
PAPM: A Physics-aware Proxy Model for Process Systems

Pengwei Liu 1 Zhongkai Hao 2 Xingyu Ren 1 Hangjie Yuan 1 Jiayang Ren 3 Dong Ni 1

Abstract
In the context of proxy modeling for process sys-
tems, traditional data-driven deep learning ap-
proaches frequently encounter significant chal-
lenges, such as substantial training costs induced
by large amounts of data, and limited general-
ization capabilities. As a promising alternative,
physics-aware models incorporate partial physics
knowledge to ameliorate these challenges. Al-
though demonstrating efficacy, they fall short
in terms of exploration depth and universality.
To address these shortcomings, we introduce a
physics-aware proxy model (PAPM) that fully
incorporates partial prior physics of process sys-
tems, which includes multiple input conditions
and the general form of conservation relations,
resulting in better out-of-sample generalization.
Additionally, PAPM contains a holistic temporal-
spatial stepping module for flexible adaptation
across various process systems. Through system-
atic comparisons with state-of-the-art pure data-
driven and physics-aware models across five two-
dimensional benchmarks in nine generalization
tasks, PAPM notably achieves an average per-
formance improvement of 6.7%, while requiring
fewer FLOPs, and just 1% of the parameters com-
pared to the prior leading method.

1. Introduction
From molecular dynamics to turbulent flows, process sys-
tems are essential in numerous scientific and engineering
domains (Cameron & Hangos, 2001). Computational mod-
eling and simulation are crucial for understanding their com-
plex temporal-spatial dynamics, enabling precise predic-
tions and informed decisions across various fields. However,
these valuable insights are provided by traditional numeri-

1Zhejiang University, Hangzhou, Zhejiang, China 2Tsinghua
University, Beijing, China 3University of British Columbia,
Vancouver, BC, Canada. Correspondence to: Dong Ni
<dni@zju.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

cal simulations, which are often computationally intensive,
especially in scenarios necessitating frequent model queries
like reverse engineering forward simulation (Dijkstra &
Luijten, 2021) and optimization design (Gramacy, 2020).
Recent advancements in data-driven methods have paved the
way to tackle computational challenges more effectively (Lu
et al., 2019; Li et al., 2020; Kochkov et al., 2021; Stachen-
feld et al., 2021; Hao et al., 2023b). As shown in Fig. 1
(left), these methods input multiple conditions of process
systems to output time-dependent solutions, serving as the
proxy model for process systems. Through adopting a su-
pervised learning-from-data paradigm, remarkable advance-
ments in calculation speeds have been achieved—several
orders of magnitude faster than traditional numerical simu-
lations. This has led to significant savings in computational
costs. While data-driven methods are powerful, they face
two primary limitations: 1) a dependence on extensive la-
beled datasets, which contrasts sharply with the high com-
putational costs of numerical simulations, and 2) a presump-
tion of train-test uniformity that leads to poor generalization,
especially in out-of-sample scenarios like time extrapola-
tion. This poor generalization arises from an overemphasis
on the inductive biases of network architectures based on
labels, rather than a strict adherence to fundamental physical
laws (Li et al., 2021; Brandstetter et al., 2022).

To ameliorate high training costs and limited generalizabil-
ity, a more promising strategy, known as physics-informed
deep learning (PIDL), involves prior knowledge, such as fun-
damental physical laws, into neural networks (NNs). This
integration enhances the sample efficiency and generaliz-
ability of NNs, proving particularly vital in scenarios with
limited labeled data (Li et al., 2021; Hao et al., 2022; Meng
et al., 2022; Cuomo et al., 2022). One of the typical meth-
ods considers complete physical laws as the loss function
of NNs to construct proxy models, such as PINNs (Raissi
et al., 2019) for specific conditions, PI-DeepONet (Wang
et al., 2021), and PINO (Li et al., 2021) for multiple sets of
conditions. However, the real-world applicability of these
methods is limited by an incomplete understanding of the
underlying physics of specific process systems, making it
challenging to derive complete physics laws.

Another common approach, termed as “physics-aware”
models, offers a promising solution for this scenario by
incorporating partial prior knowledge alongside a small

1

PAPM: A Physics-aware Proxy Model for Process Systems

Boundary conditions

𝛼𝑼 𝑡; 𝑥, 𝑦 + 𝛽
𝜕𝑼
𝜕𝒏 = 𝑓(𝑡; 𝑥, 𝑦)

Initial conditionsCoefficients

External sources

𝑥D
en

sit
y

𝑡En
er

gy

Time

Conditions

Test

Time extrapolation

𝑼!"#

𝑼!"$

𝑼!"%

𝑼!"$&'

Structure-preserved spatial operation

𝜕𝑼
𝜕𝑡

= −∇ ' 𝑱(+ 𝑱) + 𝒒 + 𝑭

Temporal operation

-

+

𝜕𝑼#
𝜕𝑡

Train

𝑼!"$ 𝑼!"$&'

ODE solver

𝑼!"%

𝑼!"#!

Solution

𝑼0

Temporal-spatial stepping module

Figure 1. Overview of the PAPM’s pipeline. The model takes the multiple conditions of process systems for time extrapolation and
outputs solutions at an arbitrary time point. The core is the temporal-spatial stepping module (TSSM) (U t=i → U t=i+1). Spatially,
a structure-preserved operation aligns with the specific equation characteristics of different process systems. Temporally, it utilizes a
continuous-time modeling framework through an ODE solver.

amount of labeled data. Considering the relationship be-
tween equations and their numerical schemes, the physics-
aware methods convert partial prior physics laws into the
corresponding numerical schemes, and embeddings them
into the network structure (Long et al., 2018; Seo et al.,
2020; Huang et al., 2023b; Akhare et al., 2023; Rao et al.,
2023; Huang et al., 2023a; Kochkov et al., 2023; Pestourie
et al., 2023; Liu et al., 2024). With these partial prior physics
laws, physics-aware models only need a small number of
labels to obtain excellent out-of-sample generalization per-
formance. However, these methods focus primarily on spa-
tial derivatives, and often neglect integral aspects such as
conservation laws and constitutive relations. Consequently,
they do not fully leverage prior physics knowledge, leading
to unreliable solutions. Besides, these methods are gen-
erally tailored for a specific process system with limited
universality.

Recognizing that process system modeling often requires
the incorporation of conservation relations grounded in dif-
fusion, convection, and source flows, this work aims to inte-
grate this general physics law into the network architecture.
By reinforcing the inductive biases in this manner, we can
achieve better out-of-sample generalization. Additionally,
as different process systems correspond to specific conser-
vation or constitutive equations based on inherent system
characteristics (Cameron & Hangos, 2001; Takamoto et al.,
2022; Hao et al., 2023a), it is beneficial to identify both
similarities and differences among process systems. Such
an approach can offer a general temporal-spatial stepping
module to combine various process systems flexibly.

As illustrated in Fig. 1, we propose a physics-aware proxy
model (PAPM) for process systems, which incorporates
multiple conditions to output solutions at arbitrary time
points. PAPM fully utilizes partial prior knowledge, in-
cluding multiple conditions, and the general form of con-
servation relations, alongside a small amount of label data,
to model the dynamics of systems through the proposed
temporal-spatial stepping module (U t=i → U t=i+1). No-
tably, PAPM leverages the direction of data flow based on
this general form, a distinction often overlooked by other
physics-aware methods. Furthermore, PAPM focuses on
out-of-sample scenarios, such as time extrapolation, align-
ing with the capabilities of alternative methods.

The core contributions of this work are:

• The proposal of PAPM, a versatile physics-aware architec-
ture design that fully incorporates partial prior knowledge
such as multiple conditions, and the general form of con-
servation relations. This design proves to be superior in
both training efficiency and out-of-sample generalizabil-
ity.

• The introduction of a holistic temporal-spatial stepping
module (TSSM) for flexible adaptation across various pro-
cess systems. It aligns with the distinct equation character-
istics of different process systems by employing stepping
schemes via temporal and spatial operations, whether in
physical or spectral space.

• A systematic evaluation of state-of-the-art pure data-
driven models alongside physics-aware models, spanning
five two-dimensional non-trivial benchmarks. Notably,

2

PAPM: A Physics-aware Proxy Model for Process Systems

PAPM achieved an average absolute performance boost
of 6.7% with fewer FLOPs and only 1%-10% of the pa-
rameters compared to alternative methods.

2. Related Work
Pure Data-driven Method. There are various neural net-
work designs, where CNNs (Yu et al., 2017; Bhatnagar
et al., 2019; Stachenfeld et al., 2021) and GNNs (Sanchez-
Gonzalez et al., 2020; Li & Farimani, 2022) target spatial
dynamics within mesh grids, while RNN (Kochkov et al.,
2021) and LSTM (Shi et al., 2015; Zhang et al., 2020) focus
on temporal progression. Another line is the neural operator,
excelling in mapping between temporal-spatial functional
spaces, demonstrating success across various PDEs. Fourier
neural operator (FNO) (Li et al., 2020) learns the opera-
tor by harnessing the spectral domain alongside the Fast
Fourier Transform. DeepONet (Lu et al., 2019) approx-
imates various nonlinear operators by leveraging branch
and trunk networks for input functions and query points.
Building upon this, MIONet (Jin et al., 2022) addresses the
challenges of multiple input functions within the DeepONet
framework. Moreover, U-FNets (Gupta & Brandstetter,
2022) and convolutional neural operators (CNO) (Raonić
et al., 2023) are modified U-Net (Ronneberger et al., 2015)
variants, where the former replace U-Net’s layers by FNO’s
Fourier blocks, and the latter replace them by predefined
convolutional block.

Physics-aware Method. Contrary to the method of inte-
grating complete physics knowledge into its loss function,
the physics-aware method only leverages labels while ex-
plicitly incorporating either entire or partial mechanistic
knowledge into the network architecture. Inspired by the
finite volume method, FINN (Karlbauer et al., 2022) inno-
vatively employs flux and state kernels for modeling com-
ponents of advection-diffusion equations in each volume,
which is one class of process systems, and has an explicit
form. Since FINN is conducted for each volume, FINN is
computationally inefficient in the whole spatial region. PiN-
Diff (Akhare et al., 2023), PeRCNN (Rao et al., 2023), and
PPNN (Liu et al., 2024) are inspired by the finite difference
method. PiNDiff (Akhare et al., 2023) and NeuralGCM
(Kochkov et al., 2023) integrate partial physics knowledge
into the NN block for forecasting the systems’ future states,
ensuring mathematical integrity via differentiable program-
ming. PeRCNN (Rao et al., 2023) employs convolutional
operations to approximate unknown nonlinear terms for
reaction-diffusion systems while incorporating known terms
through difference schemes. PPNN (Liu et al., 2024) bakes
prior-knowledge terms from low-resolution data, estimates
unknown parts with the trainable network, and uses the Eu-
ler time-stepping difference scheme to form a regression
model for updating states.

Learned correction methods. As highlighted in (Rack-
auckas et al., 2020; Um et al., 2020; Dresdner et al., 2022;
Sun et al., 2023; McGreivy & Hakim, 2023), the core idea of
learned correction methods is to approximate the known part
with specific fixed modules (such as numerical methods)
and approximate the unknown part with a neural network,
which often yields superior results compared to fully learned
approaches. However, the current learned correction meth-
ods typically rely on known equations and are optimized
for specific conditions, which is somewhat different from
our model’s broader objective of generalizing across various
conditions and conservation relations. The second differ-
ence between our work and the mentioned literature lies
in the precision of the known parts. Specifically, PAPM
only knows that the different terms in the equation adhere
to the general form of conservation relations, without exact
knowledge of each term’s specific composition. In contrast,
the literature deals with cases where the known parts are
precise.

3. Preliminaries
This section presents the foundational description of process
systems, known as the process model. Additionally, further
clarification is provided on the specific problem in this work.

Process Model. Pivotal in engineering disciplines, process
models represent and predict the dynamics of diverse pro-
cess systems. This model’s mathematical foundation relies
on two essential sets of equations: conservation equations,
governing the dynamic behavior of fundamental quantities,
and constitutive equations, which describe the interactions
among different variables. Further details are provided in
Appendix B.

