, privacy, and the
balance between the two. Utility is gauged by the test accu-
racy of the target model. Privacy is measured through the
attack advantage, as defined in Equation 2. To assess the
trade-off between utility and privacy, we utilize the P1 score
(Paul et al., 2021), which is defined as:

P1 = 2 ∗ Acc ∗ (1−Adv)

(Acc) + (1−Adv)
(13)

where Acc denotes the test accuracy and Adv denotes the
attack advantage of the attacker on the target model.

5.3. Results

Can CCL improve privacy-utility trade-off ? In Pic-
ture 2 and Picture 3, we plot privacy-utility curves to show
the privacy-utility trade-off. The horizontal axis represents
the performance of the target model, and the vertical axis
represents the attack advantage defined in 2. A salient ob-
servation is that both of our methods drastically improve the
privacy-utility trade-off. In particular, for these points that
perform better than vanilla for utility (the area to the right
of the dotted line), the privacy-utility curves of our methods
are always below those of others. This means we can always

obtain the highest privacy for any utility requirement higher
than the undefended model. For example, on the CIFAR10
dataset, we focus on the hyperparameter α corresponding
to the model with the lowest attack advantage with the con-
strain condition that test accuracy is better than vanilla, then
our method with quadratic function can decrease the at-
tack advantage of loss-metric-based from 29.67% to 18.40%
compared with Dropout (the most powerful defend method
under our condition above).

Is CCL effective with different datasets? To ascertain
the efficacy of our proposed method across heterogeneous
data, we have executed a series of experiments on a diverse
array of datasets, encompassing tabular and image datasets.
For the experimental results shown in Table 1, we have
set the adjustment coefficient of CCL to a constant value,
specifically α = 0.5. To assess the privacy-utility balanced
performance, we use the highest attack advantage of all
attack methods to calculate the P1 score From the results,
we observe that both of our methods yield a consistent
improvement in the P1 score.

How does α affect utility and privacy? In Figure 4a,
Figure 4b and Figure 4c, we conduct an ablation study to
examine the impact of the coefficient α in our method on
both utility, privacy, and loss variance. The analysis is
based on CIFAR-10. As is shown in Figure 4c, our findings
are in alignment with the insights provided in Theorem
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Dataset Texas Purchase ImageNet CIFAR-10 CIFAR-100

CCQL 0.607 0.868 0.610 0.769 0.487
CCEL 0.608 0.864 0.609 0.797 0.480

w/o 0.551 0.858 0.598 0.741 0.273

Table 1. P1 score (defined in Equation 13) evaluated on target models trained on different datasets. The bold indicates the best results.
Here, ”w/o” denotes undefended models.
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Figure 4. The effect of α on utility (test accuracy), privacy (highest attack advantage), and loss variance.

3.2 and Theorem 3.1. As the α decreases, the effect of the
concave term becomes more significant, leading to a gradual
increase in variance. On the other hand, a larger α value
brings our loss function closer to the cross-entropy loss,
thereby increasing the privacy risk. Conversely, a smaller
α value leads to a smaller gradient effect, culminating in
underfitting, which consequently diminishes accuracy.

Convergence analysis. As demonstrated in Equation 8,
our CCL induces a larger gradient compared to CE loss
when the true label confidence py approaches 1. Conversely,
during the initial epochs when py is smaller, our approach
tends to result in smaller gradient steps. Although a detailed
gradient analysis is presented in Section 4, it may also ask:
Can a model utilizing CCL achieve a stable state? Further-
more, does the implementation of CCL lead to a slower
convergence rate? There, we conduct an experiment on
CIFAR-10 datasets with fixed α = 0.5 and plot the training
loss curve and the test accuracy curve. As Figure 5 shows,
both of our proposed CCL functions can converge properly,
and there is no significantly longer training time than that
of CE to reach convergence.

6. Discussion
How does loss variance affect the attack advantage?
Normally, the target model is trained on its training members
with the objective of minimizing the error in its predictions.
Consequently, the prediction error for a sample within the
training dataset would be less than that for a sample within
the testing dataset. In this way, the attack model Aloss

(Yeom et al., 2018) is defined as:

Aloss = I(LCE(hS(x), y) ⩽ τ) (14)

That is, given a sample, we calculate its loss by the target
model and then infer it as a member if its loss is smaller
than a preset threshold τ 2.

Under the common Gaussian assumption of loss distribution
(Yeom et al., 2018; Chen et al., 2022), we first introduce a
theorem to show how loss variance affects the attack advan-
tage of attack model Aloss (defined in Equation 14).

