
Reparameterized Importance Sampling for
Robust Variational Bayesian Neural Networks

Yunfei Long * 1 Zilin Tian * 1 Liguo Zhang 1 2 Huosheng Xu 1

Abstract
Mean-field variational inference (MFVI) meth-
ods provide computationally cheap approxima-
tions to the posterior of Bayesian Neural Net-
works (BNNs) when compared to alternatives
like MCMC. However, applying MFVI to BNNs
encounters limitations due to the Monte Carlo
sampling problem. This problem stems from two
main issues. First, most samples do not accurately
represent the most probable weights. Second,
random sampling from variational distributions
introduces high variance in gradient estimates,
which can hinder the optimization process, lead-
ing to slow convergence or even failure. In this pa-
per, we introduce a novel sampling method called
Reparameterized Importance Sampling (RIS) to
estimate the first moment in neural networks, re-
ducing variance during feed-forward propagation.
We begin by analyzing the generalized form of
the optimal proposal distribution and presenting
an inexpensive approximation. Next, we describe
the sampling process from the proposal distribu-
tion as a transformation that combines exogenous
randomness with the variational parameters. Our
experimental results demonstrate the effectiveness
of the proposed RIS method in three critical as-
pects: improved convergence, enhanced predic-
tive performance, and successful uncertainty esti-
mation for out-of-distribution data.

1. Introduction
Bayesian Neural Networks (BNNs) can perform probabilis-
tic predictions by incorporating a prior distribution on the
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network weights and then inferring a posterior distribution
using Bayes’ rule. This characteristic empowers BNNs to
estimate the level of uncertainty in their predictions, which
is a crucial consideration, especially in safety-critical sys-
tems. However, due to the computational intractability of
exact inference for posteriors, approximate methods are
commonly employed in practice. Mean-field variational
inference (MFVI) (Blundell et al., 2015; Graves, 2011;
Kingma et al., 2015; Dusenberry et al., 2020; Coker et al.,
2022) stands out as a powerful paradigm for approximat-
ing the Bayesian posterior with flexible variational distri-
butions. The optimization of this approximation revolves
around minimizing the Kullback-Leibler (KL) divergence
between the variational distribution and the actual posterior.
To review, let W = {wi} represent network weights, D
represent the data, and place prior p (W) on weights W .
MFVI introduces a variational distribution Q with varia-
tional parameters Θ = {θi} to approximate the posterior
distribution p (W|D). This variational distribution is fac-
torized, Q (W|Θ) =

∏
i q (wi|θi), and the values of Θ are

optimized by minimizing the following objective function.

L (D,Θ) =EQ [logQ (W|Θ)− log p (W)]

− EQ [log p (D|W)]
(1)

where the first term serves as a regularizer, penalizing so-
lutions where the posterior deviates from the prior, while
the second term represents a model-fitting component. It is
straightforward to verify that analytic results are available
for the KL term between the Q and p (W). However, due
to the nonlinearity inherent in neural networks, computing
the exact expectation of log-likelihood is unfeasible. MFVI
employs Monte Carlo sampling to approximate this expecta-
tion, EQ [log p (D|W)] ≈ 1

M

∑M
m=1 p

(
D|W(m)

)
, M rep-

resent the sample size, W(m) denotes the m-th Monte Carlo
sample drawn from the variational posterior Q (W|Θ). Un-
fortunately, despite the advantages related to computational
tractability, training BNNs using MFVI can be challeng-
ing primarily due to the Monte Carlo sampling problem.
Firstly, the majority of weights sampled from variational
distributions tend to fall in edge regions, far from the most
probable weight. Secondly, variational BNNs optimize Θ
using stochastic gradient descent methods that rely on the
gradient of the Monte Carlo L estimate with respect to Θ.
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The Monte Carlo generating process of weights is the source
of stochasticity in the gradient estimation process. High vari-
ance in the gradient estimators can impede or prevent the
optimization process from progressing smoothly. These
challenges become more pronounced when working with
larger networks. This work has focused on the sampling of
variational distributions and the optimization of variational
parameters.

