
Coarse-To-Fine Tensor Trains for Compact Visual Representations

Sebastian Loeschcke 1 2 Dan Wang 1 Christian Leth-Espensen 3

Serge Belongie 1 Michael J. Kastoryano 1 Sagie Benaim 4

Abstract
The ability to learn compact, high-quality, and
easy-to-optimize representations for visual data
is paramount to many applications such as novel
view synthesis and 3D reconstruction. Recent
work has shown substantial success in using ten-
sor networks to design such compact and high-
quality representations. However, the ability to
optimize tensor-based representations, and in par-
ticular, the highly compact tensor train represen-
tation, is still lacking. This has prevented practi-
tioners from deploying the full potential of ten-
sor networks for visual data. To this end, we
propose ‘Prolongation Upsampling Tensor Train
(PuTT)’, a novel method for learning tensor train
representations in a coarse-to-fine manner. Our
method involves the prolonging or ‘upsampling’
of a learned tensor train representation, creating
a sequence of ‘coarse-to-fine’ tensor trains that
are incrementally refined. We evaluate our rep-
resentation along three axes: (1). compression,
(2). denoising capability, and (3). image comple-
tion capability. To assess these axes, we consider
the tasks of image fitting, 3D fitting, and novel
view synthesis, where our method shows an im-
proved performance compared to state-of-the-art
tensor-based methods.

https://github.com/sebulo/PuTT

1. Introduction
Building a compact, easy-to-fit, and high-quality visual data
representation is paramount for many computer vision and
graphics applications, such as novel view synthesis, 3D fit-
ting, and generation (Xie et al., 2022). To this end, recent re-

1University of Copenhagen 2IT University of Copenhagen 3Aarhus
University 4Hebrew University of Jerusalem. Correspondence to:
Sebastian Loeschcke <sbl@di.ku.dk>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

search within neural field representations (Chen et al., 2022;
Obukhov et al., 2022; Müller et al., 2022) has directed its
focus towards the sparsity and efficiency of tensor networks,
hinting at the potential gains in the compactness and qual-
ity of such representations. In particular, TensoRF (Chen
et al., 2022) applied low-rank tensor decomposition of ra-
diance fields to achieve substantial efficiency gains. This
approach was further extended by TT-NF (Obukhov et al.,
2022), which utilized a tensor train representation to im-
prove compression. Indeed, tensor trains, as well as more
complex tensor networks (Orús, 2014; Vidal, 2007), are
known to allow substantial improvements in compression.

However, despite encouraging progress, the full realization
of tensor networks for compact and efficient representa-
tions is still lacking. The main obstacles of current tensor-
based representations are: (1). Optimization using current
gradient-based schemes often gets stuck in local minima and
falls short of the ultimate compression limit of the tensor
train format. In particular, TensoRF (Chen et al., 2022) can
only handle small tensors and does not enjoy the signifi-
cant parameter efficiency of tensor trains. TT-NF (Obukhov
et al., 2022) highlights the capacity of tensor trains to model
larger tensors using significantly fewer parameters com-
pared to TensoRF, offering, in principle, a more scalable
approach. However, TT-NF lacks efficient optimization
strategies aligned to TensoRF. TT-NF often reaches a local
minimum in optimization and cannot model the full poten-
tial of tensor trains, resulting in poorer performance. (2).
They often struggle with noisy and incomplete data.

Toward resolving these obstacles, we propose a novel,
coarse-to-fine, tensor-train-based representation called ‘Pro-
longation Upsampling Tensor Train (PuTT)’ and an asso-
ciated gradient-based optimization strategy. Our strategy
involves the prolonging or ‘upsampling’ of a learned tensor
train representation in a coarse-to-fine manner, creating a
sequence of ‘coarse-to-fine’ tensor trains that are incremen-
tally refined. The coarse-to-fine operations are performed
directly in the tensor train format, circumventing the need to
process individual data points, as is customary in linear inter-
polation. This allows for efficient sampling and for PuTT to
be applied to extremely fine grids and to fit high-resolution
data at limited additional memory and computational cost.

1

https://github.com/sebulo/PuTT

Coarse-To-Fine Tensor Trains for Compact Visual Representations

Central to PuTT is its unique capability to learn Quantized
Tensor Trains (QTT) (Oseledets, 2009), a tensor format
designed for efficient representation through hierarchical
structuring. It does so through a hierarchical refinement
process, reminiscent of the multigrid method for solving
partial differential equations (Bramble, 2019). Our iterative
coarse-to-fine representation and optimization strategy en-
ables significant parameter efficiency of tensor trains on the
one hand and their efficient optimization on the other. The
empirical findings indicate that our strategy effectively mit-
igates the impact of local minima during training, thereby
enabling a parametrized learning model to approach the
theoretical limit allowed within the TT format; as obtained
by the TT-SVD decomposition (Oseledets, 2011). Unlike
TT-SVD, our strategy employs learning from samples, and
benefits from the associated versatility.

Visual data is known to have a natural hierarchical structure,
as evidenced by the success of wavelet-based methods in
image and video compression (Antonini et al., 1990). To
this end, the adoption of QTT in PuTT is motivated by its
suitability for handling the multi-resolution nature and de-
pendencies within subregions of data, akin to those in visual
data. Compared to other tensor decompositions like CP and
Tucker, which scale linearly with dimension (d) and side
length (L), QTT offers a more modest scaling in side length
O(d log(L)R2), where R is the rank and captures the cor-
relation in the data across dimensions and resolution scale.
This scalability positions QTT as an effective choice for
large-scale tensors, surpassing CP, VM, and Tucker in space
efficiency, which is especially beneficial as dimensions and
resolutions increase. We evaluate our representation along
three axes: (1). compression, (2). denoising capability, and
(3). ability to learn from incomplete or missing data. To
value these axes, we consider the tasks of image fitting,
3D fitting, and novel view synthesis, where our method
shows improved qualitative and quantitative performance
compared to state-of-the-art tensor-based baselines.

2. Related Work
Coarse-to-Fine Representations Coarse-to-fine, or
multi-scale, visual representations were developed for sev-
eral purposes, such as compression or reducing transmission
time (Szeliski, 2022). Early works include multi-resolution
pyramids such as Laplacian and Gaussian pyramids (Adel-
son et al., 1984), half-octave pyramids (Crowley & Stern,
1984) and wavelets (Mallat, 1989). Recently, coarse-to-fine
representations were used to build neural fields (Yang et al.,
2022; Lindell et al., 2022). Similarly, Instant-NGP (Müller
et al., 2022) uses a learned mutual-resolution grid repre-
sentation as a fast and compact representation for novel
view synthesis. Similarly to our method, this representation
is learned using SGD. Our method, however, considers a

more general and compact learned multi-scale representa-
tion, whereby the hierarchy levels are tensor trains.

Compact Visual Representations Visual representations
can be divided between explicit, implicit, and hybrid rep-
resentations. Explicit representations, such as image grids,
3D meshes, point clouds and voxel grids are interpretable
and expressive but expensive to store and scale. Implicit
representations (Sitzmann et al., 2019; Lombardi et al.,
2019) were used for applications such as novel view synthe-
sis (Müller et al., 2022), generative modeling (Niemeyer &
Geiger, 2021; Chan et al., 2021; 2022), and surface recon-
struction (Oechsle et al., 2021). While compact, they are
known to be slow. To this end, hybrid representations were
developed. For instance, DVGO (Sun et al., 2022) optimize
voxel grids of features. This leads to significantly lower
memory and capacity requirements. Instant-NGP (Müller
et al., 2022) combines an explicit multi-resolution hashable
feature grid with small MLP mapping features to color and
opacity values. While our approach also employs a multires-
olution structure, it is centered around a factorization of a
quantized hierarchical structure in each layer. Hashing is an
orthogonal technique; combining it with our method is left
for future work.

Tensor network representations Large-scale tensor
networks have seen extensive applications in quantum
physics (White, 1992b), including quantum computa-
tion (Pan & Zhang, 2022), and can be used to simulate
strongly correlated systems (Orús, 2019). To learn visual
representations, TensoRF (Chen et al., 2022) significantly
improved compression by using CP and VM decomposition
for NeRFs. CP decomposition was later extended by (Liu
et al., 2020b). Instead, our method can handle a much more
expressive representation of tensor trains. Our method ex-
tends the potential of tensor trains for larger tensors, as
noted in TT-NF (Obukhov et al., 2022), by incorporating a
coarse-to-fine approach that ensures efficient optimization
similar to TensoRF and enhances denoising and image com-
pletion capabilities. This strategy helps to fully utilize the
expressive strength of tensor-train representations.

3. Notation
Graphical notation Tensor Network Notation (TNN)
provides a powerful tool for visualizing the interactions be-
tween tensors in a tensor network. In these visualizations
(diagrams), each tensor is represented as a node, with a num-
ber of legs corresponding to its dimensions. For example:
(i). A matrix W ∈ Rm×n is as a node with two legs: W .
(ii). A vector x ∈ Rn is a node with a single leg: x . (iii).
Vector-matrix multiplication Wx is depicted by contracting
(summing over) legs of the connected tensors: W x . (iv).
Larger tensors T ∈ Rm×n×r have more legs: T .

2

Coarse-To-Fine Tensor Trains for Compact Visual Representations

Figure 1. Training one level of hierarchy. Initially, a batch B serves
two purposes: (1). sample data points YB from the target input, (2).
it is transformed into QTT indices B̂. Subsequently, corresponding
values ŶB̂ are sampled from the QTT. The reconstruction loss
between YB and ŶB̂ is used and backpropagated.

Figure 2. Illustration of QTT upsampling process. Beginning with
a QTT TD of length D, upsampling is achieved through the pro-
longation MPO P . This involves connecting the D + 1 cores of
P to the corresponding cores of TD and then contracting their
shared indices. The result is a new QTT, TD+1, of length D + 1,
where ranks are increased to RiR̂i. To manage this rank growth,
TT-SVD (Oseledets, 2011) is employed for rank truncation. This
process yields TD+1 with controlled ranks R̃i ≤ Rmax.

Such diagrams, composed of nodes and their interconnec-
tions, effectively depict what is known as a “tensor network”.
We focus on four classes of tensor networks: the CP, Tucker,
and tensor train decompositions. In 3D, we also consider
the VM construction (Chen et al., 2022). For discussion and
details on these tensor networks, see the appendix.

Tensor Train (Oseledets, 2011) or a Matrix Product State
(MPS) (Klümper et al., 1993; Perez-Garcia et al., 2007), is
a decomposition of a tensor with N indices into a chain-
like network of N order-3 tensors: This structure can
be graphically represented in Tensor Network Notation:
A A A A A . Given a tensor T ∈ Rn1×n2×···nd ,

the entries of the tensor are:

Tj1···jd = Aj1Aj2 · · ·Ajd , (1)

where {Ajk}nk
jk=1 are Rjk × Rjk+1

matrices for each jk;

i.e. A are Rk × nk × Rk+1 tensors. The ranks Rk are
referred to as the bond dimensions of the tensor train. We

Figure 3. Full coarse-to-fine learning, integrating ‘Train’ and ‘Up-
sample’ phases of Fig.1 and Fig.2. We start with input ID , which is
downscaled to ID−l (resolution 2d−l × 2d−l). A QTT is then ran-
domly initialized for ID−l. After training this QTT (as per Fig.1)
up to iteration i1, we proceed with upsampling (as illustrated in
Fig. 2), producing TD−l+1 of length D − l + 1. This represents a
grid at resolution 2d−l+1 × 2d−l+1 and requires sampling from a
newly downsampled target ID−l+1 of the same resolution.

distinguish the physical indices jk from the virtual indices
rk. The bond dimensions Rk can be understood as a rank
truncation along the cut n1, ..., nk−1 and nk, ..., nd, only
keeping the R largest singular values.

In the context of tensor trains, the rank measures the com-
plexity or information content of the tensor. The largest rank
among all virtual indices is considered the rank of the tensor
train. This rank dictates the ultimate expressivity of the
tensor train by determining the number of variational param-
eters. A tensor T can be represented exactly with a maximal
bond dimension R = maxk min{n1 · · ·nk−1, nk · · ·nD},
which scales exponentially in D. Tensor trains are used as a
parameterized variational class, where we upper bound the
bond dimension at some maximal value Rmax. The maxi-
mum bond dimension governs the model’s expressivity.

QTT Compressing visual data along physical dimen-
sions (e.g., image height or width) is natural, as in the CP
and Tucker decompositions (Chen et al., 2022). However,
significantly more compact representations are possible
by compression along the ‘scaling dimension’. For that,
we consider the quantized tensor train (QTT) construc-
tion (Khoromskij, 2011). The QTT format builds upon
mode quantization, which decomposes the scaling dimen-
sion in powers of two. As an illustrative example (Obukhov
et al., 2022), consider a 3D tensor representing a (regular)
function on a 16× 16× 16 lattice. Through mode quantiza-
tion, this tensor can be recast as a 12-dimensional hypercube:
(21×22×23×24)×(21×22×23×24)×(21×22×23×24):

Q Q Q Q Q Q Q Q Q Q Q Q .
In this notation, the subscript indicates levels of
hierarchy, and parentheses are used for visual
convenience. QTT assumes a particular reorder-

3

Coarse-To-Fine Tensor Trains for Compact Visual Representations

ing, where each hierarchical level is grouped as:
(21×21×21) ·(22×22×22) ·(23×23×23) ·(24×24×24):

Q Q Q Q . This ordering is far more expressive for
hierarchical data, as it avoids bottlenecks connecting low-
frequency data in one dimension (say x) to high-frequency
data in another dimension (say y).

