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Abstract
The policies learned by humans in simple scenar-
ios can be deployed in complex scenarios with
the same task logic through limited feature align-
ment training, a process referred to as cognitive
generalization or systematic generalization. Thus,
a plausible conjecture is that unlocking cognitive
generalization in DRL could enable effective gen-
eralization of policies from simple to complex sce-
narios through reward-agnostic fine-tuning. This
would eliminate the need for designing reward
functions in complex scenarios, thus reducing
environment-building costs. In this paper, we pro-
pose a general framework to enhance the cogni-
tive generalization ability of standard DRL meth-
ods. Our framework builds a cognitive latent
space in a simple scenario, then segments the
latent space to cluster samples with similar envi-
ronmental influences into same subregion. During
the fine-tuning in the complex scenario, the pol-
icy uses cognitive latent space to align the new
sample with the same subregion sample collected
from the simple scenario and approximates the
rewards and Q values of the new samples for pol-
icy update. Based on this framework, we propose
Granular Ball Reinforcement Leaning (GBRL), a
practical algorithm via Variational Autoencoder
(VAE) and Granular Ball Representation. GBRL
achieves effective policy generalization on vari-
ous difficult scenarios with the same task logic.

1. Introduction
Deep reinforcement learning (DRL) has witnessed striking
empirical achievements in agents’ training on difficult se-

1COLLAGE OF INTELLIGENCE AND COMPUT-
ING,Tianjin University, China 2CQUPT, China. Correspon-
dence to: Jianye Hao <jianye.hao@tju.edu.cn>, Shuyin Xia
<xia shuyin@@cqupt.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Zero-shot generalization 

Few-shot generalization 

Cognitive  generalization 

Simple scenario with reward function

same task logic

Complex scenario without reward 

I‘m not good at dealing with policy generalizations 
between scenarios that are too different. 

I need the reward function. But designing the 
complex and dense reward function can be costly

I use reward-agnostic fine-tuning to achieve policy 
generalization across different difficulty scenarios.

Allow fine-tuning in complex scenarios.

1. Train here 2. Deploy here

No finetune in 
complex scenario

Finetune in 
complex scenario

Finetune in 
complex scenario

Figure 1. A motivational demonstration of cognitive generalization
on maze tasks. The bottom part shows the test scores for the
complex maze scenario. Cognitive generalization enables simple
scenario policies to be effectively deployed to complex scenarios
with the same task logic via reward-agnostic fine-tuning.

quential decision-making tasks ranging from games (Mnih
et al., 2013) to robotic control (Kaufmann et al., 2023). No-
tably, the effect of standard reinforcement learning relies
on high-quality environments for training, such as accurate
dynamic modeling of complex scenarios and well-designed
reward functions (Sutton & Barto, 1999). As a result, de-
ploying a policy learned in a simple scenario to a com-
plex task with the same task logic (e.g., larger map, more
branches and obstacles) becomes challenging (Kirk et al.,
2023), which is a manifestation of low generalization ability.
In contrast, humans can achieve this by mentally alignment
simple task policy with complex scenario features. Brain
science encapsulates this process as cognitive generaliza-
tion (Lake & Baroni, 2023). Thus, a plausible conjecture
is that unlocking the cognitive generalization capabilities
of DRL may improve the performance of the pre-trained
policy in the complex scenario of the same task logic.
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Figure 2. The overview of our ideal framework for mainstream DRL algorithms.

Cognitive generalization’s setting is different from “gener-
alization across variations in environment structures” (Fan
et al., 2021). “generalization across variations in environ-
ment structures” mainly focuses on learning a robust policy
in scenarios with multiple levels and preventing overfitting,
i.e. focusing on the average score overall scenarios (Igl
et al., 2020). However, we focus on how the policy can
perform well in significantly more complex scenarios after
training solely in simple scenarios, without the assistance of
intermediate-level scenarios. Specifically, we consider en-
abling policies trained on simple scenarios to be effectively
deployed in complex scenarios with the same task logic
through reward-agnostic fine-tuning. The characteristics of
this setting are as follows: 1) The initial policy only allows
training in a single simple scenario and cannot improve the
generalization ability by using cross-task knowledge like
meta learning (Beck et al., 2023). 2) Both the test scenario
and the training scenario share the same task logic (goal),
action space, and observation space, but the test scene set-
ting is more complex. 3) Only the raw complex test scenario
without reward feedback is provided. By adhering to this set-
ting, our aim is to reduce the costs associated with training
effective policies for challenging tasks. For instance, in the
game industry, engineers often have to construct complex
reward functions for AI-controlled NPCs to enhance their
humanoid behavior. This cost increases with the complexity
of the game map (de Villiers & Sabatta, 2020). Even in
simple simulation environments with consistent task logic,
modifying the reward function entails labor-intensive and
expensive manual debugging, involving the addition of aux-
iliary components and the delicate balancing of various
factors.

Recently, there is some emerging research exploring the
generalization capability of DRL, which mainly focuses on
zero-shot generalization and few-shot generalization. The
zero-shot setting prohibits the policy from using any in-
formation from the test scenario and emphasizes the gen-
eralization of tasks with the same difficulty level (Tanabe
et al., 2022). Few-shot generalization methods alleviate
these restrictions to enhance policy performance in complex
test scenarios by allowing for limited training in the test
scenario. (Eysenbach et al., 2020). However, the design

of reward functions for test scenarios proves to be difficult
and costly (de Villiers & Sabatta, 2020). Additionally, most
methods require multi-task training based on a meta learn-
ing framework, which is not suitable for single-task gen-
eralization. In comparison to the strictly limited zero-shot
generalization setting, the proposed cognitive generalization
allows fine-tuning in the test scenario to enhance generaliza-
tion feasibility, and at a lower cost than the few-shot setting
which necessitates reward feedback in the test scenario (as
shown in Figure 1). Please refer to Appendix A for detailed
comparison of related work.

In this paper, we propose a general framework to improve
the cognitive generalization ability of standard DRL meth-
ods. Our method stems from the idea of domain adaptation
learning (Eysenbach et al., 2020): the agent’s experience in
the source domain can be used in the target domain with the
same task logic. According to this, we assume that scenar-
ios of the same task logic share a general cognitive latent
space that contains all the samples. The overview idea is
shown in Figure 2, we first build a cognitive latent space
of state-action pairs in the simple scenario and cluster the
points with similar impact on the environment, i.e., causing
similar changes in the environment. Then we segment the
latent space according to samples collected in the simple
scene, the samples in the same subregion are considered
to be of the same class. By doing this, When obtaining a
new sample in the test task, we can map it to the segmented
cognitive latent space. The Q value and reward can be es-
timated according to the semantically similar points, i.e.,
surrounding points in latent space, which enables effective
policy fine-tuning in reward-agnostic scenarios.

