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(a) stand and shush, angrily. (b) Yang-style 40 form Tai Chi Competition routine step 34, happily.

Figure 1: The proposed HumanTOMATO can generate text-aligned whole-body motions with vivid and harmonious face,
hand, and body motion. We show two generated motion keyframes based on the given texts.

Abstract

This work targets a novel text-driven whole-body
motion generation task, which takes a given tex-
tual description as input and aims at generating
high-quality and diverse facial expressions, hand
gestures, and body motions simultaneously. Pre-
vious works on text-driven motion generation
tasks mainly have two limitations: they ignore
the key role of fine-grained hand and face con-
trolling in vivid whole-body motion generation,
and lack a good alignment between text and mo-
tion. To address such limitations, we propose
a Text-aligned whOle-body Motion generATiOn
framework, named HumanTOMATO, which is
the first attempt to our knowledge towards appli-
cable holistic motion generation in this research
area. To tackle this challenging task, our solution
includes two key designs: (1) a Holistic Hierar-
chical VQ-VAE (aka H2VQ) and a Hierarchical-
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GPT for fine-grained body and hand motion re-
construction and generation with two structured
codebooks; and (2) a pre-trained text-motion-
alignment model to help generated motion align
with the input textual description explicitly. Com-
prehensive experiments verify that our model has
significant advantages in both the quality of gen-
erated motions and their alignment with text.

1. Introduction
Recent years have seen an explosion of huge demand for
generating high-quality 3D human motions in many scenar-
ios, such as games, films, animation, and robotics. To reduce
laborious efforts in animation creation, recent studies (Tevet
et al., 2023; Chen et al., 2023b; Zhang et al., 2022; 2023) at-
tempt to generate human motions with textual description in
a natural interactive way and have achieved rapid progress.

However, the generated motions from existing works are
still unsatisfactory to meet real application needs. The prob-
lem is mainly due to two aspects. First, existing text-driven
motion generation models can only generate body-only mo-
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tions rather than whole-body motions, which are highly
expressive yet much more challenging. On the one hand, the
mentioned challenge comes from the limited availability of
whole-body motion data. On the other hand, whole-body
motion is much more complex, where fine-grained motions
of body, hand, and face should be well generated. How to
model whole-body human motions is still under-explored.
Second, the generated motions lack semantic alignment with
the textual description. Existing methods adopt CLIP (Rad-
ford et al., 2021) or Large Language Models (LLMs) (Raffel
et al., 2020) to provide language guidance for motion gen-
eration (Zhang et al., 2022; Tevet et al., 2023; 2022; Jiang
et al., 2023). However, their alignment supervision is pro-
vided at frame level and lacks sufficient understanding of
a motion at its whole sequence level. As a result, they of-
ten fail to distinguish some scenarios, such as “walking
in a clockwise circle” and “walking in a
counter-clockwise circle”, which requires un-
derstanding motions at sequence level rather than frame
level. Such a drawback severely limits the ability to gener-
ate motions well-aligned with textual descriptions.

To tackle the above issues, we propose a novel Text-
aligned whOle-body Motion generATiOn framework (Hu-
manTOMATO), which includes two key designs. First, a
holistic hierarchical discrete modeling strategy for body
and hand motions is proposed for reconstructing and gen-
erating whole-body motions vividly. As whole-body mo-
tion is a kind of high-dimensional spatio-temporal signal,
in the first stage, we propose a Holistic Hierarchical VQ-
VAE (aka H2VQ) to compress the motion into two-level
discrete codes for body and hand, respectively. In contrast,
a naı̈ve solution that simply replaces body-only motions
with whole-body motions or directly increases the size of
the codebook is almost in vain. The key insight of our
H2VQ is learning informative and compact representations
of fine-grained whole-body motions at very low bit rates.
Moreover, the hand and body motions have different lev-
els of amplitudes and details, which motivates us to model
them separately. Based on the two-level discrete codes, in
the second stage, we propose a Hierarchical-GPT to pre-
dict the hierarchical discrete codes of body and hand in an
auto-regressive fashion. Extending the hierarchical model-
ing strategy of body-hand motions, we use an RVQ-based
method for motion reconstruction and also generate facial
motion with discrete codes auto-regressively. Second, a
pre-trained text-motion-alignment model is introduced to
enhance the textual alignment of generated motions for
the first time. We pre-train a motion encoder and a text
encoder, namely TMA (Text-Motion Alignment), in a con-
trastive learning manner (Radford et al., 2021) with pair-
wise text-motion data. Unlike previous work (Zhang et al.,
2022; Tevet et al., 2023; 2022; Jiang et al., 2023) that re-
lied on CLIP or LLMs embedding, our approach utilizes

TMA text embedding as a language prior. In this way, the
TMA provides a motion-aware language embedding for the
Hirarchical-GPT to generate discrete motion codes more
precisely. It is worth noting that, during training, merely su-
pervising the prediction of discrete code tokens of body and
hand is insufficient as it lacks supervision on the semantics
of global motion sequence and leads to error accumulation
in auto-regressive prediction. Thus, with the text-motion
similarity measured by TMA, we additionally provide text-
motion alignment supervision to supervise the alignment
between generated motion sequences and texts explicitly.

With these key designs, compared with previous text-driven
motion generation works, HumanTOMATO can generate
whole-body motions semantically aligned with texts, as il-
lustrated in Figure 1. To evaluate the alignment between
generated motions and input texts, we further revisit the
previous retriever used for evaluating text-motion alignment
and find that its retrieval ability is worse than TMA. Hence,
we introduce two new criteria (TMA-R-Precision(256) and
TMA-Matching-score), which are more accurate and chal-
lenging to evaluate the text-motion alignment in this task.

We summarize our key contributions as follows:
• To the best of our knowledge, we propose the challenging

Text-driven whOle-body Motion generATiOn task for
the first time and design a model (HumanTOMATO)
to generate vivid whole-body motions aligned with texts.

• To tackle the challenging whole-body motion generation
problem, we introduce a H2VQ for fine-grained body and
hand motion reconstruction. Accordingly, we develop a
Hierarchical-GPT combined with a facial motion genera-
tor to generate whole-body motions.

• To enhance the consistency and alignment between texts
and motions, we pre-train text-motion-aligned encoders
via a contrastive objective and introduce sequence-level
semantic supervision to help motion-text alignment.

• We propose two new criteria (TMA-R-Precision(256) and
TMA-Matching-score), which are more accurate and chal-
lenging for evaluating text-motion alignment.

We evaluate HumanTOMATO on both whole-body (Lin
et al., 2023b) and body-only (Guo et al., 2022) motion
generation benchmarks and answer four research questions
based on our contributions. Comprehensive experiments
affirm the vividness and alignment of our generated motions,
outperforming competitors in motion reconstruction (32.7%
↓MPJPE v.s. VQ) and motion generation metrics (9.2% ↑
TMA-R-Precision(256) Top3 v.s. the best baseline).

2. Related Work
Due to the page limitation, we leave more discussions on
related work in Appendix A. There are three related research,
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including unconditional motion generation (Yan et al., 2019;
Zhao et al., 2020; Zhang et al., 2020; Cai et al., 2021), text-
driven motion generation (Petrovich et al., 2022; Zhang
et al., 2022; Chen et al., 2023b; Guo et al., 2022), and co-
speech motion generation (Yi et al., 2023; Zhi et al., 2023;
Fan et al., 2022; Habibie et al., 2021). However, these works
cannot generate whole-body motion from text. Besides, the
effective quantization method and how to achieve higher
text-motion alignment are not been carefully explored yet.
Accordingly, we introduce our methodology as follows.

3. Methodology
3.1. Problem Formulation

We clarify notations and set up the novel research problem
of text-driven whole-body motion generation. Given a text
description t of a human motion, such as “The man is play-
ing the ukulele happily.”, the model should generate a vivid
whole-body motion m = [m1,m2, · · · ,mL] ∈ RL×d

aligned with the text description, where L and d denote
the number of frames and the dimension of the motion in
each frame, respectively. As whole-body motion comes
up with hand, body, and face motions, we can also decom-
pose the m as {mH ,mB ,mF } respectively, where mH ∈
RL×dh ,mB ∈ RL×db ,mF ∈ RL×df , d = dh + db + df .
Mathematically, we formulate the text-driven whole-body
motion generation as follows:

Θ⋆ = argmax
Θ

PΘ(m | t), (1)

where Θ denotes the model parameters and PΘ(·) denotes
the motion distribution, respectively.

3.2. Learning Discrete Whole-body Representations

Vanilla Motion VQ-VAE. Motion VQ-VAE aims to learn
discrete representations of human motions in an encoding-
decoding fashion. Specifically, VQ-VAE recovers mo-
tions by using an auto-encoder and learns a codebook
C = {ek}Kk=1, where K denotes the codebook size and e(k)
indicate the k-th embedded representation in the codebook.
Given a vector z and the quantizer Q(·; C), the quantized
vector should be the element selected from the codebook C
that can minimize the reconstruction error of z as,

ẑ = Q(z; C) = argmin
ek

∥z− ek∥22. (2)

In a vanilla VQ-VAE, z = Enc(m) indicates the latent code
extracted from a motion encoder Enc(·). Thus VQ-VAE can
be optimized by,

L = ∥m− Dec(Q(z; C))∥22 + α∥z− sg(ẑ)∥22, (3)

where α is the hyper-parameter, sg(·) is the stop-gradient
operation and Dec(·) indicate the motion decoder. Differ-
ent from traditional methods, the codebook C in motion

VQ-VAE is optimized by exponential moving average (
EMA) and codebook reset (Code Reset) operations follow-
ing Razavi et al. (2019); Van Den Oord et al. (2017); Zhang
et al. (2023). While the discrete vector quantization of
vanilla VQ-VAE is capable of compressing human motions,
it falls short in minimizing quantization errors for detailed
whole-body motion generation. In practice, an intuitive so-
lution to address this would be to increase the size of the
codebook. However, this scheme would evidently intro-
duce additional computational cost and quickly encounter
performance bottlenecks (see results in Section 4.4).