Matrix Product operators A matrix product operator
(MPO) is a tensor network that describes a factorization of
a tensor with d input and d output indices into a sequence
of smaller tensors (Hubig et al., 2017; McCulloch, 2008),
with each core having two physical and two virtual indices:
M M M M M . Tensor trains and MPOs differ fun-
damentally in their applications: Tensor trains serve as com-
pressed representations of large vectors in high-dimensional
spaces, while MPOs, denoting matrix-vector operations, act
on tensor trains. This distinction enables MPOs to effec-
tively handle large operators within these high-dimensional
spaces in a compressed form (Stoudenmire, 2021).

In the appendix, we provide additional details and visual-
izations of tensor networks. In Sec. D.1, Fig. 16 visualizes
the multi-resolution hierarchy of the QTT, illustrating its
coarse-to-fine structure. In Sec. D.2, we detail the structure
of the specific MPO used for upsampling and the complexity
of the prolongation operations.

4. Method
Prolongation operators While QTT allows for substan-
tial memory savings for equal representational power, it
suffers from instabilities in training. Indeed, as observed
in (Obukhov et al., 2022; Novikov et al., 2021), without
explicit regularization, the QTT representation often fails to
improve upon the CP and Tucker representations in practice,
getting easily stuck in local minima. To this end, we intro-
duce a global upsampling strategy inspired by the multigrid
method for partial differential equations (Bramble, 2019;
Lubasch et al., 2018), illustrated in Figs. 1-3 and below.

We use a specific Matrix Product Operator (MPO) – the
prolongation operator P – which performs linear interpo-
lation globally in QTT. Given a vector vn ∈ R2n (e.g., a
waveform), Pn is a matrix that maps vn to vn+1 ∈ R2n+1

,
where vn+1 is a linear interpolant of vn to a lattice of twice
the resolution. Pn is similar to the Haar wavelet transform.
Crucially, the matrix Pn is an MPO with a fixed bond di-
mension of 3. Therefore, it can be applied to a QTT via
local tensor operations. The resulting QTT will have (three
times) larger bond dimension. If the maximal bond dimen-
sion exceeds the desired threshold (Rmax), then the QTT
can be compressed down to Rmax via a local singular value
decomposition. For two or three-dimensional visual data,
we interpolate in each dimension by applying Pn⊗Pn⊗Pn.
Fig. 2 demonstrates the application of P in upsampling a

QTT TD of length D to a prolonged QTT, TD+1, of length
D+1. This is achieved by linking D input cores of P to the
corresponding cores of T and contracting the shared indices.
As a result, the ranks of PTD increase, necessitating a rank
reduction through TT-SVD (Oseledets, 2011). This reduc-
tion is critical since the ranks expand exponentially in the
number of upsampling steps. The outcome is a compressed
QTT, TD+1, with controlled ranks R̃i ≤ Rmax, ensuring an
efficient representation of the upsampled object.

4.1. Learning tensor trains (PuTT)

We now outline our Prolongation Upsampling Tensor Train
(PuTT) methodology. Training starts at a chosen (coarse)
resolution and progressively learns a QTT with finer and
finer resolution. Consider a target vector ID representing
a visual object of size (2d)D, where d is the dimension
(i.e. d = 2 for images). We want to learn the best QTT
approximation of ID, TD with D legs of dimension 2d each.
We start with a down-sampled object ID−l and learn TD−l,
where l is the number of upsampling steps. For instance, for
an image of resolution 5122 and three upsampling steps, we
start learning I6 and upsample three times to reach I9.

In our experiments, we learn the QTTs at each resolution
via back-propagation, by optimizing the mean squared er-
ror. After obtaining a satisfactory approximation of ID−l in
QTT format, which we call TD−l, we apply the upsampling
MPO PD−l+1 to TD−l, yielding a QTT with D − l + 1
‘physical’ legs PD−l+1TD−l. If the maximal bond dimen-
sion exceeds Rmax, then we perform a TT-SVD contraction
to keep all ranks below the max Rmax. We then proceed to
learn ID−l+1 starting from PD−l+1TD−l. Initiating learn-
ing with an upsampled prior stabilizes convergence to the
correct local or global minimum. The learning proceeds it-
eratively until we reach the full scale ID and a QTT approx-
imation TD. Throughout the learning, we adopt a trapezoid
structure (Oseledets, 2011) for the tensor train ranks, where
ranks increase to a maximum (forming the trapezoid’s as-
cending edge), remain constant (trapezoid’s top), and then
decrease (its descending edge). The upsampling step of the
algorithm is illustrated in Fig. 2, and the full coarse-to-fine
learning scheme is illustrated in Fig. 3.

Fig. 1 outlines our training process in a single hierarchy
level. Initially, we sample a batch of indices B, which
serves two purposes: 1. Conversion to a batch of QTT
indices B̃ ∈ RD, mapping cartesian points to QTT points
for retrieving values ŶB̂ from the QTT, 2. Using B to sample
target input values from ID, obtaining YB . These values,
YB and ŶB̂ , are used to calculate a mean squared error loss,
which is then backpropagated to update the QTT weights.

4

Coarse-To-Fine Tensor Trains for Compact Visual Representations

4.2. Novel View Synthesis

Applying PuTT to novel view synthesis involves modeling
a function that maps any 3D location x and viewing direc-
tion d to a volume density σ and a view-dependent color
c, supporting differential ray marching for volume render-
ing (Mildenhall et al., 2020). We use two voxel grids: Gσ

for volume density and Gc for view-dependent color, simi-
lar to TensoRF (Chen et al., 2022). Gσ is a single-channel
grid encoding σ values, while Gc is a multi-dimensional grid
holding appearance features. These features are transformed
into color values using a shading function S , such as a small
MLP or Spherical Harmonics. The continuous grid-based
Radiance Field is expressed as:

σ, c = Gσ(x),S(Gc(x), d)

where Gσ(x) and Gc(x) are interpolated using trilinear in-
terpolation within the 3D voxel grid.

The tensor representation, Gσ ∈ RX×Y×Z , is a 3-order ten-
sor for volume density, and Gc ∈ RX×Y×Z×P is a 4-order
tensor for color with an additional feature vector dimension
P . We factorize these grids into QTT-format tensors Tσ and
Tc, each with D cores and eight physical indices per core,
using the QTT-Block structure (Obukhov et al., 2022) for
Gc to handle the additional feature dimension P .

Fig. 4 outlines our reconstruction and rendering pipeline.
Points sampled along a ray are transformed into QTT indices
and used to sample from Tσ and Tc. The interpolated values
are then used for differentiable volume rendering, enabling
training via backpropagation.

5. Results
We demonstrate the applicability of PuTT along three axes:
(1). Compression, showing that PuTT can be optimized to
achieve the expressive power and compactness of tensor
trains, (2). Learning from missing data, showing that PuTT
can learn to interpolate missing data effectively, (3). Denois-
ing, showing that PuTT can better recover the original signal
given noisy inputs. We evaluate these axes with respect to
the applications of 2D fitting, 3D fitting, and novel view
synthesis. Lastly, we conduct an ablation study to under-
score the impact of individual components. In the appendix
and supplementary webpage, we provide additional results
accompanying existing figures and discuss the limitations.

Baseline Methods We compare our method to state-
of-the-art tensor-based methods: CP, Tucker, and the VM
decomposition (Chen et al., 2022) (see details in Sec. 3
and appendix). Furthermore, we include a comparison with
TT-SVD (Oseledets, 2011) (adapted to QTT, see appendix
for details). TT-SVD is a deterministic approach, that starts
from the full uncompressed tensor and compresses the ten-
sor into tensor train form with a single pass over the input.

TT-SVD and can only be applied when the direct signal
(e.g., 2D image or 3D voxel grid) is provided, as it is ap-
plied analytically. It does not apply when optimization is
required, such as in learning from missing data, or novel
view synthesis, and does not perform well on noisy data.
When referring to a baseline using upsampling, we train in a
similar coarse-to-fine approach where the tensor factors are
linearly interpolated to a finer grid using the approach de-
veloped by TensoRF (Chen et al., 2022). The term “TT” in
our comparisons refers to training a QTT without adopting
a coarse-to-fine learning approach.

Datasets For 2D, we utilize two high-resolution images:
“Girl With a Pearl Earring” (Vermeer, 1665) photograph,
and “Tokyo gigapixel” (Dobson, 2018), which are center-
cropped to a 16k resolution. We also include three 4k im-
ages: “Marseille” (Studio, 2023), “Pluto” (NASA/Johns
Hopkins University, 2023), and “Westerlund” (NASA and
ESA, 2023) for noise and missing data experiments. For 3D,
we utilize the “Flower” data (of Zurich, 2023), and John
Hopkins Turbulence dataset (Li et al., 2008), which consists
of a set of 3D voxel grids at 10243 resolution, providing
a diverse range of high-resolution structures by downsam-
pling to different resolutions. For novel view synthesis, we
employ the Blender (Mildenhall et al., 2020) and NSVF (Liu
et al., 2020a) datasets, comprising eight synthetic 3D
scenes at 800 × 800 resolution, alongside the TanksTem-
ples (Knapitsch et al., 2017) dataset (1920× 1080).

5.1. Compression

2D Compression Fig. 5 provides a visual comparison to
baselines while Fig. 6 provides a numerical one, showcasing
PSNR results as a function of the compression ratio, defined
as the ratio of uncompressed parameters to compressed pa-
rameters (Appendix shows corresponding SSIM results).
Theoretically, QTTs have a logarithmic dependency on the
image side length, while CP and Tucker have linear depen-
dence. However, the tensor rank governs expressivity, and
the tensor ranks of CP, Tucker, and QTT are not directly
comparable; i.e. a QTT with max rank 50 might be far more
expressive than a CP with rank 50. However, we clearly see
the improved efficiency of QTT across different resolutions,
which becomes more pronounced as the resolution increases
across all compression ratios. At 16k resolution, PuTT sig-
nificantly outperforms baselines, showing an advantage of
over 2.5 in PSNR and 0.1 in SSIM. PuTT performs better
than the analytical TT-SVD in all 2D scenarios in terms
of PSNR. For SSIM, PuTT consistently outperforms TT-
SVD up to 8k resolution, with a minimum improvement of
0.05 SSIM across all compression ratios. At 16k resolution,
TT-SVD exhibits better SSIM, indicating the challenges in
capturing structural image properties as the resolution and
the ratio between batch size and image size increase. The
CP, Tucker, and QTT ranks were adapted to match the target

5

Coarse-To-Fine Tensor Trains for Compact Visual Representations

Figure 4. Novel view synthesis with PuTT. This illustration shows the process using two QTTs, Tσ and Tc, for computing volume density
(σ) and view-dependent color (c) through differential ray marching. For each 3D location x = (x, y, z) and viewing direction d, x
is converted to QTT indices. These indices query the density voxel grid Tσ and the color voxel grid Tc. The process uses trilinear
interpolation to obtain continuous σ values and appearance feature vectors ĉ. These vectors are processed through a shading module
to generate raw color values c, which, along with σ, are used in differential volumetric rendering. The rendering loss is computed by
comparing the generated color values against ground truth (g.t.) values.

PuTT
PSNR 26.3, SSIM 0.72

TT No Upsampling
PSNR 25.7, SSIM 0.70

Tucker Upsampling
PSNR 21.8, SSIM 0.54

CP Upsampling
PSNR 21.6, SSIM 0.54

Figure 5. Qualitative comparison to baselines on 16k images.

compression ratios shown in the figure.

3D Compression In 3D, we observe similar trends, as
shown in the Fig. 7 (PSNR) and appendix (SSIM). How-
ever, the dynamics differ notably among the PuTT, CP,
and Tucker at various resolutions. Up to 2563, CP and
Tucker perform closely to PuTT. Yet, for 10243, PuTT sig-
nificantly outshines the other methods, leading to more
than 1 PSNR improvement and nearly 0.005 improvement
in SSIM. VM’s performance is less substantial due to its
quadratic dependency on the side length, unlike the linear
dependency of CP and Tucker and the logarithmic depen-
dency of QTT. VM shows relatively poor performance. This
is attributable to the high compression setting of our exper-
iment, coupled with VM’s quadratic dependency on side
length. PuTT is comparable to deterministic TT-SVD, but
achieving high SSIM is exacerbated at larger resolutions,
underscoring the increased difficulty in maintaining image
quality at higher compression settings. One might speculate
that the crossover in efficiency, where it pays off to use the
QTT representation, occurs around sidelength L = 512.

Novel View Synthesis As seen in Tab. 1, PuTT outper-
forms TensoRF when using high compressions (7MB and
12MB) for Blender, NSVF, and TanksTemples datasets and
has comparable performance on the large model size. We

evaluate models in three sizes: Large (>60 MB), Medium
(12 MB), and Small (<8 MB). Our 12MB PuTT model, de-
spite having six times fewer parameters, matches the perfor-
mance of the Large baselines on the NSVF and TanksTem-
ples datasets. Moreover, our 7MB PuTT model outperforms
Small baselines by over one PSNR on the NSVF dataset.
For a detailed overview of the implementation, please con-
sult the appendix. In Tab. 2, for the 7MB size, we consider a
more detailed comparison, distinguishing between near and
far views at test time. Our improvement is more pronounced
at nearby views, indicating our ability to capture fine details
better than TensoRF. Fig. 14 demonstrates visually our abil-
ity to better capture fine-grained details. In Appendix G we
provide per-scene results.

