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Abstract
Unsupervised domain adaptation of multivariate
time series aims to train a model to adapt its clas-
sification ability from a labeled source domain
to an unlabeled target domain, where there are
differences in the distribution between domains.
Existing methods extract domain-invariant fea-
tures directly via a shared feature extractor, ne-
glecting the exploration of the underlying causal
patterns, which undermines their reliability, espe-
cially in complex multivariate dynamic systems.
To address this problem, we propose CauDiTS,
an innovative framework for unsupervised do-
main adaptation of multivariate time series. Cau-
DiTS adopts an adaptive rationale disentangler
to disentangle domain-common causal rationales
and domain-specific correlations from variable
interrelationships. The stability of causal ratio-
nales across domains is vital for filtering domain-
specific perturbations and facilitating the extrac-
tion of domain-invariant representations. More-
over, we promote the cross-domain consistency of
intra-class causal rationales employing the learn-
ing strategies of causal prototype consistency and
domain-intervention causality invariance. Cau-
DiTS is evaluated on four benchmark datasets,
demonstrating its effectiveness and outperform-
ing state-of-the-art methods.

1. Introduction
Multivariate time series data play a crucial role in various
domains, e.g., finance, healthcare, weather, and energy. By
capturing systematic trends over dynamically changing vari-
ables, the performance of multiple applications, such as
traffic volume forecasting (Bai et al., 2020; Chen et al.,
2023), disease prediction (Deng et al., 2020; Purushotham
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Figure 1: Across source→target domains, (a) time shortcut
features show shift, (b) variable interrelationships involve
non-causal correlations (99K) and causal relationships (99K).
Causal relationships are domain-common and invariant, re-
ferred to as causal rationales. (c) Different classes of mul-
tivariate time series data possess distinct domain-common
causal rationales.

et al., 2016a; Ozyurt et al., 2022), and climate monitoring
(Li et al., 2021), are significantly improved. Unfortunately,
domain shift is a common challenge for practical application
of multivariate time series. Especially, the performance of a
multivariate time series model degrades when trained and
deployed across two domains with distinct data distributions
and operating environments. For instance, due to the dif-
ferences of latitude, topography, and land-sea distribution,
weather prediction models relying on long-term multivariate
time series from one location may struggle to generalize
well to other locations.

Unsupervised domain adaptation (UDA) has been exten-
sively investigated in vision and text tasks to alleviate the
adverse impacts of domain shift (Sun & Saenko, 2016; Chen
et al., 2020; Rahman et al., 2020; Zhu et al., 2020; Ganin
et al., 2016). Existing UDA works for multivariate time
series are comparatively few, which can be roughly cate-
gorized into two groups: (i) transferring UDA methods de-
signed for vision (Singh, 2021; Long et al., 2015; Shu et al.,
2018) and text tasks (Dai et al., 2008), or fine-tuning a pre-
trained model from the source domain to the target domain
(Hu et al., 2020; Zhang et al., 2022; Yang & Hong, 2022);
(ii) employing common backbone networks, such as recur-
rent neural networks (RNNs) (Purushotham et al., 2017),
temporal convolutional networks (TCNs) (Bai et al., 2018),
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and long short-term memory (LSTM) networks (Graves &
Graves, 2012) as feature extractors, coupled with adversar-
ial training strategies (Purushotham et al., 2017; Wilson
et al., 2020; Jin et al., 2022) or metric-based learning mech-
anisms (Liu & Xue, 2021; Cai et al., 2021), to alleviate
cross-domain discrepancies in features. These two groups
follow a common paradigm, aiming to discover a joint rep-
resentation mapping space that is adapted to the source
and target domains, facilitating the implicit extraction of
domain-invariant representation.

The above-mentioned UDA works on multivariate time se-
ries have demonstrated promising performance but face a
severe limitation. There exists intricate yet cross-domain
stable interdependencies among variables, referred to as
domain-common causal rationales. These rationales eluci-
date how variables generate specific class samples using
invariant patterns of mutual interactions during distribution
shifts, as illustrated in Figure 1(b). Previous methods pri-
oritize extracting implicit domain-invariant representations
rather than probing domain-common causal rationales. They
typically align multivariate time series across domains with-
out leveraging causal rationales to filter out domain-specific
spurious information (e.g., background, biases and domain-
specific styles), which can result in capturing coarse-grained
shortcut features as domain-invariant representations, as de-
picted in Figure 1(a). Furthermore, it is worth noting that
different classes of multivariate time series data exhibit dis-
tinct domain-common causal rationales, as shown in Figure
1(c). However, promoting model generalization to the un-
labeled target domain by considering intra-class causality
compactness remains unexplored in previous UDA works
for multivariate time series.

These challenges motivate us to explore a more adaptive and
robust model for UDA of multivariate time series. Different
from existing works, we propose CauDiTS, a novel frame-
work for Causal Disentangled domain adaptation of multi-
variate Time Series. CauDiTS, grounded in a causal perspec-
tive, disentangles domain-invariant causal rationales and
non-causal domain-specific correlations from variable inter-
relationships by an adaptive rationale disentangler. Specifi-
cally, we employ a learnable causal mask to disentangle the
domain-common and domain-specific sub-graphs from the
interdependencies among variables, as acquired by the vari-
ables interrelation attention module. The domain-common
causal rationales play a crucial role in filtering out unstable
domain-specific correlations, allowing the aggregation of
domain-invariant representations from a causally augmented
graph network. Incorporating non-causal domain-specific
correlations facilitates effective domain discrimination in
multivariate time series. Moreover, we introduce learning
strategies of causal prototype consistency and domain inter-
vention causality invariance to promote the cross-domain
consistency and invariance of causal rationales. The main

contributions of this paper are summarized as follows:

• We disentangle domain-common causal rationales and
domain-specific non-causal correlations within the intri-
cate variable interrelationships using an adaptive rationale
disentangler. This enables CauDiTS to aggregate domain-
invariant representations through causally augmented graph
networks.

• We promote the cross-domain stability and invariance
of intra-class causal rationales by proposing the learning
strategies of causal prototypes consistency and domain in-
tervention causality invariance.

• Experimental results on multiple datasets demonstrate
that CauDiTS significantly outperforms the state-of-the-art
baselines for UDA of multivariate time series.

2. Related Work
Unsupervised Domain Adaptation for Time Series. In re-
cent years, there has been a growing focus on unsupervised
domain adaptation for time series classification. However,
it is noteworthy that the works of the UDA for time series
data are comparatively few compared to non-time series.

VRADA (Purushotham et al., 2017) is constructed on a vari-
ational recurrent neural network (Chung et al., 2015) and
is trained adversarially to capture complex temporal rela-
tionships that are domain invariant. AdvSKM (Liu & Xue,
2021) performs time series domain matching by minimizing
an extended version of maximum mean discrepancy (MMD)
embedded in a hybrid spectral kernel network. CoDATS
(Wilson et al., 2020) is based on adversarial training and
employs a convolutional neural network with gradient rever-
sal (Ganin et al., 2016) as a feature extractor. RAINCOAT
(He et al., 2023) addresses feature and label shifts by com-
bining and aligning time and frequency features, correcting
misalignments, and detecting label shifts. CLUDA (Ozyurt
et al., 2022) captures contextual representations between the
source and target domains via customized nearest-neighbor
contrastive learning, while preserving label information for
prediction tasks.

The aforementioned methods implicitly extract domain-
invariant features directly from a shared extractor, lacking
domain-specific private information filtering, resulting in
shortcut features. In contrast, causality-based CauDiTS dis-
entangles causal rationales from non-causal domain-specific
correlations. These causal rationales, which remain domain-
invariant, are more trustworthy and stable than shortcut
features for predicting cross-domain data labels.

Causality for Domain Adaptation. Assuming that the
causality between features and classes is robust across do-
mains, some works have explored how to utilize causal
mechanisms to assist domain adaptation.
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Figure 2: Different SCMs for cross-domain data generation.
The gray nodes represent the observed variables, while the
white nodes represent the unobserved variables. (a)-(b) are
disentangled representation model for non-time series. (c)
Our causal disentangled model for multivariate time series.

For non-time series data, domain adaptation methods use the
structural causal model (SCM) (Pearl et al., 2016) to illus-
trate the data generation process, employing auto-encoder
structures to reconstruct causal latent variables and domain
latent variables (Cai et al., 2019; Kong et al., 2022; Wang
et al., 2022; Yang et al., 2021a). For time series, SASA (Cai
et al., 2021) exploits the stability of causality to propose
a sparse associative structure alignment model for domain
adaptation, where the alignment of associative structures
guides knowledge transfer between domains. GCRL (Bagi
et al., 2023) uses causality to improve the identifiability and
robustness of existing out-of-distribution motion forecasting
models. GCA (Li et al., 2023) addresses the tasks of cross-
domain time-series forecasting and granger-causal structure
learning (Granger, 1969) within the semi-supervised domain
adaptation framework.