Holistic Hierarchical VQ-VAE. Recently, the Residual
Vector Quantization technique, also known as RVQ (Barnes
et al., 1996; Zeghidour et al., 2021; Yao et al., 2023), has
significantly advanced the development of music generation
task (Défossez et al., 2022; Copet et al., 2023). Technically,
RVQ iteratively quantizes the quantization error at each level
from the previous one, reducing quantization errors effec-
tively while maintaining a low memory cost of the codebook
(see Appendix C.2 for details). Motivated by this (Défossez
et al., 2022), we propose a novel Holistic Hierarchical Vec-
tor Quantization scheme, shorted by H2VQ, into the field of
motion generation. Unlike RVQ, we incorporate the kine-
matic structure prior to the H2VQ modeling, enabling it to
learn compact representations of fine-grained whole-body
motions at an extremely low bit rate. Given the distinct
differences in amplitude and frequency between body and
hand motions, we have further designed two separate en-
coders and codebooks to learn discrete representations for
body and hand motions.

The architecture of our proposed H2VQ is illustrated in Fig-
ure 2(a). In the encoding phase, we input hand and body
motions, obtaining hand and body tokens through the hand
encoder EncH(·) and body encoder EncB(·), respectively.
The learned hand tokens are further quantized by the Hand
Quantizer QH(· ; CH) as zH . Since the body motions are
usually highly associated with some hand gestures (Ao et al.,
2022), to train a more natural and coordinated body code-
book, we fuse the body and hand tokens using the Concat(·)
and Conv1d(·) operations. As shown in Figure 2, before
this fusion operation, the quantized hand tokens undergo a
transformation through a projection layer. After that, fused
tokens are further quantized by Body Quantizer QB(· ; CB)
as zB . Finally, the hand tokens zH and body tokens zB are
concatenated together and fed into the Body-hand Decoder
to reconstruct the body-hand motions precisely.

During the training phase, the primary goal is to reconstruct
motions while concurrently updating the two codebooks
through the EMA and Code Reset operations (Razavi et al.,
2019; Van Den Oord et al., 2017; Zhang et al., 2023). In
the inference phase, after obtaining quantized code indices,
the Body-hand Decoder can generate body-hand motions
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Figure 2: The framework overview of tokenization method for body-hand, and facial motions. (a) Holistic Hierarchical Vector Quantization
(H2VQ) to compress fine-grained body-hand motion into two discrete codebooks with hierarchical structure relations. (b) Residual Vector
Quantization (RVQ) to compress facial motion into two discrete codebooks with hierarchical structure relations.

by querying the respective codebooks with obtained code
indices. The detailed algorithmic flows for both training and
inference phases can be found in Appendix C.

3.3. Hierarchical Whole-body Motion Generation

Given the two precise quantized codebooks of H2VQ, the
motion sequence should be generated by using the corre-
sponding decoders and quantized codes. The previous pop-
ular approach is to predict code indices in GPT-like auto-
regressive fashion (Zhang et al., 2023). Since the proposed
H2VQ requires the usage of two codebooks with structure
relations, the aforementioned approach is not applicable. To
better model the natural coherence of body-hand motions,
we design a hierarchical discrete codes prediction module,
named Hierarchical-GPT, which is illustrated in Figure 3(a),
for generating body-hand motions.

Hierarchical-GPT. The Hierarchical-GPT is built upon
a transformer-based architecture, where the first input
token is a textual embedding. With the input body-
hand motion mB = [mB

1 ,mB
2 , · · · ,mB

L ] and mH =
[mH

1 ,mH
2 , · · · ,mH

L ], we have corresponding code indices,
denoted as IB = [IB1 , I

B
2 , · · · , IBL/r, End] and IH =

[IH1 , IH2 , · · · , IHL/r, End], where ‘End’ indicates the end to-
ken and r denotes the down-sampling rate, which is used to
convert the input motion sequence to discrete motion tokens.

Therefore, as shown in Figure 3(a), the code indices pre-
diction mechanism can be formulated as an auto-regressive
prediction problem:

P (IB,H
1,2,··· ,L/r | t) =

∏L/r
s=1P (IB,H

s | IB,H
<s , t)

=
∏L/r

s=1P (IBs | IB,H
<s , t) · P (IHs | IBs , IB,H

<s , t),
(4)

where we first predict the body token index and then predict
the hand token index at each down-sampled timestamp s. As
shown in Figure 3(a), the first token is the textual embedding
of the input text. Here we leverage a pre-trained text encoder
to extract such an embedding. Please refer to Section 3.5 for
more details. In practice, we train the prediction transformer
with casual self-attention (Vaswani et al., 2017). As the
Hierarchical-GPT aims to predict code indices, our model
is optimized with the cross-entropy loss LCE . The training
details are available in Appendix B.3.

3.4. Facial Motion Generator

Previous works (Richard et al., 2021; Fan et al., 2022; Habi-
bie et al., 2021; Yi et al., 2023; Ng et al., 2024) hold the
view that facial expression is partially independent of body
and hand motions while highly related to the given facial
descriptions and even speech. Moreover, the facial motion
is represented in expression parameters, which is different
from skeleton-based motions. Additionally, our experimen-
tal results in Section 4.3 (Table 6) also empirically verify the
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Figure 3: The code prediction mechanism of the (a) body-hand, and (b) facial motion generation. Both parts take textual description as
input and predict tokens in an auto-regressive manner. The final whole-body motion is composed of both part motions decoded by the
corresponding decoders.

rationality of modeling body-hand and facial motions sepa-
rately. Based on these philosophical grounds, we generate
the facial motion based on given expression texts separately.
As shown in Figure 2(b), extending the hierarchical mod-
eling strategy, we take the RVQ as the quantizers (CF−i

and CF−ii) to reconstruct facial motions. Due to residual
quantization of the facial motion reconstruction, tokens in
two codebooks enjoy a hierarchical structure: tokens from
previous quantizers represent the rough facial motion and
the consecutive ones represent details (Wang et al., 2023a;
Barnes et al., 1996; Zeghidour et al., 2021). Therefore, simi-
lar to body-hand code prediction, we generate facial motion
tokens in an auto-regressive fashion (Figure 3(b)):

P (IF−i,F−ii
1,2,··· ,L/r

| t) =
∏L/r

s=1P (IF−i,F−ii
s | IF−i,F−ii

<s , t)

=
∏L/r

s=1P (Iis | IF−i,F−ii
<s , t) · P (IF−ii

s | IF−i
s , IF−i,F−ii

<s , t),
(5)

where i and ii are used to distinguish two codebooks.

3.5. Pre-trained Text-motion Aligned Model as a Prior

In existing pre-trained models, there often exists a notable
semantic gap between the representation of text and its cor-
responding motion due to the differences in the granularity
of content representation between text and motion. For in-
stance, text may involve a simple verb but its corresponding
motion would require a sequence of actions. For the text-to-
motion generation task, it is crucial to ensure that the textual
embedding extracted from the text encoder is motion-aware.
Therefore, we try to bridge the gap between text and motion
representations, thereby obtaining a text embedding more
conducive to driving motion generation.

As shown in Figure 4(a) and Figure 4(b), we can briefly di-
vide previous attempts into two categories. The first is super-
vision by an image-text aligned prior explicitly. As there was
no strong text-motion-aligned pre-trained model, Motion-
CLIP (Tevet et al., 2022) supervises the alignment between
text embedding, image embedding, and motion embedding
with the CLIP model. However, the image encoder of CLIP
is a strong supervision of static image content understanding,
which is quite different from dynamic motion. This supervi-

sion will cause the generated motion to be over-smoothing,
even stillness (see Appendix E). Therefore, supervising gen-
erated motion via a text-image-aligned prior is inappropriate.
The second is learning with image-text aligned prior implic-
itly. Existing attempts (Tevet et al., 2023; Zhang et al., 2023;
2022; Yuan et al., 2023) take the CLIP text embedding as
the language prior to the text-motion model training. On
the one hand, it learns the motion-text alignment implicitly
with pairwise data, and there is no supervision to discrimi-
nate whether the generated motion is aligned with the text
explicitly. On the other hand, the CLIP text embedding
is aligned with visual content, lacking the understanding
of dynamic motion clues, which cannot provide sufficient
spatial-temporal information to generate text-aligned mo-
tion. Therefore, it is essential to introduce a text-motion-
aligned pre-training method, ensuring that the trained text
encoder can output textual embeddings more conducive to
accomplishing text-to-motion generation tasks, instead of
adapting from the image-text-aligned model.

Motivated by Petrovich et al. (2023), we pre-train a motion
encoder and a text encoder via aligning Text and Motion in a
contrastive way (Radford et al., 2021) through a Alignment
target, named TMA. Different from previous work (Zhang
et al., 2022; Tevet et al., 2023; 2022; Jiang et al., 2023), the
text embedding of TMA plays the role of motion-aware lan-
guage prior other than the embedding from CLIP or LLMs,
which is beneficial for generating text-aligned motions. In
this work, the TMA is re-trained by ourselves. We leave the
training details in Appendix D.

Based on the pre-trained TMA, we further explore enhanc-
ing the alignment between the given text and generated
motions from two aspects, which are shown in Figure 4(c).
The first is replacing the CLIP text encoder with the TMA
text encoder. Compared with the CLIP text encoder, the pre-
trained TMA text encoder provides text embeddings aligned
better with dynamic human motions. With the motion-aware
language prior, our model can capture motion sequential-
ity, directions, and dynamics better than text-image-aligned
language prior. The second is introducing the motion-text
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Figure 4: Technical comparisons on introducing language priors of existing methods.

alignment supervision with TMA. When training, we feed
the generated motion and the given text into the pre-trained
TMA motion encoder and text encoder, respectively, to ob-
tain both motion and text embeddings. Then, we calculate a
contrastive loss Lalign (Radford et al., 2021) for supervising
the motion-text alignment. Accordingly, the weighted con-
trastive loss ηLalign is added to the optimization objective,
where η is the hyper-parameter. The proposed optimization
objective provides explicit sequence-level supervision for
the text-motion alignment.

3.6. Model Training and Inference

Model Training. In the first stage, similar to the vanilla VQ
(Eqn. 3), H2VQ is optimized by,

L = ∥m− Dec
(
QH(zH ; CH),QB(zB ; CB)

)
∥22

+α
(
∥zH − sg(ẑH)∥22 + ∥zB − sg(ẑB)∥22

)
.

(6)

The RVQ of the facial motion auto-encoder is trained in a
similar way. Besides, the codebooks are optimized by EMA
and Code ReSet techniques. In the second stage, we train
the Hierarchical-GPT with both the cross-entropy loss LCE

and the text-motion alignment loss Lalign, the overall loss
as LCE + ηLalign.

