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Abstract
We provide a simple and flexible framework for
designing differentially private algorithms to find
approximate stationary points of non-convex loss
functions. Our framework is based on using a pri-
vate approximate risk minimizer to “warm start”
another private algorithm for finding stationary
points. We use this framework to obtain improved,
and sometimes optimal, rates for several classes
of non-convex loss functions. First, we obtain
improved rates for finding stationary points of
smooth non-convex empirical loss functions. Sec-
ond, we specialize to quasar-convex functions,
which generalize star-convex functions and arise
in learning dynamical systems and training some
neural nets. We achieve the optimal rate for this
class. Third, we give an optimal algorithm for
finding stationary points of functions satisfying
the Kurdyka-Łojasiewicz (KL) condition. For ex-
ample, over-parameterized neural networks often
satisfy this condition. Fourth, we provide new
state-of-the-art rates for stationary points of non-
convex population loss functions. Fifth, we obtain
improved rates for non-convex generalized linear
models. A modification of our algorithm achieves
nearly the same rates for second-order stationary
points of functions with Lipschitz Hessian, im-
proving over the previous state-of-the-art for each
of the above problems.

1. Introduction
The increasing prevalence of machine learning (ML) sys-
tems, such as large language models (LLMs), in societal
contexts has led to growing concerns about the privacy of

1University of Wisconsin-Madison, Wisconsin Institute of Dis-
covery, Madison, WI, USA 2Northeastern University, Khoury Col-
lege of Computer Sciences, Boston, MA, USA. Correspondence
to: Andrew Lowy <alowy@wisc.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

these models. Extensive research has demonstrated that ML
models can leak the training data of individuals, violating
their privacy (Shokri et al., 2017; Carlini et al., 2021). For
instance, individual training examples were extracted from
GPT-2 using only black-box queries (Carlini et al., 2021).
Differential privacy (DP) (Dwork et al., 2006) provides a
rigorous guarantee that training data cannot be leaked. In-
formally, it guarantees that an adversary cannot learn much
more about an individual piece of training data than they
could have learned had that piece never been collected.

Differentially private optimization has been studied exten-
sively over the last 10–15 years (Bassily et al., 2014; 2019;
Feldman et al., 2020; Asi et al., 2021; Lowy & Razaviyayn,
2023b). Despite this large body of work, certain funda-
mental and practically important problems remain open. In
particular, for minimizing non-convex functions, which is
ubiquitous in ML applications, we have a poor understand-
ing of the optimal rates achievable under DP.

In this work, we measure the performance of an algorithm
for optimizing a non-convex function g by its ability to find
an α-stationary point, meaning a point w such that

}∇gpwq} ď α.

We want to understand the smallest α achievable. There
are several reasons to study stationary points. First, find-
ing approximate global minima is intractable for general
non-convex functions (Murty & Kabadi, 1985), but find-
ing an approximate stationary point is tractable. Second,
there are many important non-convex problems for which
all stationary (or second-order stationary) points are global
minima (e.g. phase retrieval (Sun et al., 2018), matrix com-
pletion (Ge et al., 2016), and training certain classes of
neural networks (Liu et al., 2022)). Third, even for prob-
lems where it is tractable to find approximate global minima,
the stationarity gap may be a better measure of quality than
the excess risk (Nesterov, 2012; Allen-Zhu, 2018).

Stationary Points of Empirical Loss Functions. A fun-
damental open problem in DP optimization is determining
the sample complexity of finding stationary points of non-
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convex empirical loss functions

pFXpwq :“
1

n

n
ÿ

i“1

fpw, xiq,

where X “ px1, . . . , xnq denotes a fixed data set. For con-
vex loss functions, the minimax optimal complexity of DP
empirical risk minimization is pFXpwq ´ minw1 pFXpw1q “

Θ̃p
a

d lnp1{δq{εnq (Bun et al., 2014; Bassily et al., 2014;
Steinke & Ullman, 2016). Here d is the dimension of the pa-
rameter space and ε, δ are the privacy parameters. However,
the algorithm of Bassily et al. (2014) was suboptimal in
terms of finding DP stationary points. This gap was recently
closed by (Arora et al., 2023), who showed that the optimal
rate for stationary points of convex pFX is E}∇ pFXpwq} “

rΘp
a

d lnp1{δq{εnq. For non-convex pFX , the best known
rate prior to 2022 wasOpp

a

d lnp1{δq{εnq1{2q (Zhang et al.,
2017; Wang et al., 2017; 2019). In the last two years,
a pair of papers made progress and obtained improved
rates of rOpp

a

d lnp1{δq{εnq2{3q (Arora et al., 2023; Tran
& Cutkosky, 2022). Arora et al. (2023) gave a detailed dis-
cussion of the challenges of further improving beyond the
rOpp

a

d lnp1{δq{εnq2{3q rate. Thus, a natural question is:

Question 1. Can we improve the
rOpp

a

d lnp1{δq{εnq2{3q rate for DP stationary points of
smooth non-convex empirical loss functions?

Contribution 1. We answer Question 1 affirmatively, giving
a novel DP algorithm that finds a rOpp

a

d lnp1{δq{εnqd1{6q-
stationary point. This rate improves over the prior state-of-
the-art whenever d ă nε.

Contribution 2. We provide algorithms that achieve the
optimal rate rOpp

a

d lnp1{δq{εnqq for two subclasses of
non-convex loss functions: quasar-convex functions (Hin-
der et al., 2020), which generalize star-convex func-
tions (Nesterov & Polyak, 2006), and Kurdyka-Łojasiewicz
(KL) functions (Kurdyka, 1998), which generalize Polyak-
Łojasiewicz (PL) functions (Polyak, 1963). Quasar-convex
functions arise in learning dynamical systems and train-
ing recurrent neural nets (Hardt et al., 2018; Hinder et al.,
2020). Also, the loss functions of some neural networks
may be quasar-convex in large neighborhoods of the mini-
mizers (Kleinberg et al., 2018; Zhou et al., 2019). On the
other hand, the KL condition is satisfied by overparameter-
ized neural networks in many scenarios (Bassily et al., 2018;
Liu et al., 2020; Scaman et al., 2022). This is the first time
that the optimal rate has been achieved without assuming
convexity. To the best of our knowledge, no other DP algo-
rithm in the literature would be able to get the optimal rate
for either of these function classes.

Second-Order Stationary Points. Recently, Wang & Xu
(2021); Gao & Wright (2023); Liu et al. (2023) provided

DP algorithms for finding α-second-order stationary points
(SOSP) of functions g with ρ-Lipschitz Hessian. A point w
is an α-SOSP of g if w is an α-FOSP and

∇2gpwq ľ ´
?
αρ Id.

The state-of-the-art rate for α-SOSPs of empirical
loss functions is due to Liu et al. (2023): α “
rOpp

a

d lnp1{δq{εnq2{3q, which matches the state-of-the-art
rate for FOSPs (Arora et al., 2023; Tran & Cutkosky, 2022).

Contribution 3. Our framework readily extends to SOSPs
and achieves an improved rOpp

a

d lnp1{δq{εnqd1{6q second-
order-stationarity guarantee.

Stationary Points of Population Loss Functions. Mov-
ing beyond empirical loss functions, we also consider find-
ing stationary points of population loss functions

F pwq :“ Ex„P rfpw, xqs,

where P is some unknown data distribution and we are given
n i.i.d. samples X „ Pn. The prior state-of-the-art rate for
finding SOSPs of F is rOp1{n1{3 ` p

?
d{εnq3{7q (Liu et al.,

2023).

Contribution 4. We give an algorithm that improves over
the state-of-the-art rate for SOSPs of the population loss in
the regime d ă nε. When d “ Θp1q “ ε, our algorithm is
optimal and matches the non-private lower bound Ωp1{

?
nq.