Despite their comparative performance, these methods fail
to disentangle stable and comprehensive domain-common
causal rationales, as well as domain-specific non-causal
correlations with complementarity and discriminability from
complex dependencies among variables. Furthermore, they
neglect the discrepancy and consistency of inter-class and
intra-class causality, rendering them unsuitable for cross-
domain time series classification under distribution shift.

3. Causal Model on Domain Adaptation of
Multivariate Time Series

Notations. When distinguishing between domains, vari-
ables are annotated with superscripts in the upper right cor-
ner. The labeled i.i.d. samples Ds = {(Xs

i , Y
s
i )}

Ns
i=1 are

drawn from the source domain distribution P s, and the
unlabeled i.i.d. samples Dt = {Xt

i}
Nt
i=1 are drawn from

the target domain distribution P t. In both the source and
target domains, each Xi is a multivariate time series de-
noted by Xi = {x1, . . . , xK} ∈ RK×τmax , where K is the
number of variables and τmax is the sampling length from
the observed time steps T . xi = {xi,t}τmax

t=1 ∈ Rτmax is
a unit time series representing the observation of variable

i from time step 1 to τmax. During evaluation, we test
the learned model on the labeled i.i.d. samples Dtest =
{(Xt

i , Y
t
i )}

Ntest
i=1 ∼ P t from the target domain.

Causal Model. We instantiate the causal mechanisms
governing the generation of multivariate time series data
across domains using structural causal model (SCM) (Pearl
et al., 2016). DSR (Cai et al., 2019) and iMSDA (Kong
et al., 2022), tailored for UDA of non-time series, are the
closest works to CauDiTS, assuming that cross-domain
data are generated from two latent representations, domain-
invariant Zc and domain-variant Zo. The key difference is
that CauDiTS explores a deeper disentanglement between
domain-common causal rationales Gc and domain-specific
non-causal correlations Go which precede the generation
of Zc, as despited in Figure 2(c). This has the advantage
to eliminate the perturbations of Go on Zc, thereby block-
ing spurious causal paths between Go and class label Y .
Specifically, we have seven variables: time series data X ,
class label Y , domain-invariant representation Zc (i.e., con-
tent), domain-variant representation Zo (i.e., background
or noise), domain-common causal rationales Gc (i.e., com-
monsense laws), domain-specific non-causal correlations
Go (i.e., specific style), and a domain prior U . A directed
link between two variables indicates a causal relationship
between them. We describe the causal relationships between
these variables below.

• U → Go→ Zo: U governs the distribution of domain-
specific Go, where Go guides the interaction of multivariate
variables to generate Zo.

• Zc→X←Zo: X is generated by domain-invariant Zc

and domain-variant Zo.

• Go 99KZc: This is a spurious causal relationship, indi-
cating that the extraction of Zc is influenced by Go. This
spurious causal link is pruned away in CauDiTS, but is im-
plicit in existing methods (Ozyurt et al., 2022; Kong et al.,
2022; He et al., 2023). As discussed in Section 1, previous
works ignore in-depth exploration of disentangling causal
rationales Gc and non-causal correlations Go, resulting in
capturing coarse-grained shortcut features. The explanation
from CauDiTS is that if Gc and Go cannot be disentangled
to eliminate the perturbations of Go in the extraction of Zc,
then the link Go → Zc inherently exists. In other words,
if Go → Zc, then Go is a confounder between Zc and Zo,
opening a backdoor path Zo ← Go → Zc → Y , introduc-
ing a spurious correlation between Zo and Y for previous
works. It is evident that Go varies with domains, making
Zc → Y unstable. In the UDA setting, this path should be
excluded to ensure that Zc does not contain any mixture of
domain-specific information.

• Gc → Zc → Y : Gc is stable and shared across do-
mains. According to Gc, the interaction of multivariate
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variables generates Zc. Assuming that Gc and Go are dis-
entangled, we can identify Y , which depends solely on Zc

without perturbations from Zo across domains U . There-
fore, in contrast to existing methods (He et al., 2023; Zhang
et al., 2013), assuming the marginal distributions of X
are differences across domains, i.e., P s(Xs) ̸= P t(Xt),
while the conditional distributions remain constant, i.e.,
P s(Y |Xs)=P t(Y |Xt), we propose the following assump-
tion.

Assumption 3.1. Given Gc, we assume that the marginal
distribution P (X) and the conditional distribution P (Y |X)
all vary across domains, i.e., P s(Xs) ̸= P t(Xt) and
P s(Y |Xs) ̸= P t(Y |Xt), while the causal rationales Gc

and the conditional distribution P (Y |Zc, Gc) remain fixed.

Assumption 3.1 raises Question (1): How can Gc and Go

be disentangled from the complex interrelationships between
the variables?

Furthermore, we assume that each class has a unique causal
rationale that remains invariant across domains. Conse-
quently, as depicted in Figure 1(c), we instantiate the
domain-invariant causal rationales for class i, i ∈ Nc,
as a directed graph Gci = (Vci , Eci) ∈ Gc, where Vci =
{x1, x2, . . . , xK} is the set of variables, and Eci = {(j, k) :
xj → xk}Kj,k=1 is a set of edges between variables xj and
xk. Without loss of generality, we represent the causal re-
lationships Eci using an adjacent matrix Ai={aj,k}Kj,k=1 ∈
RK×K , where aj,k=1 indicates a directed edge from xj

to xk, and aj,k=0 indicates no edge. Similarly, we instan-
tiate domain-specific non-causal correlations as a directed
graph Goi=(Voi , Eoi)∈Go, with Bi={bj,k}Kj,k=1∈RK×K .
Gc and Go collectively form the intricate variable interre-
lationships GI , and Eci∩Eoi = ϕ and Ii=Ai + Bi. This
raises Question (2): How to ensure that each class has a
disentangled and unique Gc while keeping cross-domain
consistency?

In causal research (Pearl, 2009; Pearl et al., 2016), in a
SCM, every variable is causally influenced by its parent
variables. For example, variable X and its parent variables
Pa(X)={Zc, Zo} have a causal function fX: Pa(X)→X ,
if and only if the causal mechanism X = fX(Pa(X), ϵX)
establish, where ϵX ⊥⊥Pa(X) is an exogenous noise of
X , as shown in Figure 2(c). Consequently, in the ideal
CauDiTS, denoting the optimal domain-common causal
rationales for class i as G∗ci , we have Proposition 3.2 on the
causal disentangled domain adaptation for multivariate time
series. The proof is given in Appendix B.

Proposition 3.2. Assuming Assumption 3.1 and Questions
(1) and (2) are answered by CauDiTS, disentangle the op-
timal G∗ci for class i from GI . Then, for ∀u ∈ U and
∀j ∈ Nc,

Yi = fY (fZc(G
∗
ci , ϵZc), ϵY ) s.t. Yi⊥⊥Gu

oj |G
∗
ci , (1)

where fY : Zc→ Y and fZc
:Gc→ Zc are the invertible

causal functions. Gu
oj is domain-specific non-causal corre-

lations of class j from domain u.

Proposition 3.2 indicates that the extraction of Z∗ci =
fZc

(G∗ci , ϵZc
) depends only on G∗ci for each class i. This

shields Y from the influence of domain-variant Gu
oj of dif-

ferent domains u, thereby preserving the stability of the
causal relationship Gc→Zc→Y across domains.

4. Methodology
We propose CauDiTS, a causal disentangled unsupervised
domain adaptation framework for multivariate time series.
Specifically, Section 4.1 and Section 4.2 address the first
and second questions aforementioned, respectively.

4.1. Adaptive Causal Rationale Disentanglement

In UDA for multivariate time series, only variables X , Y
and U are observed during training, while Gc and Go are
unobserved. To tackle the problem of effectively disentan-
gle Gc and Go from GI , we introduce an adaptive causal
rationale disentanglement strategy. For simplicity, we do
not differentiate between the source and target domains in
this section.