Model Inference. In the inference phase, we first extract
the text embedding from TMA. Then we feed the TMA
textual embedding as the initial token into the Hierarchical-
GPT, which then predicts discrete body and hand tokens in
an auto-regressive fashion. The body and hand tokens are
fed into the Body-hand Decoder to generate text-aligned
human motion. Ultimately, incorporating the facial mo-
tions produced by the facial motion genrator, we output the
comprehensive whole-body motions.

4. Experiments
In this section, we evaluate the proposed HumanTOMATO
model on both whole-body and body-only motion genera-
tion benchmarks. Besides, we will also present ablations on
each technical design of our method. We structure the exper-
iments to answer the following research questions (RQs).

• RQ1: Does our proposed HumanTOMATO model out-
perform existing generation methods on the whole-body
motion generation task?

• RQ2: How do hierarchical representations of body-hand
motions help improve the quality of motion generation?

• RQ3: How does the pre-trained text-motion aligned
model help the text-motion alignment?

• RQ4: Why are the proposed evaluation metrics on align-
ment between generated motions and given texts more
accurate and challenging?

4.1. Datasets and Evaluation

4.1.1. WHOLE-BODY AND BODY-ONLY DATASETS

Motion-X (Lin et al., 2023b) is the largest 3D whole-body
motion-text dataset, consisting of 95,642 high-quality hu-
man motions along with 95,642 text captions. In Motion-X,
GRAB (Taheri et al., 2020) is a representative subset with
vivid grab motions, which is used for our ablation study.

HumanML3D (Guo et al., 2022) is currently the largest
3D body-only motion-text dataset, which consists of 14,616
human motions along with 44,970 text captions.

We take the Motion-X dataset to evaluate the whole-body
motion generation task and the HumanML3D dataset to
perform ablations for verifying the generalizability of our
proposed solution to the body-only motion generation set-
ting. We follow Lin et al. (2023b); Guo et al. (2022) to split
these datasets into training, validation, and test sets with
proportions of 80%, 5%, and 15%.

4.1.2. EVALUATION DETAILS

We quantitatively evaluate the generated motions from three
aspects. (1) The quality of the generated motions. Frechet
Inception Distance (FID) is adopted to measure the gap be-
tween the distributions of the generated and real motions. (2)
Text-Motion Alignment. Matching-score is used to mea-
sure the similarity between texts and the generated motions

6



HumanTOMATO: Text-aligned Whole-body Motion Generation

and R-Precision(B) is used to measure the motion-to-text
retrieval accuracy in a B-size retrieval pairwise motion-text
set. (3) Generation diversity. We use Diversity to evaluate
the average extracted feature Euclidean distances among
300 randomly sampled motion pairs and use MModality to
measure the generation diversity within the same given text.

To better evaluate the alignment between generated motions
and texts, we additionally introduce new metrics to evaluate
text-motion alignment from two aspects: (1) More accu-
rate evaluation. Previous works used the feature extractor
from Guo et al. (2022) to calculate the R-Precision(B) and
Matching-score. However, its retrieval accuracy is not as ac-
curate as the TMA described in Section 3.5 (comparison in
Section 4.6). Therefore, we introduce TMA-R-Precision(B)

and TMA-Matching-score to evaluate the text-motion align-
ment, where the feature extractor is replaced by TMA but
not the retriever in Guo et al. (2022). (2) More challenging
evaluation metrics. Retrieval of corresponding texts in a
32-size set is easier than in a larger size set. Therefore, we
add a new retrieval setting as B = 256. The comparison
between these two settings will be shown in Section 4.6.

We compare our HumanTOMATO with existing state-of-
the-art baselines. (1) TEMOS: TEMOS (Petrovich et al.,
2022) is a VAE-based text-to-motion generation framework.
(2) T2M-GPT: The T2M-GPT (Zhang et al., 2023) method
learns discrete representations for motions at first, and then
introduces a GPT-like codes prediction mechanism in the
second stage with CLIP prior. (3) MotionDiffuse: Motion-
Diffuse (Zhang et al., 2022)is a pioneering work that intro-
duces diffusion models into the field of action generation,
predicting noise in each iteration. (4) MDM: MDM (Tevet
et al., 2023) is also early research using diffusion models to
generate motion, predicting ground truth in each iteration.
(5) MLD: Motivated by latent diffusion models (Rombach
et al., 2022), MLD (Chen et al., 2023b) learns motion latent
representations for motion VAE via a diffusion model. For
facial motion generation, as this is the first attempt to gener-
ate whole-body motion, we take both cVAE-based (Petro-
vich et al., 2022) and diffusion-based (Tevet et al., 2023)
methods as baselines. Both methods are extended from
previous motion generation models. More details of facial
motion generation baselines are in Appendix B.5.

4.2. Implementation Details

Motion Representation. For body-hand motion representa-
tions, inspired by the motion representation (H3D-Format)
in Guo et al. (2022), we expand the body-only representation
to holistic body-hand motion representation. Specifically,
the i-th pose is defined by a tuple of root angular velocity
ṙa ∈ R along the Y-axis, root linear velocities (ṙx, ṙz ∈ R)
on XZ-plane, root height ry ∈ R, local joints positions
jp ∈ R3N−1, and velocities jv ∈ R3N , where N denotes

FID↓ Top1↑ Top2↑ Top3↑ Diversity↑ Matching-score↓
GT - 0.277 0.428 0.507 10.304 6.065

cVAE 1.530 0.084 0.114 0.165 6.316 9.973
Diffusion 3.342 0.064 0.109 0.155 8.657 13.410

Ours 1.044 0.200 0.311 0.374 7.175 6.997

Table 4: Comparison with baselines on facial motion generation.

FID Top1(32) Top3(32) TMA Top1(256) TMA Top3(256)

Separate 2.209 (.047) 0.359 (.002) 0.666 (.002) 0.306 (.003) 0.552 (.002)
Ours 1.174 (.015) 0.416 (.009) 0.703 (.007) 0.399 (.000) 0.638 (.004)

Table 5: Separate v.s. Holistic modeling strategy on the body-hand
motion. The test Mean (±std.) values are reported.

the number of whole body joints, including both body joints
and hand joints. For face motion representations, we fol-
low the Flame Format (Kim et al., 2023) and use f ∈ R50

to represent the face expression. Thus, we represent the
whole-body motion as mi = {ṙa, ṙx, ṙz, ṙy, jp, jv, f}. We
conduct a set of ablation studies on HumanML3D based on
VAE and VQ-VAE to justify the motion format. Please refer
to Appendix B.1 for more details.

Experiment Details. All our experiments are trained with
the AdamW (Loshchilov & Hutter, 2019) optimizer using
a fixed learning rate of 10−4 on 4× NVIDIA Tesla A100-
80GB GPUs and are tested on 1× NVIDIA Tesla A100-
80GB GPU. Training batch size is set to 256 for both H2VQ
and Hierarchical-GPT stages. Each experiment is trained
for 6,000 epochs during H2VQ stages and 2,000 epochs
during Hierarchical-GPT stages. Two codebook sizes are
both 512. Please refer to Appendix B for more details.

4.3. Main Results Analysis (RQ1)

We answer RQ1 from both quantitative and qualitative as-
pects. (1) Quantitative results. We quantitatively compare
our method with baselines from body-hand motion genera-
tion quality, text-motion alignment, and diversity, which are
shown in Table 1. The metrics show that our method enjoys
good generation quality and text-motion alignment (9.2% ↑
TMA-R-Precision(256) Top3 v.s. best baseline). The mean
values are reported in Table 1. The standard values are
reported in Appendix F. (2) Qualitative results. We com-
pare our method with MLD (Chen et al., 2023b) and T2M-
GPT (Zhang et al., 2023). The comparison results shown
in Figure 5 and Figure 6 demonstrate that our method has a
stronger ability on the generation quality of different body
parts (hand, body, and face). For the “Flying Kick”
case, MLD and T2M-GPT fail to generate desirable mo-
tions, but our method achieves it. For the second case,
MLD fails to generate “forward” motion, and motions gen-
erated by T2M-GPT walk backward first and finally walk
forward. In contrast, HumanTOMATO generates a vivid
motion corresponding to textual descriptions. For facial
case analysis, our approach wins baselines on generation
quality (0.486↓ on FID) and semantic alignment (20.9↑
on Top3). the results of cVAE tend to be over-smoothing,
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FID↓ R-Precision(32) TMA-R-Precision(256) Matching
Score ↓ TMA-Matching

Score ↓ MModality↑ Diversity↑Top1↑ Top2↑ Top3↑ Top1↑ Top2↑ Top3↑
GT - 0.500 0.708 0.814 0.407 0.578 0.673 2.888 0.768 - 11.087

TEMOS 9.147 0.279 0.442 0.555 0.258 0.389 0.444 5.482 0.928 1.195 9.764
T2M-GPT 1.366 0.368 0.553 0.655 0.310 0.446 0.527 4.316 0.881 2.356 10.753

MDM 3.800 0.352 0.547 0.634 0.310 0.430 0.530 4.050 0.840 2.530 11.400
MLD 3.407 0.385 0.571 0.683 0.333 0.477 0.561 3.901 0.883 2.448 10.420

MotionDiffuse 1.129 0.391 0.587 0.695 0.368 0.493 0.584 3.950 0.829 1.654 10.580
HumanTOMATO 1.174 0.416 0.603 0.703 0.399 0.555 0.638 3.894 0.809 1.732 10.812

Table 1: Main results of motion generation on the Motion-X dataset.

Face

Left
hand

Right
hand

(a) Text:  Flying Kick, concentratingly.

MLD T2M-GPT HumanTOMATO

(b) Text:  a person walks forwards, then suddenly, as if bumping into something, starts walking backwards, fearfully.

MLD T2M-GPT HumanTOMATOFace

Left
hand

Right
hand

Figure 5: Qualitative comparisons with SOTA models trained on Motion-X. HumanTOMATO supports face
motion generation and has better performance on natural hand motion generation and text-motion alignment.

Quantizer v.-err.↓ FID↓ Top3↑
VQ 0.639 0.650 0.395

RVQ 0.605 0.462 0.437
Table 2: Ablation on different
face tokenizers.

Codebook size 512 1024 4096
VQ 140.7 139.3 134.2

RVQ 110.9 111.2 116.8
H2VQ 93.0 83.9 84.9

Table 3: Ablation on scaling
the codebook size (MPJPE).

(a) Pushing over during sitting, angrily.