Theorem 6.1. Suppose ϵ is a random variable denoting loss,
such that ϵ ∼ N(µS , σ

2
S) when m = 1 and ϵ ∼ N(µD, σ2

D)
when m = 0. Then the membership advantage of Aloss is:

Adv =Pr(A = 1|m = 1)− Pr(A = 1|m = 0) (15)
=Pr(ϵ ⩽ τ |m = 1)− Pr(ϵ ⩽ τ |m = 0) (16)

=Φ(
τ − µS

σS
)− Φ(

τ − µD

σD
) (17)

where Φ(·) is the cumulative distribution function of stan-
dard normal distribution.

Note that Pr(A = 1|m = 0) is false positive rates of the
adversary, which is expected to be controlled at a small
value (Leemann et al., 2023; Tan et al., 2022). Assume τ is
chosen such that Φ( τ−µD

σD
) = α, then we have:

Adv = Φ{Φ
−1(α)σD + µD − µS

σS
} − α (18)

This implies that increasing the variance of training loss
distribution σS can help to decrease the attack advantage.

Can our method converge? In general, non-convex
losses do not prevent the convergence of optimization,

2τ is determined by shadow models
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Figure 5. Convergence analysis of CCL on CIFAR-10 dataset

which has been well-studied in the literature (Khaled &
Richtárik, 2020; Zou et al., 2019; Garrigos & Gower, 2023;
Défossez et al., 2022). For example, the work (Khaled &
Richtárik, 2020) proves the convergence of SGD in the
non-convex setting under expected smoothness assump-
tion and yields the optimal convergence rate O

(
ε−4

)
for

finding a stationary point of non-convex smooth functions.
Another work (Zou et al., 2019) introduces a sufficient
condition to guarantee the global convergence of generic
Adam/RMSProp optimizers in the non-convex setting.

Here we conclude two common sufficient conditions related
to loss function as follows:

(C1) The minimum value of L is lower-bounded.

(C2) L is smooth, i.e., ∥∇L(x)−∇L(y)∥ < L1∥x− y∥,
for all x, y ∈ Rd and for any L1 > 0.

We proceed by proving that CCL satisfies the two conditions,
supporting the convergence of CCL with popular optimizers,
such as SGD, Adam, and RMSProp.

CCL satisfies the condition (C1). As L is just linear com-
bination of ℓccl, so we just prove ℓccl is lower bounded.
By definition, ℓccl is a monotonic decreasing function and
closed on the right side of the domain (0, 1], so it is lower
bounded.

CCL satisfies the condition (C2). Before we prove C2, we
first introduce two lemmas.

Lemma 6.2. Let A(x) : D ⊆ Rn → Rm×p and B(x) :
D ⊆ Rn → Rp×q be two Lipschitz continuous matrix
functions defined on the same domain D, with Lipschitz
constants LA and LB , respectively. If ∥A(x)∥ and ∥B(x)∥
are bounded for all x ∈ D by some constants MA and
MB , then the product function C(x) = A(x)B(x) is also
Lipschitz continuous on D.

Lemma 6.3. If two functions f : Rn → Rm and g : Rm →
Rp are Lipschitz continuous, with Lipschitz constants Lf

and Lg respectively, then their composite function h = g ◦f
defined as h(x) = g(f(x)) is also Lipschitz continuous.

The proofs of these two Lemmas 6.2 and 6.3 are provided in
the Appendix D. By chain rule, we have ∇L = (∇z)⊤ ∂L

∂z .
Our method differs from CE loss in ∂L

∂z , we only need to
prove that our loss function ℓccl is smooth with respect
to logits z. Note that the confidence in true label py
can be written as y⊤p, so we have ∂ℓccl

∂z = [α − (1 −
α)ℓ̃′(y⊤p)y⊤p](p− y), where p is probability vector and
y is one-hot label vector. Given Lemma 6.2 and 6.3, we can
simplify the proof to establishing that both ℓ̃′ and y⊤p are
Lipschitz continuous.

Since ℓ̃ ∈ C2[0, 1], there exits an upper bound B such that
ℓ̃′′ ⩽ B, which follows that ∥ℓ̃′(x) − ℓ̃′(y)∥ ⩽ B∥x − y∥.
With the fact that Softmax function is Lipschitz continuous
[5], we have ∥y⊤p1 −y⊤p2∥ ⩽ ∥y∥ · ∥p1 −p2∥ = ∥p1 −
p2∥ ⩽ L2∥z1 − z1∥.

By Lemma 6.2 and Lemma 6.3, we conclude that ∂ℓccl
∂z is

Lipschitz continuous, followed by it is smoothness.