Eq. 1 and Eq. 2 represent the universal conservation and
constitutive equations, respectively.

∂U t

∂t
= −∇ · (JC + JD) + q + F

JC = U t · v, JD = −D · ∇U t
(1)

{
v = v(U t), D = λ,

q = hO(U
t), F = hF (XF)

(2)

where U is the physical quantity, denoting the system’s
state. Eq. 1 comprises four essential elements: the diffusion
flows JD, convection flows JC , the internal source q, and
the external source F . In Eq. 2, v denotes the velocity of
the physical quantity being transmitted, D is the diffusion
coefficient, λ denotes the coefficients, and XF is the input
of the external source term. Here, the corresponding linear
or nonlinear mapping is the v, hO, and hF .

The structure of PAPM is depicted in Fig. 2 at time t (U t →
U t+1). Our goal is to use partial prior knowledge (the
general form of Eq. 1) and a small amount of label data to

3

PAPM: A Physics-aware Proxy Model for Process Systems

𝑼!State

𝑼"𝒕

𝑼"!

Add virtual
boundary

Embedding BCs

𝑡Input 	𝝀 	𝑼#

CFDF

	𝛁

×

−𝝀𝑼"!

𝑱𝑫

	𝛁

∇) 𝑱𝑫

𝑼"!

𝑱𝑪

∇) 𝑱𝑪

	𝜐

𝑼"!
IST

		ℎ! 		ℎ"

EST

×

	𝛁

𝑼"! 𝑿𝑭

	𝑿𝑭

𝜕𝑼"𝒕	
𝜕𝑡

𝒒 𝑭

𝛼𝑼 𝑡; 𝑥, 𝑦 + 𝛽
𝜕𝑼
𝜕𝒏

= 𝑓(𝑡; 𝑥, 𝑦)

Boundary conditions

Interior
Padding

	𝑼𝒕'𝟏State

- +

ODE solver

Figure 2. A detailed structure of PAPM at time t. Here, v, hO ,
and hF are the corresponding unknown mapping, and the neural
networks are needed for learning. We propose a temporal-spatial
stepping module (TSSM) for DF, CF, IST, and EST in section 4.2,
which aligns with the distinct equation characteristics of different
process systems.

establish a proxy model, which takes these various input
conditions and outputs system time-dependent solutions
({U t}1≤t≤T), as shown in Fig 1. Notably, the general form
of Eq. 1 is only known, which is also the data flow, while
the specific item is unknown, such as the mappings of v, hO,
and hF , aligning with most real-world scenarios (Karlbauer
et al., 2022; Huang et al., 2023a; Liu et al., 2024).

Problem Formulation. Under different initial and boundary
conditions, external sources, and coefficients, the following
T -step trajectory should be predicted. Moreover, due to the
high cost of generating labeled data, we focused on out-of-
sample scenarios, e.g. time extrapolation, where the training
dataset only contains the subsequent T ′-step trajectory, and
1 ≤ T ′ ≪ T .

Formally, the dataset D = {(ak,Sk)}1≤k≤D, where Sk =
G(ak). Here ak contains a set of inputs, that is, initial
condition U0

k , boundary conditions, such as Robin con-
ditions, external sources XF , and coefficients λ. Sk =
(U1

k , · · · ,UT
k) is the following trajectory, and the mapping

G(·) is our goal to learn. Each U t
k = {utk,i}1≤i≤m is a vec-

tor, which consists of m ∈ N+ physical quantities, such as
velocity, vorticity, pressure, and temperature. We discretize

each quantity utk,i ∈ RN on the grid {xj ∈ Ω}1≤j≤N . In a
nutshell, for modeling this operator G(·), we use a parame-
terized neural network Ĝθ with parameters θ, inputs ak, and
outputs Ĝθ(ak) = Ŝk, where 1 ≤ k ≤ D.

Our goal is to minimize the L2 relative error loss between
the prediction Ŝk and real data Sk in the training dataset as,

min
θ∈Θ

1

D0

D0∑
k=1

Lk(θ) = min
θ∈Θ

1

D0

D0∑
k=1

1

T ′

T ′∑
t=1

Lk(t,θ)

= min
θ∈Θ

1

D0

D0∑
k=1

1

T ′

T ′∑
t=1

1

m

m∑
i=1

∥ utk,i − ûtk,i ∥2
∥ utk,i ∥2

(3)

where T ′ is the training time-step size, and D0 is the size

of the training dataset. Lk(t,θ) = 1
m

∑m
i=1

∥ut
k,i−ût

k,i∥2

∥ut
k,i∥2

is
the mean L2 relative error loss at time t of index k. θ is a
set of the network parameters and Θ is the parameter space.

4. Methodology
This section presents PAPM’s architecture specifically tai-
lored to conservation and constitutive relations. Then, a
holistic temporal-spatial stepping module (TSSM) is pro-
posed, adapting to the unique equation characteristics of
various process systems. The Appendix D.1 provides the
pseudo-code for the entire training process, offering a com-
prehensive understanding of our approach.

4.1. PAPM Overview

Aligning with the general form of Eq. 1 and Eq. 2, there
are four elements corresponding to Diffusive Flows (DF),
Convective Flows (CF), Internal Source Term (IST), and
External Source Term (EST) in PAPM’s structure diagram,
as illustrated in Fig. 2. The versatile general structure of
PAPM could enable it to work effectively across different
process systems. The input contains a set of inputs, that
is, coefficient λ, initial state U0, external source input XF ,
and boundary conditions, which are multiple conditions of
process systems. The sequence of embedding this prior
knowledge unfolds as follows:

1) Embedding BCs. Using the given boundary conditions,
the physical quantity U t is updated, yielding Ũ t. A padding
strategy is employed to integrate four different boundary
conditions in four different directions into PAPM. Further
details are provided in Appendix C.

2) Diffusive Flows (DF). Using Ũ t and coefficients λ, we
represent the directionless diffusive flow. The diffusion flow
and its gradient are obtained as JD = −D ·∇Ũ t and∇·JD
via a symmetric gradient operator, respectively.

3) Convective Flows (CF). The pattern v is derived from
Ũ t. Once v is determined, its sign indicates the direction of
the flows, enabling computation of JC = Ũ t ·v and∇·JC

4

PAPM: A Physics-aware Proxy Model for Process Systems

Table 1. Temporal-Spatial Stepping Module (TSSM).

Category Localized
Fig.3 (Left and Mid), Alg. 1

Spectral
Fig.3 (Right), Alg. 2 Hybrid

Characteristic Explicit Implicit Explicit+Implicit

Example −u∇u+∇2u −u∇w +∇2w −u∇u+∇2u−∇p

Temporal ODE solver Neural ODE

Spatial
DF Pre-defined convolution E-Conv Pre-defined convolutionCF

IST/EST ResNet block S-Conv block ResNet/S-Conv block

through a directional gradient operator.

4) Internal Source Term (IST) & External Source Term
(EST). Generally, IST and EST present a complex interplay
between physical quantities Ũ t and external inputs XF .
Often, this part in real systems doesn’t have a clear physics-
based relation, prompting the use of NNs to capture this
intricate relationship.

5) ODE solver. From DF, CF, IST, and EST, the dynamic
∂Ũ t/∂t are derived. By doing so, the Eq. 1 can be reduced
to an ordinary differential equation (ODE), and the ODE
solver is used to approximate the evolving state as U t+1 =

Ũ t +
∫ t+1

t
∂Ũt

∂t dt.

Fig. 2 above illustrates the data flow at time t. Then, during
the training or inference phase, PAPM performs autoregres-
sive predictions as U t+1 = Gθ(U t, ak), where 1 ≤ t ≤ τ ,
with τ = T ′ during training and τ = T during inference.

In short, PAPM takes different conditions, including ini-
tial conditions, boundary conditions, external sources, and
coefficients, and interactively propagates the dynamics of
process systems forward using five distinct components.
The purpose of such a structured design is to reinforce the
inductive biases concerning strict physical laws.

4.2. Temporal-Spatial Stepping Module (TSSM)

Due to the diversity of process systems, we develop a holis-
tic Temporal-Spatial Stepping Module (TSSM) to align
with the unique characteristics of different process systems,
which forms the specific network structure for each compo-
nent in PAPM. As shown in Tab. 1, TSSM is categorized into
three types based on structures of process systems, where
each type decomposes temporal and spatial components,
i.e., structure-preserved localized operator, spectral opera-
tor, and hybrid operator. Notably, all three approaches can
employ a common temporal operation through ODE solvers.

Temporal Operation. After obtaining the dynamic state
derivative, ∂Ũ t/∂t, the subsequent state U t+1 can be com-
puted through numerical integration over different time
spans. Due to the numerical instability associated with

0 1 0
1 1
0 1 0
-4

0 1 0
1 0
0 0 0
-2

∇(#) ∇!(#)

0
0 0

∗
∗
∗
∗
∗∗ 0 0

0 0
⋆ ∗
∗
∗

∗

𝑼"𝒕

FFT

IFFT

(")$
𝑘!

E-Conv
∇!($)

DF CF

S-Conv

IFFT

Conv Conv Conv⋯

𝑼"𝒕

+

×

∇($)
∇"($)($)"

DF CF IST/EST

⋯
𝑘"ResNet

IST/EST

(")$

Figure 3. Left: Pre-defined convolutional kernels, where fixed and
trainable correspond to the matrices at the top and bottom, re-
spectively. The bottom kernels approximate the unidirectional
convection (upwind scheme) and directionless diffusion (central
scheme). Symbols ∗ and ⋆ indicate trainable parameters corre-
sponding to the upper triangular and symmetric matrices. Mid:
Structure-preserved localized operator. Right: Structure-preserved
spatial operator.

first-order explicit methods like the Euler method (Gottlieb
et al., 2001; Fatunla, 2014), we adopt the neural ordinary
differential equation approach (Neural ODE (Chen et al.,
2018)), which employs the Runge–Kutta time-stepping strat-
egy to enhance stability. The computed state U t+1 is then
recursively fed back into the network as the input for the
subsequent time step, continuing this process until the final
time step is reached.

Structure-preserved Localized Operator. For systems
with explicit structures, such as the Burgers and RD equa-
tions, typified by expressions like −u∇u+∇2u, convolu-
tional kernels in the physical space are employed to cap-
ture system dynamics. We opt for either fixed or trainable
kernels, illustrated in Fig. 3 (Left), depending on our un-
derstanding of the system. Specifically, the fixed one is
based on the predefined convolution kernel derived from
difference schemes, and further details are provided in Ap-
pendix D.2.1. Moreover, the trainable version tailors its
design to essential features of convection (upper or lower tri-
angular) and diffusion (symmetric). Once set, the localized
operator is depicted in Fig. 3 (Mid). We could represent
nonlinear terms in DF and CF using predefined convolution
kernels alongside partially known physics (the general form
of Eq. 1 and Eq. 2). Any unknown specific terms, such as
source, are then addressed through a shallow ResNet block.

5

PAPM: A Physics-aware Proxy Model for Process Systems

Structure-preserved Spectral Operator. For systems with
implicit structures, such as the Navier-Stokes Equation in
vorticity form, represented like −u∇w +∇2w, we adopt a
sequential process, as shown in Fig. 3(Right). Recognizing
the implicit linkage between velocity and vorticity, w is
initially processed to extract the flow function, subsequently
leading to the velocity derivation. The spectral space di-
mensions (kx and ky) and spectral quantity (denoted as ·̂),
are obtained by leveraging the FFT. Associating kx and ky
with ·̂, differential operators like ∇i(·) are represented via
E-Conv (e.g., element-wise product), and then mapped back
to the physical space using IFFT. Doing so can represent
the nonlinear terms in DF and CF via simple computations
such as addition and multiplication in the spectral domain.
Moreover, the spectral convolution (S-Conv) fo FNO (Li
et al., 2020) is introduced to learn unknown components.
This process can be further detailed in Appendix D.2.2.