We also specialize to (non-convex) generalized linear mod-
els (GLMs), which have been studied privately in (Song
et al., 2021; Bassily et al., 2021a; Arora et al., 2022; 2023;
Shen et al., 2023). GLMs arise, for instance, in robust regres-
sion (Amid et al., 2019) or when fine-tuning the last layers
of a neural network. Thus, this problem has applications in
privately fine-tuning LLMs (Yu et al., 2021; Li et al., 2021).
Denoting the rank of the design matrixX by r ď minpd, nq,
the previous state-of-the-art rate for finding FOSPs of GLMs
was Op1{

?
n`mintp

?
r{εnq2{3, 1{pεnq2{5uq (Arora et al.,

2023).

Contribution 5. We provide improved rates of finding
first- and second-order stationary points of the popula-
tion loss of GLMs. Our algorithm finds a rOp1{

?
n `

mintp
?
r{εnqr1{6, 1{pεnq2{7u-stationary point, which is

better than Arora et al. (2023) when r ă nε.

A summary of our main results is given in Table 1.

1.1. Our Approach

Our algorithmic approach is inspired by Nesterov, who pro-
posed the following method for finding stationary points in
non-private convex optimization: first run T steps of accel-
erated gradient descent (AGD) to obtain w0, and then run T
steps of gradient descent (GD) initialized at w0 (Nesterov,
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Loss Function Previous SOTA New SOTA Lower Bound

Non-Convex Empirical
       

Quasar-Convex 
Empirical

KL Empirical

Non-Convex Population         

GLM Population N/A

( d
εn )

2/3

( d
εn )

2/3
∧ d

εn
d1/6(Liu et al., 2023) (Cor. 4.4) (Arora et al., 2023)

( d
εn )

2/3

( d
εn )

2/3

(Cor. 5.3 & 
Remark 5.4)

(Cor. 6.3 & 
Remark 6.4)

(Arora et al., 2023)

(Lemma 6.5)

1
n1/3 + ( d

εn )
3/7

(Liu et al., 2023) ( ζ
n )

1/3
+ ( ζ d

εn )
3/7 (Cor. 7.1) 1

n1/2 + d
εn

(Arora et al., 
2023)

1
n1/2 + ( r

εn )
2/3

∧ 1
(εn)2/5 =: α α ∧ 1

n1/2 + ( r
εn

r1/6 ∧ 1
(εn)3/7 )

(Arora et al., 2023) (FOSP) (Cor. 8.2 & Remark 8.3)

d
εn

d
εn

d
εn

d
εn

d
εn

(Liu et al., 2023)

(Liu et al., 2023)

(Optimal)

(Optimal)

ζ ≤ 1for
defined in caption

Figure 1. Summary of results for second-order stationary points (SOSP). All bounds should be read as minp1, ...q. SOTA = state-of-the-art.

ζ :“ 1 ^

´

d
εn

`

b

d
n

¯

. r :“ rankpXq. We omit logarithms, Lipschitz and smoothness paramaters. The GLM algorithm of (Arora et al.,
2023) only finds FOSP, not SOSP.

2012). Nesterov’s approach provided improved stationary
guarantees for convex loss functions, compared to running
either AGD or GD alone.

We generalize and extend Nesterov’s approach to private
non-convex optimization. We first observe that there is noth-
ing special about AGD or GD that makes his approach work.
As we will see, one can obtain improved (DP) stationar-
ity guarantees by running algorithm B after algorithm A,
provided that: (a) A moves us in the direction of a global
minimizer, and (b) the stationarity guarantee of B benefits
from a small initial suboptimality gap. Intuitively, the algo-
rithm A functions as a “warm start” that gets us a bit closer
to a global minimizer, which allows B to converge faster.

1.2. Roadmap

Section 2 contains relevant definitions, notations, and as-
sumptions. In Section 3, we describe our general algorith-
mic framework and provide privacy and stationarity guar-
antees. The remaining sections contain applications of our
algorithmic framework to non-convex empirical losses (Sec-
tion 4), quasar-convex losses (Section 5), KL losses (Sec-
tion 6), population losses (Section 7), and GLMs (Section 8).

2. Preliminaries
We consider loss functions f : Rd ˆ X Ñ R, where X
is a data universe. For a data set X P Xn, let pFXpwq :“
1
n

řn
i“1 fpw, xiq denote the empirical loss function. Let

F pwq :“ Ex„P rfpw, xqs denote the population loss func-
tion with respect to some unknown data distribution P .

Assumptions and Notation.

Definition 2.1 (Lipschitz continuity). Function g : Rd Ñ R

is L-Lipschitz if |gpwq ´ gpw1q| ď L}w ´ w1}2 for all
w,w1 P Rd.

Definition 2.2 (Smoothness). Function g : Rd Ñ R is β-
smooth if g is differentiable and has β-Lipschitz gradient:
}∇gpwq ´ ∇gpw1q}2 ď β}w ´ w1}2.

We assume the following throughout:

Assumption 2.3. 1. fp¨, xq is L-Lipschitz for all x P X .

2. fp¨, xq is β-smooth for all x P X .

3. pF˚
X :“ infw pFXpwq ą ´8 for empirical loss opti-

mization, or F˚ :“ infw F pwq ą ´8 for population.

Definition 2.4 (Stationary Points). Let α ě 0. We say w
is an α-first-order-stationary point (FOSP) of function g
if }∇gpwq} ď α. If the Hessian ∇2g is ρ-Lipschitz, then
w is an α-second-order-stationary point (SOSP) of g if
}∇gpwq} ď α and ∇2gpwq ľ ´

?
ρα Id.

For functions a “ apθq and b “ bpϕq of input parameter
vectors θ and ϕ, we write a À b if there is an absolute
constant C ą 0 such that a ď Cb for all values of input
parameter vectors θ and ϕ. We use Õ to hide logarithmic
factors. Denote a^ b “ minpa, bq.

Differential Privacy.
Definition 2.5 (Differential Privacy (Dwork et al., 2006)).
Let ε ě 0, δ P r0, 1q. A randomized algorithm A : Xn Ñ

W is pε, δq-differentially private (DP) if for all pairs of data
sets X,X 1 P Xn differing in one sample and all measurable
subsets S Ď W , we have

PpApXq P Sq ď eεPpApX 1q P Sq ` δ.

An important fact about DP is that it composes nicely:
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Algorithm 1 DP-SPIDER (Arora et al., 2023)

Input: Data X P Xn, loss function fpw, xq, pε, δq,
initialization w0, stepsize η, iteration number T , phase
length q, noise variances σ2

1 , σ
2
2 , σ̂

2
2 , batch sizes b1, b2.

for t “ 0, . . . , T ´ 1 do
if q|t then

Sample batch St of size b1
Sample gt „ N p0, σ2

1Idq

∇t “ 1
b1

ř

xPSt
∇fpwt, xq ` gt

else
Sample batch St of size b2
Sample ht „ N p0,mintσ2

2}wt ´ wt´1}2, σ̂2
2
uIdq

∆t “ 1
b2

ř

xPSt
r∇fpwt, xq ´ ∇fpwt´1, xqs ` ht

∇t “ ∇t´1 ` ∆t

end if
wt`1 “ wt ´ η∇t

end for
Return: ŵ „ Unifpw1, . . . , wT q.

Lemma 2.6 (Basic Composition). If A is pε1, δ1q-DP and
B is pε2, δ2q-DP, then B ˝ A is pε1 ` ε2, δ1 ` δ2q-DP.

3. Our Warm-Start Algorithmic Framework
For ease of presentation, we will first present a concrete in-
stantiation of our algorithmic framework for ERM, built
upon the DP-SPIDER algorithm of Arora et al. (2023),
which is described in Algorithm 1.

For initialization w0 P Rd, denote the suboptimality gap by

∆̂w0
:“ pFXpw0q ´ pF˚

X .