5.2. Learning from Incomplete Data

We evaluate the capability of PuTT to learn 2D or 3D repre-
sentations by training only on a subset of the available data,
thus assessing its generalizability. We randomly select a
percentage p% of the full input data ID. This yields a subset
of indices, ID,p, which we use exclusively for training. We
evaluate the performance of the full input data, including
untrained indices. To train with a down-sampled target at
lower resolutions, we create a modified target image ID−l,p.
We build ID−1,p from ID,p, we use a custom masked aver-
age pooling method, averaging only the non-zero values in
each window, sized according to the downsampling factor.
The resulting downsampled image, ID−l,p, thus contains
aggregated information within each patch of size 2l × 2l

of ID,p. Any non-zero value in ID−l,p represents aggre-
gated data from the original data within the corresponding
patch. This forms a new set of indices Il,p, from which we
sample during training on the downsampled input ID−l,p.

6

Coarse-To-Fine Tensor Trains for Compact Visual Representations

Figure 6. PSNR (y-axis) vs compression ratio (x-axis) for 2D fitting. “up = upsampling”.

Figure 7. (a) PSNR (y-axis) in comparison to compression ratio (x-axis) for 3D fitting.

(a) (b)
Figure 8. PSNR and SSIM vs number of upsampling steps for five different percentages of training data available (a) or vs different
amounts of available training data available for three different models with or without upsampling (b). ”Up” refers to upsampling.

Input PuTT (Ours) CP Tucker TT w/o up. CP w/o up. Tucker w/o up.

0.
1

N
oi

se
0.

5
N

oi
se

1.
0

N
oi

se

Figure 9. Visual comparison of training with noise levels 0.1 (Top), 0.5 (Middle),, and 1.0 (Bottom). “W/o up = without upsampling”.

(a) (b)

Figure 10. PSNR (a) and SSIM (b) when varying the amount of Gaussian or Laplacian noise for PuTT and baselines. “up = upsampling”.

7

Coarse-To-Fine Tensor Trains for Compact Visual Representations

Synthetic-NeRF NSVF TanksTemples
Method Steps Size(MB)↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
PlenOctrees* (Yu et al., 2021b)-L 200k 1976.3 31.71 0.958 - - 27.99 0.917
Plenoxels* (Yu et al., 2021a)-L 128k 778.1 31.71 0.958 - - 27.43 0.906
DVGO* (Sun et al., 2022)-L 30k 612.1 31.95 0.957 35.08 0.975 28.41 0.911
K-planes* (Fridovich-Keil et al., 2023)-L 30k 122.1 32.36 0.962 - - - -
Instant-NGP* (Müller et al., 2022)-L 35k 45.5 33.18 0.963 - - -
TensoRF (Chen et al., 2022) VM-192*-L 30k 71.8 33.14 0.963 36.52 0.982 28.56 0.920
Our PuTT-600-L 80k 60.3 32.79 0.958 36.57 0.982 28.37 0.917

NeRF* (Mildenhall et al., 2020)-S 300k 5.0 31.01 0.947 30.81 0.952 25.78 0.864
TT-NF * (Obukhov et al., 2022)-S 80k 7.9 31.09 0.945 - - - -
TensoRF CP-384*-S 30k 3.9 31.56 0.949 34.48 0.971 27.59 0.897
TensoRF VM-30 (no shrinking)-S 80k 6.9 31.10 0.948 34.57 0.974 27.67 0.898
Our PuTT-200-S 80k 6.7 31.66 0.956 35.58 0.976 27.99 0.901

TensoRF VM-48 (no shrinking)-M 80k 12.0 31.62 0.952 35.44 0.976 28.03 0.901
Our PuTT-280-M 80k 12.0 31.95 0.957 36.04 0.977 28.15 0.905

Table 1. Comparison to baselines for the task of novel view synthesis for the Synthetic-NeRF (Mildenhall et al., 2020), NSVF (Liu et al.,
2020a), and TanksTemples (Knapitsch et al., 2017) datasets. Scores of the baseline methods with a ∗ are taken directly from corresponding
papers whenever possible. L, M and S indicate a Large (> 60 MB), Medium (12 MB) or small (< 8 MB) model size. We compare our
method on Medium and Small-sized models but also include Large-sized models for reference.

(a) (b)
Figure 11. PSNR and SSIM for PuTT, under varying iteration counts (a) and varying levels of Gaussian noise (σ) (b).

Figure 12. Varying the number of upsampling steps when training
99% missing data. The first image displays the training data,
followed by PuTT results with 0, 1, 4, and 7 upsampling steps.

Figure 13. Visual comparison of PuTT to baselines when training
with 90% (Top) and 99% (Bottom) missing data.

Chair Ficus All Scenes

TensoRF PuTT TensoRF PuTT TensoRF PuTT

Near 35.59 37.12 32.53 33.95 31.93 32.93
Far 31.74 32.71 30.16 31.06 28.97 29.41
All 32.22 33.50 30.71 31.69 30.43 31.66

Table 2. Novel view synthesis comparison to TensoRF (PSNR) on
the Chair, Ficus, and all scenes (Blender dataset (Mildenhall et al.,
2020)). We test on views near training (Near), far from training
(Far), and all test views (All). See the appendix for all details.

Fig. 8(a) considers the effect of varying the number of up-
sampling steps, when training with different training data
percentages (see visual examples in Fig. 12). It illustrates
the significance of upsampling when learning from limited
data samples, highlighting its growing importance as train-
ing data size decreases. Without upsampling, training on
just 1% of the input, PuTT gets a PSNR of 1.87 and SSIM
of 0.0018. However, applying seven upsampling steps en-
hances the results to a PSNR of 28.73 and SSIM of 0.7349.
Similar improvements are observed with 10% training data.

8

Coarse-To-Fine Tensor Trains for Compact Visual Representations

Figure 14. Visual comparison of a single NeRF for “drums”.

Fig. 8(b) shows PuTT consistently surpasses CP and Tucker,
especially at lower resolutions. Fig. 13 gives a visual exam-
ple when 90% and 99% of the data is missing for PuTT and
baselines, showing a better recovery of the input image.

5.3. Noise Removal

We aim to learn a tensor representation of a target, denoted
as XI , using samples from its noisy counterpart, X̂I , ob-
tained by adding noise Z. In our experiments, Z is sampled
from either a Normal or Laplacian distribution (see details in
appendix). At training, we minimize ||X̂I −RT ||22. At infer-
ence, we compare the learned RT with the original clean tar-
get XI . As shown in Fig. 10(a), PuTT consistently achieves
higher PSNR than other tensor network methods across
various levels of noise sigma. Notably, the application of
upsampling not only avoids overfitting to noisy samples but
also consistently outperforms the non-upsampling approach.
Fig. 10(b) underscores the clear benefits of employing up-
sampling strategies. This is particularly evident in PuTT,
where upsampling yields an SSIM score improvement of
more than 0.1 for noise levels exceeding 0.2σ.

Fig. 9 shows recovered images, both with and without up-
sampling at Gaussian noise levels of σ = 0.05, 0.5, 1.0.
These examples highlight the efficacy of upsampling in mit-
igating noise, demonstrating visibly superior results com-
pared to models not utilizing upsampling. Moreover, PuTT
showcases enhanced details and a more effective noise-
filtering capability because of its hierarchical structure.

5.4. Ablation Study

Fig. 11(a) illustrates the impact of varying the number of
upsamplings and the number of iterations on efficiency. The
results highlight the efficiency of our method: using just
1024 iterations with four upsampling steps, we achieve com-
parable PSNR and SSIM to training without upsampling for
16k iterations. Beyond 4k iterations, there is no significant
improvement in quality. Without upsampling this plateau
is not reached even after 32k iterations. More upsampling

steps notably enhance SSIM because SSIM is sensitive to
global features like overall mean, standard deviation, and
luminance. Training on downsampled inputs using tensor
trains, which involves gradient updates based on batches
covering larger portions of the input, seems to facilitate
learning these global characteristics more effectively.

Fig. 11(b) presents an ablation study on the ”Girl with a
Pearl Earring” image at 4k resolution and rank 200, with
a fixed iteration count of 8192. We examine the impact
of varying the number of upsampling steps on the model’s
performance, for varying degrees of Gaussian noise applied
on the input. The LHS of Fig. 11(b) illustrates the influence
of the first upsampling step on PSNR, showing a notable
improvement. Subsequent upsampling steps result in in-
cremental gains. The SSIM plot, on the RHS, reveals a
more pronounced improvement with each upsampling step,
indicating the effectiveness of upsampling in enhancing the
model’s ability to learn global features.

These findings are supported by additional experiments and
analyses in the appendix. Sec. C highlights the statistical
robustness of our experiments, showing minimal variation
with upsampling compared to without. Sec. E examines the
influence of initialization, demonstrating PuTT’s consistent
performance across different initialization values. Without
upsampling, QTT training is sensitive to initialization stan-
dard deviation, with PSNR fluctuating between 34.958 (std
0.05) and 12.320 (std 0.5) for a 512× 512 RGB image. In
contrast, PuTT’s PSNR remains stable between 36.100 and
36.116 for std values from 0.001 to 0.5. Sec. J shows how
rank incrementation strategy inspired by SlimmeRF (Yuan
& Zhao, 2023) can further improve performance.

6. Conclusion
We proposed a novel coarse-to-fine, Tensor-Train-based rep-
resentation called ‘Prolongation Upsampling Tensor Train
(PuTT)’ and an associated optimization strategy. This ap-
proach involves prolonging or “upsampling” a learned Ten-
sor Train representation, creating a sequence of tensor trains
that are incrementally refined in a coarse-to-fine manner.
We demonstrated the applicability of our method along the
axes of compression, learning from missing data, and de-
noising. We evaluated these axes with respect to the appli-
cations of 2D fitting, 3D fitting, and novel view synthesis
and demonstrated state-of-the-art performance compared to
other tensor-based methods, especially in high-compression
settings. Our learning scheme leverages the improved com-
pression ability and multi-resolution nature of the Quantized
Tensor Train (QTT) for improved denoising and image com-
pletion capabilities. In future work, we hope to apply PuTT
to large-scale Neural Radiance Fields (NeRFs) and dynamic
neural fields, utilizing the logarithmic dimensionality advan-
tages of QTTs to represent large and finely detailed scenes.

9

Coarse-To-Fine Tensor Trains for Compact Visual Representations

Acknowledgements Sebastian Loeschcke is supported by
the Danish Data Science Academy, which is funded by the
Novo Nordisk Foundation (NNF21SA0069429) and VIL-
LUM FONDEN (40516). Serge Belongie and Dan Wang
are supported by the Pioneer Centre for AI, DNRF grant
number P1. MJK acknowledges support from the Carlsberg
Foundation and the Novo Nordisk Foundation.

Impact Statement This paper contributes to the Machine
Learning field by enhancing visual representation learning
using tensor train optimization. Given the current stage of
our research, we identify no specific ethical issues warrant-
ing exploration. Nonetheless, we acknowledge the dynamic
nature of technological impacts and pledge to continually
assess the ethical implications as our research advances.

References
Adelson, E. H., Anderson, C. H., Bergen, J. R., Burt, P. J.,

and Ogden, J. M. Pyramid methods in image processing.
RCA engineer, 29(6):33–41, 1984.

Antonini, M., Barlaud, M., Mathieu, P., and Daubechies, I.
Image coding using vector quantization in the wavelet
transform domain. In International Conference on Acous-
tics, Speech, and Signal Processing, pp. 2297–2300 vol.4,
1990. doi: 10.1109/ICASSP.1990.116036.

Bramble, J. H. Multigrid methods. Chapman and Hall/CRC,
2019.

Carroll, J. D. and Chang, J. J. Analysis of individual
differences in multidimensional scaling via an n-way
generalization of “eckart-young” decomposition. Psy-
chometrika, 35:283–319, 1970. URL https://api.
semanticscholar.org/CorpusID:50364581.

Chan, E. R., Monteiro, M., Kellnhofer, P., Wu, J., and Wet-
zstein, G. pi-gan: Periodic implicit generative adversarial
networks for 3d-aware image synthesis. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pp. 5799–5809, 2021.

Chan, E. R., Lin, C. Z., Chan, M. A., Nagano, K., Pan,
B., De Mello, S., Gallo, O., Guibas, L. J., Tremblay, J.,
Khamis, S., et al. Efficient geometry-aware 3d generative
adversarial networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 16123–16133, 2022.

Chen, A., Xu, Z., Geiger, A., Yu, J., and Su, H. Tensorf:
Tensorial radiance fields, 2022. URL https://arxiv.
org/abs/2203.09517.

Crowley, J. L. and Stern, R. M. Fast computation of the
difference of low-pass transform. IEEE transactions on
pattern analysis and machine intelligence, 1(2):212–222,
1984.

Dobson, T. 1.2 gigapixel panorama of shibuya in tokyo,
japan. https://www.flickr.com/photos/
trevor_dobson_inefekt69/29314390837,
2018. Accessed: 17-11-2023.

Fridovich-Keil, S., Meanti, G., Warburg, F., Recht, B., and
Kanazawa, A. K-planes: Explicit radiance fields in space,
time, and appearance, 2023.

Harshman, R. A. Foundations of the PARAFAC procedure:
Models and conditions for an ”explanatory” multi-modal
factor analysis. UCLA Working Papers in Phonetics, 16:
1–84, 1970.