CauDiTS first employs an LSTM model (Graves & Graves,
2012) to learn the hidden status H= {h1, h2, . . . , hK} of
X = {x1, x2, . . . , xK}, as shown in Figure 3. For each
variable xi={xi,1, . . . , xi,τmax

}∈X over time steps τmax,
the LSTM updates the hidden state hi,t of element xi,t using
the following recurrence:

hi,t = LSTM(xi,t, hi,t−1) ∈ Rdh , i ∈ {1, 2, . . . ,K}, (2)

where hi,t−1 denotes the hidden state propagating from time
step 1 to step t− 1 of xi. dh is the dimension of hi,t.

Adaptive Rationale Disentangler. We propose an adap-
tive rationale disentangler (ARAD) to capture GI among
variables, while simultaneously disentangling Gc and Go.
With only U , obtaining GI is impossible. ARAD employs
a reverse generation mechanism, using observed time series
data X to reveal its underlying GI . Specifically, ARAD in-
tegrates a variables interrelation attention module to capture
spatio-temporal interrelationships between variables that
form GI . This involves calculating the attention coefficient
ε̄ij,t:t+1, which reflects the dynamic interrelationships of xi

to xj from time steps t to t+1, defined as:

ε̄ij,t:t+1 = vTσ(W1hi,t +W2hj,t+1 + b1) + b2, (3)

where W1, W2 ∈ Rdε×dh , b1 ∈ Rdε , v ∈ Rdε and b2 ∈ R
are the trainable parameters. σ(·) is an activation func-
tion. A softmax function is applied to ε̄ij,t:t+1 to en-
sure that all attention coefficients between time steps t
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to t+ 1 sum to 1, i.e., εij,t:t+1 =
exp(ε̄ij,t:t+1)∑K

i,j=1 exp(ε̄ij,t:t+1)
.

Then, we aggregate the obtained attention coefficients
over time steps τmax into the interrelationship coeffi-
cient matrix I = {εij}Ki,j=1 ∈ RK×K , where εij =
max(εij,1:2, . . . , εij,t:t+1, . . . εij,τmax−1:τmax

).

ARAD treats the disentanglement of Gc and Go as an
edge selection problem. Some edges are domain-invariant
and represent stable causal generation patterns for cross-
domain samples, while others are domain-specific and class-
irrelevant. We employ a binary mask as a disentangler,
represented as M={mij}Ki,j=1∈{0, 1}K×K , as shown in
Figure 3. This helps us to disentangle A ∈ RK×K and
B ∈ RK×K from I as follows:

M̄ = σ(WM̄I + bM̄ ),mi,j = I(m̄i,j > α),

A = I ⊙M,B = I ⊙ (1−M)
(4)

where WM̄ ∈ RK×K and bM̄ ∈ R are trainable parameters.
M̄ = {m̄ij}Ki,j=1 is the trainable mask of M . α is the
hyperparameter for selecting domain-invariant edges. ⊙
denotes element-wise multiplication.

After disentangling A and B, the next steps involve design-
ing fZc

and fY to learn the domain-invariant representation
Zc and label Y . To achieve this, we use graph convolutional
networks (GCNs), inspired by their success in node repre-
sentation learning through the aggregated effect of neigh-
borhood variables (Wu et al., 2020; Dai & Chen, 2022). We
first use a causally augmented multi-layer graph network,
denoted as GCNc, to aggregate hidden states of parents for
dependency encoding, thereby generating node representa-
tions Rc = {r1, . . . , rt, . . . , rτmax} ∈ Rτmax×(K×dr):

rlt = W5(ReLU(Arl−1t W3 + rl−1t−1W4)) + b5,

rt = W6(r
1
t ⊕ r2t ⊕ . . .⊕ rLt ) + b6,

(5)

where W3 ∈ Rdh×dh , W4 ∈ Rdh×dh , W5 ∈ Rdh×dh ,
W6 ∈ Rdh×dr , b5 ∈ Rdh and b6 ∈ Rdr are the trainable
parameters. rlt denotes the aggregated node representations
in layer l, and r0t = ht ∈ RK×dh is the hidden states of
all variables at time t. L denotes the number of layers. ⊕
denotes the concatenation of representations. Then, Rc is
passed to a domain-invariant feature extractor Fc(·) to ex-
tract Zc ∈ Rdz . Furthermore, we employ a classifier Φ(·) to
map Zc onto the probability distribution over classes. The
process is formally defined as follows:

Zc = Fc(Rc), Yc = Φ(Zc). (6)

Similarly, domain classification is performed employing
another graph network, GCNo, together with a domain-
specific feature extractor Fo(·) and a domain discriminator
D(·). More formally, the process is as follows:

Ro = GCNo(B,H), Zo = Fo(Ro), Yo = D(Zo). (7)

Finally, we define a basic adaptation loss Lbs for CauDiTS,
which integrates three losses: (1) the source domain classifi-
cation loss Lcls, (2) the target domain conditional entropy
loss Lucls, and (3) the domain classification loss Ldis, de-
fined as:

Lbs = λ1Lcls + λ2Lucls + λ3Ldis, (8)

where λ1, λ2 and λ3 are the balancing coefficients regulat-
ing the importance of each loss. Further details of the three
loss terms are given in Appendix C.1.

4.2. Cross-Domain Causal Rationales Consistency
Learning

Based on Section 4.1, we disentangle Gc and Go from GI ,
but we posit that each class has a unique and invariant
domain-common causal rationales. Therefore, we propose
learning strategies of causal prototype consistency and do-
main intervention causality invariance to answer the second
question, i.e., to promote cross-domain consistency and
invariance of intra-class causal rationales.

Following previous works (Ozyurt et al., 2022; Eldele et al.,
2023), we apply time series augmentations to each multi-
variate time series X from the source and target domains
(see Appendix D.1 for details). After the augmentations,
two augmented views of X are obtained, denoted query X̃
and key X̂ .

Causal Prototype Consistency Loss. We can impose super-
vised graph consistency constraint on Gc using class labels
(e.g., constraining Gcj,1=· · ·=Gcj,Nj

, for class j). However,
this constraint may negatively affect the quality of Gc by
directly aligning suboptimal shared graphs during the initial
training phase. Furthermore, in the UDA setting, the target
domain data lacks class labels. To address this, we introduce
a domain-common causal prototype P for each class and
perform the causal prototype consistency loss Lcpc between
the node representations Rc and P. Concretely, we first ran-
domly select Nr samples from Ds for each class, forming
Dr. Utilizing Equation (5), we compute the node represen-
tation set R̃s

c = {R̃s
ci}

Nc×Nr
i=1 of Dr in the query view of

source domain. Then, we apply singular value decomposi-
tion (SVD) on R̃s

c to obtain P={Pj}Nc
j=1∈RNc×K×dr (P is

updated after each training step):

Pj = SVD({IY s
i ==jR̃s

ci}) ∈ RK×dr , i = 1, . . . , Nc ×Nr,

s.t.
1

K

K∑
k=1

Pj,kPT
j,k = I,

1

K

K∑
k=1

Pj,k = 0,
(9)

where Y s
i is the class label of R̃s

ci . Pj is the causal prototype
of the j-th class. Pj,k is the prototype representation of k-th
variables belonging to class j. The indicator function I is
equal to 1 if Y s

i ==j and 0 otherwise. dr is the dimension of
Pj,k. SVD helps to reduce noise and highlight potentially
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Figure 3: Overview of CauDiTS. CauDiTS introduces an adaptive rationale disentangler (ARAD) to disentangle domain-
common causal rationales Gc and domain-specific non-causal correlations Go from the complex variable interrelationships
GI . According to Gc, CauDiTS efficiently extracts the domain-invariant representation Zc using a causally augmented
graph network GCNc, which allows prediction of the class label Yc independent of the domain-variant representation Zo.

important features of the prototypes (Wu et al., 2021; Mo
et al., 2023) .

In the source domain, the causal prototype consistency loss
Ls
cpc is formulated as:

Ls
cpc =

1

2Nc ·Nj

Nc∑
j=1

Nj∑
i=1

(∥R̃s
ci−Pj∥+∥R̂s

ci−Pj∥), (10)

where Nj denotes the number of node representations R̃s
ci

and R̂s
ci belonging to the j-th class. ∥·, ·∥ denotes the mean

square error (MSE). In the target domain, where only un-
labeled data are available, we define the causal prototype
nearest-neighbor consistency loss Lt

cpc as follows:

Lt
cpc =

1

2Nt

Nt∑
i=1

(∥R̃t
ci−NNR̃(P)∥+∥R̂t

ci−NNR̂(P)∥), (11)

where NNR̃(·) and NNR̂(·) retrieve the nearest-neighbor
of R̃t

ci and R̂t
ci from P, respectively. Therefore, we have the

causal prototype consistency loss Lcpc as follows:

Lcpc = φ1L
s
cpc + φ2L

t
cpc, (12)

where the hyperparameters φ1 and φ2 control the contribu-
tion of each loss.