We recall the guarantees of DP-SPIDER below:

Lemma 3.1. (Arora et al., 2023) There exist algorithmic
parameters such that Algorithm 1 is pε{2, δ{2q-DP and re-
turns ŵ satisfying

E}∇ pFXpŵq} À

¨

˝

b

∆̂w0Lβ
a

d lnp1{δq

εn

˛

‚

2{3

(1)

`
L

a

d lnp1{δq

εn
.

Typically, the first term on the RHS of (1) is dominant.

Our algorithm is based on a simple observation: the sta-
tionarity guarantee in Lemma 3.1 depends on the initial
suboptimality gap ∆̂w0

. Therefore, if we can privately find
a good “warm start” point w0 such that pFXpw0q ´ pF˚

X is
small with high probability, then we can run DP-SPIDER
initialized at w0 to improve over the Opp

?
d{εnq2{3q guar-

antee of DP-SPIDER. More generally, we can apply any

Algorithm 2 Warm-Start Meta-Algorithm for ERM

Input: Data X P Xn, loss function fpw, xq, privacy
parameters pε, δq, warm-start DP-ERM algorithm A, DP-
ERM stationary point finder B.
Run pε{2, δ{2q-DP A on pFXp¨q to obtain w0.
Run B on pFXp¨q with initialization w0 and privacy pa-
rameters pε{2, δ{2q to obtain wpriv.
Return: wpriv.

DP stationary point finder B with initialization w0 after
warm starting. Pseudocode for our general meta-algorithm
is given in Algorithm 2.

We have the following guarantee for Algorithm 2 instanti-
ated with B “ Algorithm 1.

Theorem 3.2 (First-Order Stationary Points for ERM:
Meta-Algorithm). Let ζ ď

?
d{εn. Suppose A is

pε{2, δ{2q-DP and pFXpApXqq ´ pF˚
X ď ψ with probabil-

ity ě 1 ´ ζ. Then, Algorithm 2 with B as DP-SPIDER is
pε, δq-DP and returns wpriv with

E}∇ pFXpwprivq} À
L

a

d lnp1{δq

εn

` L1{3β1{3ψ1{3

˜

a

d lnp1{δq

εn

¸2{3

.

Proof. Privacy follows from Lemma 2.6, since A and DP-
SPIDER are both pε{2, δ{2q-DP.

For the stationarity guarantee, let E be the high-probability
good event that pFXpApXqq ´ pF˚

X ď ψ. Then, by
Lemma 3.1, we have

E
”

}∇ pFXpwprivq}|E
ı

À

˜?
ψLβ

a

d lnp1{δq

εn

¸2{3

`
L

a

d lnp1{δq

εn
.

On the other hand, if E does not hold, then we still have
}∇ pFXpwprivq} ď L by Lipschitz continuity. Thus, taking
total expectation yields

E}∇ pFXpwprivq} ď E
”

}∇ pFXpwprivq}|E
ı

p1 ´ ζq ` Lζ

À

˜?
ψLβ

a

d lnp1{δq

εn

¸2{3

`
L

a

d lnp1{δq

εn
` Lζ.

Since ζ ď
?
d{εn, the result follows.
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Note that if we instantiate Algorithm 2 with any DP B, we
can obtain an algorithm that improves over the stationarity
guarantee of B as long as the stationarity guarantee of B
scales with the initial suboptimality gap ∆̂w0

. In partic-
ular, our framework allows for improved rates of finding
second-order stationarity points, by choosing B as the DP
SOSP finder of Liu et al. (2023) (which is built on DP-
SPIDER). We recall the privacy and utility guarantees of
this algorithm—which we refer to as DP-SPIDER-SOSP—
below in Lemma 3.3. For convenience, denote

α :“

¨

˝

b

∆̂w0
Lβ

a

d lnp1{δq

εn

˛

‚

2{3

`
L

a

d lnp1{δq

εn

`
β

n
?
ρ

¨

˝

b

∆̂w0Lβ
a

d lnp1{δq

εn

˛

‚

1{3

.

Lemma 3.3. (Liu et al., 2023) Assume that fp¨, xq has
ρ-Lipschitz Hessian ∇2fp¨, xq. Then, there is an pε{2, δ{2q-
DP Algorithm (DP-SPIDER-SOSP), that returns ŵ such
that with probability ě 1 ´ ζ, ŵ is a rOpαq-SOSP of pFX .

Next, we provide the guarantee of Algorithm 2 instantiated
with B as DP-SPIDER-SOSP:
Theorem 3.4 (Second-order Stationary Points for ERM:
Meta-Algorithm). Suppose A is pε{2, δ{2q-DP and
pFXpApXqq ´ pF˚

X ď ψ with probability ě 1 ´ ζ. Then,
Algorithm 2 with B as DP-SPIDER-SOSP is pε, δq-DP, and
with probability ě 1 ´ 2ζ has output wpriv satisfying

}∇ pFXpwprivq} ď α̃ :“ rO

˜

L
a

d lnp1{δq

εn

¸

` rO

¨

˝L1{3β1{3ψ1{3

˜

a

d lnp1{δq

εn

¸2{3
˛

‚

` rO

¨

˝

β7{6L1{6ψ1{6

n
?
ρ

˜

a

d lnp1{δq

εn

¸1{3
˛

‚,

and
∇2

pFXpwprivq ľ ´
a

ρα̃ Id.

The proof is similar to the proof of Theorem 3.2, and is
deferred to Appendix C.

With Algorithm 2, we have reduced the problem of finding
an approximate stationary point wpriv to finding an approxi-
mate excess risk minimizer w0. The next question is: What
should we choose as our warm-start algorithm A? In gen-
eral, one should choose A that achieves the smallest possible
risk for a given function class.1 In the following sections,

1In particular, if there exists a DP algorithm with optimal risk,
then this algorithm is the optimal choice of warm starter.

we consider different classes of non-convex functions and
instantiate Algorithm 2 with an appropriate warm-start A
for each class to obtain new state-of-the-art rates.

4. Improved Rates for Stationary Points of
Non-Convex Empirical Losses

In this section, we provide improved rates for finding (first-
order and second-order) stationary points of smooth non-
convex empirical loss functions. For the non-convex loss
functions satisfying Assumption 2.3, we propose using the
exponential mechanism (McSherry & Talwar, 2007) as our
warm-start algorithm A in Algorithm 2.

We now recall the exponential mechanism. Assume that
there is a compact set W Ă Rd containing an approximate
global minimizerw˚ such that pFXpw˚q´ pF˚

X ď LD d
εn , and

that }w´w1}2 ď D for allw,w1 P W . Note that there exists
a finite D d

εn -net for W , denoted ĂW “ tw1, . . . , wNu, with

N :“ |ĂW| ď
`

2Dεn
d

˘d
. In particular, miniPrNs

pFXpwiq ´

pF˚
X ď 2LD d

εn .

Definition 4.1 (Exponential Mechanism for ERM). Given
inputs pFX , ĂW , the exponential mechanism AE selects and
outputs some w P ĂW . The probability that a particular w is
selected is proportional to exp

´

´εn pFXpwq

4LD

¯

.

The following lemma specializes (Dwork & Roth, 2014,
Theorem 3.11) to our ERM setting:

Lemma 4.2. The exponential mechanism AE is ε-DP. More-
over, @t ą 0, we have with probability at least 1 ´ expp´tq
that

pFXpAEq ´ pFXpw˚q ď
4LD

εn
ln

˜

ˆ

2εn

d

˙d

` t

¸

` 2LD
d

εn
.

First-Order Stationary Points. For convenience, denote

γ :“
L

a

d lnp1{δq

εn
` rO

˜

L2{3β1{3D1{3

a

d lnp1{δq

εn
d1{6

¸

.

(2)

By substituting ε{2 for ε and then choosing t “

lnpεn{2
?
dq in Lemma 4.2, the ε{2-exponential mechanism

returns a point w0 such that

pFXpw0q ´ pF˚
X ď 20LD

d

εn
lnpεn{

?
dq “: ψ (3)

with probability at least 1 ´ 2
?
d

εn . By plugging the above ψ
into Theorem 3.2, we obtain:

Corollary 4.3 (First-Order Stationary Points for Non-Con-
vex ERM). There exist algorithmic parameters such that

5
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Algorithm 2 with A “ AE and B “DP-SPIDER is pε, δq-
DP and returns wpriv such that

E}∇ pFXpwprivq} À γ.