(b) Simultaneously listening to others 
and walking, sadly.

cVAE

Diffusion

Ours

cVAE

Diffusion

Ours

Figure 6: Comparisons with
baseline methods on face mo-
tion generation.

separate face body-hand face
modeling MPJPE↓ MPJPE-body ↓ MPJPE-hand↓ FID↓ v.-err. ↓ FID ↓
% 108.31 72.02 42.50 0.45 1.368 1.406
" 92.97 62.34 37.20 0.20 0.605 0.462

Table 6: Ablation on whether modeling with facial motion separately.

thereby diminishing the expressiveness of facial dynamics.
Conversely, the diffusion-based method often results in in-
accurate generations of jaw pose, subsequently distorting
facial expressions. In contrast, our method demonstrates the
capability to synthesize dynamic and vivid facial motions
well aligned with the given facial texts. As shown in Table 2
(v.-err. means vertices error), our hierarchical design on
face motions is better than vanilla VQ (0.188↓ FID). Fur-
thermore, we explore the holistic modeling strategy of body
and hand motions. We compare our method with modeling
body and hand motions separately. As shown in Table 5,
our proposed holistic modeling strategy outperforms the
separately modeling strategy (details in Appendix J). We
also verify the rationality of the separate modeling between
body-hand and facial motions in Table 6.

4.4. Ablation on Hierarchical Representations (RQ2)

We compare the reconstruction result of our H2VQ with the
Vanilla VQ (512 or 1024 codebook size) and RVQ methods
on three datasets in Table 7. We take the commonly used
MPJPE metric (Gower, 1975; Lin et al., 2023b; Chen et al.,
2023b) to evaluate the reconstruction performance. As can
be seen in Table 7, increasing the size of codebook naı̈vely is
almost in vain or even worse for motion reconstruction. The

hierarchical modeling strategy improves the reconstruction
performance significantly when learning informative low-
dimensional representations (∼ 32.7% ↓MPJPE v.s. VQ).
Moreover, our H2VQ is better than RVQ in reconstructing
whole-body motions, with gains mainly coming from the
modeling of body and hand discrete codes explicitly. When
verifying the key insight of our hierarchical modeling on
body-only datasets, in contrast to HumanML3D only includ-
ing body-part motions, we compare the Vanilla VQ-VAE
with the RVQ technique to verify our motivation in Ap-
pendix G. Additionally, we also explore how the scaling of
the codebook size affects the performance of all quantiza-
tion methods. Table 3 shows that the naı̈ve scaling of the
codebook is almost in vain for vector quantization, and the
carefully designed H2VQ reduces errors by about 20%.

4.5. Text-motion Aligned Model As a Prior (RQ3)

Here, we evaluate our core design of introducing a pre-
trained text-motion aligned model as a prior. Ablation re-
sults in Table 8 show that our introduced motion-aware prior
benefits the alignment between the generated motions and
texts. Visualization results in Appendix H show that our
key design significantly helps capture the motion dynamic
clues, especially on sequentiality, directions, and dynamics.
We provide more empirical evidence to support the claim.
We measure the text-similarity between two input cases.
The similarity between “walking in a clockwise circle” and
“walking in a counter-clockwise circle”: is 0.98 (CLIP) vs.
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Motion-X GRAB HumanML3D
All↓ Body ↓ Hand↓ All ↓ Body ↓ Hand ↓ Body ↓

Vanilla VQ (512) 140.66 92.20 46.45 78.23 38.29 31.48 77.21
Vanilla VQ (1024) 139.33 91.77 46.40 76.01 37.34 29.89 71.34

RVQ (512×2) 110.94 73.97 40.01 62.94 31.12 27.28 63.05
H2VQ (512×2) 92.97 62.34 37.20 46.74 24.33 24.59 -

Table 7: Comparison of the motion reconstruction errors (MPJPE in mm) of different quantization methods on
Motion-X, GRAB, and HumanML3D. Our H2VQ shows significant improvements.

embedding supervision FID ↓ R-Precision(32) TMA-R-Precision(256) Matching- TMA-Matching-
Top1 ↑ Top2 ↑ Top3 ↑ Top1 ↑ Top2 ↑ Top3 ↑ score ↓ score ↓

GT 0.002 0.500 0.708 0.814 0.407 0.578 0.673 2.888 0.768
CLIP % 1.086 0.405 0.588 0.695 0.345 0.490 0.573 3.917 0.844
TMA % 1.290 0.416 0.596 0.699 0.395 0.550 0.637 3.950 0.815
TMA " 1.174 0.416 0.603 0.703 0.399 0.555 0.638 3.894 0.809

Table 8: Ablation on a pre-trained text-motion-aligned model for motion generation on Motion-X. Both TMA
embedding and text-motion alignment supervision help generate text-aligned motions.

Top1 Top2 Top3 Top5 Top10
Top-K

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R-
Pr

ec
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Methods
Guo et al. (B=32)
TMR (B=32)
Guo et al. (B=256)
TMR (B=256)

A 

A

Figure 7: Comparison with existing met-
rics on Motion-X. Existing evaluation met-
rics (Guo et al., 2022) are illustrated in red,
and ours are in green. The B = 32 and
B = 256 settings for retrieval are denoted
as “ •−−” and “ ▲−−” respectively.

0.81 (TMA). The margin shows the sensitivity of TMA in
different motion directions.

4.6. Analysis on Evaluation Metrics (RQ4)

We answer RQ4 from two aspects. (1) Our TMA-R-
Precision(B) and TMA-Matching-score(B) metrics are
more accurate than the R-Precision(B) and Matching-
score metrics (Guo et al., 2022). As shown in Figure 7, our
TMA (in blue) shows stronger retrieval ability than Guo et al.
(2022)’s retriever (in red) on both B = 32 and B = 256
settings. Moreover, Guo et al. (2022)’s retriever shows a
larger retrieval gap than TMA when changing B = 32 to
B = 256. Therefore, TMA can evaluate text-motion align-
ment more accurately than Guo et al. (2022). (2) B = 256
is a more challenging retrieval setting than the B = 32
setting. Retrieving text from motion in 32 text candidates
is much easier than 256 candidates. As shown in Figure 7,
when changing B = 32 to B = 256, the retrieval accu-
racy of both retrievers declines due to the increased size
of the retrieval set, which makes the evaluation protocols
more challenging. Overall, with a higher upper limit of
retrieval capabilities, TMA-R-Precision(256) can better eval-
uate the performance of different methods on text-motion
alignment. Additionally, TMA-R-Precision(B) and TMA-
Matching-score are also more accurate and challenging met-
rics on the body-only dataset (HumanML3D). More details
and numerical comparisons are in Appendix I.

4.7. Generalization Ability on Text Descriptions

For the “a man sleeps” cases, as shown in Figure 8, there is
no case describing the sleeping motion in the training dataset
directly. The successful case is similar to ”the person is lying
on the ground.”, which we think is more reasonable than
baselines. The result is mainly because sleeping and lying
are similar at the semantic level, due to the good language
prior of pre-trained TMA. We additionally provide some
videos to verify the generalization ability of different texts in
the supplementary video from different aspects: (i) different

T2M-GPT

MLD

Ours

�

Figure 8: Zero-shot capability comparisons. Given the “a man
sleeps”, HumanTOMATO generates better text-aligned motions.

subject descriptions, like “the guy”, and “the woman”; (ii)
the robustness of different tenses, like simple or continuous
tense. The results show good robustness and generalization
ability on diverse or zero-shot texts.

5. Conclusion
This work studies the problem of text-driven whole-body
motion generation. We carefully clarify the existing chal-
lenges in generating vivid text-aligned whole-body motion
on motion reconstruction and text-motion alignment. To
tackle the challenges, two main technical contributions are
proposed: (1) a Holistic Hierarchical VQ-VAE (H2VQ) and
a Hierarchical-GPT for fine-grained body and hand motion
reconstruction and generation, and (2) a pre-trained text-
motion-alignment model to help generate text-aligned mo-
tion. We conduct comprehensive experiments and ablations
to verify the superiority and effectiveness of the proposed
solution on both Motion-X and HumanML3D datasets. Our
experimental results show that HumanTOMATO can gener-
ate vivid text-aligned whole-body motion. The limitations
are discussed in Appendix K. Our future work mainly fo-
cuses on designing more efficient algorithms (Dai et al.,
2024a) and scaling the motion-text data pairs via captioning
motions (Chen et al., 2024) automatically.
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Impact Statement
On the one hand, we explore the whole-body motion gener-
ation task and leverage the large-scale whole-body mocap
dataset Motion-X to pre-train a motion-text-aligned prior.
These could be a foundation for the field-related research
community. Besides, based on the motion reconstruction
via the proposed discrete latent compression scheme of
human motions and large-scale motion data training, the
pre-trained HumanTOMATO can provide motion prior, like
VPoser (Pavlakos et al., 2019). It can also benefit Motion
Capture models (Lin et al., 2023c; Yang et al., 2023) denois-
ing and reducing the impact of noisy annotation. On the
other hand, expressive, text-controllable, and high-quality
motion generation can be implemented for many practi-
cal application scenarios, such as motion generation for
games and animations, robotics, and motion interaction. In
terms of ethical considerations and potential implications
for society, the Motion-X dataset is mainly captured from
Internet videos. Consequently, the motions we generate
might be a bit similar to those online videos, potentially rais-
ing copyright concerns. This work primarily concentrates
on developing algorithms and generating motions without
portraits, without aiming to discuss these issues in depth.
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A. Related Work
A.1. Human Motion Generation.