Invariant Causality of Domain Interventions. The causal
prototype consistency loss ensures the intra-class compre-
hensive and consistent extraction of causal rationales of the
same class across different domains. However, achieving
the complete and invariant disentanglement of Zc requires
additional constraints. We emphasize the independence be-
tween Zc and Zo in the content of time series cross-domain

interdependence. To achieve this, we employ backdoor
adjustment (Pearl et al., 2016; Tian et al., 2006) to infer
P (Y |do(Zc)) by intervening on Zc and conditioning on
the confounding variable Go. This breaks the link between
Zc and its pseudo-parent node Go, effectively blocking the
backdoor path Zo←Go→Zc→Y . The backdoor adjust-
ment assumes that we have observed the confounder, i.e.,
Go= {Gu

oj}, where each Gu
oj is a randomly selected non-

causal correlation within the domain u ∈ U . Formally, as
shown in Appendix C.2, the deconfounded model for the
graph in Figure 2(c) is:

P (Y |do(Zc))=

U∑
u

P (Y |Zc=Zci ,Zo=Zu
oj )P (Go=Gu

oj ), (13)

where the generated Zci = fZc(Gci , ϵZc) and domain-
variant representation Zu

oj = fZo(G
u
oj , ϵZo) form the inter-

vention pair (Zci , Z
u
oj ). P (Go = Gu

oj ) = 1/U , assuming a
uniform prior for the non-causal correlations. The detailed
derivation is given in Appendix C.2. Therefore, Equation
(13) can be reformulated as:

P (Y |do(Zc))=
1

U

∑
u∈U

P (Y |Zc=Zci , Zo=Zu
oj ). (14)

Furthermore, we model P in Equation (14) as a softmax
probability and adopt the supervised cross-entropy classifi-
cation loss in the query view of the source domain. Max-
imizing the probability of P (Y |do(Zc)) is equivalent to
minimizing the supervised cross-entropy classification loss:

Ldcls =
1

Ns · U

Ns∑
i,j=1,i̸=j

U∑
u

J (Φ(Z̃s
ci ⊕ Z̃u

oj ), Y
s
i ), (15)
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where J (·) is the cross-entropy function. Z̃u
oj is the domain-

variant representation of the selected G̃u
oj from the query

view of domain u. Motivated by the re-weighting mecha-
nism (Wang et al., 2021; Deng & Zhang, 2022), we reweight
the probability distribution to characterize the perturbations
of different Z̃u

oj on the context distribution of Z̃s
ci :

Ldcls =
1

Ns · U

Ns∑
i,j=1,i ̸=j

U∑
u

wu
ijJ(Φ(Z̃s

ci ⊕ Z̃u
oj ), Y

s
i ), (16)

where wu
ij =

∑K
k=1(r̃

s
ci,k
−R̄s

ci
)(r̃uoj,k

−R̄u
oj

)√∑K
k=1(r̃

s
ci,k
−R̄s

ci
)2(r̃uoj,k

−R̄u
oj

)2
is the Pear-

son correlation coefficient between the node representations
R̃s

ci = {r̃sci,k}
K
k=1 and R̃u

oj = {r̃uoj,k}
K
k=1 with respect to

G̃s
ci and G̃u

oj . R̄s
ci and R̄u

oj are the averages of all node repre-
sentations in G̃s

ci and G̃u
oj , respectively. It is noteworthy that

when minimizing Ldcls, the weight wu
ij is encouraged to

converge to 0. As Ldcls converges, R̃s
ci and R̃u

oj are statisti-
cally independent. This implies that Gc can be disentangled
without influence from any Go, thereby achieving indepen-
dent extraction of the domain-invariant representation Zc.

Intra-class Contrastive Learning. By emphasizing intra-
class relationships within each domain, we can promote
compactness of intra-class distributions in a unified space
and discriminate different classes across domains. We ap-
ply intra-class contrastive learning to effectively reduce the
disparity between causal representations Zc of augmented
in-domain views. Specifically, a non-linear projectorH(·)
takes Z̃c and Ẑc from the query and key views as inputs
and generates the embeddings Ẽc and Êc. The in-domain
intra-class embeddings contrastive losses of the source and
target domains are formulated as:

Ls
con = −

1

Ns

Ns∑
i=1

log
exp(Ẽs

ci
· Ês

ci
/τs)

exp(Ẽs
ci
· Ês

ci
/τ) +

∑J
j=1 exp(Ẽs

ci
· Ês

cj
/τs)

,

Lt
con = −

1

Nt

Nt∑
i=1

log
exp(sim(Ẽt

ci
, Êt

ci
/τt))∑J

j=1 Ii̸=jexp(sim(Ẽt
ci
, Êt

cj
)/τt)

,

(17)

where · is the inner dot product. τs > 0 and τt > 0 are the
temperature scaling parameters. J is the number of negative
samples. The indicator function Ii ̸=j is 0 if i == k and 1
otherwise. sim(·) is the cosine similarity function.

4.3. The Overall Objective

In the training phase, the overall objective function of Cau-
DiTS is formulated as follows:

L = Lbs +Lcpc + γ1 · Ldcls + γ2 · Ls
con + γ3 · Lt

con, (18)

where γ1, γ2 and γ3 are the balancing hyperparameters. All
hyperparameter values are determined by grid search. In the
inference phase, we use only the query branch of the target
domain in CauDiTS to predict the label of non-augmented

multivariate time series. The detailed overview of CauDiTS
is given in Algorithm 1 of Appendix C.3.

5. Experiments
5.1. Experimental Setup

Datasets. We consider four multivariate time-series bench-
mark datasets, namely WISDM (Kwapisz et al., 2011), HAR
(Anguita et al., 2013) HHAR (Stisen et al., 2015), and Boiler
(Cai et al., 2021). Further details of the datasets are pro-
vided in Appendix D.2. WISDM, HAR and HHAR are three
human activity recognition datasets, and each participant is
defined as an independent domain. Boiler is a fault dataset
comprising sensor data from three separate boilers, with
each boiler as a domain. Following CLUDA (Ozyurt et al.,
2022), we split each dataset into training, validation and
test with a ratio of 0.7, 0.15 and 0.15, respectively. We
randomly select five source→target pairs of domains for the
experiment.

Baselines. CauDiTS is compared with the following base-
lines: VRADA (Purushotham et al., 2016b), CoDATS (Wil-
son et al., 2020), AdvSKM (Liu & Xue, 2021), SASA (Cai
et al., 2021), RAINCOAT (He et al., 2023), and CLUDA
(Ozyurt et al., 2022), which are representative UDA methods
for multivariate time series. Moreover, CAN (Kang et al.,
2019), CDAN (Long et al., 2018), DDC (Tzeng et al., 2014),
DeepCORAL (Sun & Saenko, 2016), DSAN (Zhu et al.,
2020), HOMM (Chen et al., 2020) and MMDA (Rahman
et al., 2020) are general UDA methods originally provided
for non-time series data, which have shown outstanding
performance when applied to time series data (Liu & Xue,
2021; Eldele et al., 2023; Ozyurt et al., 2022).

Evaluation. The reported performance of all baselines is
derived from publicly available results or re-implemented
using benchmarking suites (Ragab et al., 2022). For each
selected source 7→target pair in each dataset, the reported
performance for each method consists of the mean predicted
accuracy and the mean Macro-F1 score calculated over 10
random, independent initializations.

Implementation. The implementation details of CauDiTS
and all baselines are described in Appendix F.

5.2. Results

Comparison with Baselines. In Table 1, we present the
mean Macro-F1 scores for each selected source7→target pair
across all datasets for each baseline method. The complete
lists are shown in Table 5 (Macro-F1) and Table 6 (Accu-
racy) in Appendix G.1. CauDiTS outperforms the baselines
on all benchmark datasets, achieving an average improve-
ment of 11.81%. On the Boiler dataset, CauDiTS outper-
forms the second-best method CLUDA by 12.99% (0.680
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Table 1: The results of selected source 7→ target pairs in four benchmark datasets in terms of mean Macro-F1 over 10
independent runs. The best results are shown in bold, and the second-best results are underlined.