If L, β,D are constants, then Corollary 4.3 gives

E}∇ pFXpwprivq} “ rO

ˆ?
d lnp1{δq

εn d1{6

˙

. This bound is big-

ger than the lower bound by a factor of d1{6 and improves

over the previous state-of-the-art O
ˆ?

d lnp1{δq

εn

˙2{3

when-

ever d ă nε (Arora et al., 2023). If d ě nε, then one should
simply run DP-SPIDER. Combining these two algorithms
gives a new state-of-the-art bound for DP stationary points
of non-convex empirical loss functions:

E}∇ pFXpwprivq} À

a

d lnp1{δq

εn
d1{6 ^

˜

a

d lnp1{δq

εn

¸2{3

.

Challenges of Further Rate Improvements. We believe
that it is not possible for Algorithm 2 to achieve a better
rate than Corollary 4.3 by choosing A differently. The
exponential mechanism is optimal for non-convex Lips-
chitz empirical risk minimization (Ganesh et al., 2023). Al-
though the lower bound function in Ganesh et al. (2023) is
not β-smooth, we believe that one can smoothly approxi-
mate it (e.g. by piecewise polynomials) to extend the same
lower bound to smooth functions. For large enough β, their
lower bound extends to smooth losses by simple convolution
smoothing. Thus, a fundamentally different algorithm may
be needed to find Op

a

d lnp1{δq{εnq-stationary points for
general non-convex empirical losses.

Second-Order Stationary Points. If we assume that f
has Lipschitz continuous Hessian, then we can instantiate
Algorithm 2 with B as DP-SPIDER-SOSP to obtain:
Corollary 4.4 (Second-Order Stationary Points for Non–
Convex ERM). Let ζ ą 0. Suppose ∇2fp¨, xq is ρ-
Lipschitz @x. Then, Algorithm 2 with A “ AE and B “ DP-
SPIDER-SOSP is pε, δq-DP and with probability ě 1 ´ ζ,
returns a ω-SOSP, where

ω :“ γ ` rO

¨

˝

L1{3D1{6β7{6

?
ρn

˜

a

d lnp1{δq

εn

¸1{2

d1{12

˛

‚,

If L, β,D and ρ are constants, then Corollary 4.4 implies
that Algorithm 2 finds a rOpd1{6

a

d lnp1{δq{εnq-second-
order stationary point of pFX . This result improves over the
previous state-of-the-art (Liu et al., 2023) when d ă nε.

5. Optimal Rate for Quasar-Convex Losses
In this section, we specialize to quasar-convex loss func-
tions (Hardt et al., 2018; Hinder et al., 2020) and show, for

the first time, that it is possible to attain the optimal (up to
logs) rate rOp

a

d lnp1{δq{εnq for stationary points, without
assuming convexity.

Definition 5.1 (Quasar-convex functions). Let q P p0, 1s

and let w˚ be a minimizer of differentiable function g :
Rd Ñ R. g is q-quasar convex if for all w P Rd, we have

gpw˚q ě gpwq `
1

q
x∇gpwq, w˚ ´ wy.

Quasar-convex functions generalize star-convex func-
tions (Nesterov & Polyak, 2006), which are quasar-convex
functions with q “ 1. Smaller values of q ă 1 allow for a
greater degree of non-convexity.

Proposition 5.2 shows that returning a uniformly random
iterate of DP-SGD (Algorithm 3) attains essentially the same
(optimal) rate for quasar-convex ERM as for convex ERM:

Algorithm 3 DP-SGD for Quasar-Convex

1: Input: Loss function f , data X , iteration number T
noise variance σ2, step size η, batch size b.

2: Initialize w1 P Rd.
3: for t P t1, 2, ¨ ¨ ¨ , T u do
4: Sample batch St of size b from X
5: Sample ut „ N p0, σ2Idq

6: ∇t “ 1
b

ř

xPSt
∇fpwt, xq ` ut

7: wt`1 “ wt ´ η∇t

8: end for
9: Output: ŵ „ Unifpw1, . . . , wT q.

Proposition 5.2. Let pFX be q-quasar convex and }w1 ´

w˚} ď D for w˚ P argminw pFXpwq. Then, there are
algorithmic parameters such that Algorithm 3 is pε, δq-DP,
and returns ŵ such that

E pFXpŵq ´ pF˚
X À LD

a

d lnp1{δq

εnq
.

Further, @ ζ ą 0, there is an pε, δq-DP variation of Algo-
rithm 3 that returns w̃ s.t. with probability at least 1 ´ ζ,

pFXpw̃q ´ pF˚
X “ rO

˜

LD

a

d lnp1{δq

εnq

¸

.

See Appendix D for a proof. The same proof works for non-
smooth quasar-convex losses if we replace gradients by sub-
gradients in Algorithm 3. As a byproduct, our proof yields
a novel non-private optimization result: SGD achieves the
optimal Op1{

?
T q rate for Lipschitz non-smooth quasar-

convex stochastic optimization. To our knowledge, this re-
sult was only previously recorded for smooth losses (Gower
et al., 2021) or convex losses (Nesterov, 2013).

By combining Proposition 5.2 with Theorem 3.2, we obtain:

6



How to Make the Gradients Small Privately

Corollary 5.3 (Quasar-Convex ERM). Let pFX be q-quasar
convex and }w1 ´ w˚} ď D for some w1 P Rd, w˚ P

argminw pFXpwq. Then, there are algorithmic parameters
such that Algorithm 2 with A “ Algorithm 3 and B “ DP-
SPIDER is pε, δq-DP and returns wpriv such that

E}∇ pFXpwprivq} À L

a

d lnp1{δq

εn

` rO

˜

L2{3β1{3D1{3

a

d lnp1{δq

εnq

¸

.

If q is constant and βD À L, then this rate is optimal up
to a logarithmic factor, since it matches the convex (hence
quasar-convex) lower bound of Arora et al. (2023).
Remark 5.4. One can obtain a second-order stationary point
with essentially the same (near-optimal) rate by appealing
to Theorem 3.4 instead of Theorem 3.2.

6. Optimal Rates for KL* Empirical Losses
In this section, we derive optimal rates (up to logarithms)
for functions satisfying the Kurdyka-Łojasiewicz* (KL*)
condition (Kurdyka, 1998):

Definition 6.1. Let γ, k ą 0. Function g : Rd Ñ R satisfies
the pγ, kq-KL* condition on W Ă Rd if

gpwq ´ inf
w1PRd

gpw1q ď γk}∇gpwq}k,

for all w P W . If k “ 2 and γ “
a

1{2µ, say g satisfies the
µ-PL* condition on W .

The KL* (PL*) condition relaxes the KL (PL) condition, by
requiring it to only hold on a subset of Rd.

Near-optimal excess risk guarantees for the KL* class were
recently provided in (Menart et al., 2023):

Lemma 6.2. (Menart et al., 2023, Theorem 1) Assume pFX

satisfies the pγ, kq-KL* condition for some k P r1, 2s on a

centered ball Bp0, Dq of diameter D “
∆̂

1{k
0

γβ ` ∆̂
pk´1q{k
0 γ.