Structure-preserved Hybrid Operator. For systems with
a hybrid structure, such as the Navier-Stokes Equation in
general form (e.g., −u∇u+∇2u−∇p), given the implicit
interrelation between pressure p and velocity u, a combina-
tion of the method above is employed. Explicit constituents,
such as u∇u and ∇2u, are addressed through the localized
operator. Meanwhile, implicit relations are resolved sim-
ilarly by the spectral operator. For unknown components,
either of the two operators can be engaged. We generally
favor the localized operator as it allows direct operations
without requiring transitions between different spaces.

5. Experiments
5.1. Experimental setup and evaluation protocol

Datasets. We employ five datasets spanning diverse do-
mains, such as fluid dynamics and heat conduction, detailed
in Appendix E. These datasets are categorized based on
the Temporal-Spatial Stepping Module used in PAPM to
highlight distinct equation characteristics in various process
systems.

• Localized Category: Burgers2d (Huang et al.,
2023a) is a 2D benchmark PDE with periodic bound-
ary conditions, various initial conditions, and viscosity,
while the source remains unknown. RD2d (Takamoto
et al., 2022) addresses a 2D FitzHugh-Nagumo
reaction-diffusion equation with no-flow Neumann
boundary condition, diverse initial conditions, and un-
known source terms.

• Spectral Category: NS2d (Li et al., 2020) explores
incompressible fluid dynamics in vorticity form with
varied initial conditions and unknown sources.

• Hybrid Category: Lid2d focuses on incompressible
lid-driven cavity flow, characterized by differing viscos-
ity and BCs. NSM2d deals with incompressible fluid

dynamics within an unknown magnetic field source,
featuring time-varying BCs, various initial conditions,
and viscosity.

Baselines. We compared our approach with eight SOTA
baselines for a comprehensive evaluation. ConvLSTM (Shi
et al., 2015) is a classical time series modeling tech-
nique that captures dynamics via CNN and LSTM. Dil-
ResNet (Stachenfeld et al., 2021) adopts the encoder-
process-decoder process with dilated-ConvResNet for dy-
namic data through an autoregressive stepping manner.
time-FNO2D (Li et al., 2020) and MIONet (Jin et al., 2022)
are two typical neural operators in learning dynamics. U-
FNet (Gupta & Brandstetter, 2022) and CNO (Raonić et al.,
2023) are modified U-Net (Ronneberger et al., 2015) vari-
ants. PeRCNN (Rao et al., 2023) incorporates specific phys-
ical structures into a neural network, ideal for sparse data
scenarios. PPNN (Liu et al., 2024) is a novel autoregressive
framework preserving known PDEs using multi-resolution
convolutional blocks.

Metrics. According to Eq. 3, we adopt the mean L2 rel-
ative error, abbreviated as ϵ, as our evaluation metric for
validation and testing datasets. ϵ is formulated as follows:

ϵ =
1

D

D∑
k=1

1

T

T∑
t=1

1

m

m∑
i=1

∥ utk,i − ûtk,i ∥2
∥ utk,i ∥2

(4)

Evaluation Protocol. Based on the experimental setting
of time extrapolation, we further conducted experiments in
the following two parts: coefficient interpolation (referred
to as C Int.) and coefficient extrapolation (referred to as
C Ext.). More information about the evaluation protocol,
the hyper-parameters of baselines, and our methods can be
further detailed in Appendix F.

5.2. Main Results

Performance Comparisons. Tab. 2 and Tab. 3 present the
primary experimental outcomes, the number of trainable
parameters (NP), and computational cost (FLOPs) for each
baseline across datasets 1.

Here, Bold and Underline indicate the best and second best
performance, respectively. Notably, lower results mean bet-
ter performance because the metric is the mean L2 relative
error. Our observations from the results are as follows:

Firstly, PAPM exhibits the most balanced trade-off be-
tween performance, parameter count, and computational
cost among all methods evaluated, from explicit structures
(Burgers2d, RD2d) to implicit (NS2d) and more complex hy-
brid structures (Lid2d, NSM2d). Remarkably, even though
PAPM requires significantly fewer FLOPs and only 1%

1Code is available at https://github.com/pengwei07/PAPM.

6

https://github.com/pengwei07/PAPM

PAPM: A Physics-aware Proxy Model for Process Systems

Table 2. ϵ (Eq. 4) across different datasets in time extrapolation task.

Config Burgers2d RD2d NS2d Lid2d NSM2d
C Int. C Ext. C Int. ν=1e-3 ν=1e-4 ν=1e-5 C Ext. C Int. C Ext.

ConvLSTM 0.314 0.551 0.815 0.781 0.877 0.788 1.323 0.910 1.102
Dil-ResNet 0.071 0.136 0.021 0.152 0.511 0.199 0.261 0.288 0.314
time-FNO2D 0.173 0.233 0.333 0.118 0.100 0.033 0.265 0.341 0.443
MIONet 0.181 0.212 0.247 0.139 0.114 0.051 0.221 0.268 0.440
U-FNet 0.109 0.433 0.239 0.191 0.190 0.256 0.192 0.257 0.457
CNO 0.112 0.126 0.258 0.125 0.148 0.030 0.218 0.197 0.355
PeRCNN 0.212 0.282 0.773 0.571 0.591 0.275 0.534 0.493 0.493
PPNN 0.047 0.132 0.030 0.365 0.357 0.046 0.163 0.206 0.264

PAPM (Our) 0.039 0.101 0.018 0.110 0.097 0.034 0.160 0.189 0.245

Table 3. Comparison of parameters and FLOPs.

Config NP FLOPs/MLocalized/M Spectra/M Hybrid/M

ConvLSTM 0.175 0.139 0.211 32.75
Dil-ResNet 0.150 0.148 0.152 62.40
time-FNO2D 0.464 0.463 0.464 6.88
MIONet 0.261 0.261 0.261 10.01
U-FNet 9.853 9.851 9.854 559.89
CNO 2.606 2.600 2.612 835.37
PeRCNN 0.001 0.001 0.001 3.44
PPNN 1.201 1.190 1.213 348.56

PAPM 0.014 0.034 0.035 1.23

of the parameters employed by the prior leading method,
PPNN, it still outperforms it by a large margin. In a nutshell,
our model enhances the performance by an average of 6.7%
over nine tasks, affirming PAPM as a versatile and efficient
framework suitable for diverse process systems.

Secondly, PAPM’s structured treatment of system inputs
and states leads to a remarkable 9.6% performance boost
in three coefficient-extrapolation tasks. This highlights its
superior generalization capability in out-of-sample scenar-
ios. Unlike models like PPNN, which directly use system-
specific inputs, PAPM integrates coefficient data more intri-
cately within conservation and constitutive relations, boost-
ing its adaptability to varying coefficients.

Thirdly, data-driven methods are less effective than physics-
aware methods like PPNN and our PAPM in time extrapo-
lation tasks, where incorporating prior physical knowledge
through structured network design enhances a model’s gen-
eralization ability. Notably, PeRCNN uses 1×1 convolution
to approximate nonlinear terms, but experimental results
suggest limited performance. Further details are available
in Appendix F.2.

1 20 45 60 80 95
Time step

0.00

0.03

0.06

0.09

0.12

L2
 R

el
at

iv
e

Er
ro

r

Burgers2d
Dil-ResNet
PPNN
PAPM
in
out

Figure 4. ϵ (Eq. 4) of predicted each time step on Burgers2d, where
in is the same as the training, out is the time extrapolation.

Visualization. Fig. 4 showcases the stepwise relative er-
ror of PAPM during the extrapolation process in the test
dataset, using Burgers2d’s C Int. as a representative ex-

ample. Compared to the two best-performing baselines,
our model (depicted by the red line) exhibits superior per-
formance throughout the extrapolation process, with the
least error accumulation. Turning our attention to the more
challenging NSM2d dataset, Fig. 5 presents the results
across five extrapolation time slices. While FNO demon-
strates commendable accuracy within the training domain
(T ≤ 1

2Tend), its performance falters significantly outside
of it (12Tend < T ≤ Tend). On the other hand, physics-
aware methods (PPNN), and PAPM in particular, consis-
tently capture the evolving patterns with a greater degree
of robustness. Notably, our method emerges as a leader in
terms of precision. Additional visual results can be found in
Appendix G.1.

5.3. Efficiency

Training and Inference Cost: Dataset generation for our
work is notably resource-intensive, with inference times
ranging from 102 to 104 seconds for public datasets, and
up to 103 seconds for those datasets we generated using
COMSOL Multiphysics. In stark contrast, both baselines
and PAPM register inference times between 0.1 to 10 sec-
onds (detailed in Appendix G.2), achieving an improvement
of 3 to 5 orders of magnitude. Notably, PAPM’s time cost
rivals or even surpasses baselines across different datasets.
PAPM’s efficiency remains competitive with other data-
driven methods.

Data Efficiency. Owing to PAPM’s structured design, data
utilization is significantly enhanced. To evaluate data effi-
ciency, we conducted tests using RD2d as a representative
example, with Dil-ResNet and PPNN symbolizing pure data-
driven and physics-aware methods. The results, displayed
in Fig. 6, depict PAPM’s efficiency concerning data volume
and label data step size in training.

(1) Amount of Data: With a fixed 20% reserved for the
test set, the remaining 80% of the total data is allocated
to the training set. We systematically varied the training
data volume, ranging from initially utilizing only 5% of
the training set and progressively increasing it to the entire
100%. PAPM’s relative error distinctly outperforms other

7

PAPM: A Physics-aware Proxy Model for Process Systems

𝑻 =
𝟏

𝟐
𝑻𝒆𝒏𝒅 𝑻 =

𝟑

𝟒
𝑻𝒆𝒏𝒅𝑻 =

𝟏

𝟒
𝑻𝒆𝒏𝒅𝑻 = 𝟏 𝑻 = 𝑻𝒆𝒏𝒅

G
T

P
P

N
N

P
A

P
M

 (
o

u
r
)

F
N

O

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 5. Predicted flow velocity (|u|2) snapshots by FNO, PPNN, and PAPM (Ours) vs. Ground Truth (GT) on NSM2d dataset in T Ext.
task.

5 10 40 60 80 100
Train datasize rate (%)

0.02

0.05

0.08

0.12

0.15

0.18

L2
 R

el
at

iv
e

Er
ro

r

PPNN
Dil-Resnet
PAPM

10 20 30 40 50
Train step size

0.02

0.05

0.08

0.12

0.15

0.18

L2
 R

el
at

iv
e

Er
ro

r

PPNN
Dil-Resnet
PAPM

Figure 6. ϵ (Eq. 4) comparison by the leading method, PPNN, Dil-Resnet, PAPM (Ours) on the RD2d dataset. Left: varying amount of
training data. Right: varying train step size.

baselines, especially with limited data (5%). As depicted
in Fig. 6 (Left), PAPM’s error consistently surpasses other
methods, stabilizing below 2% as the training data volume
increases.

(2) Time Step Size: We varied the time step size from a
tenth to half of the total duration, increasing it in increments
of tenths. As shown in Fig. 6 (Right), PAPM demonstrates
the capability for long-range time extrapolation with fewer
dynamic steps. It consistently outperforms other methods,
achieving superior results even with shorter training time
step sizes.

5.4. Ablation Studies

Different blocks impacts. Tab. 4 displays our selection
of the Burger2d dataset for ablation studies, chosen for its
representation of diffusion, convection, and source terms.
We defined several configurations to assess the impact of in-
dividual components. The L2 relative error on the boundary
(BC ϵ) is introduced to highlight the importance of physics
embedding further. no DF excludes diffusion, whereas

no CF omits convection. In no Phy, we retain only a struc-
ture with a residual connection, thereby eliminating both
diffusion and convection. no BCs setup removes the explicit
embedding of boundary conditions, no NODE replaces the
Neural ODE with the Euler stepping scheme, and no All
adopts a purely data-driven approach. Additional ablation
results can be found in Appendix G.3.