Holtz, S., Rohwedder, T., and Schneider, R. The alternating
linear scheme for tensor optimization in the tensor train
format. SIAM Journal on Scientific Computing, 34(2):
A683–A713, 2012.

Hubig, C., McCulloch, I. P., and Schollwoeck, U. Generic
construction of efficient matrix product operators. Phys.
Rev. B, 95:035129, Jan 2017. doi: 10.1103/PhysRevB.95.
035129. URL https://link.aps.org/doi/10.
1103/PhysRevB.95.035129.

Khoromskij, B. N. o(d log n)-quantics approximation of n-d
tensors in high-dimensional numerical modeling. Con-
structive Approximation, 34:257–280, 2011.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Klümper, A., Schadschneider, A., and Zittartz, J. Matrix
product ground states for one-dimensional spin-1 quan-
tum antiferromagnets. Europhysics Letters, 24(4):293,
1993.

Knapitsch, A., Park, J., Zhou, Q.-Y., and Koltun, V. Tanks
and temples: benchmarking large-scale scene reconstruc-
tion. ACM Trans. Graph., 36(4), jul 2017. ISSN 0730-
0301. doi: 10.1145/3072959.3073599. URL https:
//doi.org/10.1145/3072959.3073599.

Kolda, T. G. and Bader, B. W. Tensor decompositions and
applications. SIAM review, 51(3):455–500, 2009.

Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C.,
Burns, R., Chen, S., Szalay, A., and Eyink, G. A pub-
lic turbulence database cluster and applications to study
lagrangian evolution of velocity increments in turbu-
lence. Journal of Turbulence, 9:N31, jan 2008. doi:
10.1080/14685240802376389. URL https://doi.
org/10.1080%2F14685240802376389.

Lindell, D. B., Van Veen, D., Park, J. J., and Wetzstein, G.
Bacon: Band-limited coordinate networks for multiscale
scene representation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp. 16252–16262, 2022.

10

https://api.semanticscholar.org/CorpusID:50364581
https://api.semanticscholar.org/CorpusID:50364581
https://arxiv.org/abs/2203.09517
https://arxiv.org/abs/2203.09517
https://www.flickr.com/photos/trevor_dobson_inefekt69/29314390837
https://www.flickr.com/photos/trevor_dobson_inefekt69/29314390837
https://link.aps.org/doi/10.1103/PhysRevB.95.035129
https://link.aps.org/doi/10.1103/PhysRevB.95.035129
https://doi.org/10.1145/3072959.3073599
https://doi.org/10.1145/3072959.3073599
https://doi.org/10.1080%2F14685240802376389
https://doi.org/10.1080%2F14685240802376389

Coarse-To-Fine Tensor Trains for Compact Visual Representations

Liu, L., Gu, J., Lin, K. Z., Chua, T.-S., and Theobalt, C.
Neural sparse voxel fields. NeurIPS, 2020a.

Liu, L., Gu, J., Lin, K. Z., Chua, T.-S., and Theobalt, C.
Neural sparse voxel fields. NeurIPS, 2020b.

Lombardi, S., Simon, T., Saragih, J., Schwartz, G.,
Lehrmann, A., and Sheikh, Y. Neural volumes: Learning
dynamic renderable volumes from images. arXiv preprint
arXiv:1906.07751, 2019.

Lubasch, M., Moinier, P., and Jaksch, D. Multigrid
renormalization. Journal of Computational Physics,
372:587–602, nov 2018. doi: 10.1016/j.jcp.2018.
06.065. URL https://doi.org/10.1016%2Fj.
jcp.2018.06.065.

Mallat, S. G. A theory for multiresolution signal decom-
position: the wavelet representation. IEEE transactions
on pattern analysis and machine intelligence, 11(7):674–
693, 1989.

McCulloch, I. Infinite size density matrix renormalization
group, revisited. arxiv:0804.2509, 2008. URL https:
//arxiv.org/abs/0804.2509.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. Nerf: Representing scenes
as neural radiance fields for view synthesis. CoRR,
abs/2003.08934, 2020. URL https://arxiv.org/
abs/2003.08934.

Müller, T., Evans, A., Schied, C., and Keller, A. Instant
neural graphics primitives with a multiresolution hash
encoding. ACM Trans. Graph., 41(4):102:1–102:15, July
2022. doi: 10.1145/3528223.3530127. URL https:
//doi.org/10.1145/3528223.3530127.

NASA and ESA. Westerlund 2 - nasa and esa,
a. nota (esa/stsci), and the westerlund 2 science
team. https://hubblesite.org/contents/
news-releases/2020/news-2020-15, 2023.
Accessed: 17-11-2023.

NASA/Johns Hopkins University. True colors of pluto
- from applied physics laboratory/southwest research
institute/alex parker. https://science.nasa.
gov/resource/true-colors-of-pluto/
?category=planets/dwarf-planets_pluto,
2023. Accessed: 17-11-2023.

Niemeyer, M. and Geiger, A. Giraffe: Representing scenes
as compositional generative neural feature fields. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 11453–11464, 2021.

Novikov, G. S., Panov, M. E., and Oseledets, I. V. Tensor-
train density estimation. In Uncertainty in artificial intel-
ligence, pp. 1321–1331. PMLR, 2021.

Obukhov, A., Usvyatsov, M., Sakaridis, C., Schindler, K.,
and Van Gool, L. Tt-nf: Tensor train neural fields, 2022.
URL https://arxiv.org/abs/2209.15529.

Oechsle, M., Peng, S., and Geiger, A. Unisurf: Unifying
neural implicit surfaces and radiance fields for multi-
view reconstruction. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 5589–
5599, 2021.

of Zurich, U. Computer-assisted paleoanthropology group
and visualization and multimedia lab. University of
Zurich, 2023. URL https://www.ifi.uzh.ch/
en/vmml/research/datasets.html. We ac-
knowledge the Computer-Assisted Paleoanthropology
group and the Visualization and MultiMedia Lab at Uni-
versity of Zurich (UZH) for the acquisition of the CT
datasets.

Orús, R. Tensor networks for complex quantum systems.
Nature Reviews Physics, 1(9):538–550, 2019.

Orús, R. A practical introduction to tensor networks:
Matrix product states and projected entangled pair
states. Annals of Physics, 349:117–158, 2014. ISSN
0003-4916. doi: https://doi.org/10.1016/j.aop.2014.06.
013. URL https://www.sciencedirect.com/
science/article/pii/S0003491614001596.

Oseledets, I. Approximation of matrices with logarithmic
number of parameters. Doklady Mathematics, 80:653–
654, 10 2009. doi: 10.1134/S1064562409050056.

Oseledets, I. and Tyrtyshnikov, E. Tt-cross approx-
imation for multidimensional arrays. Linear Alge-
bra and its Applications, 432(1):70–88, 2010. ISSN
0024-3795. doi: https://doi.org/10.1016/j.laa.2009.07.
024. URL https://www.sciencedirect.com/
science/article/pii/S0024379509003747.

Oseledets, I. V. Tensor-train decomposition. SIAM Journal
on Scientific Computing, 33(5):2295–2317, 2011. doi:
10.1137/090752286. URL https://doi.org/10.
1137/090752286.

Pan, F. and Zhang, P. Simulation of quantum circuits using
the big-batch tensor network method. Physical Review
Letters, 128(3):030501, 2022.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc., 2019.

11

https://doi.org/10.1016%2Fj.jcp.2018.06.065
https://doi.org/10.1016%2Fj.jcp.2018.06.065
https://arxiv.org/abs/0804.2509
https://arxiv.org/abs/0804.2509
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2003.08934
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://hubblesite.org/contents/news-releases/2020/news-2020-15
https://hubblesite.org/contents/news-releases/2020/news-2020-15
https://science.nasa.gov/resource/true-colors-of-pluto/?category=planets/dwarf-planets_pluto
https://science.nasa.gov/resource/true-colors-of-pluto/?category=planets/dwarf-planets_pluto
https://science.nasa.gov/resource/true-colors-of-pluto/?category=planets/dwarf-planets_pluto
https://arxiv.org/abs/2209.15529
https://www.ifi.uzh.ch/en/vmml/research/datasets.html
https://www.ifi.uzh.ch/en/vmml/research/datasets.html
https://www.sciencedirect.com/science/article/pii/S0003491614001596
https://www.sciencedirect.com/science/article/pii/S0003491614001596
https://www.sciencedirect.com/science/article/pii/S0024379509003747
https://www.sciencedirect.com/science/article/pii/S0024379509003747
https://doi.org/10.1137/090752286
https://doi.org/10.1137/090752286

Coarse-To-Fine Tensor Trains for Compact Visual Representations

Perez-Garcia, D., Verstraete, F., Wolf, M. M., and Cirac, J. I.
Matrix product state representations, 2007.

Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein,
G., and Zollhofer, M. Deepvoxels: Learning persistent
3d feature embeddings. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 2437–2446, 2019.

Stoudenmire, E. M. The tensor network, 2021. URL
https://tensornetwork.org/mpo. Support for
the Tensor Network is provided by the Flatiron Institute,
part of the Simons Foundation.

Studio, O. . Aerial drone view of urban build-
ings from top. https://www.pexels.com/
@orbital101studio/, 2023. Accessed: 17-11-
2023.

Sun, C., Sun, M., and Chen, H. Direct voxel grid optimiza-
tion: Super-fast convergence for radiance fields recon-
struction. In CVPR, 2022.

Szeliski, R. Computer vision: algorithms and applications.
Springer Nature, 2022.

Tucker, L. R. Some mathematical notes on three-mode fac-
tor analysis. Psychometrika, 31(3):279–311, Sep 1966.
ISSN 1860-0980. doi: 10.1007/BF02289464. URL
https://doi.org/10.1007/BF02289464.

Usvyatsov, M., Ballester-Ripoll, R., and Schindler, K.
tntorch: Tensor network learning with pytorch, 2022.

Vermeer, J. Girl with a Pearl Earring. https:
//commons.wikimedia.org/wiki/Category:
Girl_with_a_Pearl_Earring_by_
Johannes_Vermeer, 1665. Accessed: 17-11-
2023.

Vidal, G. Entanglement renormalization. Physical Re-
view Letters, 99(22), nov 2007. doi: 10.1103/physrevlett.
99.220405. URL https://doi.org/10.1103%
2Fphysrevlett.99.220405.

White, S. R. Density matrix formulation for quantum renor-
malization groups. Physical review letters, 69(19):2863,
1992a.

White, S. R. Density matrix formulation for quantum renor-
malization groups. Physical review letters, 69(19):2863,
1992b.

Xie, Y., Takikawa, T., Saito, S., Litany, O., Yan, S., Khan,
N., Tombari, F., Tompkin, J., Sitzmann, V., and Sridhar,
S. Neural fields in visual computing and beyond. In Com-
puter Graphics Forum, volume 41, pp. 641–676. Wiley
Online Library, 2022.

Yang, G., Benaim, S., Jampani, V., Genova, K., Barron, J.,
Funkhouser, T., Hariharan, B., and Belongie, S. Poly-
nomial neural fields for subband decomposition and ma-
nipulation. Advances in Neural Information Processing
Systems, 35:4401–4415, 2022.

Yu, A., Fridovich-Keil, S., Tancik, M., Chen, Q., Recht, B.,
and Kanazawa, A. Plenoxels: Radiance fields without
neural networks. CoRR, abs/2112.05131, 2021a. URL
https://arxiv.org/abs/2112.05131.

Yu, A., Li, R., Tancik, M., Li, H., Ng, R., and Kanazawa,
A. Plenoctrees for real-time rendering of neural radiance
fields. CoRR, abs/2103.14024, 2021b. URL https:
//arxiv.org/abs/2103.14024.

Yuan, S. and Zhao, H. Slimmerf: Slimmable radiance fields,
2023.

12

https://tensornetwork.org/mpo
https://www.pexels.com/@orbital101studio/
https://www.pexels.com/@orbital101studio/
https://doi.org/10.1007/BF02289464
https://commons.wikimedia.org/wiki/Category:Girl_with_a_Pearl_Earring_by_Johannes_Vermeer
https://commons.wikimedia.org/wiki/Category:Girl_with_a_Pearl_Earring_by_Johannes_Vermeer
https://commons.wikimedia.org/wiki/Category:Girl_with_a_Pearl_Earring_by_Johannes_Vermeer
https://commons.wikimedia.org/wiki/Category:Girl_with_a_Pearl_Earring_by_Johannes_Vermeer
https://doi.org/10.1103%2Fphysrevlett.99.220405
https://doi.org/10.1103%2Fphysrevlett.99.220405
https://arxiv.org/abs/2112.05131
https://arxiv.org/abs/2103.14024
https://arxiv.org/abs/2103.14024

Coarse-To-Fine Tensor Trains for Compact Visual Representations

This appendix material complements the main paper by providing detailed explanations and extended analyses.

Sec. A discusses the supplementary webpage. In Sec. B, we discuss the limitations of our approach and its constraints and
boundaries. In Sec. C, we discuss the statistical robustness of our experiments. In Sec. D, we give detailed descriptions of
various tensor network methods, their complexities, and specific adaptations for our study. Sec. E, we discuss the influence
of initialization on model performance. In Sec. F, we provide insights into our experimental framework, including batch
sizes, learning rate strategies, and handling of noise and incomplete data. In Sec. G, we provide additional novel view
synthesis results. In Sec. H, we explain the compatibility of TensoRF’s ”shrinkage” with QTT. In Sec. I, we explore the
inpainting capabilities with PuTT. In Sec. J, we explore rank incrementation with SlimmeRF (Yuan & Zhao, 2023).