Generating human motions (Zhu et al., 2023) can be divided into two main types according to inputs: motion synthesis (1)
without any conditions (Yan et al., 2019; Zhao et al., 2020; Zhang et al., 2020; Cai et al., 2021) and (2) with some given
conditions, such as text, audio, music, and interactive scenes (Ahn et al., 2018; Petrovich et al., 2022; Zhang et al., 2022;
Chen et al., 2023b; Guo et al., 2022; Ahuja & Morency, 2019; Ghosh et al., 2021; Zhang et al., 2023; Lee et al., 2023; Yi
et al., 2023; Wang et al., 2022a; Zhou & Wang, 2023; Wang et al., 2022b; Xu et al., 2022; Tseng et al., 2023; Siyao et al.,
2022; Liu et al., 2022; Xu et al., 2023b; Dabral et al., 2023; Guo et al., 2023; Xie et al., 2024; Zhou et al., 2023; Zhi et al.,
2023; Peng et al., 2023; Liu et al., 2023; Dai et al., 2024b). The second type will be more challenging and applicable due
to either extracting and understanding motion and conditions or cross-modality alignment. To generate diverse, natural,
high-quality human motions, many generative models have been explored by Wang et al. (2020); Hong et al. (2022); Yu et al.
(2020); Zhang et al. (2023). Recently, diffusion-based models significantly improved the motion generation performance
and diversity (Chen et al., 2023b; Tevet et al., 2023; Zhang et al., 2022; Wang et al., 2023c; Chen et al., 2023a; Xu et al.,
2023a; Li et al., 2023a;b) with stable training. However, as human motion is a kind of high-dimensional spatio-temporal
signal (Li et al., 2021a), these methods are still hard to tackle the motion data easily. Chen et al. (2023b); Zhang et al. (2023)
learn low-dimensional motion latent in an encoding-decoding fashion, like VAE and VQ-VAE, in the first stage. Then,
text-aligned motion latent representations could be easier to learn in the second stage. For holistic human motion generation
with facial expressions and hand gestures, co-speech expression generation and gesture generation from human speech is
also an arising topic in this area (Habibie et al., 2021; Yi et al., 2023). Specifically, TalkSHOW (Yi et al., 2023) takes the
first attempt for face, hand, and body motion modeling via separate models since the facial expressions (e.g., lip movement)
are strongly correlated with the speech signals (Yu et al., 2023; Wang et al., 2023b), but the body and gesture motions are
many-to-many mappings. Bearing the difficulties in jointly modeling the whole-body motions and the lack of whole-body
data, there are no existing methods to explore text-driven whole-body motion generation.

A.2. Text-driven Motion Generation.

Text plays an important role in controlling human motion generation since it can describe the actions, directions, and dynamic
body-part clues via a natural interaction way. Based on existing action recognition and motion capture datasets (Plappert
et al., 2016; Mahmood et al., 2019; Liu et al., 2019; Punnakkal et al., 2021; Guo et al., 2022), text-driven motion generation
has achieved rapid progress in recent years. The input text went from the original single-action category to multiple actions
and arbitrary natural language (Ahn et al., 2018; Lee et al., 2023; Lu et al., 2022; Petrovich et al., 2022; Kim et al., 2023).
The generated motions also range from upper-body motions to full-body motions (additionally with global trajectories and
lower-body motions) and from short-time actions to long-term motions (Ahuja & Morency, 2019; Chen et al., 2023b; Zhang
et al., 2023). Early attempts (Tevet et al., 2022; Guo et al., 2022) heavily rely on the given motion-text datasets, making
the generated motion hard to generalize. For open-vocabulary motion generation, some works try to introduce large-scale
pre-trained models (e.g., CLIP (Radford et al., 2021), and LLMs (Floridi & Chiriatti, 2020)) to make the text encoding
powerful (Lucas et al., 2022; Jiang et al., 2023; Tevet et al., 2022; Hong et al., 2022; Lin et al., 2023a). However, existing
methods suffer from two main issues. First, text-driven holistic motion generation is under-explored, while coherent hand
gestures and facial expressions are essential to whole-body motions. Second, the distribution of motion is quite different
from images, making CLIP prior weak in text-motion alignment, while LLMs only have textual priors. That is to say,
previous efforts have not thoroughly explored motion-text alignment. Accordingly, modeling whole-body motion and
exploring how to use motion-text-aligned priors are urgent for the community.
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B. Implementation Details
B.1. Motion Representation

The raw motion representation consists of two parts (Aberman et al., 2020), static part (joints offsets) and dynamic part (joint
movements) respectively. We further define motion generation tasks as generating diverse and vivid joint movements based
on a uniform skeleton. We follow Guo et al. (2022) (i.e. H3D-Format) to randomly select a skeleton as a target skeleton,
including body and hand joints, and retarget each motion sequence to it. As all motions share the same skeleton, in this way,
we set the local joint offsets for all motions to be unchanged. As a pose can be decomposed as twist and swing (Li et al.,
2021b), vanilla inverse kinematic (IK) algorithms will ignore the twist rotation, which will lead to the wrong supervision of
joint movements. To verify whether rotation regularization helps motion generation and reconstruction, we take motion
reconstruction as a pretext task. For motion reconstruction, we take a transformer-based VAE (Chen et al., 2023b) and
convolution-based VQ-VAE (Zhang et al., 2023) as the architecture to evaluate the motion reconstruction performance on
HumanML3D. As shown in Table 9, motion without rotation information reduces the reconstruction error. Besides, the
results in Table 9 show that velocity is beneficial to motion reconstruction.

As discussed in the main paper (Section 4.2), for body-hand motion representations, we take the H3D-Format (Guo et al.,
2022) as a basis and expand the body-only representation to holistic body-hand motion representation. Specifically, the
i-th frame pose is defined by a tuple of root angular velocity (ṙa ∈ R) along Y-axis, root linear velocities (ṙx, ṙz ∈ R) on
XZ-plane, root height ry ∈ R, local joints positions (jp ∈ R3N−1), and velocities (jv ∈ R3N ), where N denotes the number
of joints. For face motion representations, we follow Flame Format (Kim et al., 2023) and use f ∈ R50 to represent the face
expression. Thus, we represent the whole-body motion at frame i as mi = {ṙa, ṙx, ṙz, ṙy, jp, jv, f}.

Input Format MPJPE PA-MPJPE ACCEL.

VAE
H3D-format 49.51 39.47 7.131

w/o rotation, w/o velocity 51.43 39.47 7.27
w/o rotation 46.84 36.16 6.603

VQ-VAE
H3D-format 78.24 45.77 8.757

w/o rotation, w/o velocity 76.34 39.98 8.622
w/o rotation 68.86 39.97 8.274

Table 9: Ablation study of different motion representations on the Humanml3D dataset.

B.2. Implementation Details of Hierarchical Motion VQ-VAE

We take Conv1d(·) with skip connection as the basic module for both the body encoder and the hand encoder and downsample
the feature from the body part by 2× and the feature from the hand part by 4×, respectively. In detail, at each down-sampled
timestamp, the number of body tokens is 2, and the number of hand tokens is 4. Therefore, we predict two body tokens at
each down-sampled timestamp. The codebook size for both hand quantizer and body quantizer is set to 512× 512. That is
to say, K = 512 and the dimension of each code is 512. We take the AdamW (Loshchilov & Hutter, 2019) as an optimizer
with a fixed learning rate 1× 10−4, batch size of 256, and exponential moving constant λ = 0.99. The α in H2VQ loss L
(Eqn. 6) is set as 0.02. The body-hand decoder upsamples the feature by 2×. All upsampling operation in the decoder is the
nearest upsampling with a scaling factor of 2×. Training the H2VQ takes about 8 hours on 4× NVIDIA Tesla A100-80GB
GPUs.

B.3. Implementation Details of the Hierarchical-GPT.

We employ 18 transformer layers with a dimension of 1024 and 16 heads. Since the design of different downsampling rates
between two codebooks, we simply concat the tokens from pre-trained H2VQ stage and set the maximum length of the code
index sequence as 149.

Training. We combine the tokens from the hand codebook C1 and the body codebook C2 and feed them into the transformer,
in which we employ a causal mask with maski,j = −∞× 1(i < j) + 1(i ≥ j), where 1(·) is the indicator function, to
prevent information leakage from the following tokens. We employ the CLIP-ViT-L-14 model and pre-trained TMA Text
encoder as the text encoder to encode the text, respectively, and freeze them in training. All the trainings are conducted on
4× NVIDIA Tesla A100-80GB GPUs and cost 60 hours.
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Inference. When performing inference, we feed the text encoder with raw texts and get the text embedding. Our Hierarchical-
GPT predicts motion tokens in an auto-regressive fashion with the start token of text embedding. All our tests and inferences
are conducted on 1× NVIDIA Tesla A100-80GB GPU.

B.4. Facial Motion Generator

As discussed in the main paper (Section 3.3), similar to the body-hand motion generation pipeline, we take a two-stage
strategy to generate facial motions. In the first stage, extended from our hierarchical modeling of body-hand motion,
we train a Residual-VQVAE (RVQ) for facial motion compression and reconstruction. As the facial motion cannot be
disentangled as body and hand motions for H2VQ, we take the 2-layer RVQ as our quantizer. In the second stage, we learn a
facial GPT for facial motion token prediction. For each down-sampling timestamp, we predict the first-level tokens first
and then the second level, which is a kind of coarse-to-fine generation fashion (Wang et al., 2023a). With the encoded
facial motion mF = [mF

1 ,mF
2 , · · · ,mF

L ], we have corresponding code indices, denoted as I1 = [I11, I
1
2 , · · · , I1L/r] and

I2 = [I21, I22, · · · , I2L/r], where r = 4 denotes the down-sampling rate, which is used to convert the input motion sequence to
discrete motion tokens. Note that all superscripts refer to RVQ levels. Therefore, as shown in Figure 2(b), the code indices
prediction can be formulated as an auto-regressive prediction problem:

P (IF−i,F−ii
1,2,··· ,L/r | t) =

L/r∏
s=1

P (IF−i,F−ii
s | IF−i,F−ii

<s , t)

=

L/r∏
s=1

P (Is | IF−i,F−ii
<s , t) · P (IF−ii

s | IF−i
s , IF−i,F−ii

<s , t),

(7)

where we first predict the first level token index and then predict the second level at each down-sampled timestamp s.

B.5. Compared Facial Generator Baselines

We introduce VAE-based and diffusion-based facial motion generation baselines for compassion with our facial motion
generator. The details are as follows.

B.5.1. FACIAL CVAE

Text
Encoder

Facial
Encoder

Facial
Decoder

Facial Motion

Text

Figure 9: Facial cVAE Motion Generator.

We take a text-conditioned facial VAE (cVAE) (Petrovich et al., 2022) as a comparison. As shown in Figure 9, the facial
VAE consists of three components. (1) A facial encoder. The Facial is a 6-layer transformer. The input facial motion is
concatenated with a µF token and a ΣF token. (2) A text encoder. The Facial is composed of a pre-trained DistllBERT (Sanh
et al., 2019) and a 6-layer transformer. The input DistillBERT feature is concatenated with a µT token and a ΣT token. (3)
A facial decoder. The 6-layer transformer-based facial decoder generates facial motions from the zF or zT vector, which can
be sampled from Gaussian distribution N (µF ,ΣF ) or N (µT ,ΣT ) via re-parameterizing trick (Kingma & Welling, 2013).
The training loss consists of three components. (1) facial motion reconstruction loss:

Lrec = SmoothL1(mF , m̂F ),

where mF , m̂F are facial motions and reconstructed facial motions and SmoothL1(·) is the SmoothL1-Loss. (2) KL Loss:

LKL =KL(N (µF ,ΣF ),N (0, I)) + KL(N (µT ,ΣT ),N (0, I))

+ KL(N (µF ,ΣF ),N (µT ,ΣT )) + KL(N (µT ,ΣT ),N (µF ,ΣF )),
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where KL(·) is the Kullback-Leibler divergence function and N (0, I) is the Gaussian distribution. (3) Cross-modal
embedding similarity loss:

LE = SmoothL1(zF , zT ).