We consider the task of enhancing the robustness of BNNs
by propagating the first moment during the feed-forward
inference procedure. Using this deterministic approxima-
tion inference can effectively decrease gradient variance,
but, unlike the complex moment estimate in Deterministic
Variational Inference (DVI), we investigate employing Im-
portance Sampling for estimating the first moment. This
scheme offers three distinct advantages: i) It allows for the
attainment of a more accurate estimator with only a small
number of samples. ii) It eliminates all stochasticity result-
ing from Monte Carlo sampling. iii) It effectively reduces
gradient variance while preserving the capacity to model
uncertainty. To accomplish these benefits, we introduce
the Reparameterized Importance Sampling method. Specifi-
cally, we develop a computationally cheap approximation
for the optimal proposal distribution in Importance Sam-
pling. This approximation relies on an analytical linear
estimation of both its mean and variance. Subsequently,
we merge the Importance Sampling method with the repa-
rameterization trick to facilitate the efficient sampling of
weights from the proposal distribution and simplify the com-
putation of gradients for variational parameters. Applying
this approximation to variational inference in multiple neu-
ral networks, we observe faster convergence, more stable
optimization traces, and improved predictive performance
compared to MFVI using Monte Carlo sampling.

2. Background
Standard Mean-Field Variational Inference (MFVI) com-
bines Monte Carlo sampling and the reparameterization
trick to estimate the posterior distribution of Bayesian Neu-
ral Networks (BNNs). We begin by considering a feed-
forward BNN with multiple hidden layers. For notational
clarity, the factorized distribution on W is redefined as
Q (W|Θ) =

∏
l q (wl|θl), where θl are the variational pa-

rameters of the ql distribution, wl represents the weights of
the l-th layer that is considered independent from weights
in other layers. Its variational posterior distribution, ql, is
typically represented by a diagonal Gaussian distribution,
denoted as N

(
ul, σ

2
l

)
, with parameters θl =

[
ul, σ

2
l

]
. The

reparameterization trick transforms the sampling procedure
that generates weights wl from q (wl|θl) as a differentiable
mapping t.

wl = t (ϵ; θl) = µl + σ2
l ⊙ ϵ, ϵ ∼ N (0, I) (2)
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Figure 1. The variance in feed-forward neural network becomes
higher as the number of layers increases.

where ⊙ represents element-wise product, ϵ is independent
of θl. For a single weight sampling, the gradient of varia-
tional parameters can be calculated by:

∇θl ≜ −∇lg
θl
[log p (D|W)]︸ ︷︷ ︸

likelihood gradient

+∇rg
θl

[log (q (wl|θl)− p (wl))]︸ ︷︷ ︸
regularizer gradient

For simplicity, we focus on the situation for wl. Similar to
the form of L (Eq. 1), the gradient ∇θl consists of two terms
including likelihood gradient and regularizer gradient.

Regularizer gradient We analyze the regularizer gradi-
ent of θl by decomposing it into the following form:

∇rg
θl

[log q (wl|θl)− p (wl)] =
∂ log q (wl|θl)

∂wl

∂wl

∂θl

+
∂ log q (wl|θl)

∂θl
− ∂ log p (wl)

∂wl

∂wl

∂θl

It is straightforward to calculate this gradient by taking the
partial derivative of the log probability density function and
differentiable mapping t. If we initialize the prior p(wl) as
a diagonal Gaussian distribution with zero mean and unit
variance, the regularizer gradients of ul and σ2

l are given
following:

∇rg
µl

[log q (wl|θl)− p (wl)] = ϵ (3)

∇rg
σl

[log q (wl|θl)− p (wl)] ∝ ϵ2 (4)

Likelihood gradient The randomness in the estimate of
the regularizer gradient is determined by the ϵ samples.
Instead, the variance of likelihood gradient depends on
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∂ log p(D|W)
∂wl

, which is a multiplicative term over the gra-
dient.

∇lg
µl
[log p (D|W)] =

∂ log p (D|W)

∂wl
(5)

∇lg
σl
[log p (D|W)] ∝ ∂ log p (D|W)

∂wl
ϵ (6)

The variance of the back-propagating gradients ∂ log p(D|W)
∂wl

will become higher as the number of layers increases. Com-
paring above Eqs. (3), (4), (5), (6), we empirically argue
that the significant difference in gradient variance is a con-
tributing factor to optimization prioritizing the proximity
of variational posteriors to priors while overlooking criti-
cal model fit terms. Figure 1 shows the outputs variance
becomes higher as the number of layers increases. In this
work, we aim to reduce variance in feed-forward MFVI to
reduce the gradients variance.