Key findings include the crucial roles of diffusion and con-
vection in representing system dynamics, as evidenced in
the no DF, no CF, and no Phy configurations. Specifically,
the no DF configuration demonstrated the importance of
integrating the viscosity coefficient with the diffusion term,
with its absence leading to significant errors. The necessity
of adhering to physical laws in boundary conditions was
highlighted in the no BCs, notably reducing errors on the
boundary (BC ϵ). Lastly, the no NODE results indicate that
different temporal stepping schemes significantly impact the
outcomes, underscoring the effectiveness of neural ODEs in
continuous-time modeling.

Different blocks validations. Taking the Burgers2d and

8

PAPM: A Physics-aware Proxy Model for Process Systems

Table 4. Ablation comparison of ϵ and ϵ on the boundary (BC ϵ).

Config C Int. C Ext.
ϵ BC ϵ ϵ BC ϵ

no DF 0.067 0.051 0.207 0.067
no CF 0.062 0.043 0.131 0.054
no Phy 0.149 0.051 0.210 0.144
no BCs 0.068 0.097 0.136 0.193
no NODE 0.053 0.041 0.150 0.045
no All 0.162 0.195 0.216 0.250

PAPM 0.039 0.037 0.101 0.043

RD2d datasets as examples to demonstrate the fact that the
convection/diffusion/source terms could actually learn those
parts in the equations. We use high-fidelity FDM and FVM
to compute the corresponding terms to obtain the detailed
term for convection/diffusion/source terms. The L2 relative
error between ground truth and numerical results are 0.0041
and 0.0032 in all time steps for Burgers2d and RD2d, re-
spectively. Thus, we can use the results obtained by the
numerical methods as reference values to verify this. As
shown in Tab. 5, the different terms of PAPM can be used to
learn the equation’s convection/diffusion/source parts. Ad-
ditional visualization results can be found in Appendix G.1
(Fig. 9 and Fig. 10).

Table 5. Comparison of ϵ for different blocks on different datasets.

Datasets ϵ convection ϵ diffusion ϵ source ϵ

Burgers2d 0.039 0.037 0.041 0.069
RD2d 0.018 - 0.025 0.012

6. Conclusion
To address the challenges of physics-aware models falling
short regarding exploration depth and universality, we have
proposed PAPM. It fully incorporates partial prior physics of
process systems, which includes multiple input conditions
and the general form of conservation relations, resulting in
better training efficiency and out-of-sample generalization.
Additionally, PAPM contains a holistic temporal-spatial
stepping module for flexible adaptation across various pro-
cess systems. The efficacy of PAPM’s structured design
and holistic module was extensively validated across five
datasets within distinct out-of-sample tasks. Notably, PAPM
achieved an average performance boost of 6.7% with fewer
FLOPs and only 1% of the parameters employed by the prior
leading method. Through such analysis, PAPM exhibits the
most balanced trade-off between accuracy and computa-
tional efficiency among all evaluated methods, alongside
impressive out-of-sample generalization capabilities.

7. Limitation and Future Work
We aim to extend our model to more complex, industrially
relevant systems, moving beyond 2D spatio-temporal dy-
namics to scenarios like 3D-industry-standard aerodynam-
ics, plasma discharge, and multi-physics couplings (e.g.,
fluid-structure and thermal fluid-structure interactions). De-
spite our model’s proven balance in accuracy and efficiency,
we aim to challenge it further in these intricate environments.
Additionally, we plan to adapt PAPM for irregular grid sce-
narios, typical in the industry, by integrating graph neural
networks. This will enhance PAPM’s versatility, allowing
it to handle diverse data structures and complex dynamic
processes such as convection, diffusion, and source interac-
tions.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. High performance requires substan-
tial resources, including computing power and time, to gen-
erate quality data. Acquiring such data can be costly or
resource-intensive in real-world systems, leading to poten-
tial resource wastage. The ethical use of these resources,
avoiding unnecessary environmental impact, and ensuring
the cost-effectiveness of data acquisition are critical con-
cerns. Therefore, we emphasize the importance of efficient
and responsible data usage to minimize adverse societal and
environmental effects.

Acknowledgment
This work was supported by the National Key Research and
Development Program of China (No.2021YFF0500403).

References
Akhare, D., Luo, T., and Wang, J.-X. Physics-integrated

neural differentiable (pindiff) model for composites man-
ufacturing. Computer Methods in Applied Mechanics and
Engineering, 406:115902, 2023.

Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy, K., and
Kaushik, S. Prediction of aerodynamic flow fields using
convolutional neural networks. Computational Mechan-
ics, 64:525–545, 2019.

Brandstetter, J., Worrall, D., and Welling, M. Message pass-
ing neural pde solvers. arXiv preprint arXiv:2202.03376,
2022.

Cameron, I. T. and Hangos, K. Process modelling and
model analysis. Elsevier, 2001.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,

9

PAPM: A Physics-aware Proxy Model for Process Systems

D. K. Neural ordinary differential equations. Advances
in neural information processing systems, 31, 2018.

Cuomo, S., Di Cola, V. S., Giampaolo, F., Rozza, G., Raissi,
M., and Piccialli, F. Scientific machine learning through
physics–informed neural networks: Where we are and
what’s next. Journal of Scientific Computing, 92(3):88,
2022.

Dijkstra, M. and Luijten, E. From predictive modelling to
machine learning and reverse engineering of colloidal
self-assembly. Nature materials, 20(6):762–773, 2021.

Dresdner, G., Kochkov, D., Norgaard, P., Zepeda-Núñez, L.,
Smith, J. A., Brenner, M. P., and Hoyer, S. Learning to
correct spectral methods for simulating turbulent flows.
arXiv preprint arXiv:2207.00556, 2022.

Fatunla, S. O. Numerical methods for initial value problems
in ordinary differential equations. Academic Press, 2014.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256. JMLR
Workshop and Conference Proceedings, 2010.

Gottlieb, S., Shu, C.-W., and Tadmor, E. Strong stability-
preserving high-order time discretization methods. SIAM
review, 43(1):89–112, 2001.

Gramacy, R. B. Surrogates: Gaussian process modeling,
design, and optimization for the applied sciences. CRC
press, 2020.

Gupta, J. K. and Brandstetter, J. Towards multi-
spatiotemporal-scale generalized pde modeling. arXiv
preprint arXiv:2209.15616, 2022.

Hao, Z., Liu, S., Zhang, Y., Ying, C., Feng, Y., Su, H., and
Zhu, J. Physics-informed machine learning: A survey
on problems, methods and applications. arXiv preprint
arXiv:2211.08064, 2022.

Hao, Z., Yao, J., Su, C., Su, H., Wang, Z., Lu, F., Xia, Z.,
Zhang, Y., Liu, S., Lu, L., et al. Pinnacle: A comprehen-
sive benchmark of physics-informed neural networks for
solving pdes. arXiv preprint arXiv:2306.08827, 2023a.

Hao, Z., Ying, C., Wang, Z., Su, H., Dong, Y., Liu, S.,
Cheng, Z., Zhu, J., and Song, J. Gnot: A general neural
operator transformer for operator learning. arXiv preprint
arXiv:2302.14376, 2023b.

Huang, X., Li, Z., Liu, H., Wang, Z., Zhou, H., Dong, B.,
and Hua, B. Learning to simulate partially known spatio-
temporal dynamics with trainable difference operators.
arXiv preprint arXiv:2307.14395, 2023a.

Huang, X., Shi, W., Meng, Q., Wang, Y., Gao, X., Zhang,
J., and Liu, T.-Y. Neuralstagger: accelerating physics-
constrained neural pde solver with spatial-temporal de-
composition. arXiv preprint arXiv:2302.10255, 2023b.

Jin, P., Meng, S., and Lu, L. Mionet: Learning multiple-
input operators via tensor product. SIAM Journal on
Scientific Computing, 44(6):A3490–A3514, 2022.

Karlbauer, M., Praditia, T., Otte, S., Oladyshkin, S., Nowak,
W., and Butz, M. V. Composing partial differential
equations with physics-aware neural networks. In In-
ternational Conference on Machine Learning, pp. 10773–
10801. PMLR, 2022.

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner,
M. P., and Hoyer, S. Machine learning–accelerated com-
putational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21):e2101784118, 2021.

Kochkov, D., Yuval, J., Langmore, I., Norgaard, P., Smith,
J., Mooers, G., Klöwer, M., Lottes, J., Rasp, S., Düben, P.,
Hatfield, S., Battaglia, P., Sanchez-Gonzalez, A., Willson,
M., Brenner, M. P., and Hoyer, S. Neural general circu-
lation models for weather and climate. arXiv preprint
arXiv:2311.07222, 2023.

Li, Z. and Farimani, A. B. Graph neural network-accelerated
lagrangian fluid simulation. Computers & Graphics, 103:
201–211, 2022.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. arXiv preprint arXiv:2010.08895, 2020.

Li, Z., Zheng, H., Kovachki, N. B., Jin, D., Chen, H., Liu,
B., Azizzadenesheli, K., and Anandkumar, A. Physics-
informed neural operator for learning partial differential
equations. arXiv preprint arXiv:2111.03794, 2021.

Liu, X.-Y., Zhu, M., Lu, L., Sun, H., and Wang, J.-X. Multi-
resolution partial differential equations preserved learning
framework for spatiotemporal dynamics. Communica-
tions Physics, 7(1):31, 2024.

Long, Z., Lu, Y., Ma, X., and Dong, B. Pde-net: Learning
pdes from data. In International conference on machine
learning, pp. 3208–3216. PMLR, 2018.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Lu, L., Jin, P., and Karniadakis, G. E. Deeponet: Learning
nonlinear operators for identifying differential equations
based on the universal approximation theorem of opera-
tors. arXiv preprint arXiv:1910.03193, 2019.

10

PAPM: A Physics-aware Proxy Model for Process Systems

Lu, L., Meng, X., Mao, Z., and Karniadakis, G. E. Deepxde:
A deep learning library for solving differential equations.
SIAM review, 63(1):208–228, 2021.

McGreivy, N. and Hakim, A. Invariant preservation in
machine learned pde solvers via error correction. arXiv
preprint arXiv:2303.16110, 2023.

Meng, C., Seo, S., Cao, D., Griesemer, S., and Liu,
Y. When physics meets machine learning: A survey
of physics-informed machine learning. arXiv preprint
arXiv:2203.16797, 2022.

Pestourie, R., Mroueh, Y., Rackauckas, C., Das, P., and
Johnson, S. G. Physics-enhanced deep surrogates for par-
tial differential equations. Nature Machine Intelligence,
5(12):1458–1465, 2023.

Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov,
K., Supekar, R., Skinner, D., Ramadhan, A., and Edelman,
A. Universal differential equations for scientific machine
learning. arXiv preprint arXiv:2001.04385, 2020.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
physics, 378:686–707, 2019.

Rao, C., Ren, P., Wang, Q., Buyukozturk, O., Sun, H., and
Liu, Y. Encoding physics to learn reaction–diffusion
processes. Nature Machine Intelligence, pp. 1–15, 2023.

Raonić, B., Molinaro, R., Rohner, T., Mishra, S., and
de Bezenac, E. Convolutional neural operators. arXiv
preprint arXiv:2302.01178, 2023.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-
volutional networks for biomedical image segmentation.
In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Confer-
ence, Munich, Germany, October 5-9, 2015, Proceedings,
Part III 18, pp. 234–241. Springer, 2015.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. Learning to simulate
complex physics with graph networks. In International
conference on machine learning, pp. 8459–8468. PMLR,
2020.

Seo, S., Meng, C., Rambhatla, S., and Liu, Y. Physics-
aware spatiotemporal modules with auxiliary tasks for
meta-learning. arXiv preprint arXiv:2006.08831, 2020.

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K.,
and Woo, W.-c. Convolutional lstm network: A machine
learning approach for precipitation nowcasting. Advances
in neural information processing systems, 28, 2015.

Stachenfeld, K., Fielding, D. B., Kochkov, D., Cranmer,
M., Pfaff, T., Godwin, J., Cui, C., Ho, S., Battaglia,
P., and Sanchez-Gonzalez, A. Learned coarse mod-
els for efficient turbulence simulation. arXiv preprint
arXiv:2112.15275, 2021.

Sun, Z., Yang, Y., and Yoo, S. A neural pde solver with
temporal stencil modeling. In International Conference
on Machine Learning, pp. 33135–33155. PMLR, 2023.

Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D.,
Alesiani, F., Pflüger, D., and Niepert, M. Pdebench:
An extensive benchmark for scientific machine learning.
Advances in Neural Information Processing Systems, 35:
1596–1611, 2022.

Um, K., Brand, R., Fei, Y. R., Holl, P., and Thuerey, N.
Solver-in-the-loop: Learning from differentiable physics
to interact with iterative pde-solvers. Advances in Neural
Information Processing Systems, 33:6111–6122, 2020.

Wang, S., Wang, H., and Perdikaris, P. Learning the solution
operator of parametric partial differential equations with
physics-informed deeponets. Science advances, 7(40):
eabi8605, 2021.

Yu, F., Koltun, V., and Funkhouser, T. Dilated residual
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 472–480,
2017.

Zhang, R., Liu, Y., and Sun, H. Physics-informed multi-lstm
networks for metamodeling of nonlinear structures. Com-
puter Methods in Applied Mechanics and Engineering,
369:113226, 2020.

11

PAPM: A Physics-aware Proxy Model for Process Systems

Table 6. Table of notations.

Notation Meaning

Process model

U the physical quantity, also as the system’s state
JD the diffusion flows in the conservation relations
JC the convection flows in the conservation relations
q the internal source in the conservation relations
F the external source in the conservation relations
v the velocity of the physical quantity being transmitted
D the coefficients
λ the coefficients, such as viscosity
XF a vector of external sources, such as voltages
U0 the initial condition
ICs Initial conditions
BCs Boundary conditions

Problem formulation

U t
k = {ut

k,i}1≤i≤m a vector, which consists of m ∈ N+ physical quantities of index k at time t
U0

k initial condition of index k at time t = 0
ut

k,i ∈ RN a physical quantity, such as vorticity
{xj ∈ Ω}1≤j≤N the grid (also as discretized spatial coordinates)
A = {ak} the input conditions space
ak a set input conditions of index k, containing initial condition, and other conditions
S = {Sk} the solutions space
Sk = (U1

k , · · · ,UT
k) a set output of index of index k

D = {(ak,Sk)}1≤k≤D the dataset, where Sk = G(ak)
G : A → S the mapping of our goal to learn
Gθ : ak → S̃k, 1 ≤ k ≤ D a parameterized neural network with parameters θ ∈ Θ
Θ the parameter space
T the time-step size for inference
T ′ the time-step size of the training dataset, where 1 ≤ T ′ ≪ T

Methodology

Ũ t the updated physical quantity by using the given boundary conditions
DF Diffusive Flows
CF Convective Flows
IST Internal Source Term
EST External Source Term
TSSM Temporal-Spatial Stepping Module
kx, ky the spectral space dimensions

Experiments

C Int. the task of coefficient interpolation
C Ext. the task of coefficient extrapolation
ϵ the mean L2 relative error
BC ϵ the mean L2 relative error on the boundary
NP the number of trainable parameters

12

Appendix of PAPM

In this appendix, we first summarize the notations in Tab.6 (A). Then, we describe the process model further, showing
in detail the starting point of our problem (B). Secondly, we perform a further theoretical presentation on the details of
embedding boundary conditions (C). The algorithm display and details of the proposed temporal and spatial stepping module
(TSSM) are further elaborated (D.1) and (D.2), respectively. Moreover, the instructions of TSSM are discussed in (D.3).
Subsequently, the five datasets are further described (E). The hyper-parameters settings of different baselines and PAPM are
shown in detail (F). Finally, some additional experimental results are shown (G), which are data visualization (G.1), training
and inference time cost-specific details (G.2), and detailed ablation studies (G.3).

A. Table of notations
A table of notations is given in Tab.6.

B. Process models
Pivotal in engineering disciplines, process models serve to represent and predict the dynamics of diverse process systems,
from entire plants to single equipment pieces. These models primarily rely on the interplay between conservation and
constitutive equations, ensuring an accurate depiction of system dynamics. Conservation equations dictate the model’s
dynamics using partial differential equations that govern primary physical quantities like mass, energy, and momentum.
On the other hand, constitutive equations relate potentials to extensive variables via algebraic equations, such as flows,
temperatures, pressures, concentrations, and enthalpies, enriching the model’s comprehensiveness. Additionally, accounting
for initial and boundary conditions ensures the model’s reliability, making these four components interdependently integral
to the model’s solid mathematical framework.

Conservation equations. The general form in differential representation is:

∂U

∂t
= −∇ · (JC + JD) + q + F (5)

where JC = U · v, JD = −D · ∇U , and U(x, t) represents the state of the model, which is the object of our modeling,
x ∈ Ω and t ∈ [0, T], T ∈ R+. JC represents convective flows, and JD represents diffusive or molecular flows. v describes
the convective flow pattern into or out of the system volume. D represents the diffusion coefficient. q, the internal source
term, for example, the chemical reaction for component mass conservation, where species appear or are consumed due to
reactions within the space of interest. Other internal source terms arise from energy dissipation, conversion, compressibility,
or density changes. F , the external source term, including gravitational, electrical, and magnetic fields as well as pressure
fields.

Constitutive equations. For the internal source term, it usually depends on the state of the model and can be expressed
as q = hq(U ,x, t). The external source term is usually related to the external effects imposed and can be expressed as
F = hF (XF), where XF is a vector of parameters imposed externally, which may include voltages, pressures, etc. For
convective flows, the velocity v may be determined by the state of the model, which can be expressed as v = g(U ,x, t).

Initial conditions (IC). Every process or system evolves over time, but we need a reference or a starting point to predict
or understand this evolution. The initial conditions provide this starting point. For example, in the context of a reactor,
initial conditions might describe the concentration of various reactants at t = 0. Mathematically, IC can be represented as
U(x, 0) = U0(x).

Boundary conditions (BC). Initial conditions set the foundation at t = 0, while boundary conditions inform how a system
evolves and interacts with its environment, for instance, by specifying heat flux at a heat exchanger’s boundary or flow rate
at a reactor’s inlet. These boundary conditions can be categorized as Dirichlet, prescribing specific values like temperature
on the boundary; Neumann, defining derivatives or fluxes such as the heat flux; and Robin, which combines aspects of both

13

PAPM: A Physics-aware Proxy Model for Process Systems

Dirichlet and Neumann, encompassing parameters like both heat transfer rates and surface temperatures. Regardless of the
type, they’re mathematically expressed as U(xb, t) = fb(t), where xb ∈ ∂Ω.

C. Embedding Boundary Conditions
This part covers the method of embedding four different boundary conditions (Dirichlet, Neumann, Robin, and Periodic)
into neural networks via convolution padding. Let’s consider a rectangular region in a 2D space, Ω = [0, a]× [0, b], which
can be discretized into an M ×N grid, δx = a

M , δy = b
N . Each grid point can be represented as Xij = (xi, yj), where

i = 1, 2, ...,M and j = 1, 2, ..., N . Hence, we can transform the continuous space into a discrete grid of points.

Boundary Conditions on the X-axis. The direction vector is n = (1, 0)T , which means the boundary conditions are the
same for each y value.

• Dirichlet: If the boundary condition is given as U(X, t) = f(X, t), X ∈ ∂Ω, the discrete form would be UMj = fj ,
and we can use a padding method in the convolution kernel UMj = fj .

• Neumann: If the boundary condition is given as ∂U(X,t)
∂n = f(X, t), X ∈ ∂Ω, the discrete form would be

U(M+1)j−U(M−1)j

2δx = fj and we can use a padding method in the convolution kernel U(M+1)j = U(M−1)j + (2 ×
δx)× fj .

• Robin: If the boundary condition is given as αU(X, t) + β ∂U(X,t)
∂n = f(X, t), X ∈ ∂Ω, the discrete form would be

αUMj + β
U(M+1)j−U(M−1)j

2×δx = fj . We can use a padding method in the convolution kernel U(M+1)j =
2×δx
β (fj −

αUMj) +U(M−1)j .

• Periodic: If the boundary condition is given as U(X1, t) = U(X2, t), X1 ∈ ∂Ω1, X2 ∈ ∂Ω2, where Ω1 denotes the
left boundary and Ω2 the right boundary, the discrete form would be UMj = U1j . We can use a padding method in the
convolution kernel UMj = U1j ,U(M+1)j = U2j .

Boundary Conditions on the Y -axis. The direction vector is n = (0, 1)T . The basic handling method is similar to the
x-direction case but with the grid spacing replaced with δy, and the boundary conditions applied to the upper and lower
boundaries, i.e., j = 1 and j = N . The corresponding y-direction expressions can be derived by replacing x with y in the
x-direction expressions and swapping i with j.

Arbitrary Direction Boundary Conditions in the Rectangular Area. The direction vector n = (cos(θ), sin(θ))T . Both
x and y directions need to be considered, resulting in the following expressions for each of the four boundary conditions:

• Dirichlet:Given the condition U(X, t) = f(X, t), its discrete form remains Uij = fij . The corresponding padding
method in the convolution kernel is Uij = fij .

• Neumann: For the boundary condition ∂U(X,t)
∂n = f(X, t), the discrete form can be represented as

cos(θ)
U(i+1)j−U(i−1)j

2δx + sin(θ)
Ui(j+1)−Ui(j−1)

2δy = fij . The corresponding padding method in the convolution kernel
can be written as U(i+1)j = U(i−1)j + 2cos(θ)δxfij and Ui(j+1) = Ui(j−1) + 2sin(θ)δyfij .

• Robin: Given the condition αU(X, t) + β ∂U(X,t)
∂n = f(X, t), the discrete form becomes αUij +

βcos(θ)
U(i+1)j−U(i−1)j

2δx + βsin(θ)
Ui(j+1)−Ui(j−1)

2δy = fij . The corresponding padding method in the convolution
kernel is U(i+1)j =

1
βcos(θ) [fij − αUij]× 2δx+U(i−1)j and Ui(j+1) =

1
βsin(θ) [fij − αUij]× 2δy +Ui(j−1).

• Periodic: For the condition U(X1, t) = U(X2, t), the discrete form is UMj = U1j and UNi = U1i. The correspond-
ing padding method in the convolution kernel is UMj = U1j ,U(M+1)j = U2j and UNi = U1i,Ui(N+1) = Ui2.

Directionless Boundary Conditions in the Rectangular Area. The following strategies are employed for handling the
Neumann and Robin boundary conditions:

• For ∂U
∂X = f(X, t), the discrete form is U(i+1)j−U(i−1)j

2δx = fij and Ui(j+1)−Ui(j−1)

2δy = fij . We can use a padding
method in the convolution kernel where U(i+1)j = U(i−1)j + 2δxfij and Ui(j+1) = Ui(j−1) + 2δyfij .

14

PAPM: A Physics-aware Proxy Model for Process Systems

• For αU(X, t) + β ∂U(X,t)
∂X = f(X, t), the discrete form is αUij + β

U(i+1)j−U(i−1)j

2δx = fij and αUij +

β
Ui(j+1)−Ui(j−1)

2δy = fij . We can use a padding method in the convolution kernel where U(i+1)j =
1
β [fij − αUij]×

2δx+U(i−1)j and Ui(j+1) =
1
β [fij − αUij]× 2δy +Ui(j−1).

D. Supplemental TSSM
D.1. Algorithm Display

Here, we provide the pseudo-code for the Temporal-Spatial Stepping Module (TSSM) training, offering a comprehensive
understanding of our approach. As shown in Alg. 1, the structure-preserved localized operator is detailed. The latter is
shown in Alg. 2, and the third one, the hybrid operator, is a combination of these two operators.