The overall training loss is L = Lrec + λ1LKL + λ2LE , where λ1 = λ2 = 1 × 10−5. In the inference stage, the text
encoder encodes text embedding zT first and then feeds it into the facial decoder to obtain the facial motions.

B.5.2. DIFFUSION-BASED FACIAL MOTION GENRATOR

We take a text-conditioned facial motion diffusion model (Tevet et al., 2023) as a comparison. In this part, we simplify the
x = mF to represent facial motions. As shown in Figure 10, the diffusion model takes a text embedding as a condition
and then concatenates the embedding and motion linear embedding xt at timestamp t together to the transformer encoder.
In each iteration, the output of the transformer encoder will be projected by a linear layer to predict the x0. Note that the
diffusion model here is used to predict x0 but not noise. After T = 1000 step denoising, the model will return the generated
facial motion. All parameter settings follow Tevet et al. (2023).

MLP

Text embedding

t

MLP

Transformer Encoder

Linear Layer

��
1 ��

2 ��
3 ��

�

�0
1 �0

2 �0
3 �0

�

Linear Layer

Figure 10: Diffusion-based Facial Motion Generator.
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C. Algorithm Flow of H2VQ and comparison with Residual Vector Quantization
C.1. Training and Inference of H2VQ

In the main paper, we introduce the training and inference details in Section 3.2. For reading convenience, we provide the
training and inference procedure of our Holistic Hierarchical VQ-VAE (H2VQ-VAE) in Algorithm 1 and Algorithm 2.

Algorithm 1: Training procedure of Holistic Hierarchical VQ-VAE (H2VQ-VAE)

Input: The initialized hand codebook C1, body codebook C2, hand quantizer QH(·; CH), body quantizer QB(·; CB)
(| CH |=| CB |= K), H2VQ-VAE, the input motion m, the optimization iterations Imax.

Output: The optimized H2VQ-VAE network Θ, codebooks CH , CB .
for I = 0, 1, . . . , Imax do

zH = EncH(mH);
zB = EncB(m

B);
ẑH = QH(zH ; CH);
ẑB = QB(Conv1d(Concat(Transform(ẑH), zB)); CB);
m̂ = Dec(ẑB , ẑH);
Θ = Θ−∇Θ∥m− Dec(m̂)∥22 + α

(
∥zH − sg(ẑH)∥22 + ∥zB − sg(ẑB)∥22

)
;

Optimize two codebooks CH , CB via EMA and Code Reset;

return H2VQ-VAE network Θ.

Algorithm 2: Inference procedure of Holistic Hierarchical VQ-VAE (H2VQ-VAE)

Input: The pre-trained H2VQ-VAE network Θ, body and hand code indices sequence IB = [IB1 , I
B
2 , · · · , IBL/r, End]

and IH = [IH1 , IH2 , · · · , IHL/r, End], codebook CH = {k, e1(k)}k∈[K], CB = {k, e2(k)}k∈[K].
Output: the noise prediction network ϵθ.
ẑH ← Query CH with IH ;
ẑB ← Query CB with IB ;
return motion Dec(ẑB , ẑH).

C.2. Comparsion with Residual Vector Quantization (RVQ)

As can be seen in Appendix C.1, our H2VQ consists of two codebooks CH and CB with size K. The intuitive design insight
is that the space of our code combination is O(K2). However, scaling the size of the codebook to 2K only has the vector
space of size O(K). Therefore, our H2VQ enjoys the scaling of latent code size with low memory cost. An alternative way
to scale the codebook size efficiently is the 2-level Residual Vector Quantization (RVQ) technique. As shown in Algorithm 3,
RVQ quantized the residual error vectors recurrently in each level, which is also a hierarchical modeling strategy. However,
RVQ does not model the hand and body motions explicitly, which makes it cannot reconstruct the whole-body motions better
than H2VQ. For more details, please refer to Zeghidour et al. (2021). The experimental comparisons are in Appendix G.

Algorithm 3: Residual Vector Quantization (RVQ)
Input: The output of the encoder z = Enc(m), Nq-level quantizers Qi(·) (i = 1, 2, · · · , Nq).
Output: Quantized vector ẑ.
ẑ = 0;
res = z;
for i = 1, 2, . . . , Nq do

ẑ + = Qi(res);
res − = Qi(res);

return ẑ.
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D. Details about Text-motion Alignment Pre-training
In this section, we will detail the training details of the TMA model and evaluate our pre-trained alignment model. Our
trained TMA model demo is in the supplementary video.

D.1. Training Details

Here, we detail the training procedure on how to train a text-whole-body-motion alignment model. Recall a text-to-motion
model, TEMOS (Petrovich et al., 2022), the VAE-based architecture consists of a motion encode, a text encoder, and a
motion decoder. The training objective in TEMOS is the weighted sum of LT = Lrec + λKLLKL + λELE , where the
three loss items are reconstruction loss, Kullback-Leibler (KL) divergence loss, and cross-modal embedding similarity
loss respectively. Additionally, like Petrovich et al. (2023), we introduce an InfoNCE (Oord et al., 2018) loss term LNCE

into the optimization objective for learning text-motion-aligned representations. The InfoNCE loss aims to align pairwise
text-motion embeddings and pull the negative motion-text pairs in the batch away like Radford et al. (2021). Therefore, the
final training objective is

minLT + λNCELNCE ,

where all hyper-parameters are λKL = 1× 10−5, λE = 1× 10−5, λNCE = 1× 10−1 respectively.

Note that, in a batch, different motion samples might be similar or even repetitive. Therefore, we will filter the similar
negative samples in the InfoNCE loss. In other words, two motions with similar text descriptions (similarity higher than 0.85)
will not be treated as negative samples. Technically, a pre-trained language model will calculate the similarity between two
text descriptions si,j = ⟨ti, tj⟩, where ⟨·, ·⟩ denotes the cosine similarity. Different from Petrovich et al. (2023) choosing
MPNet1 (Song et al., 2020) as the pre-trained language model, we take the Sentence-BERT (aka sBERT2) (Reimers &
Gurevych, 2019) as the pre-trained language model, which is more accurate than MPNet.

To compare the accuracy of evaluating the similarity among sentences, we present a case study composed of 10 sentence
samples in Example 1.
Example 1. Here, we present the 10 sentence samples used for evaluating sBERT and MPNet.

[
0: ‘A human walking backwards.’,
1: ‘A person is walking backwards.’,
2: ‘Someone walks in a circle counterclockwise’,
3: ‘A person walks a full counter-clockwise circle.’,
4: ‘A human performs a tight 90◦ curve to the right.’,
5: ‘A person walks a quarter circle clockwise with 4 steps.’,
6: ‘human goes backwards starting with left’,
7: ‘A person walks backwards.’,
8: ‘a person walks in a circle to the left side.’,
9: ‘trump’

]

We calculate the cosine similarity of these 10 sentences with sBERT and MPNet, respectively. As shown in Figure 11, sBERT
reflects the sentence similarity more accurately than MPNet. For two sentences with very similar semantics, like ‘A human
walking backwards.’ and ‘A person is walking backwards.’, the similarity provided by sBERT is
0.958, while MPNet is 0.893. For two sentences completely unrelated, like ‘A human walking backwards.’ and
‘trump’, the similarity provided by sBERT is 0.132, while MPNet is 0.758. In this case, the ‘trump’ example is not a
motion description. sBERT clearly distinguishes it from other sentences, but MPNet cannot distinguish them significantly.
Therefore, the sBERT is more discriminative than MPNet in negative filtering.

D.2. Evaluation of the Alignment Model on retrieval tasks

We take the Recall@K as the main metric to evaluate the retrieval performance to evaluate the performance of the
TMA model. We evaluate both motion-to-text (M2T) and text-to-motion (T2M) retrieval performance with four main
protocols. (A) Retrieving in the full test test. (B) Retrieving in the full test test with a sBERT-score threshold (set ϵ as 0.9).
As some sentences have similar semantics, like “A man is walking straight.” and “The person walks

1https://huggingface.co/microsoft/mpnet-base.
2https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2.
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forward.”, we treat these retrieval results as positive targets if the retrieved text has a sBERT similarity higher than
ϵ = 0.9 with GT text. (C) Retrieving in the 256-size sub-test set. The 256-size retrieving set consists of one GT result and
255 negative results. (D) Retrieving in the 32-size sub-test set. Similar to Protocol C, the 32-size retrieving set consists of one
GT result and 31 negative results. The T2M and M2T retrieval evaluation results on Motion-X are shown in Table 10. The
T2M and M2T retrieval evaluation results on HumanML3D are shown in Table 11. The comparison with other text-motion
retrieval methods on the protocol (C) and protocol (D) is shown in Appendix I. The retrieval web demo on both body-only
and whole-body datasets is shown in supplementary and will be public.

T2M M2T
Recall@1 Recall@2 Recall@3 Recall@5 Recall@10 Recall@1 Recall@2 Recall@3 Recall@5 Recall@10

Protocol A 0.051 0.098 0.131 0.192 0.301 0.066 0.118 0.163 0.233 0.350
Protocol B 0.089 0.152 0.194 0.273 0.401 0.169 0.205 0.238 0.298 0.395
Protocol C 0.445 0.609 0.700 0.799 0.883 0.407 0.578 0.673 0.795 0.883
Protocol D 0.716 0.854 0.907 0.946 0.977 0.771 0.893 0.938 0.968 0.985

Table 10: Recall@K (T2M and M2T) of GT motions and texts on the Motion-X dataset.

T2M M2T
Recall@1 Recall@2 Recall@3 Recall@5 Recall@10 Recall@1 Recall@2 Recall@3 Recall@5 Recall@10

Protocol A 0.065 0.117 0.155 0.227 0.339 0.057 0.106 0.144 0.205 0.322
Protocol B 0.204 0.282 0.326 0.404 0.510 0.102 0.151 0.199 0.263 0.373
Protocol C 0.359 0.523 0.630 0.729 0.842 0.365 0.527 0.625 0.731 0.838
Protocol D 0.774 0.896 0.937 0.968 0.985 0.711 0.853 0.905 0.947 0.977

Table 11: Recall@K (T2M and M2T) of GT motions and texts on the HumanML3D dataset.
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(a) sBERT similarity of 10 sentences.