3. Moment Propagation in Mean-field
Variational Inference

In a feed-forward BNN, the activation action of lth layer
that maps zl−1 to zl can be expressed as follows:

zl = δ(wlzl−1), wl ∼ ql(wl|θl)1 (7)

where δ represents a non-linearity function (e.g. ReLU), wl

represents the weights of the l-th layer that are drawn from
the variational distribution ql(wl|θl). The DVI(Wu et al.,
2019) argues a Gaussian distribution for zl and derives an
approximate expression for calculating its first and second
moments. This deterministic approximation to variational
inference removes all stochasticity due to Monte Carlo sam-
pling and reduces gradient variance to zero. In this work,
we compute the likelihood value by sequentially computing
and propagating the first moment estimate in the hidden
layers.

z̃l = Ewl∼ql [δ (wlz̃l−1)]

In general, this expectation is approximated by using Monte
Carlo samples from the variational distribution:

z̃l ≈
1

M

M∑
m=1

δ (wm
l z̃l−1), w

m
l ∼ ql(wl|θl)

where M is the number of Monte Carlo samples. However,
this approximation generally suffers from high-variance.

Importance Sampling (Tokdar & Kass, 2010; Borcherds,
2000) is an essential alternative to Monte Carlo sampling
that highly reduces the estimate expectation variance. In
general, we can approximate z̃l through following two steps.

1We introduce the forward propagation without bias and show
in the Appendix that the case with bias is identical to this case.

Firstly, we sample weights wl from the proposal distribution
rl (wl) and perform non-linear calculations. Secondly, we
calculate importance weight as a correction for variance.
We can rewrite z̃l in the following expectation form:

z̃l = Erl

[
q (wl|θl)
rl (wl)

δ (wlz̃l−1)

]
≈ 1

M

M∑
m=1

q (wm
l |θl)

rl (wm
l )

δ (wm
l z̃l−1), w

m
l ∼ rl (wl)

(8)

The importance sampling performs well when an optimal
proposal distribution is used. A reasonable criterion for
choosing a proposal distribution is to opt for one that mini-
mizes the variance of z̃l.

varrl [f (wl) γl] = Erl

[
f2 (wl) γ

2
l

]
− [Eql [f (wl)]]

2

where f (wl) = δ (wlz̃l−1) , γl = q(wl|θl)
rl(wl)

represents the
importance weight.

Proposition 1. We can obtain the lower bound of
varrl [f (wl) γl] when

r∗l (wl) ∝ |f (wl)| ql (wl) (9)

Proof. As:

Erl

[
f (wl)

2
γ2
l

]
⩾ [Erl |f (wl) γl|]2

=

(∫
|f (wl)|ql (wl) dwl

)2

For rl = r∗l , we have

Er∗l

[
f (wl)

2
γ2
l

]
=

∫
f (wl)

2
q (wl)

2

|f (wl)|q (wl)
dwl

∫
|f (wl)|q(wl)dwl

=

(∫
|f (wl)| q (wl) dwl

)2

Notably, varr∗l [f (wl) γl] = 0 when f(wl) ⩾ 0 for all
wl. In this case, r∗l (wl) = f (wl) ql (wl) /z̃l, where z̃l =∫
f (wl) ql (wl) dwl = Eql [f (wl)], and it has that:

varr∗l [f (wl) γl] = varr∗l

[
f (wl) ql (wl)

f (wl) ql (wl)
z̃l

]
= 0

Unfortunately, calculating the optimal proposal distribu-
tion can be quite challenging, primarily because of the in-
tractable integral involving non-linear functions |f (wl)|. In
the next section, our objective is to create a readily practical
and highly accurate approximation for this optimal proposal
distribution.
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4. Reparameterized Importance Sampling
4.1. Approximating the Optimal Proposal Distribution

Having established that the optimal proposal distribution
r∗l (wl) follows the form given by Eq. (9), we empirically
constrain it to a multivariate Gaussian distribution with a
mean of ∗

u and diagonal variance of ∗
σ2, according to the

central limit theorem. Referring to the definitions of mean
and variance, we can derive:

∗
µ = Erl [wl] ,

∗
σ2 = Erl

[
w2

l

]
− [Erl [wl]]

2 (10)

Combing Eqs. (9) (10) leads to a new transformation as:

∗
µ =

∫
q (wl|θl) |f (wl)|wldwl

= Eql [|f (wl)|wl]

(11)

∗
σ2 = Eql

[
(|f (wl)|wl)

2
]
− [Eql [|f (wl)|wl]]

2 (12)

In general, exact computation of the above expressions is not
feasible due to the intractable integrals involved. Therefore,
we introduce practical approximations for these expressions.
To simplify notation, we define all the non-linear functions
related to wl as h(wl). Moreover, the function h(wl) is cer-
tainly differentiable with respect to wl, even in the presence
of an absolute value function. We then linearize h about
some value ul

h̃ (wl) =h (µl)+h′ (µl) (wl − µl)+
h′′ (µl)