Then, there is an pε{2, δ{2q-DP algorithm with output w0

such that with probability at least 1 ´ ζ,

pFXpw0q ´ pF˚
X ď

rO

¨

˝

«

γL
a

d lnp1{δq

εn

c

1 `

´

1{∆̂0

¯p2´kq{k

γ2β

ffk
˛

‚

The KL* condition implies that any approximate station-
ary point is an approximate excess risk minimizer, but the
converse is false. The algorithm of Menart et al. (2023)
does not lead to (near-optimal) guarantees for stationary
points. However, using it as the warm-start algorithm A in
Algorithm 2 gives near-optimal rates for stationary points:

Corollary 6.3 (KL* ERM). Grant the assumptions in
Lemma 6.2. Then, Algorithm 2 with A “ the algorithm
in Lemma 6.2 and B “ DP-SPIDER is pε, δq-DP and re-
turns wpriv such that

E}∇ pFXpwprivq} À
L

a

d lnp1{δq

εn

` rO

˜

a

d lnp1{δq

εn

¸

k`2
3

`

Lk`1βγk
˘

1
3

˜

1 `
pγ

?
βqk{3

∆̂
2´k
6

0

¸

.

In particular, if pγ
?
βqk{3{∆̂

2´k
6

0 À 1 and
´

βγk

L2´k

¯1{pk´1q

À nε{
a

d lnp1{δq, then

E}∇ pFXpwprivq} “ rO

˜

L
a

d lnp1{δq

εn

¸

.

Proof. Algorithm 2 is pε, δq-DP by Theorem 3.2. Further,
combining Theorem 3.2 with Lemma 6.2 implies Corol-
lary 6.3: plug the right-hand-side of the risk bound in Corol-
lary 6.3 for ψ in Theorem 3.2.

As an example: If pFX is µ-PL* for β{µ À

pεn{
a

d lnp1{δqq, then our algorithm achieves
E}∇ pFXpwprivq} “ rOpL

a

d lnp1{δq{εnq.

Remark 6.4. If L, β, γ, ∆̂0 are constants, then we get the
same rate as Corollary 6.3 for second-order stationary points
by using Algorithm 2 with B as DP-SPIDER-SOSP instead
of DP-SPIDER.

We show next that Corollary 6.3 is optimal up to logarithms:

Lemma 6.5 (Lower bound for KL*). Let D,L, β, γ ą 0
and k P p1, 2s such that k “ 1 ` Ωp1q. For any pε, δq-DP
algorithm M, there exists a data set X and L-Lipschitz,
β-smooth fp¨, xq that is pγ, kq-KL over Bp0, Dq such that

E}∇ pFXpMpXqq} “ rΩ

˜

Lmin

#

1,

?
d

εn

+¸

.

In contrast to the excess risk setting of Lemma 6.2, larger
k does not allow for faster rates of stationary points.
Lemma 6.5 is a consequence of the KL* excess risk lower
bound (Menart et al., 2023, Corollary 1) and Definition 6.1.

7. Improved Rates for Stationary Points of
Non-Convex Population Loss

Suppose that we are given n i.i.d. samples from an un-
known distribution P and our goal is to find an α-second-
order stationary point of the population loss F pwq “

Ex„P rfpw, xqs. Our framework for finding DP approxi-
mate stationary points of F is described in Algorithm 4. It is

7
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Algorithm 4 Warm-Start Meta-Algorithm for Pop. Loss

1: Input: Data X P Xn, loss function fpw, xq, privacy
parameters pε, δq, warm-start DP risk minimization al-
gorithm A, DP stationary point finder B.

2: Run pε{2, δ{2q-DP A to obtain w0 « argminw F pwq.
3: Run B with initialization w0 and privacy parameters

pε{2, δ{2q to obtain wpriv.
4: Return: wpriv.

a population-loss analog of the warm-start meta-Algorithm 2
for stationary points of pFX .

We present the guarantees for Algorithm 4 with generic
A and B (analogous to Theorem 3.4) in Theorem E.2 in
Appendix E. By taking A to be the ε{2-DP exponential
mechanism and B to be the pε{2, δ{2q-DP-SPIDER-SOSP
of Liu et al. (2023), we obtain a new state-of-the-art rate
for privately finding second-order stationary points of the
population loss:

Corollary 7.1 (Second-Order Stationary Points of Popu-
lation Loss - Simple Version). Let nd ě 1{ε2. Assume
∇2fp¨, xq is 1-Lipschitz and that L, β, and D are constants,
where D “ }w˚} for some w˚ P argminw F pwq. Then,
Algorithm 4 is pε, δq-DP and, with probability at least 1´ ζ ,
returns a κ-second-order-stationary point, where

κ ď rO

¨

˝

1

n1{3

«

d

εn
`

c

d

n

ff1{3
˛

‚

` rO

¨

˝

˜?
d

εn

¸3{7 «

d

εn
`

c

d

n

ff3{7
˛

‚.

See Appendix E for a precise statement of this corollary, and
the proof. The proof combines a (novel, to our knowledge)
high-probability excess population risk guarantee for the
exponential mechanism (Lemma E.3) with Theorem E.2.

The previous state-of-the-art rate for this problem is
rOp1{n1{3 ` p

?
d{εnq3{7q (Liu et al., 2023). Thus, Corol-

lary 7.1 strictly improves over this rate whenever d{pεnq `
a

d{n ă 1. For example, if d and ε are constants, then
κ “ rOp1{

?
nq, which is optimal and matches the non-

private lower bound of Arora et al. (2023). (This lower
bound holds even with the weaker first-order stationarity
measure.) If d ą nε, then one should run the algorithm of
Liu et al. (2023). Combining the two bounds results in a new
state-of-the-art bound for stationary points of non-convex
population loss functions.

8. Improved Rate for Stationary Points of
Non-Convex GLMs

In this section, we restrict attention to generalized linear
models (GLMs): loss functions of the form fpw, px, yqq “

ϕypxw, xyq for some ϕy : Rd Ñ R that is L-Lipschitz and
β-smooth for all y P R. Assume that the data domain X
has bounded ℓ2-diameter }X } “ Op1q and that the design
matrix X P Rnˆd has r :“ rankpXq.

Arora et al. (2022) provided a black-box method for ob-
taining dimension-independent DP stationary guarantees for
non-convex GLMs. Their method applies a DP Johnson-
Lindenstrauss (JL) transform to the output of a DP algorithm
for finding approximate stationary points of non-convex em-
pirical loss functions.

Lemma 8.1. (Arora et al., 2023) Let M be an pε, δq-
DP algorithm which guarantees E}∇ pFXpMpXqq} ď

gpd, n, β, L,D, ε, δq and }MpXq} ď polypn, d, β, L,Dq

with probability at least 1 ´ 1{
?
n, when run on an L-

Lipschitz, β-smooth pFX with } argminw pFXpwq} ď D. Let

k “ argminjPN

”

gpj, n, β, L,D, ε, δ{2q ` L?
j

ı

^ r. Then,
the JL method, run on L-Lipschitz, β-smooth GLM loss G
with } argminwGpwq} ď D is pε, δq-DP. Further, given n
i.i.d. samples, the method outputs wpriv s.t.

E}∇F pwprivq} “ rO

ˆ

L
?
n

` gpk, n, β, L,D, ε, δ{2q

˙

.

Arora et al. (2022) used Lemma 8.1 with DP-SPIDER
as M to obtain a stationarity guarantee for non-convex
GLMs: rO

`

1{
?
n` mintp

?
r{εnq2{3, 1{pnεq2{5u

˘

when
L, β “ Op1q. If we apply their JL method to the output of
our Algorithm 2, then we obtain an improved rate:

Corollary 8.2 (Non-Convex GLMs). Let fpw, px, yqq be
a GLM loss function with β, L,D “ Op1q. Then, the JL
method applied to the output of M “ Algorithm 2 (with
A “ Exponential Mechanism and B “ DP-SPIDER) is
pε, δq-DP and, given n i.i.d. samples, outputs wpriv s.t.

E}∇F pwprivq} ď rO

ˆ

1
?
n

˙

` rO

ˆ?
r

εn
r1{6 ^

1

pεnq3{7

˙

.

See Appendix F for the proof. Corollary 8.2 improves over
the state-of-the-art (Arora et al., 2023) if r ă nε.
Remark 8.3. We can obtain essentially the same rate for
second-order stationary points by substituting DP-SPIDER-
SOSP for DP-SPIDER.