The key to realizing the above framework lies in finding the
ideal methods for latent space building and adaptive space
segmentation.

Inspired by the recent remarkable successes of Deep Rep-
resentation Learning in RL (Li et al., 2021; Chandak et al.,
2019) and Granular Ball Representation (GBR) in small
datasets adaptive clustering (Xia et al., 2023), we design
Granular Ball Reinforcement Leaning (GBRL) as a practical
algorithm. The implementation is divided into two stages:
❶ GBRL employs deep representation learning, i.e. VAE,
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to encode state-action pairs into a unified latent space, effec-
tively capturing their underlying relationships. Particularly,
GBRL utilizes an environmental dynamic loss to ensure
that samples exerting similar environmental influences are
closely positioned within the latent space. Then, GBRL
uses GBR to segment the space according to the distribution
of samples collected in simple scenes via adaptive cluster-
ing. ❷ Finally, we develop an evaluation system utilizing
a granular ball style latent space. This system is used to
approximate rewards and Q values of samples, enabling
DRL algorithm to fine-tune according to TD-learning in test
scenarios where explicit rewards are not available.

In summary, the contributions of this paper are as follows:

• To the best of our knowledge, this paper is the first to
focus on unlocking the cognitive generalization abil-
ity of DRL. We propose a general framework to en-
hance cognitive generalization for mainstream DRL
algorithms.

• Based on our framework, we provide a practical al-
gorithm called Granular Ball Reinforcement Learning
(GBRL) via Deep Representation Learning and Granu-
lar Ball Representation.

• GBRL outperforms various challenging cognitive gen-
eralization benchmarks by building a general cognitive
latent space for scenarios with the same task logic.

• Additionally, GBRL surpasses both zero-shot and few-
shot methods (utilizing dense reward feedback in com-
plex scenarios) across numerous tasks.

2. Backgrond
2.1. Deep Reinforcement Learning

DRL can be formulated based on Markov Decision Process
(MDP) as a tuple < S,A,P,R, γ > with a state set S, an
action set A, transition function P : S × A → S, reward
function R, discounted factor γ ∈ [0, 1). The transition
probability function P : S × A 7→ S maps states and
actions to a probability distribution over the next states. The
goal of RL is to learn a policy by maximizing the expected
discounted return Rt = E[

∑∞
k=0 γ

krt+k], where γ is a
discount factor for future rewards to dampen their effect.

2.2. Granular Ball Representation

Granular Ball Representation (Xia et al., 2019) (GBR), also
known as Multi-granularity Ball Representation, is an im-
portant self-supervised data-covering method that has the-
oretically proved to be effective (Xia et al., 2022) and suc-
cessfully ventured into diverse AI domains (Xie et al., 2023).
It employs granular balls of varying sizes to adaptively rep-
resent and envelop the sample space, facilitating learning

based on these granular balls. Therefore, GBR can the-
oretically fit arbitrary distributions and adaptively extend
sparse fine-grained distributions to coarse-grained distribu-
tions (Xia et al., 2023).

We first introduce the definition of the granular ball on
which GBR is based. Given a dataset D, GBj(j =
1, 2, ..., k)denotes a granular ball generated based on D,
with k representing the total number of granular balls. The
specific definition of granular ball is as follows: GBj =
{yi|i = 1, 2, ...,mj}, mj denotes the number of data
points contained in GBj . Center of the GBj is defined as
cj =

1
mj

∑mj
i=1 yi. And radius is uj = 1

mj

∑mj
i=1(|yi− cj |).

Based on the above definition. To achieve a multi-
granularity representation of data, GBR focuses on iter-
atively refining granular balls through a splitting process.:
❶ All data points are initial as one granular ball first. ❷
Then the granular balls that satisfy the conditions are split
into two GB (conditions are detailed below), and the refine-
ment process ends when all GB can no longer be split. ❸
Finally, GB are merged according to the overlap degree.

3. Method
In this section, we describe in detail how we construct a
general training framework to improve the cognitive gener-
alization ability of policies. We first introduce the overall
process of our framework in Section 3.1. In section 3.2,
self-supervised representation learning (i.e., Variational Au-
toencoder, VAE) and Granular Ball Representation (GBR)
methods are introduced into the framework. These compo-
nents contribute to an efficient practical algorithm called
Granular Ball Reinforcement Learning (GBRL). Notably, a
detailed explanation of why GBR is a better fit for our frame-
work compared to other clustering methods is provided in
Sec 3.2.2. For simplicity, we focus on actor-critic meth-
ods in the following exposition and adopt model-free DRL
algorithm DDPG (Lillicrap et al., 2015) for demonstration.

3.1. Framework

Our goal is to design a training framework for injecting
cognitive generalization into policies. By doing this, the
policies can be effectively deployed to complex scenarios
with the same task logic after reward-agnostic training. Re-
cent research of domain generalization assumes that the pre-
trained data set contains key features in a high-dimensional
space and successfully aligns these key features with the test
dataset (Wang & Deng, 2018). Drawing inspiration from
these works, our hypothesis is that the training scenario
encompasses essential features (i.e., state-action pairs) that
are relevant to the policy and can be extrapolated to the test
scenario. Taking maze as an example, the general maze
decision logic is to select a key action (e.g., turn, stop) at a
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key state (e.g., corner, encounter an obstacle) and find a path
to the goal (end state). These key state-action pairs remain
consistent across varying levels of complexity. Thus, the
knowledge that the policy learns about key state-action pairs
in simple scenarios can help it better make correct decisions
at key states in complex scenarios.

Based on the above premise, cognitive generalization of
DRL can be formally modeled as the following problem:
How to align complex scenario state-action pairs with sim-
ple scenario ones to help policies achieve generalization.
Consequently, we propose a two-stage process: Stage 1)
We first train a standard DRL policy in the simple scenario
and let the policy collect samples (state-action pairs) during
training to build cognitive latent space z. Particularly, ad-
jacent samples in z have similar environmental influences
(i.e., causing similar changes in the environment). Then
we employ an adaptive space segmentation method C() to
divide latent space z into subregions according to the sam-
ple distribution in z. Each subregion corresponds to a class
of samples, and samples of the same class can be aligned
with each other because they have similar environmental
influences. Stage 2) In the test scenario without reward
feedback, we deploy the policy trained in stage 1 and collect
samples for fine-tuning. When the jth sample is collected,
we encode it into z and get its latent variable zj , then use
the rewards and Q values of k known samples in the class
where zj resides to approximate value Q̂j and reward r̂j :

Q̂j =

k∑
i=1

Wi×Qi, r̂j =
∑k
i=1Wi×ri, (1)

k neighbors =
{
k nearest points in cli, if zj ∈ cli
k nearest points in space z, else ,