2
(wl − µl)

2 (13)

where we have employed the Taylor series to approximate
the non-linear function h, h′ and h′′ refer to the first and the
second-order derivative of h(wl) with respect to wl, both
evaluated at ul. Recalling the reparameterization trick, we
can perceive it as a transformation of the random variable ϵ
while keeping θl fixed.

h̃θl (ϵ) = h (µl) + h′ (µl) (t (ϵ; θl)− µl)

+
h′′ (µl)

2
(t (ϵ; θl)− µl)

2

= h (µl) + h′ (µl)σ
2
l ⊙ϵ+

h′′ (µl)

2

(
σ2
l ⊙ϵ

)2 (14)

Crucially, the expectation of h̃ (wl) under the variational
distribution of wl is equivalent to the expectation of h̃θl (ϵ)
under the distribution on ϵ (for example, N (0, I)). Thus,
we can obtain this expectation by calculating:

Eql

[
h̃ (wl)

]
= E

[
h̃θl (ϵ)

]
= E

[
h (µl) + h′ (µl)σ

2
l ⊙ ϵdϵ+

h′′ (µl)

2

(
σ2
l ⊙ϵ

)2]
= h (µl) + h′ (µl)σ

2
l E [ϵ] +

h′′ (µl)

2
E
[(
σ2
l ⊙ ϵl

)2]
= h (µl) +

h′′ (µl)

2

(
σ2
l

)2
(15)

Algorithm 1 The first moment propagation in l-th via Repa-
rameterized Importcance Sampling

1: Variational posterior ql(wl) parameters θl =
(
µl, σ

2
l

)
,

the first moment of last layer z̃l−1.
2: Approximate the optimal proposal distribution

rl(wl|
∗
µl,

∗
σ2
l ) :

• Using Eq. (15) in Eq. (11) to calculate the mean
∗
µl by set h(wl) = |f(wl)|wl

• UsingEq. (15) in Eq. (12) to calculate the variance
∗
σ2
l by set h(wl) = (|f(wl)|wl)

2

3: for m = 1 to M do
4: Sample ϵm ∼ N

( ∗
µl−µl

σ2
l

,
∗
σ2
l

σ2
l

)
.

5: Let wm = µl + σ2
l ⊙ ϵm

6: Calculate γm
l =

q(wm
l |θl)

rl(wm
l )

≈ 1
|f(wl)|

7: Calculate δ (wm
l z̃l−1)

8: end for
9: Calculate z̃l ≈ 1

M

∑M
m=1 γ

m
l δ (wm

l z̃l−1)

Note that even though this uses quadratic term of standard
deviation, it is a squared term of variance. Combining Eqs.
(11) (12) (15) provides closed-form approximations for the
mean ∗

u and ∗
σ2. These approximations depend on the func-

tion h(wl), which can be defined as |f (wl)|, |f (wl)|wl or
|f (wl)|w2

l , respectively.

4.2. Defining Distribution on Exogenous Randomness

Now that we have constructed an approximation of the opti-
mal proposal distribution, rl

(
wl|

∗
u,

∗
σ2

)
, with high correla-

tion to the variational parameters ul, σ
2
l , we can employ it

in Eq. (12) to obtain a lower-variance estimator of the first
moment.

z̃l ≈
1

M

M∑
m=1

q (wm
l |θl)

r∗l (w
m
l )

δ (wm
l z̃l−1), w

m
l ∼ N

( ∗
µ,

∗
σ2

)
(16)

The weights wl for the l-th layer are generated from the pro-
posal distribution. These weights are subsequently utilized
in estimating the first moment through the computation of
Monte Carlo (MC) averages. We define the sampling pro-
cedure as a transformation of the random variable ϵ. Tthe
reparameterization trick produces the weights wl by em-
ploying a differentiable mapping function t:

wl =
∗
µ+

∗
σ2 ⊙ ϵ, ϵ ∼ N (0, I)

However, we have observed that the likelihood gradients
of variational parameters have a complex derivation, which
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can be expressed as:

Monte Carlo sampling
∂wl

∂µl
= I, ∂wl

∂σl
= ϵ

↓
Importance sampling

∂wl

∂µl
= ∂

∗
µ

∂µl
+ ∂

∗
σ2

∂µl
ϵ, ∂wl

∂σl
= ∂

∗
µ

∂σl
+ ∂

∗
σ2

∂σl
ϵ

Therefore, we introduce a Reparameterized Importance
Sampling (RIS) method, which allows us to apply impor-
tance sampling in conjunction with the reparameterization
trick. By specifying a particular distribution for ϵ, the
weights sampled from the proposal distribution can be repre-
sented as a transformation of ϵ combined with the variational
parameters.