Dataset Source 7→ Target VRADA CoDATS AdvSKM CAN CDAN DDC DeepCORAL DSAN HoMM MMDA SASA RAINCOAT CLUDA CauDiTS ↑

1 7→ 2 0.505 0.487 0.519 0.468 0.522 0.542 0.542 0.468 0.514 0.512 0.508 0.552 0.559 0.5798 +3.72%
1 7→ 3 0.664 0.660 0.739 0.890 0.718 0.923 0.929 0.934 0.933 0.580 0.909 0.935 0.929 0.9632 +3.02%

Boiler 2 7→ 1 0.487 0.495 0.585 0.497 0.499 0.563 0.523 0.490 0.519 0.500 0.494 0.591 0.570 0.6381 +7.96%
2 7→ 3 0.410 0.398 0.481 0.398 0.398 0.484 0.408 0.398 0.405 0.398 0.400 0.498 0.499 0.7251 +45.31%
3 7→ 1 0.496 0.640 0.844 0.621 0.425 0.778 0.805 0.476 0.809 0.631 0.810 0.807 0.847 0.9354 +10.44%

Avg 0.512 0.536 0.633 0.575 0.552 0.685 0.641 0.553 0.636 0.524 0.624 0.677 0.680 0.7683 +12.99%

12 7→ 7 0.437 0.612 0.655 0.636 0.546 0.632 0.486 0.574 0.442 0.539 0.633 0.684 0.678 0.7960 +16.37%
19 7→ 2 0.615 0.403 0.460 0.327 0.312 0.459 0.501 0.428 0.522 0.306 0.496 0.432 0.458 0.7557 +22.88%

WISDM 2 7→ 28 0.688 0.688 0.742 0.610 0.644 0.669 0.726 0.654 0.691 0.677 0.708 0.700 0.788 0.7944 +0.81%
26 7→ 2 0.517 0.598 0.463 0.362 0.404 0.414 0.618 0.424 0.519 0.453 0.689 0.472 0.701 0.8098 +15.39%
7 7→ 26 0.308 0.405 0.416 0.395 0.344 0.412 0.396 0.401 0.406 0.385 0.391 0.424 0.403 0.5249 +23.80%

Avg 0.513 0.541 0.547 0.466 0.450 0.517 0.545 0.496 0.516 0.472 0.583 0.542 0.607 0.7362 +21.29%

15 7→ 19 0.657 0.663 0.664 0.593 0.696 0.658 0.708 0.831 0.686 0.656 0.957 0.940 0.957 0.9657 +0.91%
19 7→ 25 0.737 0.381 0.359 0.640 0.768 0.360 0.535 0.754 0.397 0.348 0.560 0.956 0.932 0.9831 +2.83%

HAR 20 7→ 6 0.773 0.603 0.576 0.725 0.796 0.529 0.666 0.759 0.627 0.641 0.827 0.903 1.000 1.0000 +0.00%
23 7→ 13 0.696 0.440 0.436 0.410 0.660 0.447 0.616 0.606 0.549 0.527 0.709 0.778 0.762 0.8308 +6.79%
13 7→ 19 0.696 0.738 0.769 0.729 0.837 0.752 0.763 0.662 0.798 0.752 0.943 0.946 0.911 0.9715 +2.70%

Avg 0.712 0.565 0.560 0.619 0.751 0.549 0.658 0.723 0.609 0585 0.799 0.905 0.892 0.9502 +4.99%

2 7→ 4 0.415 0.320 0.219 0.294 0.431 0.231 0.305 0.143 0.230 0.192 0.447 0.523 0.526 0.6457 +22.76%
4 7→ 0 0.243 0.222 0.163 0.165 0.273 0.175 0.249 0.116 0.179 0.162 0.346 0.284 0.352 0.4296 +22.05%

HHAR 5 7→ 1 0.756 0.723 0.692 0.813 0.848 0.707 0.766 0.285 0.738 0.765 0.916 0.964 0.950 0.9661 +0.22%
7 7→ 1 0.583 0.528 0.338 0.524 0.412 0.280 0.483 0.278 0.461 0.367 0.814 0.825 0.875 0.8806 +0.64%
7 7→ 5 0.529 0.374 0.154 0.546 0.480 0.175 0.496 0.192 0.323 0.283 0.624 0.633 0.626 0.6736 +6.41%

Avg 0.505 0.433 0.313 0.468 0.488 0.314 0.450 0.203 0.386 0.354 0.629 0.646 0.666 0.7191 +7.97%

(a) VRADA (b) CoDATS (c) AdvSKM 

(d) RAINCOAT (f) CauDiTS (e) CLUDA

Figure 4: The t-SNE visualization shows the domain-
invariant representations learned on the HHAR 2 7→4 pair.
Circles represent the source domain, while squares represent
the target domain.

vs 0.7683) and achieves a remarkable 45.31% improvement
on 2 7→3. On the WISDM dataset, where the number of time
series is limited, all baselines fail to maintain stable perfor-
mance across different pairs. However, CauDiTS has more
stable performance, achieving an improvement of 21.29%
(0.607 vs 0.7362). On the HHAR dataset, CauDiTS achieves
a remarkable average improvement of 7.97%, surpassing
the best baseline accuracy of CLUDA (0.666 vs 0.7191).
On the HAR dataset, CauDiTS outperforms RAINCOAT
with a significant improvement of 4.99% (0.905 vs. 0.9502).
This improvement is remarkable, especially considering the

saturation performance of the existing method on the HAR
dataset. Overall, the performances confirm that CauDiTS
achieves significant Macro-F1 improvements, demonstrat-
ing its viability and effectiveness on all datasets.

In Figure 4, we visualize the domain-invariant representa-
tions extracted for baselines and CauDiTS on the HHAR
2 7→4 pair. The t-SNE visualization of the representations
shows that CauDiTS has a more compact intra-class dis-
tribution, while effectively separating clusters of different
classes. This further demonstrates the effectiveness of Cau-
DiTS and its ability to extract representations with higher
levels of generalization and discrimination.

5.3. Ablation Study

Contribution of Each Component. We investigate the ef-
fectiveness of each component in CauDiTS. In Table 2, w/o
UDA means that the model is trained on the source domain
but tested on the target domain without any UDA strategy.
Table 2 demonstrates a progressive increase in accuracy as
more components are integrated, indicating that each loss
serves as an essential component within CauDiTS. Remark-
ably, the introduction of the ARAD module resulted in a
significant improvement in mean accuracy of approximately
8% across all datasets compared to using Lbs only. The full
results are provided in Table 8 of Appendix G.1.

Ablation Studies of Model Architecture. Firstly, experi-
ments are conducted to replace LSTM with RNN (Werbos,
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Figure 5: Results of ablation studies. (a)-(b) show the effects
of different hidden state extractors and feature extractors,
(c)-(d) show sensitivity analyses on the hyperparameters L
and α.

1990) and GRU (Cho et al., 2014). As depicted in Figure
5(a), while there were some variations in Macro-F1, no sig-
nificant differences are observed, and the model achieves
the highest accuracy with LSTM. Subsequently, we investi-
gate the performance of CauDiTS using different backbones,
namely CNN(Ragab et al., 2022), TCN(Bai et al., 2018) and
ResNet18(He et al., 2016), and present the results in Figure
5(b). The evaluations indicate that CNN outperforms the
more complex TCN and ResNet18 on all datasets, which
is why CauDiTS chose CNN. TCN has lower performance
compared to other backbones attributed to the dilated convo-
lution mechanism, which hinders its effective extraction of
information from the augmented irregular time series data.

Sensitivity Analysis. The hyperparameter L represents the
number of convolutional layers in GCNc and GCNo. Fig-
ure 5(c) illustrates the effect of different values of L on
CauDiTS. CauDiTS exhibits robustness to variations in L,
maintaining relatively consistent performance across all se-
lected source 7→target pairs. Another crucial parameter is α,
which governs the selection of edges is domain-invariant.
Figure 5(d) demonstrates that optimal performance in Cau-
DiTS is achieved when α is around 0.7, and its selection is
sensitive to excessively high or low values. The full sensi-
tivity analysis is reported in Appendix H.