7. Related Work
Membership Inference Attacks (MIAs). Membership
Inference Attacks (MIAs), first introduced by Shokri et al.
(2017) for machine learning, utilize multiple shadow mod-
els and a neural network-based attack model to identify a
target model’s predictions on member versus non-member
data, that is NN-based attack(Zhang et al., 2023; Nasr et al.,
2019). Metric-based attack computes custom metrics such
as Loss (Yeom et al., 2018), Confidence(Liu et al., 2019a),
Entropy (Salem et al., 2019), Modified-Entropy (Song &
Mittal, 2021), and gradient norm (Leemann et al., 2023;
Nasr et al., 2019; Sablayrolles et al., 2019) to derive a thresh-
old for distinction. As an extension to metric-based attacks,
recent works (Lopez et al., 2023; Carlini et al., 2022; Ye
et al., 2022; Watson et al., 2022) design per-example attacks.
Boundary-based attacks (Li & Zhang, 2021; Choquette-
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Choo et al., 2021) gauge the necessary perturbation mag-
nitude for membership inference. Augmentation-based at-
tacks (Choquette-Choo et al., 2021; Ko et al., 2023) leverage
the resilience of training samples to data augmentation com-
pared to testing samples.

Beyond supervised classification, MIAs have been extended
to additional fields, such as graph embedding models (Wang
& Wang, 2023; Duddu et al., 2020), graph neural net-
work(Liu et al., 2022; Conti et al., 2022; Olatunji et al.,
2021), generative models (Pang et al., 2023; Dubiński et al.,
2024; van Breugel et al., 2023; Hu & Pang, 2021; Chen
et al., 2020a; Liu et al., 2019b), contrastive learning (Liu
et al., 2021; Ko et al., 2023), language models (Mattern
et al., 2023; Mireshghallah et al., 2022).

Defend against MIAs. The existing defense technologies
can be classified into four categories(Hu et al., 2023): regu-
larization, transfer learning, information perturbation, and
generative models-based.

(i) Regularization: Many papers (Leino & Fredrikson, 2020;
Salem et al., 2019; Yeom et al., 2018; Shokri et al., 2017)
have pointed out that overfitting is a major factor in the
success of MIAs, hence regularization technology such as
Label Smoothing (Guo et al., 2017), Confidence Penalty
(Pereyra et al., 2017), and Early Stopping (Yao et al., 2007),
Adversary regularization (Nasr et al., 2018), Dropout (Sri-
vastava et al., 2014), Pruning(Wang et al., 2021), HAMP
(Chen & Pattabiraman, 2024), and RelaxLoss (Chen et al.,
2022) can certainly defend against MIAs.

(ii) Transfer Learning has been shown to effectively pro-
tect member privacy by using knowledge from similar but
different data, reducing direct access to sensitive target
data. In particular, Knowledge distillation (Mazzone et al.,
2022; Hinton et al., 2015; Shejwalkar & Houmansadr, 2021;
Zheng et al., 2021; Tang et al., 2022) uses a large teacher
model to train a smaller student model, transferring the
knowledge while retaining similar accuracy. Domain adap-
tation (Weiss et al., 2016; Huang, 2021; Huang et al., 2021)
transfers knowledge from a source domain to a related but
different target domain by extracting shared representations.

(iii) Information perturbation protects privacy information
by adding customized noise to the data, training proces-
sion, and outputs. Specially, this methodology is typically
classified into three methods: differential privacy, output
perturbation, and data augmentation. Differential privacy
(Tan et al., 2022; Dwork, 2008; Chen et al., 2020b; Jayara-
man & Evans, 2019; Nasr et al., 2021; Rahman et al., 2018;
Kim et al., 2021; Truex et al., 2019) adds noise perturbations
to the real data, ensuring that the results of an algorithm on
adjacent datasets (differing by one element) are statistically
indistinguishable. Output perturbation (Xue et al., 2022; Jia
et al., 2019) based on the intuition that black-box MIAs can

only utilize this output information to make inferences, so
lightly altering the results returned by the model weakens
the performance of MIAs. Data perturbation (Chen et al.,
2021b; Wang et al., 2019; Kandpal et al., 2022) add pertur-
bations directly to the data, making it more challenging for
attackers to infer whether specific data points were used in
training the model. Techniques such as data augmentation,
including rotation, clipping, and mix-up (Li et al., 2021;
Kaya & Dumitras, 2021), can also fall into this category.

(iv) Generative models-based methods (Chen et al., 2021a;
Hu et al., 2022b; Paul et al., 2021) generated substitute
training data using generative models to reduce informa-
tion leakage. Our approach is a regularization technique
integrated into the loss function.

8. Conclusion
In this paper, we introduce Convex-Concave Loss, a simple
method for formulating loss functions that can help defend
against MIAs. Specifically, we propose to integrate a con-
cave term with CE loss to magnify loss variance. As a
result, our proposed method could mitigate privacy risks by
reducing the gap between training and testing loss distri-
bution. Moreover, we present theoretical analyses of how
convex and concave loss functions affect loss variance dur-
ing optimization, which is the key insight enlightening and
certifying our method. Extensive experiments show that
CCL can improve the privacy-utility trade-off.