Proposition 2. Let w be a random variable following a
distribution denoted as r(w| ∗u, ∗

σ2). Now, consider another
distribution with mean u and variance σ2. In the context of
this second distribution, we can analyze the properties of
the random variable w:

w = u+ σ2 ⊙ ϵ, ϵ ∼ N
( ∗
µ− µ

σ2
,

∗
σ2

σ2

)
(17)

Proof.
E
[
µ+ σ2 ⊙ ϵ

]
= µ+ σ2E (ϵ)

= µ+ σ2
∗
µ− µ

σ2

=
∗
µ = Er(w) [w]

var
[
µ+ σ2 ⊙ ϵ

]
= var

[
σ2 ⊙ ϵ

]
= E

[(
σ2 ⊙ ϵ

)2]− (
E
[
σ2 ⊙ ϵ

])2
= σ4

( ∗
µ− µ

σ2

)2

+ σ4(
∗
σ2

σ2
)2 − (

∗
µ− µ)

2

=
∗
σ2 = varr(w) [w]

To compute the likelihood gradient with respect to the varia-
tional parameters, we employ Proposition 1 to address the
challenge of sampling weights directly from the proposal
distribution. Specifically, we simplify the distribution for
ϵ to be parameter-free, enabling us to efficiently calculate
gradients.

Importance sampling
∂wl

∂µl
= ∂

∗
µ

∂µl
+ ∂

∗
σ2

∂µl
ϵ, ∂wl

∂σl
= ∂

∗
µ

∂σl
+ ∂

∗
σ2

∂σl
ϵ

,
↓

RIS
∂wl

∂ul
= I, ∂wl

∂σl
= ϵ

Algorithm 1 entails a detailed description of how the first
moment propagates across each layer.

5. Related Works
Approximations to the posterior of Neural Networks can
be traced back to David MacKay’s 1992 work (MacKay,
1992). In this groundbreaking study, MacKay introduced
the concept of Occam’s Razor in Bayesian modeling, which
refers to that simpler models are more likely to be correct.
However, at that time, the approach relied on the relatively
crude Laplace approximation, suitable only for small and
shallow neural networks. In the early days of Bayesian
neural networks, there were two primary approximation
methods. On the one hand, Hinton and van Camp introduced
the Variational Bayes (VB) approach for posterior inference
(Hinton & van Camp), aiming to minimize the description
length. On the other hand, Neal developed efficient gradient-
based Monte Carlo techniques, specifically Hamiltonian
Monte Carlo(Neal, 1992).

After more than a decade of relative silence in the field
of Bayesian Neural Networks (BNNs), Graves revitalized
Variational Bayes (VB) by introducing Monte Carlo varia-
tional inference (MCVI) (Graves, 2011) as a practical and
scalable method for optimizing the VB objective function.
This development marked a resurgence in modern BNN
research. However, despite advancements in more accu-
rate and efficient inference techniques, some scenarios still
witness BNNs trained with Mean-field variational infer-
ence (MFVI) yielding posterior distributions that underper-
form a baseline trained with standard stochastic gradient de-
scent. Additionally, MFVI struggles with scalability when
applied to large-scale neural networks. To address these
challenges, researchers have explored various methods. No-
tably, the "Reparameterization trick" proposed by Kingma
and Welling has gained popularity for efficiently reducing
gradient estimator variance (Kingma et al., 2015). Blun-
dell et al. introduced the "Bayes by Backprop" method
using Mean-field variational inference (MFVI) to approxi-
mate BNN posteriors, incorporating the "Reparameteriza-
tion trick" for weight sampling (Blundell et al., 2015). Wu et
al. introduced "Deterministic Variational Inference" (DVI),
a deterministic approximation to variational inference in
neural networks. DVI eliminates Monte Carlo sampling-
induced stochasticity by propagating moments of the dis-
tribution for activations, thereby stabilizing BNN training
(Wu et al., 2019). Zhang et al. tackled the randomness
associated with Monte Carlo sampling by training BNNs
with an Adversarial Distribution. An intuitive strategy to
improve BNN initialization involves specifying "informed
weight priors" extracted from pre-trained deterministic neu-
ral networks with equivalent architecture (Rossi et al., 2019;
Krishnan et al., 2020; Wu et al., 2019). Alternatively, the is-
sues mentioned can also be mitigated by artificially reducing
posterior uncertainty through the use of "cold posteriors"
(Wilson & Izmailov, 2020; Wenzel et al., 2020; Zhang et al.,
2018; Bae et al., 2018).
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Markov chain Monte Carlo (MCMC) approaches using
stochastic gradient methods constitute a diverse and effec-
tive family of approximation methods for Bayesian neural
networks. However, their development has been hindered
by computational inefficiency. These approaches rely on
unbiased log-likelihood values to estimate approximate pos-
terior parameters. A seminal contribution in this domain
was the introduction of Stochastic Gradient Langevin Dy-
namics (SGLD) by Welling, known for its simplicity and
efficiency in implementation (Welling & Teh, 2011). Recent
advancements have focused on enhancing efficiency in cases
of correlated posteriors, achieved through the estimation of
the Fisher Information Matrix (Ahn et al., 2012). Chen et
al. extended Hamiltonian Monte Carlo (HMC) to accom-
modate the stochastic gradient scenario, further broadening
the applicability of these methods (Chen et al., 2014). Ma
et al. and Gong et al. have provided comprehensive char-
acterizations of Stochastic Gradient Markov Chain Monte
Carlo (SGMCMC) approaches, offering valuable insights
into their workings (Ma et al., 2015; Gong et al., 2018).