6. Conclusion
In this paper, we propose CauDiTS, a framework for unsu-
pervised domain adaptation of multivariate time series that
disentangles domain-common causal rationales and non-
causal domain-specific correlations. The adaptive rationale
disentangler, equipped with a learnable causal mask, ef-
fectively filters out unstable domain-specific correlations,

Table 2: Ablation studies for each component in CauDiTS.
We report the average prediction accuracy for the target
domain across all datasets over 10 independent runs.

w/o UDA Lbs ARAD Lcon Lcpc Ldcls Boiler WISDM HAR HHAR

✓ 0.6941 0.6420 0.6462 0.5135
✓ 0.7832 0.6800 0.7159 0.5551
✓ ✓ 0.8510 0.7396 0.8462 0.6325
✓ ✓ ✓ 0.8812 0.7761 0.9137 0.7142
✓ ✓ ✓ ✓ 0.8962 0.7999 0.9390 0.7539
✓ ✓ ✓ ✓ ✓ 0.9358 0.8375 0.9731 0.8001

enabling the aggregation of domain-invariant representa-
tions. CauDiTS outperforms state-of-the-art baselines and
provides insights into domain-common causal rationales
often overlooked by existing works. Extensive experiments
on benchmark datasets demonstrate its superiority.
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work is to improve the robustness and accuracy of the un-
supervised domain adaptation model for multivariate time
series, which has positive implications for various applica-
tions, including healthcare, finance, weather, energy, and
industrial processes.

The potential broader impact of our work lies in a more adap-
tive and robust unsupervised domain adaptation model for
multivariate time series. Specifically, we propose CauDiTS,
a novel framework for causally disentangled domain adapta-
tion of multivariate time series. Based on a causal perspec-
tive, CauDiTS achieves a deeper disentanglement between
domain-common causal rationales and domain-specific non-
causal correlations before extracting domain-invariant rep-
resentations. It is noteworthy that domain-common causal
rationales play a crucial role in filtering out unstable domain-
specific correlations, allowing the aggregation of domain-
invariant representations from a causally augmented graph
network. Incorporating non-causal domain-specific corre-
lations facilitates effective domain discrimination in multi-
variate time series. Another significant contribution is our
assumption that each class possesses unique and domain-
invariant causal rationales. We further consider the consis-
tency of intra-class causal rationales to promote the model’s
ability to generalize to unlabeled target domains. This as-
pect, the consistency of intra-class causal rationales, remains
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unexplored in previous works on unsupervised domain adap-
tation for multivariate time series.

In summary, our work aims to make a positive contribution
to the field of unsupervised domain adaptation for multi-
variate time series, with potential applications to complex
multivariate time series dynamic systems. We remain com-
mitted to promoting ethical practices in the development
and deployment of AI technologies, ensuring responsible
use of machine learning.
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Appendix

A. Related Work
A.1. Unsupervised Domain Adaptation of Non-Time Series.

Unsupervised Domain Adaptation (UDA) aims to learn a model capable of transferring knowledge from a labeled source
domain to a heterogeneous and unlabeled target domain. UDA solutions mainly involve statistical divergence alignment
mechanisms (Kang et al., 2019; Chen et al., 2020; Zhu et al., 2020; Sun & Saenko, 2016; Rahman et al., 2020) and
adversarial learning (Tzeng et al., 2017; Long et al., 2018; He et al., 2020; Shu et al., 2018; Xie et al., 2018).

Statistical divergence alignment mechanisms focus on learning domain-invariant representations by minimizing domain
discrepancies in the latent fusion feature space using various divergence measures (e.g., Maximum Mean Discrepancy
(MMD) (Borgwardt et al., 2006)). DDC (Tzeng et al., 2014) introduces an adaptation layer and an additional domain
confusion loss based on MMD to learn a semantically meaningful and domain invariant representation. CAN (Kang et al.,
2019) estimates the target domain label with clustering while minimizing the contrastive domain discrepancy. HoMM (Chen
et al., 2020) is a higher-order moment matching method that can perform arbitrary-order moment matching and is extended
to reproduce kernel hilbert spaces (Zhang et al., 2018).

Adversarial learning, which uses a discriminator to adaptively guide the minimization of feature-level cross-domain
divergence, helps to extract domain-invariant representations (Liu et al., 2022). CDAN (Long et al., 2018) integrates
conditional adversarial learning into domain adaptation, guided by classifier predictions and innovative conditioning
strategies. MSTN (Xie et al., 2018) proposes a moving semantic transfer network to learn semantic representations for
target samples by aligning labeled source centroids and pseudo-labeled target centroids. Dirt-T (Shu et al., 2018) proposes
a decision boundary iterative refinement training with a teacher model that combines domain adversarial training with a
penalty term that punishes and minimizes the violation of the cluster assumption.

The above methods are not tailored for time series data and do not explicitly account for the temporal characteristics inherent
in time series. However, with appropriate adjustments, some works such as CDAN (Long et al., 2018), DeepCORAL (Sun
& Saenko, 2016), DSAN (Zhu et al., 2020), HOMM (Chen et al., 2020), and MMDA(Rahman et al., 2020) have been
successfully adapted to time series data, resulting in promising performance.

A.2. Granger Causality Learning for Time Series.

Granger causality is initially introduced by Granger (Granger, 1969), who proposed to analyze the temporal causal
relationships by testing the help of one time-series on predicting another time-series. Granger causality, initially based on a
linear model, explores the causal structure by fitting vector auto-regressive (VAR) models (Hyvärinen et al., 2010).

With the rapid progresses and wide applications of neural networks (NNs), Granger causality inference methods have
increasingly leveraged the expressive power offered by NNs (Tank et al., 2021; Cheng et al.; Löwe et al., 2022; Marcinkevičs
& Vogt, 2021). Neural-GC (Tank et al., 2021) infers Granger causality directly from component-wise NNs by enforcing
sparse input layers. ACD (Löwe et al., 2022) proposes an amortized causal discovery framework for time series, inferring
causal relationships across samples with different underlying causal graphs but shared dynamics. CUTS (Cheng et al.)
presents an iterative framework to jointly impute the irregular time series and discover Granger causal graphs. GVAR
(Marcinkevičs & Vogt, 2021) is a framework for inferring multivariate Granger causality under nonlinear dynamics based on
auto-regressive modeling with self-explanatory NNs. These neural-based Granger causality discovery algorithms aim to
capture nonlinear lagged and instantaneous causal relationships between variables in time series data.
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B. Proofs of Proposition 3.2
Proposition 3.1. Assuming Assumption 3.1 and Questions (1) and (2) are answered by CauDiTS, disentangle the optimal
G∗ci for class i from GI . Then, for ∀u ∈ U and ∀j ∈ Nc,

Yi = fY (fZc
(G∗ci , ϵZc

), ϵY ) s.t. Yi⊥⊥Gu
oj |G

∗
ci , (B.1)

where fY :Zc→Y and fZc
:Gc→Zc are the invertible causal functions. Gu

oj is domain-specific non-causal correlations of
class j from domain u.

Proof. First, it is a fact that, the class label Y of cross-domain multivariate time series of the same class are consistent.
Second, we assume that the causal rationales of the same class are cross-domain invariant and consistent, which means that
the causal rationales of different multivariate time series of the same class are fully consistent, i.e., Gu

ci = Gu′

ci , (u ̸= u′ ∈ U ).
Therefore, under the same causal function fY and fZc , the domain-invariant representation Zci from different cross-domain
multivariate time series of class i is perfectly aligned, i.e., Zu

ci = Zu′

ci . Assuming that the optimal causal functions fY and
fZc

have been found, then we have:

fY (fZc
(Gu

ci , ϵZc
), ϵY ) = fY (fZc

(Gu′

ci , ϵZc
), ϵY ). (B.2)

fZc
(Gu

ci , ϵZc
) = fZc

(Gu′

ci , ϵZc
). (B.3)

We use f
(−1)
Zc

as the inverted function of fZc
. Denote the optimal domain-invariant representation as Z∗ci = fZc

(G∗ci , ϵZc
)

for class i. In this paper, the optimal domain-invariant representation Z∗ci and domain-variant representation Zu
oj =

fZo
(Gu

oj , ϵZo
) are statistically independent. According to the invertibility of fZc

and the independence between Z∗ci and
Zu
oj , we can reformulate Equation (B.3) as:

f
(−1)
Zc

([
Z∗ci
Zu
oj

])
= f

(−1)
Zc

([
Z∗ci
Zu′

oj

])
. (B.4)

Based on Equation (B.4), to demonstrate that under the optimal domain-invariant rationales G∗c , function f
(−1)
Zc

can fully

extract domain-common complete and invariant information, we only need to prove that f (−1)
Zc

is a function of Z∗ci but not

the function of Zu
oj . To do this, we compute the Jacobian matrix of f (−1)

Z to analyze the first-order partial derivatives of

f
(−1)
Zc

and f
(−1)
Zo

w.r.t Z∗ci and Zu
oj . The Jacobian of f (−1)

Z can be denoted as:

J =

[
J11 J12
J21 J22

]
, (B.5)

where J11 ∈ Rdz×dz , J12 ∈ Rdz×dz , J21 ∈ Rdz×dz and J22 ∈ Rdz×dz are Jacobian matrices, and elements of them are
formulated as:

[J11]m,n =
∂
[
f
(−1)
Zc

(Z)
]
m

∂(Z∗ci)n
, [J12]m,k =

∂
[
f
(−1)
Zc

(Z)
]
m

∂(Zu
oj )k

,

[J21]k,m =
∂
[
f
(−1)
Zo

(Z)
]
k

∂(Z∗ci)m
, [J22]k,l =

∂
[
f
(−1)
Zo

(Z)
]
k

∂(Zu
oj )l

,

(B.6)

where Z = [Z∗ci , Z
u
oj ]

T , m,n, k, l ∈ [1, dz]. Based on Equation (B.6), we only need to prove that J12 is a zero matrix, and
the determinant of J11 is a non-zero matrix. This would demonstrates that the matrix composed of all partial derivatives of
f
(−1)
Zc

w.r.t Z∗ci is full rank while any partial derivatives of f (−1)
Zc

w.r.t Zu
oj is zero.