(2)

for accurately approximating, we use similarity weight
Wi = ζ(i)∑k

i=1 ζ(i)
, ζ(i) = 1 − |zj−zi|∑k

i=1 |zj−zi|
to balance the

influence of k neighbor. The effect of Wi is that samples
closer to zj have more influence on the approximation of
zj . Because the sample distance represents the similarity
of its impact on the environment, and samples with similar
environmental influences have similar Q values and rewards.
cli denotes the i-th class obtained after processing by C().
With Q̂ and r̂, the policy can be trained in the complex
scenario without reward feedback via TD-learning (Mnih
et al., 2013). Notably, if zj does not belong to any class, we
take the sample j as the center and select k closest samples
(analysis in Appendix D.2). Taking DDPG as an example,
after training in the simple scenario, DDPG continues to
optimize its policy in its own training way using Q̂ and r̂ in
the complex scenario:

LQ(θi) = Es,a,s′
[
(y −Qθ(s, a))

2
]

(3)

Where y = r̂ + γQ̂(s′, πτ̄ (s
′)), s′ is the next state and τ̄

denotes the target network parameters. r̂ and Q̂ calculated
by Eq.1 represent target Q and current reward. The actor is
updated according to the Deterministic Policy Gradient (Lil-
licrap et al., 2015):

∇τJ(τ) = Es
[
∇πτ (s)Qθ(s, πτ (s))∇τπτ (s)

]
(4)

3.2. Granular Ball Reinforcement Learning

3.2.1. BUILDING COGNITIVE LATENT SPACE VIA
ENVIRONMENTAL INFLUENCE-AWARE VAE

We use VAE’s representational ability to construct cognitive
latent spaces in simple scenarios. For an action a and corre-
sponding states s, our encoder qϕ(z|s, a) parameterized by
ϕ builds a cognitive latent space z, and maps state-action
paris (s, a) into the latent variable zs,a ∈ Rd1 (d1 denotes
the dimension of z). Decoder pψ(ŝ, â|z) parameterized by
ψ then reconstructs the state-action pairs (s, a) from z. We
summarize the encoding and decoding process:

Encoder :zs,a ∼ qϕ(·|a, s) ,∀ s, a ,
Decoder :ŝ, â = pψ(zs,a, s) ,∀ zs,a .

(5)

According to (Kingma & Welling, 2013), Variational Auto-
Encoder (VAE) can be optimized by maximizing the varia-
tional lower bound. The loss function of our VAE is LV AE :

LV AE(ϕ, ψ) = Es,a∼D⋆,z∼pψ
[
∥ŝ− s∥22 + ∥â− a∥22

+DKL

(
qϕ(·|s, a∥N(0, I)

)]
,

(6)

where D⋆ is the sample set collected by the policy in the
simple scenario. The first term is the reconstruction error
(i.e., mean square error, MSE), the last term is the Kullback
Leibler divergence DKL between the variational posterior
of latent representation z and the standard Gaussian prior.
By using the reparameterization trick (Kingma & Welling,
2013), ŝ, â is differentiable with respect to ψ and ϕ. For any
latent variables zs,a, they are decoded into s, a conveniently
by the VAE decoder.

To further meet the requirements set out in section 4.1, we
should make adjacent samples in z have similar environ-
mental influences. We make z capture the environmental
influences by predicting the environmental dynamics (state
transition residual): Decoder predicts the residual difference
between the state after the execution of a and the current
state s. hψ1

is a subnetwork followed the decoder. For
any transition sample (s, a), the state residual is denoted
by δs,s′ = s′ − s. pstate = hψ1 ◦ pψ. ◦ denotes the cas-
caded heads. We utilize cascaded heads because traditional
parallel heads, employed for both reconstruction and state
residual prediction, can interfere with optimizing individual
objectives and impede the learning of the shared representa-
tion (Azabou et al., 2021). The predictions δ̂s,s′ is produced
as:

δ̂s,s′ = pstate(zs,a) ∀ zs,a . (7)
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Then we apply an unsupervised learning loss based on envi-
ronmental dynamics prediction to refine the latent space and
make samples with similar environmental influences closer.
The benefits of dynamics predictive representation are also
demonstrated in (Whitney et al., 2019):

Ldy(ϕ, ψ, ψ1) = Es,a,s′
[
∥δ̂s,s′ − δs,s′∥

]
. (8)

Above all, the ultimate training loss for our representation
is denoted as follows:

L(ϕ, ψ, ψ1) = LV AE(ϕ, ψ) + βLdy(ϕ, ψ, ψ1) , (9)

where β is a hyper-parameter that controls the relative im-
portance of the Ldy and LV AE . L only depends on the
environmental dynamic data which is reward-agnostic (Er-
raqabi et al., 2021). Notably, VAE is periodically trained in
the test scenario in stage 2 to continuously refine the latent
space z. We use state transition as a measure of environmen-
tal influence for the following reasons: ❶ State transition
does not require a per-step reward, it can be used in non-
reward test scenarios. ❷ Evaluation of Q values in the early
stage of training is inaccurate. In contrast, state transition
is more reliable and accessible. ❸ The same reward or Q
value may correspond to different dynamic changes, but the
same environmental change has the same reward or Q value.

3.2.2. ADAPTIVELY SEGMENTING LATENT SPACE VIA
GRANULAR-BALL REPRESENTATION

In the previous section, we introduce the construction of
a general cognitive latent space z. Based on the inference
from section 3.1, samples in complex scenarios can also
be mapped to the space z. This section describes how to
segment cognitive latent space into subregions via GBR
and divide the samples in the complex scene into differ-
ent subregions. Intuitively, a simple method is to directly
align each new sample with its k nearest neighbors in the
latent space z. However, aligning solely based on nearest
neighbors, without considering the associated class, can
lead to inaccuracies. Specifically, data on the edge may
be negatively influenced by samples from different classes.
By segmenting the latent space and focusing on subregion-
specific neighbors, we mitigate the risk of such cross-class
errors, ensuring a more robust alignment.

Intuitively, an effective adaptive space segmentation method
should possess the following characteristics: ❶ adaptive
segmenting without the predefined number of classes, as
the classes of data cannot be known in advance. ❷ Unsu-
pervised clustering based on data distribution.❸ Clear class
boundary for space segmentation. Unfortunately, main-
stream clustering algorithms’ high dependence on prior
parameters (e.g. classes number) and inefficiency in deal-
ing with sparse distributions led us to explore alternative
approaches in practice (detailed experiments and analysis

in Appendix D.2). Meanwhile, the success of Granular
ball representation (GBR) in small dataset clustering has
attracted our attention (Xia et al., 2023). GBR divides cate-
gories by balls without prior knowledge, and the data in the
same ball is considered to belong to the same category. GBR
exhibits distinct class boundaries for effective space segmen-
tation, eliminating the necessity for specifying the number
of classes, thus aligning perfectly with our requirements.