Furthermore, there are a few methods that aim to provide "in-
expensive" approximations to the Bayesian posterior. While
these methods may lack a rigorous theoretical foundation,
they are straightforward to implement. For instance, Gal
and Ghahramani proposed that dropout can be seen as an
approximate equivalent to variational inference, offering a
computationally efficient approach to Bayesian modeling
(Gal & Ghahramani, 2016). Similarly, Bootstrap posteri-
ors have been introduced as a versatile, dependable, and
accurate technique for posterior inference, drawing on prin-
ciples from predictive statistics (Harris, 1989; Fushiki et al.,
2005; Lakshminarayanan et al., 2017). It’s worth noting that
training an ensemble of bootstrap posteriors typically incurs
a higher computational cost compared to training a single
model.

6. Experimental Results
We validate the effectiveness of the proposed approximate
inference method regarding three aspects, including conver-
gence improvement, model performance enhancement, and
out-of-distribution data uncertainty estimation. Our experi-
ments on real-world applications include LeNet architecture
(LeCun et al., 1998) for MNIST digit dataset, ResNet20,
ResNet56 architecture(He et al., 2016), on CIFAR-10 and
CIFAR-100 datasets (Krizhevsky et al., 2009). We imple-
ment the above Bayesian architecture and train them with
RIS and with standard Monte Carlo sampling (we consider
vanilla MFVI with the local reparameterization trick and
’cold posterior’), under the PyTorch framework, on a Titan
RTX 28G device, and using the same random seeds.

6.1. Comparison with Baseline MFVI

6.1.1. OPTIMIZER CONVERGENCE AND STABILITY

We compare the optimization traces for the Bayesian Neural
Network trained with RIS and Monte Carlo sampling respec-
tively. At each iteration, we estimate the true accuracies and
losses value using 10 Monte Carlo samples. The accuracies
represent how well the model recognizes the validation set
during training. The losses represent the Kullback-Leibler
(KL) divergence between the variational distribution and the
posterior. We optimize the two loss objectives using adam
(Kingma & Ba, 2014) for same step size.
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Figure 2. Optimization trace of applying MFVI to approximate
the posterior of the neural network. We run the standard Monte
Carlo sampling (green line) and the RIS (light blue line) with 10
samples.

Figure 2 compares optimization traces for BNNs trained
with RIS and standard Monte Carlo Sampling. We can
observe that the RIS makes early progress and converge
quickly. We also find that at the same time point, RIS
improves accuracy by up to 35% and reduces loss by up to
45% compared to Monte Carlo sampling.
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Table 1. Comparison of classification accuracies for different models trained with the proposed method and Monte Carlo samplings
sampling on various data sets.