9. Preliminary Experiments
In this section, we conduct an empirical evaluation of our
algorithm as a proof of concept. We run a small simulation

8
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Figure 2. Training Loss: Gradient Norm vs. ε Figure 3. Test Loss: Gradient Norm vs. ε

with a non-convex loss function and synthetic data.2

Loss function and data: fpw, xq “
1
2

“

}w}2 ` sinp}w}2q
‰

` xTw, where x is drawn uni-
formly from B, the unit ball in Rd and W “ 2B. Note that
fp¨, xq is non-convex, 6-smooth, and 5-Lipschitz on W .

Our algorithm: pε2, δ{2q-DP-SPIDER after warm-
starting with pε1, δ{2q-DP-SGD. (Recall that this algorithm
is optimal for quasar-convex functions and ε1 “ ε2 “ ε{2.)
We run T1 iterations of DP-SGD and T2 iterations of DP-
SPIDER. ε1, ε2, T1 and T2 are all hyperparameters that we
tune. We require T1 ` T2 “ 50 and ε1 ` ε2 “ ε.

Baselines: We compare against DP-SGD and DP-
SPIDER, each run for 100 iterations. We carefully tune
all hyperparameters (e.g. step size and phase length). We
list the hyperparameters that we used to obtain each point
in the plots in Appendix G.

Results: Our results are reported in Figures 2 and 3. Our
algorithm outperforms both baselines in the high privacy
regime ε ď 1. For ε P t2, 4u, the performance of all 3
algorithms is relatively similar and there is no apparent
benefit from warm-starting.

Problem parameters: n “ d “ 100, δ “ 1{n1.5. We
vary ε P t0.1, 0.25, 1, 2, 4u.

For each ε, we ran 10 trials with fresh, independently drawn
data and reported average results. We projected the iterates
onto W to ensure that the smoothness and Lipschitz bounds

2Code for the experiments is avail-
able at https://github.com/lowya/
How-to-Make-the-Gradients-Small-Privately/
tree/main.

hold in each iteration.

10. Conclusion
We provided a novel framework for designing private algo-
rithms to find (first- and second-order) stationary points of
non-convex (empirical and population) loss functions. Our
framework led to improved rates for general non-convex loss
functions and GLMs, and optimal rates for important sub-
classes of non-convex functions (quasar-convex and KL).

Our work opens up several interesting avenues for future
exploration. First, for general non-convex empirical and
population losses, there remains a gap between our im-
proved upper bounds and the lower bounds of Arora et al.
(2023)—which hold even for convex functions. In light
of our improved upper bounds (which are optimal when
d “ Op1q), we believe that the convex lower bounds are
attainable for non-convex losses. Second, from a practical
perspective, it would be useful to understand whether im-
provements over the previous state-of-the-art bounds are
achievable with more computationally efficient algorithms.
Finally, it would be fruitful for future empirical work to have
more extensive, large-scale experiments to determine the
most effective way to leverage our algorithmic framework
in practice.
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Impact Statement
We develop algorithms for protecting the privacy of individ-
uals who contribute training data. While this paper is primar-
ily motivated by theoretical questions about the minimax
optimal sample complexity of DP non-convex optimization,
we acknowledge the potential broader impacts of our work.

We hope that our private optimization algorithms enable
the development of machine learning models that can oper-
ate on sensitive datasets without compromising individual
privacy. This impact extends to applications such as medi-
cal research, financial analysis, LLMs, and other domains
where data privacy is paramount. We believe that the de-
ployment of differentially private optimization techniques
fosters a climate where organizations and decision-makers
can harness the power of machine learning without sacri-
ficing data privacy. This encourages a broader adoption of
data-driven decision-making across industries, leading to
more informed and accurate outcomes while respecting the
confidentiality of sensitive information.

That being said, there are also potential negative conse-
quences of privacy-preserving machine learning. For exam-
ple, there is a potential risk that entities, such as corpora-
tions or government bodies, might misuse our algorithms
for malicious activities, including the unauthorized gather-
ing of personal information. Moreover, employing models
trained with private data may lead to reduced accuracy when
compared to their non-private counterparts, potentially re-
sulting in unfavorable outcomes. Nevertheless, we maintain
a strong conviction that sharing privacy-preserving machine
learning algorithms, alongside an improved comprehension
of these algorithms, ultimately provides a positive overall
impact on society.
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A. Further Discussion of Related Work
Private ERM and stochastic optimization with convex loss functions has been studied extensively (Chaudhuri et al., 2011;
Bassily et al., 2014; 2019; Feldman et al., 2020). Beyond these classical settings, differentially private optimization has
also recently been studied e.g., in the context of online learning (Jain & Thakurta, 2014; Asi et al., 2023), federated
learning (Lowy & Razaviyayn, 2023a), different geometries (Bassily et al., 2021b; Asi et al., 2021), min-max games (Boob
& Guzmán, 2023; Zhang et al., 2022), fair and private learning (Lowy et al., 2023b), and public-data assisted private
optimization (Amid et al., 2022; Lowy et al., 2023c). Below we summarize the literature on DP non-convex optimization.

Stationary Points of Empirical Loss Functions. For non-convex pFX , the best known stationarity rate prior to 2022 was
E}∇ pFXpApXqq} “ Opp

a

d lnp1{δq{εnq1{2q (Zhang et al., 2017; Wang et al., 2017; 2019). In the last two years, a pair of
papers made progress and obtained improved rates of rOpp

a

d lnp1{δq{εnq2{3q (Arora et al., 2023; Tran & Cutkosky, 2022).
The work of Lowy et al. (2023a) extended this result to non-convex federated learning/distributed ERM and non-smooth
loss functions. The work of Liu et al. (2023) extended this result to second-order stationary points. Despite this problem
receiving much attention from researchers, it remained unclear whether the rOpp

a

d lnp1{δq{εnq2{3q barrier could be broken.
Our algorithm finally breaks this barrier.

Stationary Points of Population Loss Functions. The literature on stationary points of population loss functions is
much sparser than for empirical loss functions. The work of (Zhou et al., 2020) gave a DP algorithm for finding α-FOSP,
where α À ε

?
d ` p

?
d{εnq1{2. Thus, their bound is meaningful only when ε ! 1{

?
d. Arora et al. (2022) improved

over this rate, obtaining α “ rOp1{n1{3 ` p
?
d{εnq1{2q. The prior state-of-the-art rate for finding SOSPs of F was

rOp1{n1{3 ` p
?
d{εnq3{7q (Liu et al., 2023). We improve over this rate in the present work.

Excess Risk of PL and KL Loss Functions. Private optimization of PL loss functions has been considered in (Wang
et al., 2017; Kang et al., 2021; Zhang et al., 2021; Lowy et al., 2023a). Prior to the work of (Lowy et al., 2023a), all works
on DP PL optimization made the extremely strong assumptions that fp¨, xq is Lipschitz and PL on all of Rd. We are not
aware of any loss functions that satisfy both these assumptions. This gap was addressed by (Lowy et al., 2023a), who proved
near-optimal excess risk bounds for proximal-PL (Karimi et al., 2016) loss functions. The proximal-PL condition extends
the PL condition to the constrained setting, and allows for functions that are Lipschitz on some compact subset of Rd. The
work of Menart et al. (2023) gave near-optimal excess risk bounds under the KL* condition, which generalizes the PL
condition. Our work is the first to give optimal bounds for finding approximate stationary points of KL* functions. Note that
stationarity is a stronger measure of suboptimality than excess risk for KL* functions, since by definition, the excess risk of
these functions is upper bounded by a function of the gradient norm.

Non-Convex GLMs. While DP excess risk guarantees for convex GLMs are well understood (Jain & Thakurta, 2014;
Song et al., 2021; Arora et al., 2022), far less is known for stationary points of non-convex GLMs. In fact, we are aware of
only one prior work that provides DP stationarity guarantees for non-convex GLMs: Arora et al. (2023) obtains dimension-
independent/rank-dependent α-FOSP, where α À 1{

?
n` p

?
r{εnq2{3 ^ p1{εnq2{5 and r is the rank of the design matrix

X . We improve over this rate in the present work.