A. Supplementary Webpage
Additional supplementary materials and the associated code can be accessed at https://sebulo.github.io/PuTT_
website/.

B. Limitations
In our compression results in Sec. 5.1 of the main text, we observe certain constraints associated with our PuTT method.
While learning QTT representations using PuTT show a marked advantage in scenarios requiring high compression, as
evident in our results for 2D and 3D data (Figures 6, 7) and in Novel View Synthesis (Tab. 1 of the main text), their
effectiveness tends to converge with other methods like CP, Tucker, and VM in less compressed settings with smaller tensor
sizes. For example, in the case of 1k resolution images (referenced in Sec. 5.1, Fig. 6 of the main text), we noted that the
performance benefits of using QTTs were less pronounced. This suggests that while QTTs are highly effective in handling
large-scale, high-compression tasks, their advantages are less significant in simpler scenarios with lower compression.

C. Sensitivity and Statistical Analysis
In our experimental framework, we tested each configuration using three distinct seeds to ensure the reliability and
consistency of our results. We use error bars representing ±1 standard deviation from the mean in all plots. In the context of
our 2D and 3D experiments, it’s noteworthy that the error bars are often so minimal (see Sec. 5.1 of the main text, Fig. 6)
that they might be challenging to discern in the plots. This observation points to a low degree of variation, suggesting a high
level of reproducibility in our results. Such consistency is particularly evident in experiments involving upsampling, where a
consistent trend towards similar endpoints in training was observed. This pattern can be attributed to the progressive nature
of our approach, which systematically builds the representation on increasingly finer grids. Furthermore, when comparing
the performance of our PuTT method with other established methods like Tucker, CP, and VM, we observed less variation in
PuTT’s performance across different experimental setups. This reduced variability, especially visible in the compression
plots, indicates that PuTT not only ensures a more stable and predictable performance but also underscores its effectiveness
in different experimental conditions and settings.

C.1. Enhancing Training Stability through Upsampling

Figure 15 shows an experiment further illustrating the stabilizing effect of our upsampling strategy within the context of
2D compression tasks. The experiment analyses the ”Girl with Pearl Earring” and ”Tokyo” images, both at 4K resolution,
to draw comparisons between our upsampling approach and a baseline QTT model with no upsampling. The findings,
visualized in our plot, reveal the average PSNR against the number of iterations, with the shaded area depicting the variance
within ±1 standard deviation across three separate runs. This comparison underscores the enhanced stability of training with
our upsampling method, evidenced by reduced performance fluctuations and consistently higher PSNR levels compared to
models without upsampling.

D. Tensor Networks
We describe the three main families of tensor decompositions that are considered in this work: CP/VM, and Tucker. Tensor
Trains and the specific QTT format are defined in the main article. We provide additional information on MPOs and the
general complexity of manipulating tensor networks.

13

https://sebulo.github.io/PuTT_website/
https://sebulo.github.io/PuTT_website/

Coarse-To-Fine Tensor Trains for Compact Visual Representations

(a) Girl 4K (b) Tokyo 4K

Figure 15. The two figures present plots corresponding to the ”Girl with Pearl Earring” (15a) and ”Tokyo” 4K images (15b), showcasing
the performance of our PuTT method with upsampling versus a baseline QTT model without upsampling. For both images, we plot the
average PSNR over 4000 iterations, averaged across three seeds. The shaded regions around each curve represent the variability within
±1 standard deviation from the mean PSNR, serving as an indicator of training stability. In both plots, it is evident that the upsampling
model exhibits lower fluctuation in standard deviation and achieves higher PSNR levels by the end of the training period. This highlights
the improved stability and effectiveness of our upsampling approach in 2D compression tasks.

The canonical polyadic (CP) decompositions (Carroll & Chang, 1970; Harshman, 1970) factorizes a tensor T ∈
Rn1×n2×···nd into a sum of rank-1 components:

T =

R∑
r=1

v1r ⊗ v2r ⊗ · · · ⊗ vdr (2)

where v1r , v
2
r , · · · , vdr are rank-1 vectors in Rn1 , · · · ,Rnd . Each tensor element is then a sum of scalar products:

Tj1···jd =

R∑
r=1

d∑
k=1

vkr,jk , (3)

where jk = 1, ..., nk for each k = 1, ..., d. We will mostly consider d = 2, 3 in this work, as we care about visual data.

The Vector Matrix (VM) decomposition (Chen et al., 2022) is a specific 3D tensor decomposition, introduced to remedy
a ”too high” compactness of the CP decomposition. Instead of purely using vector factors, the VM decomposition factorizes
a tensor into vectors and matrices. For T ∈ Rn1×n2×n3 ,

T =

R1∑
r=1

v1r ⊗M2,3
r +

R2∑
r

v2r ⊗M1,3
r +

R3∑
r=1

v3r ⊗M1,2
r (4)

where the superscript on the vectors v and matrices M indicate the space on which they act. The VM decomposition can be
understood as a half-way between the dense (bare) representation of T and the CP decomposition. As such, VM has reduced
compression as compared with CP. The overall rank of the VM decomposition is equal to the total number of components
(R1 +R2 +R3).

The Tucker decomposition (Tucker, 1966) provides only a partial compression of a tensor. Given a tensor T ∈
Rn1×n2×···nd , we define a reduced tensor K ∈ Rm1×m2×···md and matrices Uk ∈ Rmk×nk , such that

Tj1,...,jd =

m1∑
i1=1

· · ·
md∑
id

Ki1,...,idU
1
i1,j1 · · ·U

d
id,jd

. (5)

The Tucker decomposition is mostly useful in settings where d is small, and nk are large.

14

Coarse-To-Fine Tensor Trains for Compact Visual Representations

Matrix Product Operators A matrix product operator (MPO) is a tensor network that describes a factorization of a tensor
with d input and d output indices into a linear network of smaller tensors (Hubig et al., 2017; McCulloch, 2008). Each core
(except for the first and last) has two physical indices and two virtual indices.

The difference between TTs and MPOs is the nature of the objects they are meant to represent. A TT can be seen as a
parameterization of a large vector in a high-dimensional space, providing a compressed yet expressive representation of
such vectors. The ”operator” part of the term ”Matrix Product Operator” refers to the mathematical operation of a matrix
acting on a vector (Stoudenmire, 2021), i.e., the MPO operates on a TT. This essentially allows one to efficiently represent
and work with large operators in high-dimensional spaces, working directly in the compressed TT representation.

Using the same index notation as for TTs, an MPO is a tensor network of the form:

Mj1,...,jd
i1...id

= Ai1,j1Ai2,j2 ...Aid,jd , (6)

where Aik,jk are Rk ×Rk+1 matrices for each pair ik, jk. MPOs have important applications in representing large, sparse
matrices in a form that is convenient for TT algorithms (White, 1992a; Holtz et al., 2012; Lubasch et al., 2018). They play a
central role in TT algorithms in Physics, yet have been under-exploited in the data science setting. Here we show how to
leverage MPOs in the visual data setting in connection with multi-resolution analysis.

Complexity of the CP, VM, Tucker, and TT decompositions Given a tensor with d indices of maximal dimension n, CP
decomposition stores dRCP rank-1 tensors of size n, resulting in a space complexity of O(dnRCP). Here, RCP is the CP
rank. In 3D, the VM decomposition stores RVM times a size n vector and a n× n matrix, resulting in a space complexity
O(RVM (n+ n2)). The Tucker decomposition stores a tensor K with maximal index range m and d matrices of size n×m
resulting in a space complexity O(dmd+1n). Finally, the tensor train stores nd matrices of size R2

TT , resulting in a space
complexity O(ndR2

TT).In practice, the complexity is lower, as one can further exploit the tensor network structures to
reduce the individual ranks in the network.

If d is large - typically d > 3 - then we expect the memory cost to scale as Tucker, CP ≫ TT. While the separation between
Tucker and TT is obvious, since Tucker scales exponentially in d, the separation between CP and TT is contained in the rank
dependence. For fixed accuracy, we expect TT to require a constant rank RTT , independent of d. While the CP rank RCP

will grow up to exponentially in d (Kolda & Bader, 2009).

However, with visual data, we have d ≤ 4, hence the relationships are more subtle and depend crucially on the represen-
tational power of each decomposition; i.e. what ranks are necessary to represent visual data up to a given precision, and
whether these representations can be learned in an efficient and reliable manner. In the QTT representation, the complexity
is O(2d log(n)R2).

In summary, one should expect that for d = 2, 3, 4 and large n (i.e. high resolution), the QTT format should outperform CP,
VM, and Tucker, with the gap growing up to exponentially as d and n grow.

Computational Complexity of Prolongation: For a tensor T of dimensions DN , where N = 2 typically represents the
dimensions of an image (height and width), the upper bound for the computational complexity involved in multiplying a
Matrix Product Operator (MPO) with a Quantized Tensor Train (QTT) is denoted by O(log(D) ·max(R,S)3 ·ND). In
this expression, (log(D)) denotes the number of cores in the QTT, which corresponds to the level of quantization. (R) and
(S) are the maximum ranks within the QTT and MPO, respectively. This operation is efficiently executed and does not
significantly influence the overall runtime.

Implementation When learning tensor networks such as Tucker, CP, TT, QTT, and VM, especially in challenging
scenarios with noisy, incomplete data or in applications like NeRF where the full scene tensor is not accessible, it becomes
essential to adopt a sample-based training approach. Unlike traditional analytic techniques such as Higher-Order Singular
Value Decomposition (HOSVD) (Tucker, 1966) for Tucker decomposition, or Singular Value Decomposition (SVD) and
QR decompositions for TT (Oseledets, 2011) and QTT (Khoromskij, 2011), our methodology does not rely on these direct
decomposition methods. Instead, we commence with an initial skeleton tensor that mirrors the structure required by the
chosen decomposition scheme. This skeleton serves as a starting point for an iterative optimization process, where the tensor
values are refined using stochastic gradient descent. This approach allows for a flexible and efficient adaptation of the tensor
factorization methods to the intricacies and limitations of the data and application context, such as those encountered in
NeRF scenarios.

15

Coarse-To-Fine Tensor Trains for Compact Visual Representations

D.1. Multiresolution Format of Quantized Tensor Train

The multiresolution format, as explained in Sec.3, is illustrated in Fig.16.

Figure 16. This figure illustrates the transformation of a 16x16 matrix into QTT format, showcasing a transition from a standard
grid representation to a mixed factor order. Initially presented as a simple 16x by 16y matrix, it is restructured into factors of two:
(21x× 22x × 23x × 24x) combined with (21y × 22y × 23y × 24y). Subsequently, the factors are permuted into a mixed factor order
(21x × 21y)× (22x × 22y) × (23x × 23y) × (24x × 24y). This results in a multiresolution format where the initial core’s indices
correspond to indexing into four quadrants of the input matrix. Specifically, index 0 in the first core is associated with the top-left quadrant
of the grid. Subsequent cores progressively examine increasingly detailed segments of the matrix. This hierarchical breakdown allows the
QTT to capture and represent data at various levels of granularity, starting from broad, overarching structures down to more intricate
details within the grid, which is reminiscent of a wavelet.

D.2. The prolongation operators

We employ a Matrix Product Operator (MPO) known as a prolongation operator P , suggested by Lubach et al. (Lubasch
et al., 2018), to upsample coarse solutions in the Quantized Tensor Train (QTT) format.

Consider a one-dimensional vector vd ∈ R2d representing data like a continuous function. To achieve a finer representation
vd+1 ∈ R2d+1

, we linearly interpolate between adjacent points in vd using the matrix P2d→2d+1 . This matrix resembles the
Haar transform matrix. For instance for d = 2, we can express P2d→2d+1 as:

P4→8 =

.5 0 0 0
1 0 0 0
.5 .5 0 0
0 1 0 0
0 .5 .5 0
0 0 1 0
0 0 .5 .5
0 0 0 1

, (7)

16

Coarse-To-Fine Tensor Trains for Compact Visual Representations

This matrix is closely related to the Haar transform matrix. The matrix P2d→2d+1 can be written as an MPO P with bond
dimension two as

Pi1,...,in,in+1

j1,...,jn
= P [1]j1,i1 · · ·P [d]jd,idP [d+ 1]in+1 . (8)

The middle d− 1 tensors in the MPO, P [k]jk,ikαk,αk+1
have two physical indices jk, ik and two virtual indices αk, αk+1. Each

index ik, jk, αk ∈ [0, 1]. The first tensor P [1]j1,i1α1
has one virtual index α1 and two physical indices j1, i1, while the last

tensor P [d+ 1]
id+1
αd has one virtual index αd and one physical index id+1. The entries are given explicitly as:

P [1]0,00 = P [1]1,10 = P [1]1,01 = 1

P [k]0,00,0 = P [k]0,11,0 = P [k]1,10,1 = P [i]1,01,1 = 1,

for 1 < k < d+ 1

P [d+ 1]00 = 1, and P [d+ 1]10 = P [d+ 1]11 =
1

2
,

with all other entries being zero (Lubasch et al., 2018)1.

The previously described prolongation operator P applies to tensor train representations of one-dimensional tensors in QTT
format. In higher dimensions, the prolongation operator is simply the tensor product of the one-dimensional operators on
each dimension: P

⊗
P for 2-dimensions and P

⊗
P
⊗

P for 3-dimensions.