Dataset Bayesian Model
Sampling Method

Monte Carlo RIS

Cifar-10
ResNet20 83.56 ± 0.45 87.37 ± 0.26
ResNet56 84.16 ± 0.38 88.25 ± 0.14

Cifar-100
ResNet20 52.47 ± 1.46 55.62 ± 0.82
ResNet56 54.62 ± 1.05 58.75 ± 0.72

Mnist LeNet 99.24 ± 0.12 99.56 ± 0.03

6.1.2. COMBINATION ON PREDICTIVE PERFORMANCE

We demonstrate that the proposed approximate inference
method improves the model’s performance by comparing
the classification accuracies. To obtain predictive distri-
butions of various models, we sample from the posterior
distribution of the weights and perform stochastic forward
passes during the inference phase. We compare these re-
sults against models that utilize the Monte Carlo sampling
method. Table 1 presents classification accuracies for vari-
ous models. BNNs trained using our proposed approximate
inference methos achieve better predictive accuracies as
compared to the MFVI with Monte Carlo sampling. Figure
3(a) displays the accuracy rates for Bayesian ResNet-20
models trained on the CIFAR-10 dataset. We can easily
notice that the curve of accuracy rates for the our approxi-
mation method exhibits a smoother trend compared to the
MFVI with Monte Carlo sampling. This confirms that our
proposed method helps to stabilize BNNs training and re-
duce variance due to Monte Carlo sampling. Following
(Zhang et al., 2022), Figure 3(b) displays a comparison
of the accuracies of 1000 models sampled from Bayesian
neural networks.

Table 2. Comparison of classification accuracy of ResNet-20
trained using the proposed method and trained using Monte Carlo
sampling at different sampling times. The experiment is con-
structed on the CIFAR-10 dataset.

Dataset model MC samples method Accuracy

CIFAR-10 ResNet-20 10 MFVI (tempered) 82.74 ± 0.52

CIFAR-10 ResNet-20 10 RIS 87.07 ± 0.27

CIFAR-10 ResNet-20 100 MFVI (tempered) 85.38 ± 0.35

CIFAR-10 ResNet-20 100 RIS 87.74 ± 0.23

Additionally, we compared the predictive performance with
the MFVI method at different sampling times. The number
of samplings is 10 and 100, respectively. The results are
summarized in table 2 We find that the performance of
our method is insensitive to the number of Monte Carlo
samples. On the other hand, although the accuracy of the
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Figure 3. (a) Accuracy rates of Bayesian ResNet20 trained with
using RIS and with Monte Carlo samplings sampling during a
100-epoch training.(b) Accuracy comparison of 1000 models sam-
pled from Bayesian neural networks using RIS and Monte Carlo
sampling.

baseline method improves with an increasing number of
samples, there remains a gap between its performance and
our method.
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Table 3. Comparison of classification accuracies for ResNet-20
trained with the proposed method and other SOTA methods on the
CIFAR-10 dataset.

Dataset model Method Accuracy

CIFAR-10 ResNet-20 MFVI 22.46 ± 0.70

CIFAR-10 ResNet-20 MFVI(tempered)) 83.56 ± 0.45

CIFAR-10 ResNet-20 SWAG 86.80 ± 0.10

CIFAR-10 ResNet-20 VOGN 85.36 ± 0.25

CIFAR-10 ResNet-20 GLM 84.35 ± 0.18

CIFAR-10 ResNet-20 Adversarial Sampling 86.33 ± 0.45

CIFAR-10 ResNet-20 RIS 87.37 ± 0.26

CIFAR-10 ResNet-20 HMC 90.02 ± 0.26

6.2. Compare with SOTA BNNs

We compare the results using our approximation with that of
variants of MFVI and other previous SOTA methods. These
methods include SWAG (Maddox et al., 2019), VOGN (Os-
awa et al., 2019), GLM (Immer et al., 2021) and Adversarial
sampling (Zhang et al., 2022). All these method do not use
data augmentation and all models in the following table use
a ResNet-20 architecture. We find that our method attains
a better predictive accuracy than these methods, except for
the HMC method. The results are summarized in table 3
Although the HMC method currently provides the best ap-
proximation of the Bayesian posterior, it consumes more
computational resources.

6.3. Uncertainty Estimation to Out-of-Distribution Data

Uncertainty estimation is crucial ability for the Bayesian
Neural Networks. The total uncertainty of a model at an in-
put point x∗ is typically measured by the predictive entropy.

H (y∗|x∗,W) =
∑
y

−p (y∗|x∗,W) log p (y∗|x∗,W)

It can be broken down into two main types of uncertainty: on
the one hand, Aleatoric uncertainty captures inherent noise
in the observations, which would not be further reduced
even if additional data were to be collected.

Hale (y
∗|x∗,W) = Ep(W|D) [H (y∗|x∗,W)]

Epistemic uncertainty, on the other hand, refers to the ig-
norance of model parameters regarding the collected data.
This type of uncertainty can be reduced with more data and
is often known as model uncertainty.