Following the two steps that GBR clusters data in Euclidean
space (① Generation of GB ② Merging of GB ), we
use GBR to cluster data set D⋆ (collected from the simple
scenario) in the cognitive latent space z. We define GB
(granular ball) by its assigned data zi = qψ(si, ai), centroid
c and radius u. qψ(si, ai) indicates the encode of i-th state-
action pair in D⋆.

GB = {zsi,ai |i = 1, 2, ...,m}, (10)

c =
1

m

m∑
i=1

zi, u =
1

m

m∑
i=1

(|zi − c|), (11)

where m represents the number of data contained in GB.
Partitioning the subspaces is an iterative process: The whole
data setD⋆ is initialed as a granular ball first. Then the gran-
ular balls that satisfy the split conditions are split (conditions
described below). And the refinement process ends when
all granular balls can no longer be split which represents
the completion of the expansion of the data distribution. To
achieve an adaptive evaluation of whether GB satisfies the
split conditions, we use GBR’s original definition of DM
(Distribution Measure) which is computed by dividing the
number of data points by the sum of the radius u⋆ in a GB:

DM =
u⋆

m
, u⋆ =

1

m

m∑
i=1

ui, (12)

The principle of DM measuring the quality of the GB is:
If DMA > DMB , denotes A is sparser than B. DMA

and DMB denote the data distribution quality values for
granular ball A and granular ball B. See Appendix B.1 for
efficient proof.

Generation of GB. We initiate the iterative splitting pro-
cess by identifying the point z1 that is farthest from the
center cA of the initial granular ball A. Subsequently, we
proceed to locate the point z2, which is farthest from z1.
Next, we calculate the mid-point, ż1, between cA and z1,
as well as the mid-point, ż2, between cA and z2. These
mid-points are designated as the initial cluster centers. To
form two candidate granular balls, A1 and A2, we allo-
cate the remaining points to either ż1 or ż2 based on their
respective distances. Then, we used DM to adaptively de-
termine whether to split. The definition of the split threshold
DMweight is:

DMweight =
|A1|
|A|

DMA1
+

|A2|
|A|

DMA2
, (13)
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where |A|, |A1| and |A2| denote the number of data points
contained within the corresponding GB. If DMA >
DMweight, indicating that the volume of GBA is greater
than the weighted sum of the volumes of GBA1

and GBA2

based on the number of data points, GBA will divide into
GBA1

and GBA2
. See appendix B.2 for theoretical proof.

This splitting process proceeds iteratively.

To prevent excessive splitting of GB, we introduce the hy-
perparameter minimum capacity η. GB stops splitting when
its capacity < η after splitting. According to the above in-
teractive processing, numerous granular balls are obtained.
We gather all the generated GB into a set called GBS (the
granular-ball set): GBS = {GBi|i = 1, 2, ...,M}, where
M represents the number of GB contained in GBS.

Merging of GB. To achieve a multi-granularity represen-
tation, D⋆ is initially split to obtain a GBS, as illustrated
in Eq.10-13. However, unconstrained interactive splitting
leads to GBS redundancy (duplicate data coverage). There-
fore, the overlapping granular balls within GBS are merged
together to effectively represent the density distribution of
the dataset. This interactive process stops until the number
of GBS remains the same. Overlapping occurs when GBi
and GBj meet the following merging conditions:

ci − cj − (ui + uj) < ω,ω =
min(ui, uj)

min(xi, xj)
, (14)

where xi represents the cumulative value of the number of
overlaps with adjacent GB for GBi, respectively. Similarly,
xj is associated withGBj . The specific calculation rules for
ω can be understood as GBi and GBj are the cumulative
values of the overlapping times of the neighbor granular ball
as the adjustment coefficients of ω, which can dynamically
adjust the criterion that meets the adjacent rules. To prevent
the wrong differentiation of the granular balls, the larger the
cumulative value is, the stricter the standard that meets the
adjacent rules. Appendix E shows pseudocode of GBR.

Value approximation in the complex scenario. When
space segmentation is complete, policies are deployed in
complex scenarios for fine-tuning. We classify samples
collected from complex scenario via GBS, Eq.1 can be
rewritten as:

Q̂j =

k∑
i=1

Wi ×Qi, r̂j =

k∑
i=1

Wi × ri (15)

k neighbors =

{
nearest k ∈ GBi, if zj ∈ GBi
nearest k ∈ GBi,min

|zj−ci|
ui

otherwise
,

(16)

we use the “distance-radius ratio” min
|zj−ci|
ui

to rationally
select GB for zj . Compared to Euclidean distance, this
method prevents the sample from being mistakenly placed

into the small GB (the smaller the GB, the more special
the semantics). With GBRL, agents encode the samples of
the test scenario into z. Then evaluate the new sample Q̂
value and rewards r̂ according to Eq.15, and finally updates
policy according to Eq.3,Eq.4. Pseudo code 1 shows the
complete process.

Algorithm 1 GBRL-DDPG
Initialize: Actor πτ , critic networks Qθ,VAE
qϕ, pψ, replay buffer D and whole data set D⋆.

Stage 1 in simple scenario
t < maximum training time Fill D,D⋆ with data gen-
erated by πτ Update Qθ and πτ using samples in D.
Update qϕ, pψ using D⋆. Build space z.Eq.9 Use sam-
ples inD⋆ to construct granular ball setGBS in space
z.Eq.10-14

Stage 2 in complex scenario

Clear D. t < policy fine-tuning time at = πτ (st)
(with Gaussian noise) Execute at, observe new state
s′ at′ = πτ (st′), fill D,D⋆. zst′ ,at′ = qϕ(st′ , at′).
Determine the GBi to which zst′ ,at′ belongs. Get
Q̂(st′ , at′), r̂t′ .Eq.15 Sample from D, update Qθ and
πτ .Eq.3,4 reach unsupervised training time Update
qϕ, pψ using samples in D⋆, and rebuild GBS.

4. Experiments
We empirically evaluate GBRL to answer the following re-
search questions. (1) RQ1: Effectiveness. Can GBRL
achieve mainstream algorithms’ policies generalization
from simple scenarios to complex scenarios without com-
plex scenario reward feedback? When given reward feed-
back, does GBRL perform well compared to few-shot and
zero-shot methods? (2) RQ2: Cognitive latent space. Are
points with similar environmental influence typically lo-
cated close to each other in z, and can s improve the policy
fine-tuning? (3) RQ3: Adaptive sample classification.
Whether the GBR affects the training of the policy by adap-
tively classifying new samples into the correct class. For
more hyperparameter sensitivity analysis please refer to
Appendix ??, i.e., analyisis of the neighbour number k and
the effect of GB minimize capacity η on the policy.

4.1. Baselines

As far as we know, there are no specific methods for cogni-
tive generalization. Thus, we take the DRL methods trained
in complex scenarios and policies trained on simple scenar-
ios as the baselines to visualize the boost GBRL provides to
online DRL algorithms.