A few open questions remain: Firstly, our method aims to
increase the variance of output metrics, but its role in defend-
ing against label-only attacks (such as data augmentation
attacks) remains unexplored. Moreover, our method cannot
break the trade-off between utility and MIA defense, which
might be a potential direction for future work.
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Kim, M., Günlü, O., and Schaefer, R. F. Federated learning
with local differential privacy: Trade-offs between pri-
vacy, utility, and communication. In ICASSP 2021-2021
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 2650–2654. IEEE, 2021.

Ko, M., Jin, M., Wang, C., and Jia, R. Practical membership
inference attacks against large-scale multi-modal models:
A pilot study. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 4871–4881,
2023.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. Master’s thesis, Department
of Computer Science, University of Toronto, 2009.

Leemann, T., Pawelczyk, M., and Kasneci, G. Gaussian
membership inference privacy. In 37th Conference on
Neural Information Processing Systems (NeurIPS), 2023.

Leino, K. and Fredrikson, M. Stolen memories: Leveraging
model memorization for calibrated {White-Box} mem-
bership inference. In 29th USENIX Security Symposium
(USENIX Security 20), pp. 1605–1622, 2020.

Li, J., Li, N., and Ribeiro, B. Membership inference attacks
and defenses in classification models. In Proceedings of
the Eleventh ACM Conference on Data and Application
Security and Privacy, pp. 5–16, 2021.

Li, Z. and Zhang, Y. Membership leakage in label-only
exposures. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security,
pp. 880–895, 2021.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P.
Focal loss for dense object detection. In Proceedings of
the IEEE International Conference on Computer Vision,
pp. 2980–2988, 2017.

Liu, G., Wang, C., Peng, K., Huang, H., Li, Y., and Cheng,
W. Socinf: Membership inference attacks on social media
health data with machine learning. IEEE Transactions on
Computational Social Systems, 6(5):907–921, 2019a.

Liu, H., Jia, J., Qu, W., and Gong, N. Z. Encodermi:
Membership inference against pre-trained encoders in
contrastive learning. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications
Security, pp. 2081–2095, 2021.

Liu, K. S., Xiao, C., Li, B., and Gao, J. Performing co-
membership attacks against deep generative models. In
2019 IEEE International Conference on Data Mining
(ICDM), pp. 459–467. IEEE, 2019b.

Liu, Z., Zhang, X., Chen, C., Lin, S., and Li, J. Membership
inference attacks against robust graph neural network.
In International Symposium on Cyberspace Safety and
Security, pp. 259–273. Springer, 2022.

Lopez, M. B., Tang, S., Kearns, M., Morgenstern, J., Roth,
A., and Wu, Z. S. Scalable membership inference attacks
via quantile regression. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Mahalle, A., Yong, J., Tao, X., and Shen, J. Data privacy
and system security for banking and financial services
industry based on cloud computing infrastructure. In
2018 IEEE 22nd International Conference on Computer
Supported Cooperative Work in Design ((CSCWD)), pp.
407–413. IEEE, 2018.

11

https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data


Mitigating Privacy Risk in Membership Inference by Convex-Concave Loss

Malinin, A. and Gales, M. Predictive uncertainty estima-
tion via prior networks. Advances in Neural Information
Processing Systems, 31, 2018.

Mattern, J., Mireshghallah, F., Jin, Z., Schölkopf, B.,
Sachan, M., and Berg-Kirkpatrick, T. Membership infer-
ence attacks against language models via neighbourhood
comparison. In ACL (Findings), pp. 11330–11343. Asso-
ciation for Computational Linguistics, 2023.

Mazzone, F., van den Heuvel, L., Huber, M., Verdecchia, C.,
Everts, M., Hahn, F., and Peter, A. Repeated knowledge
distillation with confidence masking to mitigate mem-
bership inference attacks. In Proceedings of the 15th
ACM Workshop on Artificial Intelligence and Security, pp.
13–24, 2022.

Mireshghallah, F., Goyal, K., Uniyal, A., Berg-Kirkpatrick,
T., and Shokri, R. Quantifying privacy risks of masked
language models using membership inference attacks.
In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pp. 8332–8347.
Association for Computational Linguistics, 2022.

Nasr, M., Shokri, R., and Houmansadr, A. Machine learning
with membership privacy using adversarial regularization.
In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pp. 634–646,
2018.

Nasr, M., Shokri, R., and Houmansadr, A. Comprehen-
sive privacy analysis of deep learning: Passive and active
white-box inference attacks against centralized and feder-
ated learning. In 2019 IEEE Symposium on Security and
Privacy (SP), pp. 739–753. IEEE, 2019.