D.3. Quantized Tensor Train Initialization

We initialize the TT-ranks between each core to follow a trapezoid structure like first introduced by Oseledets et al. (Oseledets,
2011). In a trapezoid structure, the TT-ranks may increase up to a certain point (creating the rising edge of the trapezoid),
then stay constant, and then decrease (creating the falling edge of the trapezoid). The top (flat part) of the trapezoid
corresponds to the maximum rank among all cores, which is what we call the TT-rank.

This structure can be beneficial because it allows representing a high-dimensional tensor in a compressed form which still
maintains a good approximation of the original tensor (Oseledets, 2011).

To compute the TT-ranks in the context of the trapezoid structure, consider an array containing the D physical indices of a
TT n = [n1, n2, . . . , nD]. The TT-ranks are derived as follows:

1. Compute the cumulative product of the tensor shape from left to right and from right to left, denoted as ranks left
and ranks right respectively:

ranks left[i] =
i∏

j=1

nj , ∀i = 1, . . . , D

ranks right[i] =
D∏
j=i

nj , ∀i = 1, . . . , D

2. Then, calculate the TT-ranks by taking the minimum of the ranks left and ranks right at each position:

ranks tt[i] = min(ranks left[i],ranks right[i]),

∀i = 1, . . . , D

3. Finally, if a rank, max rank, is specified, ensure that no index rank exceeds this value:

ranks tt[i] = min(ranks tt[i],max rank),

∀i = 1, . . . , D

1Note the difference in convention in index notation as compared to (Lubasch et al., 2018)

17

Coarse-To-Fine Tensor Trains for Compact Visual Representations

From this, it follows that if the payload dimension is greater than 1, then we have to scale the dimensions of each core from
the left to the right until we reach the rank top of the trapezoid structure of the TT.

σ̂ = exp

(
1

2D

(
2 log σ − ΣD

i=1 logRi

))
(9)

D.4. TT-SVD Baseline

The Tensor Train - Singular Value Decomposition (TT-SVD) algorithm, as detailed by Oseledets et al. (Oseledets, 2011),
offers a method for decomposing high-dimensional tensors into tensor trains. It sequentially reshapes and applies matrix
SVD to each tensor mode, transforming a high-dimensional tensor into a series of interconnected lower-dimensional tensors,
effectively forming a tensor train. For an in-depth understanding of TT-SVD, Oseledets et al.’s work provides comprehensive
details.

As also pointed out in Sec. 5 of the main text, TT-SVD has limitations, particularly in its applicability only when the direct
signal (e.g., a 2D image or 3D voxel grid) is provided for an analytical application. It falls short in scenarios requiring
optimization, such as learning from incomplete data, novel view synthesis, or handling noisy data. Another limitation of
TT-SVD is its infeasibility when the input tensor is too large for memory.

In our work, TT-SVD, implemented via the TNTorch framework (Usvyatsov et al., 2022), serves as a baseline to determine
whether our Prolongation Upsampling Tensor Train (PuTT) method can escape local minima without specific hyperparame-
ters. This benchmarking aids in assessing PuTT’s effectiveness in handling large-scale tensor data and its ability to navigate
the challenges of optimization. In our implementation, we adapt TT-SVD for the QTT format. This adaptation involves
initially reshaping the input tensor into log(N) factors of 2, rearranging these factors to enforce Z-order correlation between
spatial dimensions, and then applying TT-SVD. This process aligns with how we typically construct the specialized QTT
structure.

D.5. Differences Between Vector Quantization and QTT

VQ compresses data by mapping input vectors to a set of discrete symbols from a codebook. In VQ, the codebook is
typically generated by clustering a large set of input vectors. Each input vector is then replaced by the index of the closest
codebook entry. During decompression, the original vectors are reconstructed using the codebook entries. representation
through a limited set of prototype vectors.

QTT, on the other hand, pertains to a tensor decomposition approach where a high-dimensional tensor is factorized into a
sequence of lower-dimensional tensors, referred to as ”cores”. These cores are connected in a train-like structure, which
gives the method its name. The term ”Quantized” in this context refers to the decomposition of the tensor into these smaller,
discrete units or ”quants”, enabling a compact and efficient representation of the tensor’s multidimensional structure. Such
distinction was also discussed in the previous work of TT-NF by Obukhov et al(Obukhov et al., 2022). (Discussion in
Appendix page 19), which mentions: “The term “quantization” in machine learning often refers to the reduction of the
dynamic range of values of learned parameters in a parametric model”.

It is also noteworthy that VQ and our QTT factorization approach are orthogonal techniques. There exists a potential to
merge these methodologies, where each tensor core in a QTT might be quantized using a learned dictionary, presenting an
intriguing avenue for future research.

E. Influence of Initialization on QTT Performance
To examine the influence of initialization standard deviations on model performance, we conducted an experiment utilizing
the Lena 512×512×3 image across 3000 iterations. This experiment aims to analyze how varying the initialization standard
deviation (σ) of tensor cores impacts the efficacy of our models, particularly comparing our PuTT method against a QTT
model without upsampling. The experiment spanned a range of σ values from 0.001 to 0.5, with the TT-NF initialization
approach also evaluated for comparison and is shown in Table 3. Notably, PuTT exhibited remarkable consistency in PSNR
values, averaging around 36.10 regardless of the selected σ value. This stability highlights the effectiveness of PuTT’s
progressive learning strategy in mitigating the impacts of initialization variability. In contrast, the QTT model without

18

Coarse-To-Fine Tensor Trains for Compact Visual Representations

upsampling displayed considerable sensitivity to σ variations, with pronounced fluctuations in PSNR values across the
tested spectrum. At a higher σ of 0.5, the QTT model’s performance significantly deteriorated, underscoring the model’s
challenges in learning effectively under such initialization conditions. The highest PSNR observed for the QTT model
without upsampling was 34.96, attained at an intermediate σ value, illustrating the nuanced role of initialization in model
learning.

σ PuTT QTT w/o Upsampling
0.001 36.103 ± 0.001 32.676 ± 0.082
0.005 36.101 ± 0.001 32.873 ± 0.107
0.01 36.116 ± 0.013 34.845 ± 0.102
0.05 36.100 ± 0.002 34.958 ± 0.083
0.1 36.116 ± 0.001 34.946 ± 0.092
0.5 36.103 ± 0.006 12.320 ± 1.610
TT-NF init. 36.116 ± 0.001 34.941 ± 0.102

Table 3. Comparison of average PSNR (±1 std) values for Lena 512x512x3 image over 3000 iterations with various initialization standard
deviations (σ) per core, mean of zero, for PuTT and QTT without upsampling. TT-NF init. is the TT-NF initialization as detailed in
Appendix D.2 Line 774. PuTT employs four upsampling steps at iterations [50, 100, 200, 400], with a learning rate of 5e-3 and batch size
of 1282. Results averaged over three seeds.

F. Experiment Setup
The core of our experiments involve comparing the effectiveness of PuTT against established tensor-based methods (CP,
VM, and Tucker) across both 2D and 3D grayscale data, as well as in the setting of incomplete or noisy data. Due to VM’s
quadratic dependency on the side length of the input tensor, its application to 2D images is impractical, as it fails to provide
a compressed representation. The quantitative experiments for 2D, Noise, and incomplete data are performed on grayscale
images to reduce the amount of computation required. These results are consistent with color image examples.

We test these methods at five distinct resolutions from 1k to 16k in doubling steps for images and from 643 to 10243 for 3D,
examining three compression ratios for each resolution to ensure a comprehensive analysis. For each specific combination
of resolution and compression ratio, we compute the average values of the PSNR and SSIM metrics as well as ±1 standard
deviation.

The PuTT implementation starts by initializing the QTT in PyTorch (Paszke et al., 2019), as outlined in Sec. D.3. The
parameter optimization utilizes the Adam algorithm (Kingma & Ba, 2014). PuTT’s upsampling steps and iteration counts are
tailored to the desired resolution for each task. For instance, to attain a 2D resolution of 10242, the model undergoes three
upsampling steps from an initial 1282 resolution at the 64th, 128th, and 256th iterations, culminating in 1024 iterations in
total. A resolution of 20482 involves four upsampling steps and 2048 iterations, starting from 1282. This strategy allows
substantial initial training at a lower resolution, enhancing efficiency and mitigating the risk of overfitting to low-resolution
aspects, before transitioning to full resolution for the remaining training to capture more complex details. For Noise and
Incomplete Data scenarios, we limit our focus to median resolutions (4k and 2563) and double the iteration count due to the
increased difficulty these present.

For detailed configurations of each resolution and task, refer to Tab. 4.

F.1. Batch Size and Learning Rate

In our compression experiments with PuTT, CP, Tucker, and VM, we did a comprehensive analysis to determine the ideal
learning rate and batch size combinations. This entailed evaluating batch sizes ranging from 322 to 10242 and learning rates
from 10−1 to 10−4. Our findings indicated that larger batch sizes generally led to improved results but with a trade-off in
increased training time. Striking a balance between efficiency and accuracy, we opted for a batch size of 5122 with a base
learning rate of 5 · 10−3. For the high-resolution case of 10243, we had to adjust the batch size to 1282 since Tucker and
CP methods due to computational limits. Instead, we doubled the number of iterations. We found that PuTT was more
sensitive to the learning rate and was configured at 0.005. In contrast, the CP, VM, and Tucker methods utilize a slightly
higher learning rate of 0.01, as these configurations were found to be optimal for each respective model. These settings
balance the computational demands with the need for accuracy and efficiency in our experiments.

19

Coarse-To-Fine Tensor Trains for Compact Visual Representations

Experiment Full Resolution Initial Resolution Iterations for Upsampling Total Iterations

2D 10242 1282 [64, 128, 256] 1024
20482 1282 [64, 128, 256, 512] 2048
40962 1282 [64, 128, 256, 512, 1024] 4096
81922 1282 [64, 128, 256, 512, 1024, 2048] 8192
163842 1282 [64, 128, 256, 512, 1024, 2048, 4096] 16384

3D 643 83 [16, 48, 144] 512
1283 83 [16, 48, 144, 432] 1536
2563 83 [16, 48, 144, 432, 1296] 4608
5123 83 [16, 48, 144, 432, 1296, 3888] 13824

10243 83 [48, 144, 432, 1296, 3888, 11664, 34992] 69984

Noise 2D 40962 1282 [64, 128, 256, 512, 1024, 2048] 8192

Noise 3D 2563 83 [16, 48, 144, 432, 1296, 3888] 13824

Incomplete Data 2D 40962 1282 [64, 128, 256, 512, 1024, 2048] 8192

PuTT-NeRF 2562 322 [500, 1000, 4000] 80000

Table 4. Configurations for upsampling iterations of all experiments. Resolution details the specific resolution in pixels/voxels, with the
initial starting resolutions, iterations for upsampling, and iteration counts for different resolutions and experiments.

Fig. 17 illustrates these relationships, displaying how different batch sizes influenced both the PSNR and the training time in
our experiments with a 4k ”Girl with a Pearl Earring” image using a PuTT.

F.2. Learning Rate Strategy in Training Process

In our training setup, we implement an exponential learning rate decay strategy with a decay factor of α = 0.1. This decay
reduces the learning rate exponentially by α between upsampling iterations. For example, if upsampling occurs at iteration
1000, the learning rate declines from 5 · 10−3 to α · 5 · 10−3 = 5 · 10−4 from step 0 to step 1000.

We observe a characteristic pattern in the loss behavior post-upsampling: an initial spike in loss due to the introduction
of higher-resolution interpolations. As the number of parameters in the representation increases, a new optimizer with an
adjusted learning rate is necessary. Simply maintaining the pre-upsampling learning rate leads to minimal loss reduction,
potentially trapping the model in local minima. Conversely, resetting to the base learning rate causes significant loss
fluctuations.

To address this, we employ a β upsampling learning rate decay, where β = 0.9. Post-upsampling, the learning rate is
recalibrated to 0.9l · 5 · 10−3 (where l is the number of upsampling steps completed), ensuring a balanced approach between
loss stability and effective learning. Following this, we introduce a 50-iteration warm-up phase for the learning rate after
each upsampling, enhancing the stability of the training process. Finally, post the last upsampling step, the learning rate
undergoes another exponential decay of α until the final iteration, ensuring a smooth convergence towards the end of the
training.

F.3. Compression

In Fig. 18,19 we see the SSIM results for our 2D and 3D compression experiments that complements Fig. 6 and 7 (PSNR
results) of the main text. Similarly to the PSNR results, we see that PuTT outperform baselines for both 2D and 3D.

F.4. Noise Removal

In Sec. 5.3 of the main text, we evaluate PuTT’s proficiency in learning from noisy samples, comparing it with various tensor
network methods and QTTs without upsampling. We aim to learn a tensor representation of a target, denoted as XI , using
samples from its noisy counterpart, X̂I , obtained by This noisy version has an identical structure to XI and is generated
by adding noise Z. In our experiments, Z is sampled from either a Normal or Laplacian distribution, Z ∼ N (0, σ), or a
Laplacian distribution, Z ∼ Laplace(0, b). Thus, the noisy target is formulated as X̂I = XI + Z.

20

Coarse-To-Fine Tensor Trains for Compact Visual Representations

Figure 17. The graph showcases the impact of batch size on PSNR (LHS) and training time (RHS). Various learning rates from
[0.0001, 0.1] were tested, and the optimal rate for each batch size was identified. The training spanned over 4096 iterations with
upsampling steps at intervals [64, 128, 256, 512, 1024]. The batch size of 5122, highlighted in the figure, was selected for its optimal
balance between high accuracy and time efficiency, as evidenced in the training of the 4k ”Girl with a Pearl Earring” image with a rank of
200.