(b) MPNet similarity of 10 sentences.

Figure 11: Sentences similarity comparison between the sBERT and MPNet .
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D.3. Retrieval Ability Comparison (TMA v.s. TEMOS)

To verify the good alignment of TMA, we compare its retrieval ability with TEMOS Petrovich et al. (2022). As shown in
Table 12, the TMA enjoys a good alignment between texts and motions by the contrastive training objective, which makes it
with a larger margin than TEMOS in retrieval. This good retrieval ability provides a better alignment of two modalities, and
provide a better motion-text alignment for motion generation.

Protocol Model T2M M2T
Recall@1 Recall@2 Recall@3 Recall@5 Recall@10 Recall@1 Recall@2 Recall@3 Recall@5 Recall@10

A TEMOS 0.034 0.062 0.082 0.117 0.178 0.034 0.067 0.096 0.137 0.204
A TMA 0.051 0.098 0.131 0.192 0.301 0.066 0.118 0.163 0.233 0.350
B TEMOS 0.115 0.163 0.190 0.237 0.308 0.112 0.135 0.155 0.190 0.246
B TMA 0.089 0.152 0.194 0.273 0.401 0.169 0.205 0.238 0.298 0.395
C TEMOS 0.233 0.341 0.412 0.492 0.601 0.263 0.360 0.426 0.504 0.614
C TMA 0.445 0.609 0.700 0.799 0.883 0.407 0.578 0.673 0.795 0.883
D TEMOS 0.502 0.641 0.717 0.802 0.897 0.528 0.654 0.725 0.807 0.907
D TMA 0.716 0.854 0.907 0.946 0.977 0.771 0.893 0.938 0.968 0.985

Table 12: The Recall@K (T2M and M2T) of GT motions and texts on the Motion-X dataset (TMA v.s. TEMOS).
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E. Failure Cases of Baselines
As discussed in Section 3.5, previous methods shown in Figure 4 will fail in some scenarios. We discuss the fashion
of “Supervision by an image-text aligned prior explicitly” (Figure 4a) here. As there was no strong text-motion-aligned
pre-trained model, MotionCLIP (Tevet et al., 2022) renders the generated motions as images and then supervises the
alignment between text embeddings and image embeddings with the CLIP model. This supervision will cause the generated
motion to be over-smoothing, even stillness. We show some over-smoothing cases3,4 of MotionCLIP on here. As shown
in Figure 12, there is almost no change at all between the first frame (Figure 12(a)) and the final frame (Figure 12(b)) of
motion.

(a) The first frame of motion.

(b) The final frame of motion.

Figure 12: Visualization of MotionCLIP generated results. The first frame and the final frame of motions are shown in the
figure.

3https://github.com/GuyTevet/MotionCLIP/issues/5.
4https://github.com/GuyTevet/MotionCLIP/issues/15.
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F. More Details on Main Results (RQ1)
F.1. Quantitative Comparison

In the main paper, we report the metrics of our HumanTOMATO and related baselines in Table 1. We repeat the evaluation
5 times and report the mean±std results in Table 13 and Table 14. Experimental results show our strength than baseline on
generation quality, text-motion alignment, and diversity.

FID↓ R-Precision(32) TMA-R-Precision(256)

Top1↑ Top2↑ Top3↑ Top1↑ Top2↑ Top3↑
GT - 0.500±0.002 0.708±0.002 0.814±0.002 0.407±0.003 0.578±0.004 0.673±0.003

TEMOS 9.147±0.002 0.279±0.001 0.442±0.005 0.555±0.001 0.258±0.000 0.389±0.002 0.444 ±0.000

T2M-GPT 1.366±0.059 0.368±0.005 0.553±0.003 0.655±0.007 0.310±0.001 0.446±0.007 0.527±0.014

MotionDiffuse 1.129±0.034 0.391±0.024 0.587±0.023 0.695±0.016 0.368±0.003 0.493±0.002 0.584±0.009

MDM 3.800±0.020 0.352±0.003 0.547±0.002 0.634±0.004 0.310±0.004 0.430±0.007 0.530±0.014

MLD 3.407±0.020 0.385±0.002 0.571±0.001 0.683±0.001 0.333±0.004 0.477±0.003 0.561±0.001

HumanTOMATO 1.174±0.015 0.416±0.009 0.603±0.007 0.703±0.007 0.399±0.000 0.555±0.005 0.638±0.004

Table 13: Quantitative Comparison on the Motion-X dataset (FID, TMA-R-Precision(256), and R-Precision(32) metrics).

Matching Score↓ TMA-Matching Score↓ MModality↑ Diversity↑
GT 2.888 ±0.006 0.768±0.000 - 11.087 ±0.271

TEMOS 5.482±0.008 0.928±0.003 1.195±0.045 9.764±0.239

T2M-GPT 4.316±0.053 0.881±0.004 2.356±0.093 10.753±0.063

MotionDiffuse 3.950±0.035 0.829±0.003 1.654±0.071 10.580±0.170

MDM 4.050±0.023 0.840±0.004 2.530±0.041 11.400±0.370

MLD 3.901±0.011 0.883 ±0.002 2.448±0.034 10.420±0.234

HumanTOMATO 3.894±0.008 0.809±0.002 1.732±0.194 10.812±0.034

Table 14: Quantitative Comparison on the Motion-X dataset (Matching Score, TMA-Matching Score, and MModality
metrics).
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F.2. Qualitative Comparison

In the main paper, we compare our method with baseline methods with key-frame sequence visualization. We provide
more comparison in Figure 13. In Figure F, the lighter colors represent earlier snapshots. As can be seen, T2M-GPT lacks
temporal sensitivity and will generate motions that do not match the text description. In contrast, our method will enjoy
these scenarios well and generate vivid motions well aligned with texts.

(A) a person crouches low like a gorilla 
and walks on all fours from left to right.

(B) a person walks with a limp leg.

T2M-GPT HumanTOMATO

T2M-GPT HumanTOMATO

Figure 13: Qualitative comparison with T2M-GPT.

Additionally, we visualize more generated results of HumanTOMATO in Figure 14 and Figure 15, which show our good
generation performance.

13



HumanTOMATO: Text-aligned Whole-body Motion Generation

a person dodges something to his left, 
before squatting down, neutrally.

sport fitness jump up and down, 
happily.

sport fitness standing left and right 
leg swing, happily.

ancient drum in disgust.

Play Banhu, bothered.

Play Big ruan,sadly.

Figure 14: Visualization of the whole-body motions generated by HumanTOMATO (1).
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play electric guitar, happily.

a person walks slowly in a half circle 
counterclockwise while holding 

something, in disgust.

a person was dancing on the place 
while rasing the hands up, sadly.

stick figure stood still moving his arms 
in a strumming motion, unsure.

a person looks to be petting a dog with 
right hand, happily.

a man grabs an object above his head 
with his right hand, sadly.

Figure 15: Visualization of the whole-body motions generated by HumanTOMATO (2).
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G. Comparison on Different Vector Quantization Methods (RQ2)
G.1. Ablation on Different Quantization Methods

In the main paper (Section 4.4), we report the MPJPE for evaluating the reconstruction error of Vanilla VQ, RVQ, and H2VQ
respectively. Although HumanML3D only includes body-part motions, we compare the Vinilla VQ-VAE with the RVQ
technique to verify our motivation on hierarchical motion modeling, whose results are shown in Table 17. Additionally, as
shown in Table 15 and Table 16, we provide more evaluation metrics on PA-MPJPE and Acceleration error (Accel.) (Gower,
1975; Lin et al., 2023b; Chen et al., 2023b). to evaluate the reconstruction quality. Evaluation results show that naı̈vely
increasing the codebook size is almost in vain, and hierarchical modeling is effective for action modeling. Besides, our
H2VQ is a better design on whole-body motions than RVQ.

MPJPE PA-MPJPE Accel.
All↓ Body ↓ Hand↓ All ↓ Body ↓ Hand ↓ All ↓ Body ↓ Hand↓

Vanilla VQ (512) 140.66 92.20 46.45 58.23 47.72 17.03 23.73 19.99 26.46
Vanilla VQ (1024) 139.33 91.77 46.40 57.30 46.79 17.01 23.54 19.71 26.35

RVQ 110.94 73.97 40.01 40.63 35.84 14.46 21.22 17.76 23.75
H2VQ 92.97 62.34 37.20 34.21 30.76 14.05 18.95 16.53 20.72

Table 15: Different vector quantization methods on Motion-X.

MPJPE PA-MPJPE Accel.
All↓ Body ↓ Hand↓ All ↓ Body ↓ Hand ↓ All ↓ Body ↓ Hand↓

Vanilla VQ (512) 78.23 38.29 31.48 35.32 21.75 14.51 11.01 7.32 13.71
Vanilla VQ (1024) 76.01 37.34 29.89 33.42 20.92 14.14 10.70 7.23 13.25

RVQ 62.94 31.12 27.28 25.61 15.96 13.06 8.80 6.67 10.37
H2VQ 46.74 24.33 24.59 22.00 13.95 13.48 10.11 6.05 13.09

Table 16: Different vector quantization methods on GRAB.

MPJPE (Body)↓ PA-MPJPE (Body) ↓ Accel. (Body)↓
Vanilla VQ (512) 77.209 45.53 8.36

Vanilla VQ (1024) 71.34 40.75 7.59
RVQ 63.05 30.99 6.46

Table 17: Different vector quantization methods on HumanML3D.

We additionally discuss how the H2VQ helps the motion generation from the aspect of motion quality and text-motion
alignment. We take the T2M-GPT as the baseline and compare it to the hierarchical reconstruction setting. The difference
between the two settings is with or without the H2VQ method. As shown in Table 18, the H2VQ helps both motion
generation and text-motion alignment significantly.

FID↓ R-Precision(32) TMA-R-Precision(256) TMA-Matching
Score ↓ Matching

Score ↓Top1↑ Top2↑ Top3↑ Top1↑ Top2↑ Top3↑
GT - 0.500 0.708 0.814 0.407 0.578 0.673 0.768 2.888

T2M-GPT w/o H2VQ 1.366 0.368 0.553 0.655 0.310 0.446 0.527 0.881 4.316
T2M-GPT w/ H2VQ 1.086 0.405 0.588 0.695 0.345 0.490 0.573 0.844 3.917

Table 18: The ablation on how can H2VQ help the whole-body motion generation on T2M-GPT.