Nasr, M., Songi, S., Thakurta, A., Papernot, N., and Carlin,
N. Adversary instantiation: Lower bounds for differen-
tially private machine learning. In 2021 IEEE Symposium
on Security and Privacy (SP), pp. 866–882. IEEE, 2021.

Oehlert, G. W. A note on the delta method. American
Statistician, pp. 27–29, 1992.

Olatunji, I. E., Nejdl, W., and Khosla, M. Membership
inference attack on graph neural networks. In 2021 Third
IEEE International Conference on Trust, Privacy and
Security in Intelligent Systems and Applications (TPS-
ISA), pp. 11–20. IEEE, 2021.

Pang, Y., Wang, T., Kang, X., Huai, M., and Zhang, Y.
White-box membership inference attacks against diffu-
sion models. arXiv preprint arXiv:2308.06405, 2023.

Paul, W., Cao, Y., Zhang, M., and Burlina, P. Defending
medical image diagnostics against privacy attacks using
generative methods: Application to retinal diagnostics. In

Clinical Image-Based Procedures, Distributed and Col-
laborative Learning, Artificial Intelligence for Combating
COVID-19 and Secure and Privacy-Preserving Machine
Learning: 10th Workshop, CLIP 2021, Second Workshop,
DCL 2021, First Workshop, LL-COVID19 2021, and First
Workshop and Tutorial, PPML 2021, Held in Conjunc-
tion with MICCAI 2021, Strasbourg, France, September
27 and October 1, 2021, Proceedings 2, pp. 174–187.
Springer, 2021.

Pereyra, G., Tucker, G., Chorowski, J., Kaiser, L., and Hin-
ton, G. E. Regularizing neural networks by penalizing
confident output distributions. In International Confer-
ence on Learning Representations, 2017.

Rahman, M. A., Rahman, T., Laganière, R., Mohammed,
N., and Wang, Y. Membership inference attack against
differentially private deep learning model. Trans. Data
Priv., 11(1):61–79, 2018.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., et al. Imagenet large scale visual recognition chal-
lenge. International Journal of Computer Vision, 115:
211–252, 2015.

Sablayrolles, A., Douze, M., Schmid, C., Ollivier, Y., and
Jégou, H. White-box vs black-box: Bayes optimal strate-
gies for membership inference. In International Con-
ference on Machine Learning, pp. 5558–5567. PMLR,
2019.

Salem, A., Zhang, Y., Humbert, M., Berrang, P., Fritz, M.,
and Backes, M. Ml-leaks: Model and data independent
membership inference attacks and defenses on machine
learning models. In Network and Distributed System
Security (NDSS) Symposium. The Internet Society, 2019.

Shejwalkar, V. and Houmansadr, A. Membership privacy
for machine learning models through knowledge trans-
fer. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 9549–9557, 2021.

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Mem-
bership inference attacks against machine learning mod-
els. In 2017 IEEE Symposium on Security and Privacy
(SP), pp. 3–18. IEEE, 2017.

Song, L. and Mittal, P. Systematic evaluation of privacy
risks of machine learning models. In 30th USENIX Secu-
rity Symposium (USENIX Security 21), pp. 2615–2632,
2021.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

12



Mitigating Privacy Risk in Membership Inference by Convex-Concave Loss

Tan, J., Mason, B., Javadi, H., and Baraniuk, R. Parameters
or privacy: A provable tradeoff between overparameter-
ization and membership inference. Advances in Neural
Information Processing Systems, 35:17488–17500, 2022.

Tang, X., Mahloujifar, S., Song, L., Shejwalkar, V., Nasr,
M., Houmansadr, A., and Mittal, P. Mitigating member-
ship inference attacks by self-distillation through a novel
ensemble architecture. In USENIX Security Symposium,
pp. 1433–1450. USENIX Association, 2022.

Texas Department of State Health Services. Texas hos-
pital inpatient discharge public use data file, 2006.
URL https://www.dshs.texas.gov/thcic/
hospitals/Inpatientpudf.shtm.

Truex, S., Liu, L., Gursoy, M. E., Wei, W., and Yu, L. Effects
of differential privacy and data skewness on membership
inference vulnerability. In 2019 First IEEE International
Conference on Trust, Privacy and Security in Intelligent
Systems and Applications (TPS-ISA), pp. 82–91. IEEE,
2019.

van Breugel, B., Sun, H., Qian, Z., and van der Schaar,
M. Membership inference attacks against synthetic data
through overfitting detection. In AISTATS, volume 206
of Proceedings of Machine Learning Research, pp. 3493–
3514. PMLR, 2023.

Wang, C., Liu, G., Huang, H., Feng, W., Peng, K., and
Wang, L. Miasec: Enabling data indistinguishability
against membership inference attacks in mlaas. IEEE
Transactions on Sustainable Computing, 5(3):365–376,
2019.