Non-privately, non-convex GLMs have been studied by Mei et al. (2018); Foster et al. (2018).

B. More privacy preliminaries
The following result can be found, e.g. in (Dwork & Roth, 2014, Theorem 3.20).

Lemma B.1 (Advanced Composition Theorem). Let ϵ ě 0, δ, δ1 P r0, 1q. Assume A1, ¨ ¨ ¨ ,AT , with At : Xn ˆ W Ñ W ,
are each pϵ, δq-DP @t “ 1, ¨ ¨ ¨ , T . Then, the adaptive composition ApXq :“ AT pX,AT´1pX,AT´2pX, ¨ ¨ ¨ qqq is
pϵ1, T δ ` δ1q-DP for ϵ1 “

a

2T lnp1{δ1qϵ` Tϵpeϵ ´ 1q.

C. Second-Order Stationary Points for ERM: Meta-Algorithm

Theorem C.1 (Re-statement of Theorem 3.4). Suppose A is pε{2, δ{2q-DP and pFXpApXqq ´ pF˚
X ď ψ with probability

ě 1 ´ ζ (for polynomial 1{ζ). Then, Algorithm 2 with B as DP-SPIDER-SOSP (with appropriate parameters) is pε, δq-DP,
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and with probability ě 1 ´ 2ζ has output wpriv satisfying

}∇ pFXpwprivq} ď α̃ :“ rO

˜

L
a

d lnp1{δq

εn

¸

` rO

¨

˝L1{3β1{3ψ1{3

˜

a

d lnp1{δq

εn

¸2{3
˛

‚

` rO

¨

˝

β7{6L1{6ψ1{6

n
?
ρ

˜

a

d lnp1{δq

εn

¸1{3
˛

‚,

and
∇2

pFXpwprivq ľ ´
a

ρα̃ Id

.

Proof. Let E be the good event that pFXpApXqq ´ pF˚
X ď ψ and B satisfies the stationarity guarantees in Lemma 3.3 given

input w0 “ ApXq. Then PpEq ě 1 ´ 2ζ by a union bound. Moreover, conditional on E, the stationarity guarantees in
Theorem 3.4 hold by applying Lemma 3.3 with parameter ∆̂w0

replaced by ψ.

D. Optimal Rate for Quasar-Convex Losses

Proposition D.1 (Precise Statement of Proposition 5.2). Let pFX be q-quasar convex and }w1 ´ w˚} ď D for some
w1 P Rd, w˚ P argminw pFXpwq. Then, Algorithm 3 with

η “
D

a

T pL2 ` dσ2q
, T “

ε2n2

d lnp1{δq
, b Á

?
dε, σ2 “

1000L2T lnp1{δq

ε2n2

is pε, δq-DP, and returns ŵ such that

E pFXpŵq ´ pF˚
X À LD

a

d lnp1{δq

εnq
.

Moreover, for any ζ ą 0, there is an pε, δq-DP variation of Algorithm 3 that returns w̃ such that

pFXpŵq ´ pF˚
X “ rO

˜

LD

a

d lnp1{δq

εnq

¸

with probability at least 1 ´ ζ.

Proof. Privacy: Privacy of DP-SGD does not require convexity and is an immediate consequence of, e.g. (Abadi et al.,
2016, Theorem 1) and our choices of T, b, σ2.

Expected excess risk: Recall that the updates are given bywt`1 “ wt´η∇t, where ∇t :“ gt`ut :“
1
b

ř

xPSt
∇fpwt, xq`

ut for ut „ N p0, σ2Idq and St is drawn uniformly with replacement from X with b “ |St|. Thus,

}wt`1 ´ w˚}2 “ }wt ´ w˚}2 ´ 2ηx∇t, wt ´ w˚y ` η2}∇t}
2.

Taking conditional expectation given wt and using the fact that ut is mean-zero and independent of wt gives:

E
“

}wt`1 ´ w˚}2|wt

‰

“ }wt ´ w˚}2 ´ 2ηx∇ pFXpwtq, wt ´ w˚y ` η2
`

}gt}
2 ` dσ2

˘

ď }wt ´ w˚}2 ´ 2ηx pFXpwtq, wt ´ w˚y ` η2
`

L2 ` dσ2
˘

ď }wt ´ w˚}2 ´ 2ηq
´

pFXpwtq ´ pF˚
X

¯

` η2
`

L2 ` dσ2
˘

,
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where the last inequality above used q-quasar-convexity. Now, re-arranging and taking total expectation yields:

2ηqEr pFXpwtq ´ pF˚
X s ď E

“

}wt ´ w˚}2 ´ }wt`1 ´ w˚}2
‰

` η2
`

L2 ` dσ2
˘

.

Telescoping the above inequality from t “ 1 to T and recalling ŵT „ Unifptw1, . . . , wT uq yields

Er pFXpŵT q ´ pF˚
X s ď

D2

2ηqT
`
ηpL2 ` dσ2q

2q
.

Plugging in η “ D?
T pL2`dσ2q

then gives

Er pFXpŵT q ´ pF˚
X s ď

2D

q
?
T

´

L`
?
dσ2

¯

À LD

˜

1

q
?
T

`

a

d lnp1{δq

εnq

¸

.

Finally, choosing T ě ε2n2

d lnp1{δq
yields the desired expected excess risk bound.

High-probability excess risk: This is an instantiation of the meta-algorithm described in (Bassily et al., 2014, Appendix D).
We run the DP-SGD algorithm above k “ logp2{ζq times with privacy parameters pε{2k, δ{2kq for each run. This gives
us an pε{2, δ{2q-DP list of k vectors, which we denote tŵ1, . . . , ŵku. By Markov’s inequality, with probability at least

1 ´ 1{2k, there exists i P rks such that pFXpŵiq ´ pF˚
X À

LDk
?

d lnpk{δq

εn . Now we apply the ε{2-DP exponential mechanism
(McSherry & Talwar, 2007) to the list tŵ1, . . . , ŵku in order to select the (approximately) best ŵi with probability at least

1 ´ ζ{2. By a union bound, the output of this mechanism has excess risk bounded by rO

ˆ

LD

?
d lnp1{δq

qεn

˙

with probability

at least 1 ´ ζ.

E. Improved Rates for Stationary Points of Non-Convex Population Loss
Denote the initial suboptimality gap of the population loss by

∆w0 :“ F pw0q ´ F˚.

We will need the population stationary guarantees of a variation of DP-SPIDER-SOSP:
Lemma E.1. (Liu et al., 2023, Theorem 4.6) Let ζ P p0, 1q and let ∇2fp¨, xq be ρ-Lipschitz for all x. Denote

s :“ rO

¨

˝

ˆ

Lβ∆w0

n

˙1{3

` pLβ3∆3
w0

q1{7

˜

a

d lnp1{δq

εn

¸3{7
˛

‚,

and

S :“ rO

ˆ

s`
β

?
ρ

ˆ

1

nε
`

1
?
n

˙

?
s` L

ˆ

1

nε
`

1
?
n

˙˙

.

Then, there is a pε{2, δ{2q-DP variation of DP-SPIDER-SOSP which, given n i.i.d. samples from P , returns a point ŵ such
that ŵ is an S-second-order-stationary point of F with probability at least 1 ´ ζ.
Theorem E.2 (Second-Order Stationary Points for Population Loss: Meta-Algorithm). Let ζ P p0, 1q and let ∇2fp¨, xq be
ρ-Lipschitz for all x. Suppose A is pε{2, δ{2q-DP and F pApXqq ´ F˚ ď ψ with probability ě 1 ´ ζ. Then, Algorithm 4
with B as DP-SPIDER-SOSP (with appropriate parameters) is pε, δq-DP and, given n i.i.d. samples from P , has output
wpriv which is a υ-second-order-stationary point of F with probability at least 1 ´ 2ζ, where

υ :“ rO

¨

˝

ˆ

Lβψ

n

˙1{3

` pLψ3β3q1{7

˜

a

d lnp1{δq

εn

¸3{7
˛

‚

` rO

¨

˝

β
?
ρ

ˆ

1

nε
`

1
?
n

˙

¨

˝

pLβψq1{6

n1{6
` pLψ3β3q1{14

˜

a

d lnp1{δq

εn

¸3{14
˛

‚

˛

‚

` rO

ˆ

L

ˆ

1

nε
`

1
?
n

˙˙

.
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Proof. Privacy is immediate from basic composition.