We show more visualization results here. Our method excels in two perspectives, body-part reconstruction and hand-part
reconstruction. On the one hand, From 16(a), our method H2VQ in the middle column achieves a significantly higher level
of accuracy in reconstructing global translation. From 16(b), our method could perform better on movement direction
reconstruction and motion coherence. From 16(c), our method could reconstruct motion more precisely than other methods
even with minor motion movements. On the other hand, because of our decoupled design, our method performs better on
hand movement and pose reconstruction. As shown in 17, ours (in blue) can precisely reconstruct the GT hand pose (in
green), while the Vanilla VQ-VAE method fails in most of these cases, which demonstrates the superiority of our design.
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(a) Case 1. H2VQ performs better on trajectory reconstruction. (GT, H2VQ, and Vanilla VQ)

(b) Case 2. H2VQ performs better on direction reconstruction and motion coherence. (GT, H2VQ, and Vanilla VQ)

(c) Case 3. H2VQ performs better on reconstructing motions with low amplitude. (GT, H2VQ, and Vanilla VQ)

Figure 16: Visualization of motion reconstruction on the Motion-X dataset (body motion reconstruction perspective). From
the left to right are GT, H2VQ, and Vanilla VQ, respectively.
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sport fitness squats 
with ankle raise

Play the stringed guqin

Play Ruan

Play Trombone

Play the violin

GT Vanilla VQ H2VQ

Figure 17: Visualization of motion reconstruction on the Motion-X dataset (hands motion reconstruction perspective). From
the left to right are GT, Vanilla VQ, and H2VQ, respectively.
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G.2. Comparisons on different Codebook Sizes

We discuss how much the scaling of codebook size benefits the generation results. We perform the comparison on Vanilla
VQ, RVQ, and H2VQ. As shown in Figure 18, H2VQ performs best among the three quantization methods. When doubling
the codebook size, the final reconstruction error (MPJPE) reduces marginally. This verifies that scaling of codebook size in
VQ-VAE is almost in vain. This observation supports the basic intuition on the designing of H2VQ.

29 210 212
Codebook size

80
90

100
110
120
130
140
150
160
170

M
PJ

PE

Methods
VQ
RVQ
H2VQ

Figure 18: The ablation on the codebook size. Reconstruction results of GT, Vanilla VQ, and H2VQ are presented
respectively.
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H. Text-motion Aligned Model As A Prior (RQ3)
H.1. Quantitative Results on HumanML3D

In the main paper, we verify that the pre-trained text-motion-aligned model provides a strong prior to text-aligned whole-body
motion generation. Additionally, the text-motion-aligned prior not only benefits the whole-body motion generation but
also helps the text-motion alignment in body-only motion generation. We take the T2M-GPT as baseline (line 1 in the
Table 19), and we ablate whether the TMA language embedding and text-motion-alignment supervision help to generate the
text-aligned body-only motions. As shown in Table 19, our experiments on HumanML3D show that both the motion-aware
language prior and the text-motion-alignment supervision help to generate higher quality and text-aligned motions (on FID
and TMA-R-Precision(256)).

embedding supervision FID ↓ TMA-R-Precision(256) R-Precision(256) Matching-score ↓ TMA-Matching-score↓Top1 ↑ Top2 ↑ Top3 ↑ Top1 ↑ Top2 ↑ Top3 ↑
CLIP % 0.474 0.082 0.129 0.168 0.169 0.259 0.341 3.155 1.322
TMA % 0.326 0.147 0.206 0.269 0.177 0.281 0.396 2.915 1.285
TMA " 0.312 0.159 0.223 0.276 0.184 0.292 0.396 2.906 1.282

Table 19: Abaltion on how pre-trained text-motion aligned model helps to generate the text-aligned body-only motion (on
HumanML3D).

H.2. Pre-trained Text-motion Aligned Model as a Prior

We test on the Motion-X dataset first to explore whether our text-motion-aligned text encoder helps the generated motions
align well with the given text. As shown in Figure 19(a), the model with our design performs the “kick” motion. As shown
in Figure 19(b) and Figure 19(c), HumanTOMATO learning with motion-aware language prior has a better understanding of
motion trajectory and temporal relations.

We test some cases in the wild to explore whether our text-motion-aligned text encoder helps the generated motions align
well with the given text. We show some cases for comparison in Figure 20. In Figure 20(a), if T2M-GPT learns without
motion-aware language prior, the person walks in a quarter of counter-clockwise circle. The model with motion-aware
language prior will generate the motion well aligned with the given text on direction and trajectory. For the second case in
Figure 20(b), our design helps the model to generate motions much better in the motion direction. For the third case, our
method is better aligned with text on the caption “back” and does not switch the left or right backward direction.

In summary, as claimed in Section 3.5, our method can understand the motion dynamic clues better on sequentiality,
directions, and dynamics.
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(A) a person performs a standing kick.

(B) The man walks forward a couple steps, turns 
right 180 degrees and then walks back.

w/o TMR prior w/ TMR prior

w/o TMR prior w/ TMR prior

Figure 19: Visualization on our HumanTOMATO, learning without (left) or with (right) motion-aware language prior. The
left is the generated motion of HumanTOMATO without language prior, and the right is HumanTOMATO.
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(a) Input text: “a person walks clockwisely.”. The left is the generated motion of T2M-GPT, and
the right is T2M-GPT learning with motion-aware language prior.

(b) Input text: “a person walks forward, turn right, finally turn right.”. The left
is the generated motion of T2M-GPT, and the right is T2M-GPT learning with motion-aware language prior.

(c) Input text: “A person walks forward and then turns back.”. The left is the generated
motion of T2M-GPT, and the right is T2M-GPT learning with language prior.

Figure 20: Visualization on T2M-GPT, learning without (left) or with (right) motion-aware language prior. The left is the
generated motion of T2M-GPT, and the right is T2M-GPT learning with language prior.
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I. Details on the Evaluation Metrics (RQ4)
In Section 4.6, we analyze why the proposed evaluation metrics of alignment between generated motions and given texts
are more accurate and challenging on the Motion-X dataset. Here, we provide more comparisons on both body-only and
whole-body datasets to verify the universality of the proposed metrics, all of which are calculated 3 times to calculate the
mean and standard value (mean±std). The comparison is shown in Table 20 and Table 21. We also visualize the comparison
on the HumanML3D dataset in Figure 21. Similar to the conclusion in Section 4.6, our metrics are more accurate and
challenging than Guo et al. (2022)’s in the following two aspects. (1) TMA-R-Precision(B) and TMA-Matching-score(B)

metrics are more accurate than Guo et al. (2022)’s R-Precision(B) and Matching-score metrics. (2) B = 256 is a more
challenging retrieval setting than the B = 32 setting.

Top1 Top2 Top3 Top5 Top10
Top-K

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R-
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Methods
Guo et al. (B=32)
TMR (B=32)
Guo et al. (B=256)
TMR (B=256)

A 

A

Figure 21: Comparison with existing metrics on HumanML3D. Existing evaluation metrics (Guo et al., 2022) are illustrated
in red and ours are in blue. The B = 32 and B = 256 settings for retrieval are denoted as “ •−−” and “ ▲−−” respectively.

Top1 Top2 Top3 Top5 Top10
Guo et al. (2022)

B = 32
0.498±.006 0.706±.005 0.814±.003 0.910±.003 0.977±.001

TMA B = 32 0.771±.001 0.893±.003 0.938±.002 0.968±.001 0.985±.000

Guo et al. (2022)
B = 32

0.148±.002 0.256±.004 0.338±.004 0.465±.003 0.651±.002

TMA B = 256 0.407±.003 0.578±.004 0.673±.003 0.795±.001 0.883±.001

Table 20: R-Precision of GT motions and texts on the Motion-X dataset.

Top1 Top2 Top3 Top5 Top10
Guo et al. (2022)

B = 32
0.511±.003 0.705±.002 0.795±.003 0.887±.003 0.964±.003

TMA B = 32 0.711±.005 0.853±.001 0.905±.002 0.947±.001 0.977±.001

Guo et al. (2022)
B = 256

0.167±.002 0.279±.002 0.368±.003 0.490±.004 0.659±.003

TMA B = 256 0.365±.003 0.527±.002 0.625±.004 0.731±.003 0.838±.002

Table 21: R-Precision of GT motions and texts on the HumanML3D dataset.
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J. Can We Generate Whole-body Motions by Parts Separately?
In this section, we will discuss whether we can generate whole-body motions by parts separately. To answer this question,
we provide an ablation on whether to model them separately in Table 22. In Table 22, the “Modeling Separately” means
modeling the hand and body motion separately.

FID↓ R-Precision(32) TMA-R-Precision(256)

Top1↑ Top2↑ Top3↑ Top1↑ Top2↑ Top3↑
GT - 0.500±0.002 0.708±0.002 0.814±0.002 0.407±0.003 0.578±0.004 0.673±0.003

Modeling Separately 2.209±0.047 0.359±0.002 0.551±0.003 0.666±0.002 0.306±0.003 0.459±0.002 0.552±0.002

HumanTOMATO 1.174±0.015 0.416±0.009 0.603±0.007 0.703±0.007 0.399±0.000 0.555±0.005 0.638±0.004

Table 22: Abalation of modeling strategy on the Motion-X dataset (FID, TMA-R-Precision(256), and R-Precision(32)

metrics).

As shown in Table 22, modeling body and hands separately will result in a large performance loss in whole-body motion
generation. As a result, we take the H2VQ and Hierarchical-GPT as the technical design choice.
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K. Limitation
Although this work makes great progress on the novel task, and the significant improvement of motion reconstruction and
text-aligned generation, it still has some shortcomings. Most text2motion efforts proposed by the community are hard to
generate physically plausible motions (Yuan et al., 2023). Generating physically plausible motions requires post-processing
in a simulation environment, which is left as our future work. First, the natural textual description utilization for whole-body
motion generation needs to be further explored. This work simply uses the sequential semantic descriptions following
previous works without frame-level or fine-grained whole-body descriptions. Second, the face generation lacks a unified
generation scheme. Due to the limited holistic facial expression data and face motion descriptions (e.g., only commonly
used emotion here), a simple generator is not the best design choice. As rich data comes, a unified framework could be
future work. Additionally, we will unify more text-motion-pairwise data for training a better motion generation model.
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