Algorithm 1 Structure-preserved localized operator.
Initialization: Fixed or pre-defined convolutional kernels
K (with parameters θ), as shown in Fig. 3 (Left); Initialize
other network parameters θ ∈ Θ
Input: A set of inputs ak for 1 ≤ k ≤ D0, time interval
∆t, and temporal trajectory length T ′

Output: The mapping Gθ, where Ũk ← G̃θ(ak)
for k = 1 to D0 do

ak ← U t=0
k ,λ, XF , BCs

for t = 1 to T ′ do
Ũ t
k ← U t

k # Embedding BCs
(·)n,∇n(·), n = 0, 1, 2← Ũ t

k ⊛K
DF, CF← (·)n,∇n(·),ak, n = 0, 1, 2
IST, EST← ResNet(Ũ t

k,ak)
∂Ũt

k

∂t ← DF+CF+IST+EST

Next states U t+1
k ← Neural ODE(Ũ t

k,
∂Ũt

k

∂t ; ∆t)

Update input ak ← U t+1
k

end
Subsequent trajectory Ũk ← G̃θ(ak)
Loss Lr(θ)← Eq. 3
Update weights θ by minimizing the loss Lr(θ)

end

Algorithm 2 Structure-Preserved Spectral Operator
Initialization: E-Conv (1× 1 conv) and S-conv (spectral
convolutions) with parameters θ as shown in Fig. 3 (Right)
Input: A set of inputs ak for 1 ≤ k ≤ D0, time interval
∆t, and temporal trajectory length T ′

Output: The mapping Gθ where Ũk ← G̃θ(ak)
for k = 1 to D0 do

ak ← U t=0
k ,λ, XF , BCs

for t = 1 to T ′ do
Ũ t
k ← U t

k # Embedding BCs
kx, ky, ·̂ ← FFT(Ũ t

k)

(̂·)
n

, ∇̂n(·), n = 0, 1, 2← E-Conv(kx, ky, ·̂)
DF,CF← IFFT((·)n, ∇n(·),ak)
IST,EST← S-conv(Ũ t

k,ak)
∂Ũt

k

∂t ← DF + CF + IST + EST

Next states U t+1
k ← Neural ODE(Ũ t

k,
∂Ũt

k

∂t ; ∆t)

Update input ak ← U t+1
k

end
Subsequent trajectory Ũk ← G̃θ(ak)
Compute loss Lr(θ) according to Eq. 3
Update weights θ by minimizing the loss Lr(θ)

end

D.2. Details of TSSM

D.2.1. STRUCTURE-PRESERVED LOCALIZED OPERATOR

Fixed convolution operations. The differential operator can be approximated via convolution operations. For a one-
dimensional function u(x), we could use a convolution kernel of the form:

K =
1

2∆x
[−1, 0, 1] (6)

where ∆x represents the step size. This convolution operation, corresponding to this kernel, can approximate the first-order
central difference operator as follows:

u′(x) ≈ u(x+∆x)− u(x−∆x)

2∆x
≈ u(x)⊛K, (7)

15

PAPM: A Physics-aware Proxy Model for Process Systems

with ⊛ denoting the convolution operation. For a two-dimensional function, it can be decomposed into a convolution of two
one-dimensional functions. Assuming u(x, y) is a two-dimensional function, the kernel could be formed as:

K =
1

h2

 0 1 0
1 −4 1
0 1 0

 =
1

h2

 0 0 0
1 −2 1
0 0 0

+
1

h2

 0 1 0
0 −2 0
0 1 0

 , (8)

where h = ∆x = ∆y signifies the step size. The convolution operation corresponding to this kernel can approximate the
second-order central difference operator, which is:

∇2u(x, y) =
∂2u(x, y)

∂x2
+
∂2u(x, y)

∂y2

≈ u(x+ h, y)− 2u(x, y) + u(x− h, y)
h2

+
u(x, y + h)− 2u(x, y) + u(x, y − h)

h2

=
u(x+ h, y) + u(x, y + h)− 4u(x, y) + u(x− h, y) + u(x, y − h)

h2

= u(x, y)⊛K.

(9)

Analogously, different convolution kernels can approximate other orders’ differential operators. Utilizing convolution
operations to approximate differential operators can boost computational efficiency. Nevertheless, careful consideration is
needed when choosing a convolution kernel, as different kernels can influence the stability and accuracy of the numerical
solution.

Selection of FD kernels. FD kernels are used to approximate derivative terms in PDEs, which directly affect the computa-
tional efficiency and the reconstruction accuracy. Therefore, it is crucial to choose appropriate FD kernels for discretized-
based learning frameworks. For spatio-temporal systems, we need to consider both temporal and spatial derivatives. In
specific, the second-order central difference is utilized for calculating temporal derivatives, i.e.,

∂u

∂t
=
−u(t− δt, ξ, η) + u(t+ δt, ξ, η)

2δt
+O

(
(δt)2

)
, (10)

where {ξ, η} represent the spatial locations and δt is time spacing. In the network implementation, it can be organized as a
convolutional kernel Kt,

Kt = [−1, 0, 1]× 1

2δt
.

Likewise, we also apply the central difference to calculate the spatial derivatives for internal nodes and use forward/backward
differences for boundary nodes. For instance, in this paper, the fourth-order central difference is utilized to approximate the
first and second spatial derivatives. The FD kernels for 2D cases with the shape of 5× 5 are given by

Ks,1 =
1

12(δx)

0 0 0 0 0
0 0 0 0 0
1 −8 0 8 −1
0 0 0 0 0
0 0 0 0 0

 ,Ks,2 =
1

12(δx)2

0 0 −1 0 0
0 0 16 0 0
−1 16 −60 16 −1
0 0 16 0 0
0 0 −1 0 0

 , (11)

where δx denotes the grid size of HR variables;Ks,1 andKs,2 are FD kernels for the first and second derivatives, respectively.
In addition, we conduct a parametric study on the selection of FD kernels, including the second-order (3×3), the fourth-order
(5× 5), and the sixth-order (7× 7) central difference strategies.

D.2.2. STRUCTURE-PRESERVED SPECTRAL OPERATOR

In Fourier space, the simplification of problem-solving involves converting differential operations and wave number
multiplications. In 2D space, the discrete values of the set function Φ(x, y) in real space, denoted as Φij , correspond to
Φ̂mn in Fourier space, with kx and ky representing the respective wave numbers. Differential operators are transformed as
follows. (1) The first-order differential operator, ∂Φ∂x , becomes ikxΦ̂mn in the x direction and ikyΦ̂mn in the y direction. (2)
The second-order differential operator, ∂

2Φ
∂x2 , is represented as −k2xΦ̂mn for the x direction and −k2yΦ̂mn for the y direction.

(3) The Laplacian operator∇2Φ transforms into (−k2x − k2y)Φ̂mn in Fourier space.

16

PAPM: A Physics-aware Proxy Model for Process Systems

Moreover, for a 2D flow field, the relationship between the flow function ψ and the velocity fields (u, v) can be expressed
by the following partial differential equation, u = ∂ψ

∂y and v = −∂ψ∂x , where we can use kx and ky to obtain differential
results. Moreover, here S-Conv is from FNO (Li et al., 2020) (the module named as “SpectralConv2d fast”). This
“SpectralConv2d fast” class is a neural network module that performs a 2D spectral convolution by applying an FFT, a
learned linear transformation in the Fourier domain, and an IFFT.

D.3. The Instructions of TSSM

Knowing whether a system exhibits explicit, implicit, or hybrid structures is beneficial but not strictly necessary before
choosing a structure. Our method provides the flexibility to select an appropriate architecture based on the problem’s
characteristics, even with partial knowledge. At the same time, complete comprehension of these structural types can guide
the choice more precisely. In the setting of our problem, the conservation relation of the process system is of definite form,

∂U

∂t
= −∇ · (JC + JD) + q + F

Under such a premise, we can easily select the appropriate structures for different spatio-temporal systems according to the
following rules (The choice of different paths and Impact of Mismatched Path Selection on Performance).

D.3.1. THE CHOICE OF DIFFERENT PATHS

As shown in Tab. 7, we defined three structural types: localized, spectral, and hybrid, each suited to different system
characteristics. Localized path is appropriate for systems like the Burgers equation, where diffusion and convection terms
are explicit and uncoupled. Spectral path is better for systems with coupled terms, like the vorticity form of the NS
equation. Hybrid path suits systems combining these elements, like the general form of the NS equation, where diffusion
and convection are uncoupled, but the internal source term is coupled (i.t. the pressure and target velocity fields are coupled
to satisfy the Poisson equation). When the interaction between convection and diffusion terms is unknown, the spectral path
is a reliable approximation for all these elements, and the hybrid path addresses the source term (Internal/External Source).

Table 7. The choice of different paths.

Localized Spectral Hybrid

Characteristic Explicit Implicit Explicit+Implicit

Example −u∇u+∇2u −u∇w +∇2w −u∇u+∇2u−∇p
Diffusive Flows/Convective Flows Pre-defined convolution E-Conv Pre-defined convolution

Internal Source Term/External Source Term ResNet block S-Conv block ResNet/S-Conv block

Table 8. Impact of Mismatched Path Selection on Performance.

Datasets Category Localized Spectral Hybrid

Burgers2d Localized 0.039 0.043 0.037

NS2d (ν = 1e-5) Spectral 0.061 0.034 0.048

NSM2d Hybrid 0.205 0.196 0.189

D.3.2. IMPACT OF MISMATCHED PATH SELECTION ON PERFORMANCE

Using all three paths, we evaluated the performance across three datasets (Burgers2d for Localized, NS2d for Spectral,
and NSM2d for Hybrid). The results are summarized as Tab. 8. For Burgers2d and NSM2d, with explicit diffusion and
convection terms, physical space approximation outperforms spectral space gradient approximation. For NS2d, featuring
implicit diffusion and convection terms, spectral space gradient approximation is superior to physical space approximation.
Across all datasets, the Hybrid path surpasses the Localized path in performance. However, this comes at a cost: an increase

17

PAPM: A Physics-aware Proxy Model for Process Systems

in model parameters from 14k to 35k, higher computational demands, and marginal performance gains. Consequently, the
Localized path is preferred for scenarios without complex couplings, such as Burgers2d.

Table 9. The difference of five datasets.

Dataset Category Various Conditions
Initial conditions Boundary conditions Coefficients External sources

Burgers2d Localized ✓ Periodic ✓ unknown
RD2d Localized ✓ No-flow Neumann unknown

NS2d Spectral ✓ Periodic unknown

Lid2d Hybrid Dirichlet, Neumann ✓
NSM2d Hybrid ✓ Dirichlet, Neumann ✓ unknown

E. Datasets
As shown in Tab.9, we employ five datasets spanning diverse domains, such as fluid dynamics and heat conduction. Based
on the TSSM scheme employed by PAPM, we categorize the aforementioned five datasets into three types: Burgers2d and
RD2d fall under the localized category, NS2d is classified as spectral, while Lid2d and NSM2d are designated as hybrid.
The generations of Lid2d and NSM2d are detailed via COMSOL multiphysics in E.2. We are particularly keen to make
Lid2d and NSM2d publicly available, anticipating various research endeavors on these datasets by the community.

E.1. Five datasets

Burgers2d (Huang et al., 2023a). The 2D Burgers equation is a fundamental nonlinear partial differential equation. Its
formulation is given by:

∂u

∂t
= −u · ∇u+ v∆u+ f ,

u|t=0 = u0(x, y)
(12)

where u = (u(x, y, t), v(x, y, t)) represents the velocity field, and the spatial domain is Ω = [0, 2π]2 with periodic boundary
conditions. The viscosity coefficient v varies within the range v ∈ [0.001, 0.1]. The forcing term is defined as:

f(x, y,u) = (sin(v) cos(5x+ 5y), sin(u) cos(5x− 5y))⊤. (13)

The initial condition, denoted as u0(x, y), is drawn from a Gaussian random field characterized by a variance of 25(−∆+
25I)−3. Subsequently, it is linearly normalized to fall within the [0.1, 1.1] range. A total of N = 250 samples are
generated, each spanning M = 3200 time steps with a step size of δt = 0.01

32 . A high-resolution traditional numerical
solver is employed to generate high-precision numerical solutions. This solver utilizes the δt value and operates on a finely
discretized 256× 256 grid. The resulting high-precision solutions are stored at intervals of every 32 time step, resulting in
100 time slices. Subsequently, these solutions are downsampled to a coarser 64× 64 grid.