Further, we choose two types of methods that are similar

6
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Figure 3. Evaluation of GBRL combined with mainstream DRL algorithms (DDPG, TD3, PPO) in six test tasks. GBRL significantly
improves the performances of three DRL algorithms, and GBRL policies are equivalent to the policies trained on complex scenarios in
most scenarios. The results of ten runs of each algorithm are summarized as shown in the figure.

to our setting to show the advantage of Cognitive Genera-
tion: one popular method for zero-shot generalization (i.e.,
M2TD3 (Tanabe et al., 2022)) and two popular methods
for few-shot generalization (i.e. IDAAC (Raileanu & Fer-
gus, 2021) and ExpGen (Zisselman et al., 2024)). See Ap-
pendix C for detailed hyperparameter setting and practical
network architecture for GBRL.

• M2TD3 focuses on addressing the worst-case scenarios
under stochastic dynamics. It achieves generalization
on unknown scenarios with small differences.

• IDAAC is a SOTA few-shot method on ProcGen. It
decouples the optimization of the policy and value
function and introduces an auxiliary loss to ensure that
generic features are learned.

• ExpGen is a novel method that sets new SOTA re-
sults on ProcGen by training an additional ensemble of
agents that optimize reward.

4.2. Benchmarks

We evaluate methods on two open source benchmarks.
2DMAZE in D4RL (Fu et al., 2020) and seven environments
from the ProcGen (Cobbe et al., 2020) which is specifically
designed to measure generalization by introducing separate
test- and training levels. Each environment supports two
well-calibrated difficulty settings. In the 2DMAZE task, we

used two scenarios: medium and hard, policies are trained
on the medium scenario and tested on the hard scenario.
All ProcGen environments use a discrete 15 dimensional
action space and produce 64×64×3 RGB observations. To
ensure that the performance of the algorithm is not affected
by the image input, we define the background as black for
all tasks and uniformly use a pre-trained MLP to convert
the pixel input into a 128 dimension vector input. We use
ProcGen’s easy setup, so for each game, agents are trained
on an easy level and tested on the hard level. The task in
ProcGen poses a challenge for the vanilla mainstream DRL
methods. To ensure fair and clear comparisons, we intro-
duce a fair incentive mechanism for each scene based on the
original default reward function. Specifically, we increase
the reward for obstacle avoidance success and introduce
an exploration reward with a wieght of 0.1 to encouraging
exploration of key states (such as exits, hiding points, etc.)
to enable the baselines to learn effective policiess. See the
appendix C.4 for a detailed description of the environment.

4.3. Main results (RQ1)

We evaluate GBRL combined with the mainstream DRL
algorithm in six scenarios. We select PPO, TD3 and DDPG
as the backbones, and use policies that are directly trained
by corresponding algorithms in complex scenarios as the
measurement standard. To adapt PPO, GBRL converts the

7
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approximation of Q(s, a) to the approximation of V (s).
The training step in simple scenarios is 1e6 and in complex
ons is 5e6, D⋆ is 2e6. See the Appendix C.2 for detailed
hyperparameters. The results in Figure 3 show that GBRL
significantly improves the performance of all DRL algo-
rithms. When GBRL is used to train policies on simple
scenarios, the performance is significantly improved. GBRL
stimulates the potential of the policies after fine-tuning with-
out reward, making its performance comparable to that of
the ideal policies. In the Q-learning method, with the sup-
port of GBRL, DDPG performs better than the ideal DDPG
in half tasks. We analyzed that the reason is that GBRL
uses the average value of Q values of peripheral points to
approximate new samples, thereby solving the problem of
overestimation of Q values. TD3 adds a critic on the basis
of DDPG to prevent overestimation, so the gain of GBRL is
slightly smaller but also reaches the ideal setting level.

To show the advantage of cognitive generalization in single-
task complex scenario generalization, we relax the con-
straint and provide a reward function for complex scenarios
to make the few-shot method deploy effectively. GBRL is
compared with three SOTA generalized DRL algorithms
in seven ProcGen tasks. To ensure fairness, all methods
have the same number of fine-tuning steps, i.e. 3e5. Tab.1
confirms that GBRL outperforms baselines after the same
step of reward-agnostic fine-tuning.

Task M2TD3 IDAAC ExpGen GBRL-TD3

Ninja 5.05± 0.42 6.08± 0.11 6.13± 0.05 6.17± 0.06
Chaser 1.39± 0.02 3.16± 0.09 3.48± 0.19 3.25± 0.12
Heist 4.30± 0.71 4.69± 0.37 5.47± 0.49 5.63± 0.24
Leaper 2.75± 0.59 5.32 ±1.04 5.14± 0.57 5.24± 1.07
Miner 7.16± 2.11 10.47± 0.83 11.66± 2.74 12.38± 1.47
CaveFlyer 4.69± 0.91 5.87± 1.12 6.16± 0.28 6.13± 0.25
Dodgeball 3.63± 1.06 4.81± 0.29 5.49± 0.25 4.88± 0.13

Table 1. The evaluations of scores on six typical Generalization
tasks. GBRL outperforms on almost tasks. Average of 15 runs.

4.4. Evaluation of cognitive latent space (RQ2)

Vanilla VAE Our VAE

Figure 4. 2D t-SNE visualizations of learned representation, col-
ored by 1D t-SNE of the corresponding environmental impact.

To demonstrate that a high-quality latent space can be con-
structed using our VAE, we train vanilla VAE and our VAE
(with environmental influence regularization) following the
GBRL process on Miner-Hard scenario. Then, we adopt

t-SNE (van der Maaten & Hinton, 2008) to visualize the
learned cognitive latent spaces in a 2D plane. We color each
action based on its impact on the environment i.e., δs,s′ . Fig-
ure 4 shows that our VAE constructs a smoother and more
compact latent space, where points with similar impacts on
the environment are clustered in the latent space. Besides,

Task GBRL with Vanilla VAE GBRL with our VAE improvement

Heist 4.91± 0.18 5.41± 0.53 9.15%
Miner 9.36± 2.85 11.07± 2.97 18.27%
Dodgeball 4.09± 0.72 4.80± 0.41 17.36%
Ninja 5.08± 0.31 6.16± 0.11 21.26%
Leaper 4.15± 0.53 5.21± 1.03 25.54%
Chaser 2.35± 0.15 3.17± 0.08 34.89%

Table 2. Ablation experiments for the environment predicting reg-
ularization of VAE. Average of 3 runs.

results in Tab.2 show that GBRL with our VAE outperforms
GBRL with vanilla VAE by an average of > 20% on six
ProcGen tasks, which further proves the effectiveness of our
VAE in constructing cognitive latent space.