By assumption, A returns w0 such that ∆w0
ď ψ with probability at least 1 ´ ζ. Conditional on this good event happening,

then Lemma E.1 implies the desired stationarity guarantee with probability at least 1 ´ ζ, by plugging in ψ for ∆w0
in

Lemma E.1. By a union bound, we obtain Theorem 3.4.

In order to obtain Corollary 7.1, we will also need a high-probability excess population risk guarantee for the exponential
mechanism:

Lemma E.3 (Excess Population Risk of Exponential Mechanism). Let ζ P p0, 1q and let W be a compact set containing
w̃ such that }w ´ w̃} ď D for all w P W and F pw̃q ´ F˚ ď LDd{εn. Then, given n i.i.d. samples from P , the ε-DP
exponential mechanism of Definition 4.1 outputs w0 such that, with probability at least 1 ´ ζ,

F pw0q ´ F˚ “ rO

˜

LD

˜

d

εn
`

c

d

n

¸¸

.

Proof. Let ĂW “ tw1, . . . , wNu be a D d
εn -net for W with cardinality N “ |ĂW| ď

`

2Dεn
d

˘d
. Denote the output of the

exponential mechanism w0 “ AEpXq. By Lemma 4.2, we have

pFXpw0q ´ pF˚
X ď rO

ˆ

LD
d

εn

˙

(4)

with probability at least 1 ´ ζ{2. Now, for any j P rN s, we have

Pp| pFXpwjq ´ F pwjq| ď pq ě 1 ´ 2 exp

ˆ

´np2

2L2D2

˙

for any p P p0, 1q by Hoeffding’s inequality, since fpwj , xq P r´LD,LDs for all x. By a union bound, we have

P
ˆ

max
jPrNs

| pFXpwjq ´ F pwjq| ď p

˙

ě 1 ´ 2N exp

ˆ

´np2

2L2D2

˙

. (5)

Thus, the following inequalities hold with probability at least 1 ´ 4N exp
´

´np2

2L2D2

¯

´ ζ{2:

F pw0q ´ F˚ ď pFXpw0q ´ F˚ ` p

ď pFXpw0q ´ pFX

ˆ

argmin
w

F pwq

˙

` 2p

ď pFXpw0q ´ pF˚
X ` 2p

ď rO

ˆ

LD
d

εn

˙

` 2p.

Choosing p “ LD?
n

a

logp8{ζq ` d ensures that

F pw0q ´ F˚ “ rO

˜

LD

˜

d

εn
`

c

d

n

¸¸

.

with probability at least 1 ´ ζ, as desired.

Note that (Liu et al., 2023, Theorem 5.8) proved a weaker “in-expectation” version of Lemma E.3.

Corollary E.4 (Precise Statement of Corollary 7.1). Assume ∇2fp¨, xq is ρ-Lipschitz and W is a compact set containing
w̃ such that }w ´ w̃} ď D for all w P W and F pw̃q ´ F˚ ď LDd{εn. Then, given n i.i.d. samples from P , Algorithm 4

17



How to Make the Gradients Small Privately

with A “ Exponential Mechanism and B = DP-SPIDER-SOSP is pε, δq-DP. Moreover, with probability at least 1 ´ 2ζ, the
output wpriv of Algorithm 4 is a κ-second-order-stationary point of F , where

κ ď rO

˜

pLβq1{3

n1{3

«

pLDq1{3

ˆ

d

εn

˙1{3
ff¸

` rO

¨

˚

˝

»

–L4β3D3

˜

d

εn
`

c

d

n

¸3
fi

fl

1{7
˜

a

d lnp1{δq

εn

¸3{7
˛

‹

‚

` rO

ˆ

β
?
ρ

ˆ

1

nε
`

1
?
n

˙˙

«

ˆ

Lβ

n

˙1{6
˜

LD

˜

d

εn
`

c

d

n

¸¸

`

˜

a

d lnp1{δq

εn

¸3{14

pLβ3q1{4pLDq3{14

˜

d

εn
`

c

d

n

¸3{14 ff

` L rO

ˆ

1

εn
`

1
?
n

˙

.

Proof. Privacy follows from basic composition.

The stationarity result is a consequence of Theorem E.2 and Lemma E.3. Namely, we use Lemma E.3 to plug ψ “

rO
´

LD
´

d
εn `

b

d
n

¯¯

into the expression for υ in Theorem E.2.

Note that Corollary E.4 immediately implies Corollary 7.1.

F. Improved Rates for Stationary Points of Non-Convex GLMs
Corollary F.1 (Re-statement of Corollary 8.2). Let fpw, px, yqq be a GLM loss function with β, L,D “ Op1q. Then, the JL
method applied to the output of M “ Algorithm 2 (with A “ Exponential Mechanism and B “ DP-SPIDER) is pε, δq-DP
and, given n i.i.d. samples from P , outputs wpriv such that

E}∇F pwprivq} ď rO

ˆ

1
?
n

˙

` rO

ˆ?
r

εn
r1{6 ^

1

pεnq3{7

˙

.

Proof. The result is a direct consequence of Lemma 8.1 combined with Corollary 4.3. The fact that }MpXq} ď

polypn, d, β, L,Dq with high probability for M “ Algorithm 2 (with A “ Exponential Mechanism and B “ DP-SPIDER)
follows from the proof of (Arora et al., 2023, Corollary 6.2), which showed that }BpXq} ď polypn, d, β, L,Dq for any
initialization w0.

G. Hyperparameters for Experiments
We tuned hyperparameters using the code at https://github.com/lowya/
How-to-Make-the-Gradients-Small-Privately/tree/main.

The “optimal” hyperparameters that we obtained for each algorithm and each value of ε are listed below (using 10
independent epednent runs of the hyperparameter tuning code with fresh validation data in each run):

ε “ 0.1

• T1 “ 50

• SPIDER q “ 10

• Warm-start q “ 100

• SGD η “ 0.0005

• SPIDER η “ 0.005
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• Warm-start ηsgd “ 0.0005

• Warm-start ηspider “ 0.005

• Warm-start ε1 “ ε{2

ε “ 0.25

• T1 “ 50

• SPIDER q “ 5

• Warm-start q “ 5

• SGD η “ 0.0005

• SPIDER η “ 0.001

• Warm-start ηsgd “ 0.05

• Warm-start ηspider “ 0.0005

• Warm-start ε1 “ ε{4

ε “ 1

• T1 “ 1

• SPIDER q “ 10

• Warm-start q “ 10

• SGD η “ 0.0025

• SPIDER η “ 0.0025

• Warm-start ηsgd “ 0.001

• Warm-start ηspider “ 0.0005

• Warm-start ε1 “ ε{4

ε “ 2

• T1 “ 50

• SPIDER q “ 5

• Warm-start q “ 5

• SGD η “ 0.0025

• SPIDER η “ 0.0025

• Warm-start ηsgd “ 0.0025

• Warm-start ηspider “ 0.0025

• Warm-start ε1 “ ε{4

ε “ 4
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• T1 “ 25

• SPIDER q “ 5

• Warm-start q “ 5

• SGD η “ 0.005

• SPIDER η “ 0.005

• Warm-start ηsgd “ 0.005

• Warm-start ηspider “ 0.005

• Warm-start ε1 “ ε{100
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