Wang, X. and Wang, W. H. Link membership inference at-
tacks against unsupervised graph representation learning.
In Proceedings of the 39th Annual Computer Security
Applications Conference, pp. 477–491, 2023.

Wang, Y., Wang, C., Wang, Z., Zhou, S., Liu, H., Bi, J.,
Ding, C., and Rajasekaran, S. Against membership infer-
ence attack: Pruning is all you need. In Proceedings of
the Thirtieth International Joint Conference on Artificial
Intelligence, pp. 3141–3147. ijcai.org, 2021.

Watson, L., Guo, C., Cormode, G., and Sablayrolles, A. On
the importance of difficulty calibration in membership in-
ference attacks. In International Conference on Learning
Representations, 2022.

Weiss, K., Khoshgoftaar, T. M., and Wang, D. A survey of
transfer learning. Journal of Big data, 3(1):1–40, 2016.

Xue, M., Yuan, C., He, C., Wu, Y., Wu, Z., Zhang, Y.,
Liu, Z., and Liu, W. Use the spear as a shield: An
adversarial example based privacy-preserving technique
against membership inference attacks. IEEE Transactions
on Emerging Topics in Computing, 11(1):153–169, 2022.

Yao, Y., Rosasco, L., and Caponnetto, A. On early stopping
in gradient descent learning. Constructive Approximation,
26:289–315, 2007.

Ye, J., Maddi, A., Murakonda, S. K., Bindschaedler, V.,
and Shokri, R. Enhanced membership inference attacks
against machine learning models. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Com-
munications Security, pp. 3093–3106, 2022.

Yeom, S., Giacomelli, I., Fredrikson, M., and Jha, S. Privacy
risk in machine learning: Analyzing the connection to
overfitting. In 31st IEEE Computer Security Foundations
Symposium, pp. 268–282. IEEE, 2018.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning requires rethinking gener-
alization. In 5th International Conference on Learning
Representations, 2017.

Zhang, X., Xiong, H., and Wu, D. Rethink the connec-
tions among generalization, memorization, and the spec-
tral bias of dnns. In Zhou, Z.-H. (ed.), Proceedings of
the Thirtieth International Joint Conference on Artifi-
cial Intelligence, IJCAI-21, pp. 3392–3398. International
Joint Conferences on Artificial Intelligence Organization,
8 2021. doi: 10.24963/ijcai.2021/467. URL https:
//doi.org/10.24963/ijcai.2021/467. Main
Track.

Zhang, Y., Zhao, L., and Wang, Q. Mida: Membership infer-
ence attacks against domain adaptation. ISA transactions,
2023.

Zhang, Z. and Sabuncu, M. Generalized cross entropy
loss for training deep neural networks with noisy labels.
Advances in Neural Information Processing Systems, 31,
2018.

Zheng, J., Cao, Y., and Wang, H. Resisting membership
inference attacks through knowledge distillation. Neuro-
computing, 452:114–126, 2021.

Zou, F., Shen, L., Jie, Z., Zhang, W., and Liu, W. A sufficient
condition for convergences of adam and rmsprop. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11127–11135, 2019.

13

https://www.dshs.texas.gov/thcic/hospitals/Inpatientpudf.shtm
https://www.dshs.texas.gov/thcic/hospitals/Inpatientpudf.shtm
https://doi.org/10.24963/ijcai.2021/467
https://doi.org/10.24963/ijcai.2021/467


Mitigating Privacy Risk in Membership Inference by Convex-Concave Loss

A. Proof of Theorem 3.1
Proof. Since ℓ is strictly convex, ℓ′′ > 0, so there must exits infimum B = inf ℓ′′(x) ⩾ 0.

EDℓ(py) = ED[−ℓ′(1)(1− py) +
1

2
ℓ′′(ξ(py))(1− py)

2]

⩾ −ℓ′(1)ED[(1− py)] +
B

2
ED(1− py)

2

= Aϵ+
B

2
(ϵ2 + σ2)

where A = −ℓ′(1) > 0, B ⩾ 0 is a non-negative lower bound of ℓ′′(x).

which concludes the proof. □

B. Proof of Theorem 3.2
Proof. Since ℓ is concave, so ℓ′(1) ⩽ ℓ′(x) < 0. Note that ℓ(1) = 0, then by Mean Value Theorem, we have ℓ(0) =
ℓ(0)− ℓ(1) = −ℓ′(ξ1) ⩽ −ℓ′(1).

Hence, ℓ is bound and continues in [0, 1], so ℓ′′ is also continues in [0, 1].