4.5. Evaluation of GBR (RQ3)

3.28

2.34
**

4.81

3.90
*

10.25

9.43
*

0 1 2 3 4 5 6 7 8 9 10 11

Chaser

Heist

Miner

with GBR

without GBR

Figure 5. Evaluation of GBR in three tasks by using TD3.

To show the effectiveness of GBR for sample classification,
we conduct experiments on three ProcGen tasks to compare
the effect of computing Q values only using k-neighbor
points in the latent space and computing Q values with the
assistance of GBR. The results in Figure 5 prove that with
GBR, policies perform better. We think this is because GBR
prevents samples from being affected by irrelevant points
by classifying samples into corresponding GB.

5. Conclusion
In this paper, we first observe that cognitive generalization
can help DRL algorithm achieve low-cost efficient policy
generalization from simple scenarios to complex scenar-
ios with the same task logic. And we propose a general
framework to unlock the cognitive generalization of DRL
algorithm by constructing a general cognitive latent space.
Further, an effective practical method, i.e. GBRL, is pro-
vided with the help of GBR and VAE. GBRL achieves SOTA
performance on most tasks through reward-agnostic gener-

8



Unlock the Cognitive Generalization of Deep Reinforcement Learning via Granular Ball Representation

alization training.
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the following implications:

① This paper is the first to discuss cognitive generalization
in the reinforcement learning community and proposes that
improving the cognitive generalization ability of reinforce-
ment learning algorithms is helpful in realizing low-cost
policy generalization from simple scenarios to complex sce-
narios. In the future, with the development of the cognitive
generalization ability of reinforcement learning, a new sim-
to-real framework may be formed, which will have a positive
impact on the fields of automatic driving, game agent control
and robot control to reduce the cost of scenario modeling
and reward system design.

② In addition, we provide a general framework for enhanc-
ing DRL methods’ cognitive generalization, which provides
the possibility to explore this emerging field.

③ Our framework introduces a novel clustering algorithm
(GBR) into reinforcement learning and extends policy learn-
ing ability by combining GBR with standard DRL algo-
rithms. This may lead to better communication between the
machine learning community and the reinforcement learn-
ing community. Inspire researchers to use the advantages of
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A. Related Work
A.1. Zero-shot Generalization Reinforcement Learning

Zero-shot Generalization Reinforcement Learning assumes that expecting the agent to learn an optimized policy without
sampling data from test environments. In such cases, simulators are used to ensure robustness (Morimoto & Doya, 2005) to
guarantee a certain level of performance without sampling from the real system. The most straightforward way is domain
randomization (Mordatch et al., 2015) where relevant parts of the simulator are randomized to make it resilient to changes.
Another line of work focuses on addressing the worst-case scenarios under stochastic simulator dynamics (Abdullah et al.,
2019a). Robustness can also be achieved w.r.t. actions (Abdullah et al., 2019b), that arise when certain controllers become
unavailable in the real environment. Due to the set limitations, this class of methods is mainly applied to tasks such as
sim2real where the training and testing scenarios are extremely similar but there are some parameter differences (e.g.,
background, external forces). They do not focus on cognitive generalization which is committed to improving policy
generalization between scenarios with large difficulty gaps (i.e. obvious difficulty differences caused by larger maps with
more branches).

A.2. Few-shot Generalization Reinforcement Learning

Few-shot Generalization Reinforcement Learning allows fine-tuning of the pre-trained agent with a limited of steps in the
complete test scenarios. two orthogonal approaches have been developed to achieve generalization. The first approach called
domain adaptation (Eysenbach et al., 2020) is more related to our work. These methods first assume the agent’s experience
in the source domain should look similar to its experience in the target domain. They learn two classifiers to distinguish
transitions between the simulated and test environments and incorporate them into the reward function to account for the
dynamics shift. However, most of these methods require the reward function of the test scenario to train effectively. Some
even require cross-task knowledge as a guide. By contrast, cognitive generalization can improve policy generalization in
single-task by reward-agnostic training.

The second approach is to achieve the stability of the policy in different scenarios training by optimizing the framework of
the DRL algorithm. Such as, IDAAC (Raileanu & Fergus, 2021) decouples the optimization of the policy and value function
and introduces an auxiliary loss to prevent overfitting when training across tasks which can ensure that generic features are
learned. ITER (Igl et al., 2020) achieves stability of policies trained on different scenarios via knowledge distillation. Most
of these methods focus on addressing policy generalization under image input differences rather than the generalization of
task difficulty perspective.

B. Supplementary Proof
B.1. Proof 1

Definition 1 (DM ). DM is computed by dividing the number of data points by the sum of the radius s in a GB. The
definition of DM is as follows:

u⋆ =

m∑
i=1

|zi − c|, DM =
u⋆

m
. (17)

Lemma 1. Let DMA and DMB denote the data distribution quality values for granular ball A and granular ball B,
respectively, each containing m data points. If DMA > DMB , then A is sparser than B.

Proof. Let σ = 1
m

∑m
i=1 |xi − c| denotes the mean radii for each granular ball. According to Eq.17, DM is actually the

mean radii for each granular ball. Let σA and B denote the mean radii ofA andB respectively. So, based onDMA > DMB ,
we have σA > σB . For A, if a data point is located at a distance greater than σA from the center of the ball, it is considered
sparse. Since A has a larger average radius, more data points are expected to be located farther away from the center,
leading to a sparser data distribution. Therefore, in the case of equal data points, a higher DM value indicates a sparser data
distribution in the granular ball. From Lemma 1, it can be observed that the DM value can effectively measure the sparsity
level of the data distribution within a granular ball.
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B.2. Proof 2

Definition 2 (Weighted DM value). The definition of DMweight is as follows:

DMweight =
A1

A
DMA1

+
|A2|
A

DMA2
, (18)

where |A|, |A1| and A2 denote the number of data points contained within the corresponding granular-balls. If DMA is
greater than DMweight, A will divide into A1 and A2.

Lemma 2. If DMA > DMweight, the volume of granular ball A is greater than the weighted sum of the volumes of
granular ball A1 and granular ball A2 based on the number of data points.

Proof. Let’s consider a d-dimensional granular ball A, A1 and A2 with mean radii σA, σA1 and σA2 respectively. |A|, |A1|,
and |A2| represent the respective number of data points in each granular ball. V (A) and [V (A1)+ V (A2)] weight represent
the volume of A and the weighted volumes of A1 and A2, respectively. is the gamma function.