Hepi (y
∗|x∗,W) = H (y∗|x∗,W)

− Ep(W|D) [H (y∗|x∗,W)]

We evaluate the uncertainty estimation ability of Bayesian
neural networks trained using our proposed approximate

inference method to identify out-of-distribution data. Out-
of-distribution samples are data points that fall far off from
the training data distribution. We use CIFAR-10 as the in-
distribution samples to train a Bayesian ResNet-20 model
and use other images in CIFAR-100 as the out-of distri-
bution samples which were not used during the training
phase. Figure 4 shows the density histograms of aleatoric
and epistemic uncertainty estimates. It’s clear that the out-
of-distribution samples have higher uncertainty values than
the in-distribution samples.
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Figure 4. Density histograms obtained from in- and out-of-
distribution samples.

7. Conclusions
In this paper, we have optimized the current Mean-Field
Variational Inference (MFVI) method to efficiently obtain
an approximate posterior for neural networks. To achieve
this, we have proposed a novel Reparameterized Importance
Sampling technique for estimating the first moment of each
activation layer in neural networks. Specifically, we have
devised a cost-effective approximation expression for the
optimal proposal distribution and represented the sampling
procedure from the proposal distribution as a transformation
of exogenous randomness combined with the variational
parameters. Our proposed method not only enhances con-
vergence and stability but also significantly improves the
performance of Bayesian Neural Networks (BNNs). Fur-
thermore, our experiments have shown that the uncertainty
estimations derived from models trained using the proposed
method are highly reliable for identifying out-of-distribution
data.

This method described in this work is specifically designed
for Gaussian approximating families used in mean-field vari-
ational inference. However, we still incorporate the ’cold
posterior’ strategy to prevent convergence to the prior dur-
ing the training of BNNs. Looking ahead, we are aiming to
tailor our technique to accommodate diverse initializations
of the prior. Our ultimate goal is to bolster the utilization
of the mean-field variational inference method within the
realm of neural networks. We aspire to make significant con-
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tributions to the ongoing research in uncertainty modeling
and posterior inference.
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A. Applicability to BNNs with Non-deterministic Bias
We describe the activation action of the l-th layer using an unbiased case. Theoretically, variational inference uses fully
factorized Gaussian approximation, thus the biases will naturally be part of the weights and are independent of each other.
Here, we discuss the case of using uncertain bias.

In a feed-forward BNN, the activation action of l-th layer that maps zl−1 to zl can be expressed as follows:

zl = δ(wlzl−1 + bl), wl ∼ q(wl|θwl
), bl ∼ q(bl|θbl)

where wl and bl represents the weights and bias of the l-th layer, which are drawn from the variational distribution q(wl|θwl
)

and q(bl|θbl) respectively.

Using importance sampling:

z̃l =
1

M

M∑
m=1

q (wm
l |θwl) q (b

m
l |θbl)

rl (wm
l ) rl (bml )

δ (wm
l z̃l−1 + bml ), wm

l ∼ rwl (wl) , b
m
l ∼ rbl (bl)

We set Wl = [wl, bl] , Zl−1 = [zl−1, I], where [, ] represents the concatenation operation on the channels (), then z̃l can be
expressed as:

z̃l =
1

M

M∑
m=1

q (Wm
l |θl)

rl (Wm
l )

δ
(
Wm

l Z̃l−1

)
,Wm

l ∼ rl (Wl)

Now, we can proceed to the next calculation, which shows that the proposed method is not limited by the bias.

B. Comparison under Using Bias
We demonstrate that the proposed approximate inference method improves the performance model with bias by comparing
the classification accuracies. Table 4 presents classification accuracies for various models. We can find that BNNs trained
using our proposed approximate inference methodology consistently outperform these using the MFVI with Monte Carlo
sampling.

Table 4. Comparison of classification accuracies for different models with bias trained with the proposed method and Monte Carlo
samplings sampling on various data sets.

Dataset Bayesian Model
Sampling Method

Monte Carlo RIS

Cifar-10
ResNet20 83.94 ± 0.39 88.05 ± 0.24
ResNet56 85.02 ± 0.32 88.95 ± 0.11

Cifar-100
ResNet20 53.69 ± 1.46 56.12 ± 0.75
ResNet56 55.02 ± 0.95 59.92 ± 0.71

Mnist LeNet 99.25 ± 0.14 99.66 ± 0.04
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