Suppose that the probability density function of py is f(x)

EDℓ(py) = ED[−ℓ′(1)(1− py) +
1

2
ℓ′′(ξ(py))(1− py)

2]

= Aϵ+
1

2
ED[ℓ

′′(ξ(py))(1− py)
2]

= Aϵ+
1

2

∫ 1

0

ℓ′′(ξ(x))f(x)(1− x)2dx

= Aϵ+
ℓ′′(ξ)

2

∫ 1

0

f(x)(1− x)2dx (By First Mean Value Theorem for Integration)

= Aϵ+B(ϵ2 + σ2)

which concludes the proof.

C. Connection between the loss variance and σ2

Notably, the metric commonly employed for MIA is typically a function of the probability vector P =
(p(1|x), p(2|x), . . . , p(K|x))⊤. An example of such a metric is the entropy, given by −

∑K
k=1 p(k|x) log p(k|x), which

constitutes a mapping from RK to R. Consequently, we demonstrate that augmenting the variance Var(f(P )) is equivalent
to amplifying Var(py) while maintaining a constant mean.

Consider P = (P1, P2, . . . , PK) as a K-dimensional random vector, where Pk represents the random variable for p(k|x).
Below we provide an approximate of Var(f(P )) by delta method (Oehlert, 1992).

Lemma C.1. Let P be a K-dimensional random vector in P and µ be the mean vector of P. Suppose f : P → R is a
differentiable function and J(µ) is the Jacobian matrix of f evaluated at µ, then the variance of f(P) can be approximated
by

Var(f(P)) ≈ J(µ)⊤ ΣJ(µ) (19)

where Σ = Cov(P) is covariance matrix of P and the elements of J are given by Ji =
∂f
∂Pi

(µ) for i = 1, . . . ,K.

Based on Lemma C.1, we can establish a relationship in variance between the confidence of true label py and metrics used
for MIA with respect to prediction probability. Assuming that the output of a neural network after a softmax layer follows
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Dirichlet distribution (Malinin & Gales, 2018), then we explore the connection between the loss variance and σ2, as shown
below.

Proposition C.2. Let P follows Dirichlet distribution in the simplex ∆K−1, where ∆K−1 ={
(x1, x2, . . . , xK) ∈ RK | xi ≥ 0,

∑K
i=1 xi = 1

}
. With a fixed EP = µ, for any i ∈ Y , an increase in Var(Pi)

implies a corresponding increase in Var(f(P))

Proof. Suppose P1 ∼ Dirichlet(α1, α2, . . . , αK) and P2 ∼ Dirichlet(β1, β2, . . . , βK) such that EP1 = EP2 = µ and
Var(P2,t) > Var(P1,t), where Pi,j is the j-th element of Pi and t ∈ Y .

By EP1 = EP2, we have

E[P1,j ] =
αj

α0
=

βj

β0
= E[P2,j ], for any j = 1, 2, . . . ,K

where α0 =
∑K

j=1 αj and β0 =
∑K

j=1 βj .

By the condition Var(P2,t) > Var(P1,t), we have

Var(P2,t) > Var(P1,t) =⇒
(α̃t)(1− α̃t)

α0 + 1
>

(β̃t)(1− β̃t)

β0 + 1
=⇒ β0 > α0

where α̃t =
αt

α0
= βt

β0
= β̃t.

It follows that

Σ
(1)
ij = Cov(P1,i, P1,j) =

−α̃iα̃j

α0 + 1
>

−β̃iβ̃j

β0 + 1
= Cov(P2,i, P2,j) = Σ

(2)
ij , for any i ̸= j

Var(P2,j) > Var(P1,j), for any j = 1, 2, . . . ,K

This implies

J(µ)⊤ Σ(1) J(µ) = J(µ)⊤ [
β0 + 1

α0 + 1
Σ(2)]J(µ)

> J(µ)⊤ Σ(2) J(µ)

By Lemma C.1, we have Var(f(P)) ≈ J(µ)⊤ ΣJ(µ), so we can conclude the proof. □

According to Proposition C.2, any metric related to f(P)—including entropy and modified-entropy (Song & Mittal,
2021)—will exhibit increased variance in response to a rise in the variance of py. Building upon this insight and in
conjunction with 6.1, it can be deduced that amplifying the variance of py during the training phase can enhance the model’s
resilience against metric-based MIA.