We have:|A| = |A1|+ |A2|andDMA > DMweight (19)

⇒ |DMA| >
|A1|
A

DMA1
+
A2

A
DMA2

(20)

⇒ σA >
A1

A
σA1

+
A2

A
σA2

(21)

⇒ σdA >
A1

A
∗ σdA1

+
A2

A
∗ σdA2

. (22)

(23)

We have:V (A) =
π
d
2 ∗ σdA

(d2 + 1)
and [V (A1) + V (A2)]weight (24)

=
|A1|
|A2|

∗ V (A1) +
|A2|
|A|

∗ V (A2) (25)

=
|A1|
|A2|

∗ π
d
2 ∗ σdA

(d2 + 1)
+

|A2|
|A|

∗ V (A2)(
d

2
+ 1) (26)

= πd/2 ∗ (
|A1|
A

∗ σdA1
+

|A2|
|A|

∗ σdA2
∗ σdA2

)/(
d

2
+ 1) (27)

⇒ V (A)− [V (A1) + V (A2)]weight. (28)

= π
d
2 ∗ (σdA − A1

A
∗ σdA1

− A2

A
∗ σdA2

)/(
d

2
+ 1) (29)

= (σdA − A1

A
∗ σdA1

) > 0. (30)

Therefore, the numerator in the above equation is positive. Furthermore, since all the values involved are positive, we can
see that the denominator (d2 + 1) is positive as well. Hence V (A)[V (A1) + V (A2)]weight is positive, implying that the
volume of A is greater than the weighted sum of the volumes of A1 and A2 based on the number of data points.

From Lemma 2, it can be seen that splitting can reduce the amount of blank space within a granular ball, thereby providing a
better characterization of the dataset.

C. Experimental Details
C.1. Network Structure

Our codes are implemented with Python 3.7.9 and Torch 1.7.1. All experiments were run on a single NVIDIA GeForce GTX
2080Ti GPU. Each single training trial ranges from 4 hours to 17 hours, depending on the algorithms and environments. Our
TD3 is implemented with reference to github.com/sfujim/TD3 (TD3 source-code). DDPG and PPO are implemented
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Layer Actor Network Critic Network

Fully Connected (state dim, 256) (statedim + η dim + latent space dim, 128)
Activation ReLU ReLU

Fully Connected (256, 128) (256, 128)
Activation ReLU ReLU

Fully Connected (128,action dim) (128, 1)
Activation Tanh None

Table 3. Network Structures for DRL Methods

with reference to https://github.com/sweetice/Deep-reinforcement-learning-with-pytorch.
For a fair comparison, all the baseline methods have the same network structure (except for the specific components
of each algorithm) as our MARS-TD3 implementation. As shown in Tab.3, we use a two-layer feed-forward neural network

Model Component layer dimension

9*Conditional Encoder Network Fully Connected (encoding) (Rx, 256)
Fully Connected (256, 256)

Activation ReLU
Fully Connected (mean) (256, latent space dim)

Activation None
Fully Connected (log std) (256, latent space dim)

Activation None
11*Conditional Decoder, Prediction Network Fully Connected (latent) (latent space dim, 256)

Fully Connected (256, 256)
Activation ReLU

Fully Connected (reconstruction) (256, action dim)
Fully Connected (reconstruction) (256, state dim)

Activation None
Fully Connected (256, 256)

Activation ReLU
Fully Connected (prediction) (256, state dim)

Activation None

Table 4. Network structures for the Multi-step action representation (MARS).

of 256 and 256 hidden units with ReLU activation (except for the output layer) for the actor network for all algorithms. For
DDPG the critic denotes the Q-network. For PPO, the critic denotes the V-network. All algorithms (TD3, DDPG, PPO)
output two heads at the last layer of the actor network, one for latent action and another for dynamic transition potential.

The structure of our VAE is shown in Tab.4. We use element-wise product operation (Mnih et al., 2013) and cascaded head
structure (Kaufmann et al., 2023) to our model.

C.2. Hyperparameter

For all experiments, we use the raw state and reward from the environment, and no normalization or scaling is used. No
regularization is used for the actor and the critic in all algorithms. An exploration noise sampled from N(0, 0.1) (Kirk
et al., 2023) is added to all baseline methods when selecting an action. The discounted factor is 0.99 and we use Adam
Optimizer (Lake & Baroni, 2023) for all algorithms. Tab.5 shows the common hyperparameters of algorithms used in all our
experiments.

Hyperparameter TD3-frameskip TD3-advance MARS-PPO MARS-TD3 MARS-DDPG

Actor Learning Rate 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4

Critic Learning Rate 1e−3 1e−3 1e−3 3e−4 3e−4 1e−3

Representation Model Learning Rate None None None 1e−4 5e−3 5e−3

Discount Factor 0.99 0.99 0.99 0.99 0.99 0.99
Batch Size 128 128 128 128 128 128
Buffer Size 1e5 1e5 1e5 1e5 1e5 1e5

Table 5. A comparison of common hyperparameter choices of algorithms. We use ‘None’ to denote the ‘not applicable’ situation.
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However, GBRL relies on GBR clustering, which results in the need to tune GBR hyperparameters on different tasks to
ensure policy performance. Tab.6 presents the minimum number of samples η within a GB and the maximum number of
neighbors k that we used for different tasks.

Hyperparameter 2dMAZE Ninja Chaser Heist Dodgeball Leaper CaveFlyer Miner

η 10 25 10 15 30 25 10 10
k 5 10 5 5 8 5 8 8

Table 6. A comparison of common hyperparameter choices of algorithms. We use ‘None’ to denote the ‘not applicable’ situation.

C.3. Additional Implementation Details

For PPO, the actor network and the critic network are updated every 2 and 10 episodes respectively for all environments.
The clip range of the PPO algorithm is set to 0.2 and we use GAE (Slaoui et al., 2019) for a stable policy gradient. For
DDPG, the actor network and the critic network is updated at every 1 environment step. For TD3, the critic network is
updated every 1 environment step and the actor network is updated every 2 environment steps.

The default latent action dim for 2dMAZE is 5, and the latent action dim for ProcGen is 15, We set the KL weight in
representation loss LV AE as 0.5. Environment dynamic prediction loss weight β is 5 (default).

C.4. Environments

In this paper, we use two open source Benchmarks. 2DMAZE in D4RL (website:https://github.com/
Farama-Foundation/D4RL) and seven environments from the ProcGen (detailed description can be seen in
https://github.com/openai/ProcGen) which is specifically designed to measure generalization by introducing
separate test- and training levels. Each environment supports two well-calibrated difficulty settings: easy and hard. Agents
are trained on an easy level and tested on a hard level. See Figure 6 for a brief description of the task.

Training

Testing

MAZEDodgeballCaveflyer Ninja

Figure 6. Brief description of the training and testing task.
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• 2DMAZE. We use 2DMAZE-medium for training and 2DMAZE-Hard for testing. The difference between the two
maps is that the difficult scenario map is larger, has more branches, and the strategy needs more steps to reach
the target.

• Caveflyer. The player must navigate a network of caves to reach the exit. The player movement mimics the Atari game
“Asteroids”: the ship can rotate and travel forward or backward along the current axis. The majority of the reward
comes from successfully reaching the end of the level, though additional reward can be collected by destroying target
objects along the way with the ship’s lasers. There are stationary and moving lethal obstacles throughout the level. The
difference between the two maps is that the difficult scenario map is larger, and has more lethal obstacles.