Furthermore, Equation (B.4) is hold for all classes in the latent domain-invariant representation space, then for any fixed Z̄∗ci
and Z̄u

oj , for all Zu′

oj , we have:

f
(−1)
Zc

([
Z̄∗ci
Z̄u
oj

])
= f

(−1)
Zc

([
Z̄∗ci
Zu′

oj

])
, (B.7)
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Then we calculate the partial derivatives of Equation (B.7), and we have: J12|Z̄ci
,Zu′

oj

= J12|Z̄ci
,Z̄u

oj
. Under the chain rules,

and by considering derivatives with respect to constants, we can extend this to:

J12|Z̄ci
,Z̄u

oj
=

(
J
f
(−1)
Zc

|Z̄ci
,Z̄u

oj

)[
0dz×dz

0dz×dz

]
= 0dz×dz , (B.8)

where J
f
(−1)
Zc

∈ Rdz×2dz is the Jacobian of f (−1)
Zc

. Equation (B.8) holds for any fixed Z̄∗ci and Z̄u
oj , and consequently, the

same derivation is holds for all Z∗ci and Zu
oj . Therefore, J12 is an all-zero matrix and the learned causal function f

(−1)
Zc

is
not a function of Zu

oj . Based on the aforementioned derivation, we can reformulate Equation (B.5) as:

J =

[
J11 0dz×dz

J21 J22

]
, (B.9)

Furthermore, we have the following equation:

det(J) = det(J11)det(J22) ̸= 0. (B.10)

In a nutshell, we have det(J11) ̸= 0 and det(J22) ̸= 0. Therefore, J11 is a non-zero matrix, and f
(−1)
Zc

is only a function of
Z∗ci , i.e., for ∀u ∈ U , we have Yi = fY (fZc(G

∗
ci , ϵZc), ϵY ) s.t. Yi⊥⊥Gu

oj |G
∗
ci for class i.

C. Method Details
C.1. The Basic Adaption Loss

CauDiTS is trained using a domain adversarial learning strategy with a basic adaptation loss, Lbs, which comprises three
distinct losses: (1) the supervised classification loss Lcls of the source domain, (2) the unsupervised conditional entropy loss
Lucls of the target domain, (3) the domain classification loss Ldis, denoted as:

Lbs = λ1Lcls + λ2Lucls + λ3Ldis, (C.1)

where λ1, λ2 and λ3 are balancing coefficients adjusting the importance of each component.

More formally, the three losses are defined as follows:

Lcls =
1

Ns

∑
Ns

J (Φ(Fc(R̃
s
c)), Y

s) =
1

Ns

∑
Ns

J (Ỹ s
c , Y

s), (C.2)

Lucls = −EX̃t∈Xt [(Ỹ
t
c )

T logỸ t
c ], (C.3)

where J is the cross-entropy function. R̃s
c is the node representation of query view from source domain. Ỹ t

c is the predicted
label of multivariate time from query view of target domain. The domain classification loss Ldis is achieved by the
gradient reversal layer R(·) (Ozyurt et al., 2022) between the domain-specific feature extractor Fo(·) and discriminator
D(·), formulated as:

Ldis =
1

Ns

∑
Ns

J (D(R(Fo(R
s
o))), u = s) +

1

Nt

∑
Nt

J (D(R(Fo(R
t
o))), u = t), (C.4)

where R(Zo) = Zo and dR
dZo

= −I. u = s and u = t represent the domain labels from the source and target domains,
respectively. Rs

o and Rt
o signify that multivariate time series samples can come from either the query view or the key view.

In the ablation study on the contribution of the components of CauDiTS (see Section 5.3), omitting the ARAD module results
in changes to the definitions of Lcls and Ldis. Specifically, the strategy of Adaptive Causal Rationale Disentanglement (see
Section 4.1) is deactivate. The multivariate time series X is fed directly to the domain-invariant feature extractor Fc(·) and
classifier Φ(·) for class prediction. As a result, Lcls will be refined as follows:

Lcls =
1

Ns

Ns∑
i

J (Φ(Fc(X̃
s
i )), Ỹ

s
i ), (C.5)
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Figure 6: A causal graph.

(a) Chain (b) Fork (c) Collider

Figure 7: The three basic causal structures.

Furthermore, the adversarial training loss can be reformulated as:

Ldis =
1

Ns

Ns∑
i

J (D(R(Fo(X̃
s
i ))), u = s) +

1

Nt

Nt∑
i

J (D(R(Fo(X̃
t
i ))), u = t), (C.6)

C.2. Invariant Causality of Domain Interventions for CauDiTS

Causal Graphical Models: In causal research, a causal graph model or causal graph is typically a directed acyclic graph
(DAG) G representing the joint probability distribution P over variables X = {x1, x2, · · · , xn}, where P is Markov with
respect to G (Pearl, 1995; Hasan et al., 2023). The directed acyclic graph G = (V, E) consists of nodes V and directed
edges E , where nodes V represent feature the observed value of variables X , and directed edges E represent conditional
dependency relationships between variables X . Conditional dependency relationships are defined as causal relationships,
where the arrows of directed edges represent the causal direction between nodes. The joint distribution P can be factorized
as follows:

P (x1, x2, · · · , xn) =

n∏
i=1

P (xi|Pa(xi)), (C.7)

where Pa(xi) represents the parents of xi in G. Typically, causal graphs use directed edges (→) from causes to effects to
encode causal relationships between variables. As shown in Figure 6, X is a cause of Y and Z (i.e., Y←X→Z), and Y is
also a cause of Z (i.e., Y→Z).

Causal graph models constructed on the causal relationships between variables generally include three known basic structures,
namely chain, fork, and collider, as shown in Figure 7. The three basic causal structures and their metaphorical dependencies
are as follows:

• Chain: As depicted in Figure 7(a), the causal path X → Y → Z is a chain structure where X has a directed edge to Y
and Y has an edge to Z. Here, X causes Y and Y causes Z, and Y is called a mediator.

• Fork: As depicted in Figure 7(b), the causal path X ← Y → Z is a fork structure where Y is the common parent of X
and Z. In a fork structure, Y is called a confounder.

• Collider: As depicted in Figure 7(c), the causal path X → Y ← Z is a collider structure where one variable (Y ) is a
common child of the other two variables (X and Z), which are non adjacent. Y is called a collider.

Causal Assumptions: Often, the available data provide only partial insights into the underlying causal mechanisms.
Consequently, it is imperative to make certain priors or assumptions about the structure of the causal relationships to facilitate
causality learning (Lee & Honavar, 2020; Hasan et al., 2023). The following are the prevalent assumptions commonly
adopted by causality learning community.

• Causal Markovian Condition. Each variable is independent of all its non-descendants, conditional on its parents.
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，

，

Figure 8: A SCM with causal graph G and the corresponding causal functions fY and fZ .

• Causal Sufficiency. The causal sufficiency assumption states that all the common causes of all variables are observed
and there are no latent/hidden/unobserved confounders. This assumption is important for a variety of literature.

• Causal Faithfulness. The causal graph represents exactly the distributional independence relations implied by d-
separation. Consequence: Any independence relations in the data are caused by the underlying structure of the graph
that generated it, rather than from some random coincidence which narrows down the scope of possible causal graphs.

• Acyclicity. A graph must be acyclic in order to be a causal graph. According to the acyclicity condition, there can
be no directed paths starting from a node and ending back to itself. This resembles the structure of a directed acyclic
graph (DAG).