D. Proof of Lemma 6.2 and Lemma 6.3
D.1. Proof of Lemma 6.2

Proof. Given that A(x) and B(x) are Lipschitz continuous, for all x, y ∈ D, we have
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∥A(x)−A(y)∥ ≤ LA∥x− y∥∥B(x)−B(y)∥ ≤ LB∥x− y∥ (20)

Consider the product C(x) = A(x)B(x). For any x, y ∈ D,

∥C(x)− C(y)∥ = ∥A(x)B(x)−A(y)B(y)∥
= ∥A(x)B(x)−A(x)B(y) +A(x)B(y)−A(y)B(y)∥
= ∥A(x)(B(x)−B(y)) + (A(x)−A(y))B(y)∥
⩽ ∥A(x)∥ · ∥B(x)−B(y)∥+ ∥A(x)−A(y)∥ · ∥B(y)∥
⩽ MALB∥x− y∥+ LAMB∥x− y∥
= (MALB + LAMB)∥x− y∥

Therefore, proving that C(x) = A(x)B(x) is Lipschitz continuous with a Lipschitz constant LC = MALB + LAMB ,
under the given conditions of boundedness and Lipschitz continuity of A(x) and B(x).

D.2. Proof of Lemma 6.3

Since f and g are Lipschitz continuous, we have for all x, y ∈ Rn,

∥f(x)− f(y)∥ ≤ Lf∥x− y∥,

and for all u, v ∈ Rm,

∥g(u)− g(v)∥ ≤ Lg∥u− v∥.

Consider two points x, y ∈ Rn. We want to show that h is Lipschitz continuous, i.e., there exists a constant Lh such that

∥h(x)− h(y)∥ = ∥g(f(x))− g(f(y))∥ ≤ Lh∥x− y∥.

Using the Lipschitz continuity of g and then f , we have

∥g(f(x))− g(f(y))∥ ≤ Lg∥f(x)− f(y)∥ ≤ LgLf∥x− y∥.

Setting Lh = LgLf , we see that

∥h(x)− h(y)∥ ≤ Lh∥x− y∥,

proving that the composition h = g ◦ f is Lipschitz continuous with Lipschitz constant Lh = LgLf .

E. Can CCL improve other convex functions?
Our method defined in Equation 4 just integrates CE as the convex loss function. There we show that our method can also
improve other convex loss functions such as Focal Loss (Lin et al., 2017).

ℓ = αℓFL + (1− α)ℓ̃

where ℓFL is Focal Loss and ℓ̃ ∈ F .

In the experiments, we use Resnet-34 trained on CIFAR-10. For focal loss, we fixed γ = 2. In particular, we use CCLE and
select the best α in {0.2,0.4,0.6,0.8} with restricted condition that performs better utility. Our results in Figure 6 show that
focal loss equipped with a concave term helps defend MIA across eight attack methods.
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Figure 6. Attack advantage comparison among focal loss (FL) and focal loss equipped with CLE (+CCLE) on CIFAR-10.

F. Defense Methods with Hyperparameter
F.1. Other Defense Methods

RelaxLoss. RelexLoss (Chen et al., 2022) reduces the gap between the member and non-member loss distribution by
applying gradient ascent as long as the average loss of the current batch is smaller than α. We vary the α over {0.01, 0.04,
0.1, 0.2, 0.4, 0.8, 1.6, 3.2 }.

Mixup+MMD. Mixup+MMD integrates the Maximum Mean Discrepancy (MMD) approach with mix-up training
techniques. Specifically, MMD serves as a metric for quantifying the divergence between two empirical data distributions,
functioning as follows

Distance(X,Y ) =

∥∥∥∥∥∥ 1n
n∑

i=1

ϕ(xi)−
1

m

m∑
j=1

ϕ(yj)

∥∥∥∥∥∥
H

where ϕ()̇ is Gaussian kernel function. MMD regularization loss is calculated by a batch of training and validation instances.
We vary the weight of the MMD term across {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 4, 8}.

Adversary Regularization. Adversary regularization (Nasr et al., 2018) conducts a min-max game optimization and
an adversarial training algorithm that minimizes classification loss while also reducing the maximum gain of potential
membership inference attacks. We vary the weight of the adversarial loss over {0.8,1.0,1.2,1.4,1.6,1.8}.

Dropout. Dropout randomly deactivates a subset of neurons in a layer with a given probability during training. In our
experiments, dropout is applied specifically to the last fully connected layer of each target model. We vary the probability of
dropout over {0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9}.

Label Smoothing. Label smoothing (Guo et al., 2017) modifies the target labels, making them slightly less confident by
replacing the hard 0 and 1 targets with values slightly closer to a uniform distribution. We vary the smoothing parameter
over {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 }.

Confidence Penalty. Confidence penalty (Pereyra et al., 2017) mitigates overfitting by penalizing low entropy in the
output distributions of neural networks. In particular, it is implemented by adding an entropy regularization term to the
objective. We vary the weight of the regularization term over {0.1, 0.3, 0. 5, 1, 2, 4, 8}.

Early Stopping. Early Stopping (Yao et al., 2007) monitors the model’s performance on a validation set and stops the
training process when performance begins to degrade. Following the implementation of Chen et al. (2022), our experiments
save checkpoints at specific epochs: {25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275}
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