• Chaser. Inspired by the Atari game “MsPacman”. Maze layouts are generated using Kruskal’s algorithm, and then
walls are removed until no dead-ends remain in the maze. The player must collect all the green orbs. 3 large stars spawn
that will make enemies vulnerable for a short time when collected. A collision with an enemy that isn’t vulnerable
results in the player’s death. When a vulnerable enemy is eaten, an egg spawns somewhere on the map that will hatch
into a new enemy after a short time, keeping the total number of enemies constant. The player receives a small reward
for collecting each orb and a large reward for completing the level. The difference between the two maps is that the
difficult scenario map has more enemies.

• Dodgeball. Loosely inspired by the Atari game “Berzerk”. The player spawns in a room with a random configuration
of walls and enemies. Touching a wall loses the game and ends the episode. The player moves relatively slowly and
can navigate throughout the room. There are enemies that also move slowly and which will occasionally throw balls at
the player. The player can also throw balls, but only in the direction they are facing. If all enemies are hit, the player
can move to the unlocked platform and earn a significant level completion bonus. The difference between the two
maps is that the difficult scenario map has more enemies and branches.

• Heist. The player must steal the gem hidden behind a network of locks. Each lock comes in one of three colors, and the
necessary keys to open these locks are scattered throughout the level. The level layout takes the form of a maze, again
generated by Kruskal’s algorithm. Once the player collects a key of a certain color, the player may open the lock of
that color. All keys in the player’s possession are shown in the top right corner of the screen. The difference between
the two maps is that the difficult scenario map has more doors and keys to collect.

• Miner. Inspired by the classic game “BoulderDash”. The player, a robot, can dig through dirt to move throughout the
world. The world has gravity, and dirt supports boulders and diamonds. Boulders and diamonds will fall through free
space and roll off each other. If a boulder or a diamond falls on the player, the game is over. The goal is to collect
all the diamonds in the level and then proceed through the exit. The player receives a small reward for collecting a
diamond and a larger reward for completing the level. The difference between the two maps is that the difficult
scenario map is larger and has more branches.

• Ninja. A simple platformer. The player, a ninja, must jump across narrow ledges while avoiding bomb obstacles. The
player can toss throwing stars at several angles in order to clear bombs, if necessary. The player’s jump can be charged
over several timesteps to increase its effect. The player receives a reward for collecting the mushroom at the end of the
level, at which point the episode terminates. The difference between the two maps is that the difficult scenario map
is larger and has more bomb obstacles.
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D. Additional Experiments
D.1. Additional Experiments for RQ2

To prove the generality of VAE for different difficulty scenarios, we randomly collect 50 samples from Three tasks (each
one has easy and hard map) as the input of the trained VAE, to see whether our VAE can correctly reconstruct the samples.
Results in Tab.7 show that our VAE achieves > 82% reconstruction accuracy for all tasks.

Task Easy Hard Average

Chaser 85.2% 80.1% 82.65%
Heist 84.6% 87.4% 86.00%
Miner 82.7% 86.9% 84.80%

Table 7. The evaluations of reconstruction accuracy.

D.2. Experiments and Analysis for Cascaded Prediction Module

Our structure choice of cascaded prediction head is inspired by MYOW (Azabou et al., 2021). The reason behind this is
that dynamics prediction could be more complex than continuous action reconstruction, thus usual parallel heads for both
reconstruction and the state residual prediction followed by the same latent features may have interference in optimizing
individual objectives and hinder the learning of the shared representation.

We carry out comparative experiments to examine how cascaded and parallel prediction (usually used) affect latent space
construction without altering other elements. We test these two architectures on three ProcGen environments and note the
policy (DDPG)scores in Tables 8.

Task Ninja Chaser Heist

VAE with cascaded prediction 6.11± 0.16 3.09± 0.13 5.27± 0.08
VAE with parallelized prediction 5.85± 0.32 2.93± 0.08 4.15± 0.11

Table 8. Performance of DDPG (average of 5 runs).

Furthermore, we employ t-SNE to visualize the latent spaces created by two VAE architectures from Chaser, the result
shows cascaded prediction can build a semantically smoother latent space. Please click this anonymous link https:
//anonymous.4open.science/r/ICML_reviewer_2-48E8/VAE_arch.png.

D.3. Experiments and Analysis for clustering algorithms

Task Ninja Chaser Heist

GBR 6.16± 0.11 3.27± 0.08 3.27± 0.08
K-means 5.22± 0.43 2.86± 0.31 2.71± 0.25
DBSCAN 5.79± 0.26 2.53± 0.28 3.04± 0.11
DPC 4.82± 0.51 2.61± 0.41 3.10± 0.14

Table 9. The evaluations of cluster methods (average of 5 runs).

Specifically, there are two defects between these methods and GBR, which lead to their poor performances on our tasks:
(1) The number of classes and other complex hyper-parameters (e.g., neighborhood radius, cut-off distance) need to be
artificially defined in advance to ensure the efficiencies of the algorithms. However, these prior parameters are difficult to
obtain or predict in the latent space due to the fuzziness of the dynamic semantics of samples in the environment. Besides,
it is hard to accurately judge the number of sample classes in an unseen scenario. (2) While the granularity of previous
clustering methods is relatively single, GBR can adaptively generate different sizes of balls to fit the multi-modal distribution
and construct a better cognitive latent space.
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To further analyze the effectiveness of GBR in our framework, we select three popular clustering algorithms as baselines,
i.e. K-means (Hu et al., 2023), DBSCAN (Ester et al., 1996), and DPC (Amagata & Hara, 2021). We evaluate GBR and
three SOTA baselines in three scenarios. To make a comprehensive comparison of methods, we evaluate the performance of
policies and the convergence speed in complex scenes. To ensure a fair comparison, we use the optimal hyperparameter
setting (determined by grid search) for all baselines and uniformly use DDPG as the policy. The architecture remains the
same except for cluster methods. We ensure that all methods training is completed.

Table.9 shows that GBR outperforms the other baselines by 15% on average on the three ProcGen tasks.
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E. Pseudocode of GBR

Algorithm 2 Generation of Granular Balls
Input D⋆ Output GBS Initialize GBS = {} Firstly, we consider the entire D⋆ as a GB, push GB into GBS; true GBi
in GBS calculate DMGBi and DMweight according to Eq.10-13 DMweight ≥ DMGBiSplit GBi the number of GB is
not changingbreak Return GBS

Algorithm 3 Merging of Granular-Balls
Get GBS from Alg.2 true GBi and GBj (i ̸= j) in GBS Determine whether GBi and GBj overlap according to Eq.14
GBi and GBj overlapReplace them with GBi ∩GBj the number of GB in GBS remains the samebreak Return GBS
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