Figure 18. SSIM (y-axis) vs compression ratio (x-axis) for 2D fitting. “up = upsampling”.

Figure 19. (a) SSIM (y-axis) in comparison to compression ratio (x-axis) for 3D fitting.

21

Coarse-To-Fine Tensor Trains for Compact Visual Representations

Figure 20. PSNR when varying the amount of Gaussian or Laplacian noise for PuTT and baselines for 3D experiments. “up = upsampling”.

Figure 21. Same as Fig. 20 but for SSIM

In Sec. 5.3 of the main text, Figures 10 (a) and (b) present quantitative results for noise resilience in 2D focusing on PSNR
and SSIM metrics. In the 3D noise resilience analysis (Figures 20 and 21), PuTT mirrors its 2D success, maintaining higher
PSNR against other methods across various noise levels. Upsampling significantly boosts performance, especially in SSIM
metrics for noise above 0.2σ, demonstrating PuTT’s strong noise handling capabilities in both 2D and 3D scenarios.

For our Noise Removal experiments, we adjust the learning rate to accommodate varying noise levels. Starting with an
initial learning rate of lrinit = 0.005 at zero noise, we modify this rate for both PuTT and baseline methods according to
the formula lrσ = 0.005× 0.1σ, where 0.1 is our chosen adaptation factor. For instance, at a noise level of σ = 0.5, the
learning rate becomes lrσ = 0.005× 0.10.5 ≈ 0.00158. This approach helps in achieving optimal results across different
noise intensities.

F.5. Incomplete Data Experiments

In Sec. 5.2 of the main text, we presented the results for training on limited data for various percentages. Fig. 22 presents
the training data used in training at various percentages. The sequence begins with the original target image, followed
by its version with a percentage of the original data sampled. These versions are created by randomly setting a specified
percentage of the pixels in the original image to zero, representing scenarios with limited data availability. The subsampling
percentages, ranging from 1% to 50%, are specified above each corresponding image.

In Sec. 5.2 of the main text, Fig. 12 shows how varying the number of upsampling steps when training 99% missing data
affects PSNR and SSIM for ”Girl with Pearl Earrings” 4k. The first image displays the training data, followed by PuTT
results with 0, 1, 4, and 7 upsampling steps. Fig. 23 shows the larger visual examples.

In our Incomplete Data experiments, similar to the Noise Removal experiments, we modify the learning rate based on
the proportion of available training data. We observed that optimal results were achieved with lower learning rates when
less training data was accessible. Initially, we set the learning rate to lrinit = 0.005 when all data points are available.

22

Coarse-To-Fine Tensor Trains for Compact Visual Representations

(a) Original and Incomplete Images

Figure 22. Incomplete data training inputs for various Percentages: The sequence starts with the original target image (leftmost), followed
by the varying percentages of missing data from 99% to 50%.

Figure 23. Varying the number of upsampling steps when training 99% missing data. The first image displays the training data, followed
by PuTT results with 0, 1, 4, and 7 upsampling steps.

As the amount of training data decreases, we adjust the learning rate for PuTT and baseline methods using the formula
lrp = 0.005 × f1−p. Here, f represents the adaptation factor, and p denotes the proportion of available training data,
ranging between 0 and 1. This strategy helps us tailor the learning process effectively to different data availability scenarios.

Downsampled images Fig. 24 shows the downsampled targets used during training for 95% missing data of ”Girl with
Pearl Earring”. The three RGB channels are averaged to visualize how aggregated values form a blurred version of the
actual target at lower downsampled resolutions.

Figure 24. Illustration of the effects of downsampling a 4k image where 95% of the data at the target resolution is missing. The progression
from left to right shows images at lower resolutions containing aggregated information about the pixels available at higher resolutions.
The three channels have been aggregated to more clearly show this pattern

Masked average pooling As explained in Sec. 5.2 of the main text, to train with a downsampled target at lower resolutions,
we create a modified target image ID−l,p. We build ID−1,p from ID,p, we use a custom masked average pooling method,
averaging only the non-zero values in each window, sized according to the downsampling factor. The masked average
pooling can be illustrated through a simple example. Consider a 2× 2 window containing values [2, 2, 0, 0]. In standard

23

Coarse-To-Fine Tensor Trains for Compact Visual Representations

Figure 25. Visual comparison of TensoRF and PuTT on Near and Far views for “Materials”, “Mic”, “Chair”, “Ficus” scenes.

average pooling, the output would be the average of all values, (2 + 2 + 0 + 0)/4 = 1. However, in our masked average
pooling, where zero values are excluded from the calculation, the output is the average of the non-zero values, (2+2)/2 = 2.
This method ensures that only relevant data contributes to the pooling process. Fig. 24 provides a visual representation
of this process. It showcases how a 4k image, with 95% of its data missing at the target resolution, is progressively
downsampled. Each image in the sequence, moving from left to right, represents a lower-resolution version, consolidating
aggregated information from the available pixels at higher resolutions. For easier visualization, the channel dimension has
been averaged.

G. Novel View Synthesis

Model (Size) PSNR SSIM LPIPS

PuTT (12 MB) 31.953 0.957 0.0597
PuTT (12 MB) No PE 31.880 0.9537 0.0612
PuTT (12 MB) No Up 31.466 0.9502 0.0654
TensoRF (12 MB) 31.623 0.9523 0.0626

PuTT (7 MB) 31.665 0.9560 0.0602
PuTT (7 MB) No PE 31.633 0.9516 0.0650
PuTT (7 MB) No UP 31.295 0.9480 0.0710
TensoRF (7 MB) 31.103 0.9476 0.0697

Table 5. Comparison of novel view synthesis (NeRF) under different model sizes (7MB and 12MB) in comparison to TensoRF. ”No Up”:
No upsampling, ”No PE”: No positional encoding used for inputs to the Shader (MLP) function.
We compare our approach with other grid-based novel view synthesis methods, including previous works NSVF (Liu et al.,

24

Coarse-To-Fine Tensor Trains for Compact Visual Representations

Metric Method Chair Drums Ficus Hotdog Lego Materials Mic Ship Average
TensoRF PuTT TensoRF PuTT TensoRF PuTT TensoRF PuTT TensoRF PuTT TensoRF PuTT TensoRF PuTT TensoRF PuTT TensoRF PuTT

PSNR
Near 35.953 37.450 27.024 27.672 32.653 34.254 37.176 38.276 34.396 35.579 28.915 29.309 33.510 34.886 30.463 30.990 32.511 33.552
Far 31.798 33.262 24.444 24.951 30.457 31.822 31.579 31.331 31.434 31.523 25.986 26.177 33.515 34.382 27.287 27.264 29.563 30.089
All 32.616 34.144 25.004 25.444 30.986 32.253 36.034 36.590 33.264 34.009 28.953 29.331 32.520 33.596 29.128 29.559 31.063 31.866

Table 6. Novel View Synthesis comparison to TensoRF (PSNR) for all scenes in the Synthetic-NeRF (Mildenhall et al., 2020) dataset. We
test on views that are near training views (Near), far from training views (Far), and all test views (All). The models being compared have a
size og 7MB.

2020a) PlenOctrees (Yu et al., 2021b), Plenoxels (Yu et al., 2021a), DVGO (Sun et al., 2022), K-planes (Fridovich-Keil et al.,
2023), and TensoRF (Chen et al., 2022). Most of these results were taken directly from the respective papers if possible. We
directly compare the tensor methods used by TensoRF and their efficiency vs our PuTT method’s effeciency, by aligning
the model sizes of the two. In our comparison with TensoRF, we omitted its ”shrinkage” feature, which involves using an
alpha mask to dynamically reshape and resample tensor factors during training. However, due to its current incompatibility
with our QTT structure, integrating this feature into PuTT requires additional development. Instead, in our experiments, we
employed a progressively updated alpha mask, utilized exclusively for ray-filtering purposes. This adjustment was critical in
maintaining a fair and relevant comparison between the methods under test.

In our novel view synthesis experiments, models were trained for a total of 80, 000 steps. The learning rate (LR) schedule
followed the same structure as outlined in Sec. 5.1 of the main text, but for PuTT, we used a base LR of 1e − 3. In the
case of TensoRF, we adhered to its standard configuration but adjusted the factor counts in the VM decomposition to align
with our 7MB and 12MB model sizes. For the 7MB TensoRF models, the rank factors were set to [4, 4, 4] for density and
[5, 5, 5] for appearance. In contrast, for the larger 12MB models, we increased these ranks to [8, 8, 8] for both density and
appearance factors, ensuring a consistent comparison in terms of memory footprint. For PuTT 7MB is equal to a rank of 140
for the density grid and 200 for the appearance grid, and for the 12MB model, this is 200 and 280 respectively.

Regarding batch sizes, our experiments utilized 4096 rays per batch. The number of uniform samples per ray was capped at
884. Both models, PuTT and TensoRF, demonstrated similar running times, ranging between 4 and 5 hours for both 7MB
and 12MB on an NVIDIA Tesla V100 GPU. The increased running time observed with TensoRF compared to those reported
in their paper can be attributed to not employing its shrinkage feature. While this feature typically enhances efficiency
in TensoRF’s processing, its exclusion was necessary to ensure a more direct comparison with the PuTT model under
equivalent conditions.

We assessed our method under different conditions: with and without Positional Encoding (PE), and with and without
Upsampling, applied to both the 7MB and 12MB model sizes. Additionally, these configurations were contrasted with
TensoRF, both with and without its Upsampling feature. Each experiment was replicated over three seeds to ensure
robustness, with the outcomes detailed in Tab. 5.

G.1. Omitting Positional Encoding

One of the key innovations in the original NeRF (Mildenhall et al., 2020) was the use of Positional Encoding (PE) to
transform 5D input coordinates into a higher-dimensional space, enhancing the representation of high-frequency scene
content. This technique resulted in a significant PSNR improvement for NeRF (Mildenhall et al., 2020). Our findings, as
shown in Tab. 5, suggest that the quantized TT structure effectively encodes inputs for the MLP responsible for color value
computations based on viewing directions. With the quantized TT structure, we observed only a minor drop in performance
when PE was omitted. For the 12MB model, we only see a drop of 0.07 PSNR when not using Positional Encoding as
opposed to the drop reported by Mildenhall et al. in NeRF (Mildenhall et al., 2020), which was a difference of 2.24 PSNR.
This highlights the effectiveness of the quantized tensor train encoding.

G.2. Testing from Near to Far Views

To study the fine-grained representation ability of PuTT, we experiment with testing views captured from near to far camera
positions compared with source views. Specifically, we compute the average variance in view angles between each testing
view and its nearest twenty source views. After sorting the average view angle differences for all testing views, we identify
the twenty testing views with the smallest differences as near views and the twenty testing views with the largest differences
as far views.

In addition to Sec. 5.1 of the main text, Tab. 6 shows that PuTT outperforms TensorRF from near to far testing views on

25

Coarse-To-Fine Tensor Trains for Compact Visual Representations

both SSIM and LPIPS for all scenes in the dataset. It should be noticed that the advantage of PuTT over TesorRF on near
views is more significant than that on far views. It indicates that PuTT, benefiting from the coarse-to-fine learning method,
learns a more compact and expressive representation of the fine-grained details, as shown in Fig. 25.

G.3. Per-scene results novel view synthesis

26

Coarse-To-Fine Tensor Trains for Compact Visual Representations

Methods Avg. Chair Drums Ficus Hotdog Lego Materials Mic Ship

PSNR↑
PlenOctrees-L* (Yu et al., 2021b) 31.71 34.66 25.31 30.79 36.79 32.95 29.76 33.97 29.42
Plenoxels-L* (Yu et al., 2021a) 31.71 33.98 25.35 31.83 36.43 34.10 29.14 33.26 29.62
DVGO-L* (Sun et al., 2022) 31.95 34.09 25.44 32.78 36.74 34.64 29.57 33.20 29.13
kplanes-L* (Fridovich-Keil et al., 2023) 32.36 34.99 25.66 31.41 36.78 35.75 29.48 34.05 30.74
Instant-NGP* (Müller et al., 2022)-L 33.18 35.00 26.02 33.51 37.40 36.39 29.78 36.22 31.10
TensoRF VM-192-L* (Chen et al., 2022) 33.14 35.76 26.01 33.99 37.41 36.46 30.12 34.61 30.77
Our PuTT-200-L 32.79 35.29 25.82 33.39 37.29 35.93 29.93 34.21 30.39
NeRF-S* (Mildenhall et al., 2020) 31.01 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65
TensoRF VM-30-S (no shrinking) 31.10 32.62 25.00 30.99 36.03 33.26 28.95 32.52 29.13
Our PuTT-200-S 31.87 34.14 25.44 32.25 36.59 34.01 29.33 33.60 29.56
Instant-NGP-M* (Müller et al., 2022) 33.17 35.00 26.02 33.51 37.40 36.39 29.78 36.22 31.10
TensoRF VM-48-M (no shrinking) 31.51 33.29 25.22 31.62 36.24 33.79 29.34 32.97 29.59
Our PuTT-200-M 31.98 34.23 25.67 32.32 37.07 34.02 29.58 33.56 29.44