RD2d (Takamoto et al., 2022). Considering the 2D diffusion-reaction equation, the conservation of the activator u and
inhibitor v can be represented as:

∂u

∂t
= −∇Ju +Ru,

∂v

∂t
= −∇Jv +Rv

Ju = −Du∇u, Jv = −Dv∇v
(14)

Where Ju and Jv are the flux terms for the activator and inhibitor, respectively. These represent the diffusive or molecular
flows for each component. The reaction functions Ru and Rv for the activator and inhibitor, respectively, are defined by the
Fitzhugh-Nagumo (FN) equation, written as Ru = u− u3 − k − v and Rv = u− v, where k = 5× 10−3 and the diffusion
coefficients for the activator and inhibitor are Du = 1 × 10−3 and Dv = 5 × 10−3, respectively. The initial condition
is characterized by a standard normal random noise, with u(0, x, y) ∼ N (0, 1.0) for x ∈ (−1, 1) and y ∈ (−1, 1). The
boundary conditions are defined as no-flow Neumann boundary conditions. This entails that the partial derivatives satisfy

18

PAPM: A Physics-aware Proxy Model for Process Systems

the conditions: Du∂xu = 0, Dv∂xv = 0, Du∂yu = 0, and Dv∂yv = 0, all applicable for the domain x, y ∈ (−1, 1)2. This
dataset 2 is transformed into a coarser grid with dimensions of 64× 64 while keeping the time step consistently constant.

NS2d (Li et al., 2020). We refer to FNO as the source for our exploration of the two-dimensional incompressible
Navier-Stokes equation in vorticity form. This equation is defined on the unit torus and is outlined as follows:

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f,

∇ · u(x, t) = 0,

w(x, 0) = w0(x),

(15)

where x ∈ (0, 1)2, t ∈ (0, T], and u represents the velocity field, w = ∇ × u denotes the vorticity, w0 stands for the
initial vorticity distribution, ν ∈ R+ signifies the viscosity coefficient and f denotes the forcing function. In this work, the
viscosity coefficient is set to ν = 1× 10−3, 1× 10−4, 1× 10−5. It’s worth noting that, for the purpose of maintaining a
consistent evaluation framework, the resolution is standardized at 64× 64 for both training and testing phases, given that the
baseline methods are not inherently resolution-invariant.

Lid2d. A constant velocity across the top of the cavity creates a circulating flow inside. To simulate this, a constant velocity
boundary condition is applied to the lid while the other three walls obey the no-slip condition. Different Reynolds numbers
yield different results, so in this article, Re ∈ [100, 1500] are applied. At high Reynolds numbers, secondary circulation
zones are expected to form in the corners of the cavity. The system of differential equations (N-S equations) consists of two
equations for the velocity components u = (u(x, y, t), v(x, y, t)), and one equation for pressure (p(x, y, t)):

∂u

∂t
= −u · ∇u+

1

Re
∆u−∇p,

∇ · u = 0
(16)

where (x, y) ∈ (0, 1)2. The initial condition is (u, v, p) = 0 everywhere. And the boundary conditions are: u = 1 at
y = 1 (the lid), (u, v) = 0 on the other boundaries, ∂p/∂y = 0 at y=0,p=0 at y = 1, and ∂p/∂x = 0 at x = 0, 1. The data
generation for the Lid2d is processed by COMSOL Multiphysics®, and a total of N = 200 samples are generated, each
spanning M = 1000 time steps with a step size of δt = 0.1

10 . Every 10 steps, we save the data, resulting in 100 time slices.
This solver utilizes the value of δt and operates on a finely discretized 128× 128 grid. Subsequently, these solutions are
downsampled to a coarser 64× 64 grid.

NSM2d. Consider the Navier-Stokes equations with an additional magnetic field:
∂u

∂t
+ u · ∇u = −∇p+ ν∇2u+ F , t ∈ [0, T],

∇ · u = 0,
(17)

where (x, y) ∈ [0, 4]×[0, 1], u = [u(x, y, t), v(x, y, t)] ∈ R2 is the velocity vector, p(x, y, t) ∈ R is the pressure, ν = 1/Re
represents the kinematic viscosity (with Re as the Reynolds number), and F = [Fx, Fy] is an external source term induced
by the magnetic field. The components of F are defined as follows: Fx = mH

∂H

∂x
, Fy = mH

∂H

∂y

H(x, y) = exp
[
−8

(
(x− L/2)2 + (y −W/2)2

)] (18)

where L = 4, W = 1, m = 0.16 is the magnetization, and H is a time-invariant magnetic intensity. The simulation is
conducted on a 2D rectangular domain {x, y} ∈ [0, 4]× [0, 1] with the following boundary conditions: the inflow boundary
(x = 0) is prescribed with a velocity distribution u(0, y, t), where y0 represents the vertical position of the inlet jet center:

u(0, y, t) =

[
u(0, y, t)
v(0, y, t)

]
=

 exp
(
−50 (y − y0)2

)
sin(t) · exp

(
−50 (y − y0)2

) (19)

The outflow boundary (x = 4) is set with a reference pressure p(4, y, t) = 0. The no-slip boundary condition is applied at
the top and bottom walls (y = 0, 1). The Reynolds number is dimensionless and ranges from 100 to 1500. The inlet jet

2This dataset can be downloaded at https://github.com/pdebench/PDEBench

19

https://github.com/pdebench/PDEBench

PAPM: A Physics-aware Proxy Model for Process Systems

position y0 is varied within the domain 0.4 ≤ y0 ≤ 0.6. The data generation for the NSM2d is processed by COMSOL
Multiphysics®, and a total of N = 200 samples are generated, each spanning M = 1000 time steps with a step size of
δt = 0.2

10 . Every 10 steps, we save the data, resulting in 100 time slices. This solver utilizes the δt value and operates on a
finely discretized 256× 64 grid. Subsequently, these solutions are downsampled to a coarser 128× 32 grid.

E.2. Detailed Data Generation Process

Our research employed COMSOL multiphysics software 3 for fluid dynamics simulation in a lid-driven cavity and a
magnetic stirring scenario. The main text outlines the simulation parameters, utilizing grids of 128× 128 and 256× 64 for
each case, respectively. The Time-Dependent Module, with specific time steps, was used for execution. The simulations
required substantial computational resources, solving for 49,152 and 16,130 internal degrees of freedom (DOFs) in each
scenario. To generate a comprehensive dataset, we varied simulation parameters, running 200 simulations for each scenario
with different Reynolds numbers and, in the magnetic stirring case, the y0 value. This data was stored in h5 format.

The computational intensity was significant: a single run in the lid-driven scenario took 91 seconds on average, while the
magnetic stirring case took 226 seconds. The total computation time was approximately 105 seconds for all 200 cases,
highlighting the time-consuming nature of such simulations. The intricacy of multi-physics coupling and the extensive
computational demand in these simulations point towards the necessity of more efficient methods. This situation underscores
the potential of neural networks in accelerating simulation processes. By leveraging neural networks, we aim to reduce
the computational time significantly, addressing the inherent slowness of detailed simulations like those in our study. This
approach could transform the feasibility and scalability of complex simulations in various scientific and engineering domains.

F. Details for experimental setup and models’ hyper-parameters
F.1. Experimental setup

Based on the experimental setting of time extrapolation, we further conducted experiments in the following two parts:
coefficient interpolation (referred to as C Int.) and coefficient extrapolation (referred to as C Ext.). For C Int., the data is
uniformly shuffled and then split into training, validation, and testing datasets in a [7 : 1 : 2] ratio. However, in the case of C
Ext., the data splitter is determined based on the order of coefficients, with equal proportions [7 : 1 : 2]. For example, the
viscosity coefficients are divided from largest to smallest, and the coefficients with the lowest viscosity, representing the
most challenging tasks, are selected as the test set.

One crucial point to consider is that to maintain consistency with the data-driven approach (Shi et al., 2015; Stachenfeld
et al., 2021; Li et al., 2020; Gupta & Brandstetter, 2022; Raonić et al., 2023), we must replace the initial time t = 0 with the
initial step size t0. We consistently set the initial time step size for all datasets across various tasks as t0 = 5. In the test set,
Tend = 100, except for the NS2d. Specifically, for NS2d with viscosity values of ν = 1e−3 and 1e−4, Tend = 50, while
for ν = 1e−5, Tend = 20. The trajectory length in the training set that can be used as label data is given by Tend/2− t0.

We train all models with AdamW (Loshchilov & Hutter, 2017) optimizer with the exponential decaying strategy, and
epochs are set as 500. The causality parameter α1 = 0.1 and α0 = 0.001. The initial learning rate is 1e-3, and the
ReduceLRonPlateau schedule is utilized with a patience of 20 epochs and a decay factor of 0.8. For a fair comparison, the
batch size is identical across all methods for the same task, and all experiments are run on 1 ∼ 3 NVIDIA Tesla P100 GPUs.

To account for potential variability due to the partitioning process, each experiment is performed three times, and the final
result is derived as the average of these three independent runs. Except for the predefined parameters, the parameters of all
models are initialized by Xavier (Glorot & Bengio, 2010), setting the scaling ratio c = 0.02.

F.2. Hyper-parameters

PAPM. In this work, PAPM designed three different temporal-spatial modeling methods according to the characteristics of
five different data sets.

• Localized Operator. Burgers2d uses the predefined fixed convolution kernel as the convolution kernel parameter of
diffusive and convective flows, while a 4-layer convolution layer characterizes the source term. Its channel is set to 16,
and the GELU activation function is used. In RD2d, trainable convolutional kernels are used as the convolution kernel

3https://www.comsol.com/

20

https://www.comsol.com/

PAPM: A Physics-aware Proxy Model for Process Systems

parameter of diffusive flows, and the kernel is set to 5. For the source term, like burgers2d, a four-layer convolutional
layer with channel 16 and GELU is used to characterize the source term.

• Spectral Operator. After FFT, kx, ky and ŵ are input into a 1 × 1 conv for dot product, which is used to solve the
partial derivatives of vorticity w and velocity field u, and then to physical space through IFFT. Simple operations such as
multiplication and addition are performed according to conservation relations. As for the source term is characterized by a
layer of S-Conv (i.e., spectralConv2d fast) with (width= 12, modes1= 12, modes2= 12).

• Hybrid Operator. According to the velocity part of the conservation equation, we set the kernel as five using trainable
convolutional kernels as the convolution kernel parameters of diffusive and convective flows. We use a three-layer
convolutional layer with channel 16 and GELU to represent the source term. Then, the intermediate results of the velocity
field are fed into an S-Conv (width= 8, modes1= 8, modes2= 8) to map the complete velocity field and pressure field.

ConvLSTM (Shi et al., 2015). Specializing in spatial-temporal prediction, ConvLSTM blends LSTM’s temporal cells with
CNN spatial extraction. The setup consists of three distinct blocks: an encoding block employing a 5× 5 convolution kernel
with channel 32, an LSTM cell-based forecasting block, and a decoding block featuring 2 CNN layers with 5× 5 kernels
and 2 Res blocks. Notably, multi-step predictions are achieved through state concatenation within the forecasting block.
Despite its strengths, its performance in complex process systems can be limited due to potential error accumulations.

Dil-ResNet (Stachenfeld et al., 2021). This model combines the encode-process-decode paradigm with the dilated
convolutional network. The processor consists of N = 4 residual blocks connected in series, and each is made of dilated
CNN stacks with residual connections. One stack consists of 7 dilated CNN layers with dilation rates of (1, 2, 4, 8, 4, 2, 1),
where a dilated rate of N indicates that each pixel is convolved with multiples of N pixels away. Each CNN layer in the
processor is followed by ReLU activation. The key part of this network is a residual connection, which helps avoid vanishing
gradients, and dilations allow long-range communication while preserving local structure. We found difficulties running this
model on complex datasets due to computing and memory constraints.

time-FNO2D (Li et al., 2020). This model applies matrix multiplications in the spectral space with learnable complex
weights for each component and linear updates and combines embedding in the spatial domain. The model consists of 2
MLP layers for encoding and decoding and 4 Fourier operation blocks (width= 12, modes1= 12, modes2= 12). Each block
contains Fourier and CNN layers, followed by GELU activation. Optionally, low-pass filtering truncates high-frequency
modes along each dimension in the Fourier-transformed grid.