SSIM↑
PlenOctrees-L* (Yu et al., 2021b) 0.958 0.981 0.933 0.970 0.982 0.971 0.955 0.987 0.884
Plenoxels-L* (Yu et al., 2021a) 0.958 0.977 0.933 0.976 0.980 0.976 0.949 0.985 0.890
DVGO-L* (Sun et al., 2022) 0.957 0.977 0.930 0.978 0.980 0.976 0.951 0.983 0.879
kplanes-L* (Fridovich-Keil et al., 2023) 0.962 0.983 0.938 0.975 0.982 0.982 0.950 0.988 0.897
TensoRF VM-192-L* (Chen et al., 2022) 0.963 0.985 0.937 0.982 0.982 0.983 0.952 0.988 0.895
Our PuTT-600-L 0.958 0.977 0.933 0.979 0.981 0.972 0.947 0.986 0.888
NeRF-S* (Mildenhall et al., 2020) 0.947 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856
TensoRF VM-30-S (no shrinking) 0.948 0.965 0.920 0.966 0.974 0.966 0.938 0.979 0.873
Our PuTT-200-S 0.956 0.976 0.928 0.975 0.979 0.974 0.945 0.987 0.876
TensoRF VM-48-M (no shrinking) 0.952 0.971 0.923 0.969 0.975 0.974 0.944 0.982 0.879
Our PuTT-280-M 0.957 0.976 0.929 0.975 0.979 0.973 0.946 0.989 0.878

LPIPSV gg ↓
DVGO-L* (Sun et al., 2022) 0.035 0.016 0.061 0.015 0.017 0.014 0.026 0.014 0.118
TensoRF VM-192-L* (Chen et al., 2022) 0.027 0.010 0.051 0.012 0.013 0.007 0.026 0.009 0.085
Our PuTT-600-L 0.045 0.021 0.081 0.025 0.019 0.027 0.045 0.018 0.124
NeRF-S* (Mildenhall et al., 2020) 0.081 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206
TensoRF VM-30-S (no shrinking) 0.067 0.042 0.104 0.034 0.042 0.039 0.074 0.025 0.177
Our PuTT-200-S 0.061 0.037 0.085 0.029 0.038 0.039 0.069 0.024 0.161
TensoRF VM-48-M (no shrinking) 0.062 0.041 0.100 0.032 0.0412 0.037 0.072 0.022 0.155
Our PuTT-280-M 0.059 0.034 0.084 0.029 0.037 0.039 0.069 0.022 0.158

Table 7. Quantitative results on each scene from the Synthetic-NeRF (Mildenhall et al., 2020) dataset. (Results denoted with an asterisk
(*) were sourced from the data presented in the referenced paper.

27

Coarse-To-Fine Tensor Trains for Compact Visual Representations

Methods Avg. Wineholder Steamtrain Toad Robot Bike Palace Spaceship Lifestyle

PSNR↑
DVGO-L* (Sun et al., 2022) 35.08 30.26 36.56 33.10 36.36 38.33 34.49 37.71 33.79
TensoRF VM-192-L* (Chen et al., 2022) 36.52 31.32 37.87 34.85 38.26 39.23 37.56 38.60 34.51
Our PuTT-600-L 36.57 31.33 37.21 34.87 38.22 39.32 37.47 39.07 35.05
NeRF-S* (Mildenhall et al., 2020) 30.81 28.23 30.84 29.42 28.69 31.77 31.76 34.66 31.08
TensoRF VM-30-S (no shrinking) 34.58 29.62 35.51 32.21 35.42 37.85 35.49 37.05 33.48
Our PuTT-200-S 35.59 30.55 36.22 33.73 36.44 38.59 36.02 38.72 34.43
TensoRF VM-48-M (no shrinking) 35.41 30.35 36.54 32.84 36.85 38.33 36.54 37.51 34.34
Our PuTT-280-M 36.04 30.89 36.41 34.48 37.02 38.89 36.78 38.95 34.86

SSIM↑
DVGO-L* (Sun et al., 2022) 0.975 0.949 0.989 0.966 0.992 0.991 0.962 0.988 0.965
TensoRF VM-192-L* (Chen et al., 2022) 0.982 0.961 0.991 0.978 0.994 0.993 0.979 0.989 0.968
Our PuTT-600-L 0.982 0.960 0.989 0.979 0.994 0.993 0.977 0.990 0.970
NeRF-S* (Mildenhall et al., 2020) 0.952 0.920 0.966 0.920 0.960 0.970 0.950 0.980 0.946
TensoRF VM-30-S (no shrinking) 0.974 0.949 0.985 0.962 0.992 0.991 0.970 0.982 0.962
Our PuTT-200-S 0.976 0.954 0.985 0.971 0.990 0.989 0.968 0.989 0.965
TensoRF VM-48-M (no shrinking) 0.975 0.949 0.986 0.963 0.992 0.991 0.973 0.985 0.964
Our PuTT-280-M 0.977 0.956 0.983 0.974 0.990 0.990 0.975 0.984 0.967

LPIPSV GG ↓
DVGO-L* (Sun et al., 2022) 0.019 0.038 0.010 0.030 0.005 0.004 0.027 0.009 0.027
TensoRF-VM-192-L* (Chen et al., 2022) 0.012 0.024 0.006 0.016 0.003 0.003 0.011 0.009 0.021
Our PuTT-600-L 0.017 0.032 0.017 0.023 0.008 0.004 0.021 0.011 0.023
NeRF-S* (Mildenhall et al., 2020) 0.043 0.096 0.031 0.069 0.038 0.019 0.031 0.016 0.047
TensoRF VM-30-S (no shrinking) 0.036 0.059 0.032 0.046 0.014 0.017 0.033 0.027 0.057
Our PuTT-200-S 0.032 0.059 0.029 0.039 0.013 0.014 0.032 0.018 0.055
TensoRF VM-48-M (no shrinking) 0.034 0.065 0.028 0.043 0.013 0.014 0.029 0.025 0.056
Our PuTT-280-M 0.027 0.053 0.022 0.031 0.011 0.011 0.024 0.017 0.046

Table 8. Quantitative results on each scene from the Synthetic-NSVF (Liu et al., 2020a) dataset. Results denoted with an asterisk (*)
were sourced from the data presented in the referenced paper.

H. Compatibility of TensoRF’s ”Shrinkage” with QTT
Shrinkage: TensoRF’s “shrinkage” process removes parameters corresponding to empty regions in the 3D space. For
instance, in TensoRF’s VM (Vector-Matrix) decomposition, parameters for indices x, y, z < 10 are pruned if the region is
empty, reallocating them to denser regions to enhance resolution.

Incompatibility with QTT: Unlike TensoRF, QTT uses a hierarchical structure with mode quantization, compressing
dimensions into powers of two. This structure mixes parameters, interlinking those representing a coordinate (x, y, z) with
many others. Consequently, QTT’s parameter sharing across the hierarchy complicates direct pruning as in TensoRF’s
“shrinkage.” Figure 16 illustrates this interlinked structure. While QTT’s interdependency complicates “shrinkage,” it allows
capturing dimensional correlations, ensures logarithmic parameter growth, and improves robustness against noise and
incomplete data. Updating parameters for a specific coordinate refines those across interconnected indices, leveraging
correlations for resilient data representation. This complexity necessitates a coarse-to-fine training approach, as proposed in
our PuTT method, fostering the hierarchical structure modeled by QTT.

I. Exploring Inpainting Capabilities with PuTT
Inpainting tasks benefit from a rich prior of the true data distribution, often using generative models. Our method, however,
focuses on a single example to learn a compact, high-quality representation suitable for tasks like denoising or predicting
missing values.

28

Coarse-To-Fine Tensor Trains for Compact Visual Representations

Methods Avg. Ignatius Truck Barn Caterpillar Family

PSNR↑
PlenOctrees-L* (Yu et al., 2021b) 27.99 28.19 26.83 26.80 25.29 32.85
Plenoxels-L* (Yu et al., 2021a) 27.43 27.51 26.59 26.07 24.64 32.33
DVGO-L* (Sun et al., 2022) 28.41 28.16 27.15 27.01 26.00 33.75
TensoRF VM-192-L (Chen et al., 2022) 28.56 28.34 27.14 27.22 26.19 33.92
Our PuTT-600-L 28.37 28.08 27.09 27.22 25.93 33.56
NeRF-S* (Mildenhall et al., 2020) 25.78 25.43 25.36 24.05 23.75 30.29
TensoRF VM-30-S (no shrinking) 27.67 27.58 26.42 26.67 25.04 32.62
Our PuTT-200-S 27.99 27.98 26.47 27.08 25.47 32.96
TensoRF VM-48-M (no shrinking) 28.03 28.04 26.70 27.06 25.28 33.06
Our PuTT-280-M 28.15 28.01 26.91 27.01 25.61 33.23

SSIM↑
PlenOctrees-L* (Yu et al., 2021b) 0.917 0.948 0.914 0.856 0.907 0.962
Plenoxels-L* (Yu et al., 2021a) 0.906 0.943 0.901 0.829 0.902 0.956
DVGO-L* (Sun et al., 2022) 0.911 0.944 0.906 0.838 0.906 0.962
TensoRF VM-192-L* (Chen et al., 2022) 0.920 0.948 0.914 0.864 0.912 0.965
Our PuTT-600-L 0.917 0.943 0.908 0.865 0.907 0.960
NeRF-S* (Mildenhall et al., 2020) 0.864 0.920 0.860 0.750 0.860 0.932
TensoRF VM-30-S (no shrinking) 0.899 0.924 0.900 0.840 0.880 0.951
Our PuTT-200-S 0.901 0.931 0.901 0.824 0.901 0.950
TensoRF VM-48-M (no shrinking) 0.901 0.928 0.900 0.843 0.882 0.951
Our PuTT-280-M 0.907 0.934 0.909 0.835 0.903 0.953

LPIPV GG ↓
DVGO-L* (Sun et al., 2022) 0.148 0.090 0.145 0.290 0.152 0.064
TensoRF VM-192-L* (Chen et al., 2022) 0.140 0.078 0.145 0.252 0.159 0.064
Our PuTT-600-L 0.142 0.082 0.153 0.241 0.163 0.070
NeRF-S* (Mildenhall et al., 2020) 0.198 0.111 0.192 0.395 0.196 0.098
TensoRF VM-30-S (no shrinking) 0.185 0.099 0.218 0.297 0.227 0.083
Our PuTT-200-S 0.197 0.094 0.326 0.272 0.220 0.072
TensoRF VM-48-M (no shrinking) 0.156 0.092 0.173 0.257 0.187 0.074
Our PuTT-280-M 0.150 0.086 0.162 0.259 0.170 0.073

Table 9. Quantitative results on each scene from the Tanks&Temples (Knapitsch et al., 2017) dataset. Results denoted with an asterisk (*)
were sourced from the data presented in the referenced paper.

29

Coarse-To-Fine Tensor Trains for Compact Visual Representations

We conducted an experiment with two images: a brick pattern and the Lena image. Each image had a continuous mask
covering 10% of the area. Using PuTT, we attempted to reconstruct the masked regions. Results are shown in Fig. 26 with
columns for the original image, the masked image, and the reconstructed image. The brick image shows PuTT’s effectiveness
in structured settings, while the Lena image highlights the challenges of inpainting large areas without sophisticated priors.

Figure 26. Inpainting results on two 512 × 512 × 3 images: a brick pattern (top) and the Lena image (bottom). Columns display the
original image, the masked image (10% mask), and the PuTT reconstruction. Reconstructions were achieved after 1024 iterations using
only unmasked regions.

J. Exploring Rank Incrementation with SlimmeRF
SlimmeRF (Yuan & Zhao, 2023) enhances the TensoRF VM framework by introducing an adaptive rank mechanism,
dynamically adjusting the model’s learning capacity. The model starts with a low-rank representation and incrementally
increases the rank based on learning progress, capturing essential features early and building complexity as needed. Our
approach similarly increases tensor rank progressively, a strategy used in physics methods like DMRG (White, 1992a) and
TT-cross (Oseledets & Tyrtyshnikov, 2010), aligning with our progressive learning in PuTT.

We explored this with a 2D compression experiment on 4K images, as shown in Table 10. We compared a standard QTT
model without upsampling to one with progressive rank incrementation ([2, 4, 8, 16] ranks during initial training). These
experiments indicate that gradual rank increments can improve PSNR scores without adding complexity.

These results, excluding dimensional upsampling, highlight the potential of rank incrementation. However, more extensive
experiments are needed to fully validate these findings.

30

Coarse-To-Fine Tensor Trains for Compact Visual Representations

Rank Increment PSNR (Avg) Std
0 (Baseline) 37.444 0.821

2 38.168 0.391
4 38.273 0.444
8 38.331 0.464
16 38.131 0.513

Table 10. Results of Progressive Rank Incrementation. This table summarizes the effects of rank incrementation on learning efficiency for
a 1k resolution image of a ’Girl with a Pearl Earring’. It contrasts a baseline QTT model without upsampling, starting with a rank of 200,
with QTT models employing progressive rank incrementation from a base rank of 100 to 200. Rank increments of 2, 4, 8, and 16 were
tested over four intervals: [100, 1000], [100, 1500], [250, 1500], and [250, 750], to determine the start and end points for rank increments.
The table displays the average PSNR values, alongside standard deviations, across three iterations for each rank increment strategy. These
results highlight the improved performance due to strategic rank incrementation, with all strategies surpassing the baseline. For instance,
an increment step of 2 within the [100, 1000] interval increased the rank every (1000− 100)/(200− 100) = 9 iterations. Although a
rank increment of 8 yielded the best average PSNR, differences between increment steps were minimal, suggesting a thoughtful approach
to rank incrementation can significantly enhance the model’s learning capability.

31