MIONet (Jin et al., 2022). In the original paper, the Depth of MIONet is set to 2, the width is 200, and the number of
parameters is 161K. Build MIONet with DeepXDE (Lu et al., 2021) 4. In this work, we have greatly adjusted the number of
parameters; the number of parameters is about 20k, and the width is set to 20. Consistent with FNO, MLP is also introduced
to construct the project layer for data, and then projection is also carried out in output. Other contents are consistent with the
original text.

U-FNet (Gupta & Brandstetter, 2022). This model improves U-Net architectures, replacing lower blocks both in the
downsampling and in the upsampling path of U-Net architectures by Fourier blocks, where each block consists of 2 FNO
layers and residual connections. Other contents are consistent with the original text. In this work, we have adjusted
n input scalar components and n output scalar components to the number of channels of the physical field in our
datasets, and both time history and time future are set to 5 for better fitting.

CNO (Raonić et al., 2023).This model proposes a sequence of layers with the convolutional neural operator, mapping
between bandlimited functions based on U-Net architectures. The convolutional neural operator consists of 4 different
blocks, i.e., the downsampling block, the upsampling block, the invariant block, and the ResNet block. In the original
paper, the width and height of spatial size for the mesh grid should be identical. In this work, we relaxed this restriction in
activation function filtered lrelu to fit on non-square grids like the NSM2d dataset. Other contents are consistent with the
original text.

PeRCNN (Rao et al., 2023). The network consists of two components: a fully convolutional decoder as an initial state
generator and a novel recurrent block named

∏
-block for recursively updating the state variables. Since our experiments’

available measurement size is full, we have omitted this decoder. In the recurrent
∏

-block, the state first goes through
multiple parallel 1× 1 Conv layers with stride 1 and output channel 32. The feature maps produced by these layers are then
fused via the elementwise product operation. Then, the multi-channel goes through a conv layer with a filter size of 1 to

4https://github.com/lululxvi/deepxde

21

https://github.com/lululxvi/deepxde

PAPM: A Physics-aware Proxy Model for Process Systems

obtain the output of the desired number of channels. We found this method unstable when approaching nonlinear complex
terms and prone to NaN values during training.

PPNN (Liu et al., 2024). This model combines known partial nonlinear functions with a trainable neural network, which
is named ConvResNet. The only difference between these two models is that a trainable portion of PPNN has an extra
input variable F , provided by the PDE-preserving portion of PPNN. The state first goes through the decoder, which is made
of four ConvResNet blocks, and each of them consists of a 7 × 7 kernel with 96 channels and a zero padding of 3. The
following decoder includes a pixel shuffle with an upscale factor equal to 4 and a convolution layer with a 5× 5 kernel. Due
to the physics-aware design, this model shows lower relative error in the extrapolation range.

G. Additional experimental results
In this section, some additional experimental results are shown, which are data visualization (G.1), training and inference
time cost-specific details (G.2), and detailed ablation studies (G.3).

G.1. Visualization

Fig. 7 and Fig. 8 showcase the results across five extrapolation time slices on Burgers2d and RD2d datasets. Both datasets
clearly show that the physics-aware methods, PPNN and PAPM (our), can predict the dynamics of these two complex
systems well. However, in the second half of the extrapolation (T ≥ 1

2Tend), It can be seen that our method PAPM is better
than PPNN in local detail reconstruction. It is worth mentioning that our method has only 1% of the number of parameters
and FLOPs of PPNN. However, the effect is better than PPNN, which further affirms the superiority of our structured design
and specific spatio-temporal modeling method. Fig. 9 and Fig. 10 show the visual effects between different terms of PAPM
and the numerical results, which can further prove that PAPM can learn the equation’s convection/diffusion/source parts.

G
ro

u
n

d
 T

r
u

th
P

P
N

N
P

A
P

M
 (

o
u

r
)

𝑻 =
𝟏

𝟐
𝑻𝒆𝒏𝒅 𝑻 =

𝟑

𝟒
𝑻𝒆𝒏𝒅𝑻 =

𝟏

𝟒
𝑻𝒆𝒏𝒅𝑻 = 𝟏 𝑻 = 𝑻𝒆𝒏𝒅

0.2 0.4 0.6 0.8 1.0

Figure 7. Predicted flow velocity (∥u∥2) snapshots by PPNN, and PAPM (Ours) vs. Ground Truth (GT) on Burgers2d dataset in T Ext.
task.

22

PAPM: A Physics-aware Proxy Model for Process Systems
G

ro
u

n
d

 T
r
u

th
P

P
N

N
P

A
P

M
 (

o
u

r
)

𝑻 =
𝟏

𝟐
𝑻𝒆𝒏𝒅 𝑻 =

𝟑

𝟒
𝑻𝒆𝒏𝒅𝑻 =

𝟏

𝟒
𝑻𝒆𝒏𝒅𝑻 = 𝟏 𝑻 = 𝑻𝒆𝒏𝒅

−0.2 −0.1 0.0 0.1 0.2

Figure 8. Predicted flow velocity (∥u∥2) snapshots by PPNN, and PAPM (Ours) vs. Ground Truth (GT) on RD2d dataset in T Ext. task.

G.2. Training and inference time cost

Dataset generation for our work is notably resource-intensive, with inference costs ranging from 102 ∼ 104 s for public
datasets and up to 103 s for those we generated using COMSOL Multiphysics®. As detailed in Tab. 10, in stark contrast,
both baselines and PAPM register inference times between 0.1 ∼ 10 s, achieving an improvement of 3 to 5 orders of
magnitude. Notably, PAPM’s time cost rivals or even surpasses baselines across different datasets. Unlike traditional
numerical algorithms, this indicates that introducing rigorous physical mechanisms doesn’t necessarily bloat time costs.
PAPM’s efficiency remains competitive with other data-driven methods.

G.3. Supplemental Ablation studies

G.3.1. THE COMPARISON BETWEEN FIXED AND TRAINABLE CONVOLUTIONAL KERNELS

In PAPM, the pre-defined convolutional kernels contain the fixed and trainable ones. For the fixed ones, we can directly
use the difference scheme as the parameter of the convolution kernel without participating in the subsequent training
optimization. For the trainable one, the trainable parameters in kernels are constrained as the triangular and symmetric
matrices, which correspond to unidirectional convection and directionless diffusion. The use of trainable ones is due to
spatio-temporal discretization, where the original difference scheme is insufficient in characterizing the corresponding
gradient information. Thus, we make the kernel in the difference scheme in Diffusive Flows (DF) and Convective Flows
(CF) learnable for better capturing spatial gradients.

Taking the Burgers2d and RD2d datasets in the C Int. setting as examples to show the different performance for fixed and
trainable convolutional kernels. Tab. 11 indicates that when the kernel becomes a learnable term, the model’s performance
greatly improves, where the metric is the mean L2 relative error (Eq. 4), lower values indicate better results, and Bold
indicates the best performance.

23

PAPM: A Physics-aware Proxy Model for Process Systems

Table 10. Training and inference time cost (epoch/second) of different baselines.

Config Burgers2d RD2d NS2d Lid2d NSM2d
Train Infer Train Infer Train Infer Train Infer Train Infer

ConvLSTM 5.41 1.12 21.41 3.94 7.05 0.86 8.68 3.22 4.39 0.92
Dil-ResNet 6.64 1.73 27.06 4.06 9.96 1.19 10.90 3.66 6.34 1.03
time-FNO2D 4.87 1.46 8.94 1.95 5.16 0.79 10.41 2.11 3.35 0.69
MIONet 5.69 1.58 8.69 2.03 5.05 0.89 10.54 3.02 4.03 0.76
U-FNet 3.64 0.52 14.56 1.96 6.67 0.51 10.42 1.14 6.96 0.82
CNO 4.02 0.60 15.72 2.28 4.92 0.44 11.08 1.12 5.90 0.68
PeRCNN 5.02 1.72 5.73 1.47 6.53 0.84 17.44 4.08 4.24 0.82
PPNN 5.07 0.96 8.88 1.19 4.87 0.91 15.58 3.44 8.08 0.64

PAPM 3.44 0.93 8.62 2.07 3.70 1.27 8.91 2.94 5.13 0.88

Table 11. Performance comparison for different configurations.

config Burgers2d RD2d

fixed 0.082 0.049

trainable 0.039 0.018

G.3.2. ABLATION STUDIES OF DIFFERENT TERMS

Here, we present a series of ablation experiments conducted on the Burgers2d, RD2d, and NSM2d datasets within the C Int.
setting. Each experiment investigates the impact of excluding specific terms: no DF, which omits diffusion; no CF, which
excludes convection; no Phy, which removes both diffusion and convection; no IST, which excludes internal sources;
no EST, which excludes external sources; and no BCs, which eliminates the explicit embedding of boundary conditions.

We can get the following insights as shown in Tab. 12, where the metric is the mean L2 relative error (Eq. 4), lower values
indicate better results, and Bold indicates the best performance. First, for Burgers2d and NSM2d, the no DF configuration
demonstrated the importance of integrating the viscosity coefficient with the diffusion term, with its absence leading to
significant errors. Second, for Burgers2d and RD2d, internal sources primarily drive the state update process. In NSM2d,
both the internal source (gradient of pressure,∇p) and the external source (time-invariant magnetic intensity) play crucial
roles. Third, the necessity of adhering to physical laws in boundary conditions was highlighted in the no BCs, notably
reducing errors.

Table 12. Performance metrics across different datasets with various modifications.

Datasets ϵ no DF no CF no Phy no IST no EST no BCs

Burgers2d 0.039 0.067 0.062 0.149 0.174 - 0.068

RD2d 0.018 0.102 - 0.102 0.281 - 0.083

NSM2d 0.189 0.273 0.212 0.299 0.392 0.311 0.201

24

PAPM: A Physics-aware Proxy Model for Process Systems

𝑻 = 𝟏
𝑻 =

𝟏

𝟒
𝑻𝒆𝒏𝒅 𝑻 =

𝟏

𝟐
𝑻𝒆𝒏𝒅 𝑻 =

𝟑

𝟒
𝑻𝒆𝒏𝒅 𝑻 = 𝑻𝒆𝒏𝒅 𝑻 = 𝟏

𝑻 =
𝟏

𝟒
𝑻𝒆𝒏𝒅 𝑻 =

𝟏

𝟐
𝑻𝒆𝒏𝒅 𝑻 =

𝟑

𝟒
𝑻𝒆𝒏𝒅 𝑻 = 𝑻𝒆𝒏𝒅

G
T

P
A

P
M

 (
o
u

r
)

G
T

P
A

P
M

 (
o
u

r
)

G
T

P
A

P
M

 (
o
u

r
)

G
T

P
A

P
M

 (
o
u

r
)

S
ta
te

D
if
fu
s
io
n

c
o
n
v
e
c
ti
o
n

S
o
u
r
c
e

𝑢 𝑣

Figure 9. Different terms on the Burgers2d dataset in T Ext. task.

25

PAPM: A Physics-aware Proxy Model for Process Systems

𝑻 = 𝟏
𝑻 =

𝟏

𝟒
𝑻𝒆𝒏𝒅 𝑻 =

𝟏

𝟐
𝑻𝒆𝒏𝒅 𝑻 =

𝟑

𝟒
𝑻𝒆𝒏𝒅 𝑻 = 𝑻𝒆𝒏𝒅 𝑻 = 𝟏

𝑻 =
𝟏

𝟒
𝑻𝒆𝒏𝒅 𝑻 =

𝟏

𝟐
𝑻𝒆𝒏𝒅 𝑻 =

𝟑

𝟒
𝑻𝒆𝒏𝒅 𝑻 = 𝑻𝒆𝒏𝒅

G
T

P
A

P
M

 (
o
u

r
)

G
T

P
A

P
M

 (
o
u

r
)

G
T

P
A

P
M

 (
o
u

r
)

Activator Inhibitor

S
ta
te

D
if
fu
s
io
n

S
o
u
r
c
e

Figure 10. Different terms on the RD2d dataset in T Ext. task.

26