Structural Causal Model: A structural causal model (SCM) is a specific type of causal graph model used to formalize
structural knowledge about the data generation process. SCMs are widely used in causal analysis, inference, and causal
discovery tasks because they can represent the latent causal relationships within data. The formal definition of SCM is as
follows:

Definition C.1. (Structural Causal Model) Pearl (Pearl, 2009): A structural causal model is a 4-tuple M =
{U, V, F, P (U)}, where:

i. U is a set {ϵ1, ϵ2, · · · , ϵn} of background variables, also called exogenous noise. These variables cannot be observed or
intervened, but can influence other variables in the model.

ii. V is a set {v1, v2, · · · , vn} of endogenous variables that are observable, and are determined by variables in the model,
i.e., variables in U ∪ V .

iii. F is a set of causal functions {f1, f2, · · · , fn} such that each fi assigns a value to the corresponding Vi ∈ V ,
Vi ← fi(Pa(Vi), ϵi), for i = 1, 2, · · · , n.

iv. P (ϵ) is a joint probability distribution over exogenous variables U .

Each SCM M is associated with a causal graph model G (DAG) and a set of causal functions fi. In the SCM, each fi
assigns a value to the corresponding Vi ∈ V , Vi ← fi(Pa(Vi), ϵi), for i = 1, 2, · · · , n, representing the causal relationships
between Vi and Pa(Vi). As shown in Figure 8, the variable X is a direct cause of Y and Z because X appears in the
functions that assign values to Y and Z, respectively. That is, if a variable Y or Z is a child of another variable X , then X is
a direct cause of Y or Z. In Figure 8, ϵX , ϵY and ϵZ are the exogenous noises; X , Y and Z are the endogenous variables;
fY and fZ are the causal functions assigned to the corresponding variables. An exogenous variable is characterized by
the fact that it is either unobserved or unmeasured and, importantly, it cannot be a descendant of any other variable. Each
endogenous variable is a descendant of at least one exogenous variable.

Do-operator: The do-operator, also referred to as do-intervention, represents a form of intervention in a causal model that
involves fixing the observed values of one or more variables to specific values (Pearl, 1995; Yue et al., 2020). When an
intervention is performed on an endogenous variable X in a SCM, setting its value to x is denoted as do(X = x). Fixing
the value of X = x removes the edges to X , allowing for the simulation of experimental conditions to assess the changes in
causal effects produced by the causal model when the node is intervened upon.
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The difference between do(X = x) and X = x is quite clear. In the former, the external imposition fixes the value of the
variable as a constant, whereas in the latter, the value is naturally observed in the data. This difference is also evident when
evaluating causal effects, for example, by comparing P (Y = y|do(X = x)) and P (Y = y|X = x). In terms of probability
distributions, the former reflects the overall distribution of Y when each individual in the population sets the value of X to
x, while the latter reflects the overall distribution of Y among individuals when the value of X is naturally x.

When intervening on X , i.e., do(X = x), and calculating the causal effects on other variables, it is necessary to further
transform expressions involving the do-operator into general probability expressions that can be calculated. This process is
called do-calculus.

Do-calculus: Do-calculus aims to convert expressions constrained by the do-operator into expressions without the do-
operator. Expressions without the do-operator can be estimated directly from observational data without the need for
experimental intervention. Judea Pearl (Pearl, 1995; 2009) proposes a set of rules for the do-calculus, which includes three
rules for transforming conditional probability expressions with the do-operator:

For a causal graph G, let X , Y , Z and W be the disjoint set of endogenous variables. GX̄ is used to represent the
manipulated graph, where all incoming arrows to the node X are removed. Similarly, GX represents the graph where
outgoing arrows are removed from node X (Yang et al., 2021b; Yue et al., 2020).

Rule 1: permitting the addition or deletion of observations:

P (Y = y|do(X = x), Z = z,W = w) = P (Y = y|do(X = x),W = w), if(Y ⊥⊥ Z|X,W )GX̄
. (C.8)

In this case, the variable set Z blocks all paths from W to Y and all arrows leading to X have been removed.

Rule 2: permitting the replacement of an intervention by an observation, or vice verse:

P (Y = y|do(X = x), do(Z = z),W = w) = P (Y = y|do(X = x), Z = z,W = w), if(Y ⊥⊥ Z|X,W )GX̄Z
. (C.9)

In this case, Z satisfies the backdoor criterion.

Rule 3: permitting the deletion or addition of interventions:

P (Y = y|do(X = x), do(Z = z),W = w) = P (Y = y|do(X = x),W = w), if(Y ⊥⊥ Z|X,W )G
X̄Z(W )

, (C.10)

where Z(W ) is the set of nodes in Z that are not ancestors of any W in GX̄ . In this case, Z satisfies the backdoor criterion.

Backdoor Criterion: The backdoor criterion is applied while the confounder is observable. In fact, Rule 2 of the three
rules in do-calculus is a generalization of the backdoor criterion. Judea Pearl (Pearl, 1995) proved that if there exists a set of
variables Z that satisfies the backdoor criterion with respect to (X,Y ), then the causal effect from X to Y is identifiable.
The formal definition of the backdoor criterion is as follows:

Definition C.2. (Backdoor Criterion) (Pearl, 1995; Adib et al., 2020) Given an ordered pair of variables (X,Y ) in
a directed acyclic graph G, a set of variables Z satisfies the backdoor criterion relative to (X,Y ) if no node in Z is a
descendant of X , and Z blocks every path between X and Y that contains an arrow into X .

The corresponding backdoor adjustment strategy for the backdoor criterion is as follows:

Definition C.3. (Backdoor Adjustment) If a set of variables Z satisfies the backdoor criterion relative to (X,Y ), then the
causal effect of X on Y is identifiable and is given by the formula: P (y|do(X = x)) =

∑
z P (y|X = x, Z = z)P (Z = z).
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Derivation: Utilizing the three rules of the do-calculus and the backdoor criterion described above, we now illustrate the
derivation process of the backdoor adjustment for P (Y |do(Zc = Zci)) as described in Section 4.2:

P (Y |do(Zc)) =

U∑
u

P (Y |do(Zc = Zci), Go = Gu
oj )P (Go = Gu

oj |do(Zc = Zci)), (C.11)

=

U∑
u

P (Y |do(Zc = Zci), Go = Gu
oj )P (Go = Gu

oj ), (C.12)

=

U∑
u

P (Y |Zc = Zci , Go = Gu
oj )P (Go = Gu

oj ), (C.13)

=

U∑
u

∑
Zu

oj

P (Y |Zc = Zci , Go = Gu
oj , Zo = Zu

oj )P (Zo = Zu
oj |Go = Gu

oj )P (Go = Gu
oj ) (C.14)

=

U∑
u

P (Y |Zc = Zci , Zo = fZo
(Gu

oj , ϵZo
))P (Go = Gu

oj ), (C.15)

where Equation (C.11) and Equation (C.14) follow the law of total probability. Equation (C.12) uses Rule 3 given Go ⊥⊥ Zc

in GZc
. Equation (C.13) uses Rule 2 to change the intervention term to observation as (Y ⊥⊥ Zc|Go) in GZc . In our SCM

(as shown in Figure 2(c)), Zo takes a deterministic value given by the causal function Zo ← fZo
(Go, ϵZo

). Therefore,
the summation over all values of Zo in Equation (C.14) is reduced to a single probability measure in Equation (C.15).
Meanwhile, Equation (C.15) uses Rule 1 to delete Go from the observation as (Y ⊥⊥ Go|Zc) in GZc

.

C.3. Detailed Overview of CauDiTS

The pseudocode for CauDiTS is presented in Algorithm 1.

D. Dataset Detail
D.1. Augmentations for Data

For each input multivariate time series, we apply time series augmentations in CauDiTS, following the methods proposed by
CLUDA (Ozyurt et al., 2022) and CoTMix(Eldele et al., 2023). The augmentations are described below:

History Crop: We randomly mask out at minimum 20% (10% - 40%) of the initial time series with a probability of 50%
(20% - 50%).

Historical Cutout: A random time window of 15% (5% - 20%) of the time series is masked with a probability of 50% (20%
- 70%).

Channel Dropout: Each channel is masked independently with a probability of 10% (5% - 30%).

Gaussian Noise: Gaussian noise is applied independently to each measurement with a standard deviation of 0.1 (0.05 - 0.2).

We sequentially apply these augmentations twice to each multivariate time series. As a result, we have two augmented views
of the same multivariate time series in CauDiTS.

D.2. Benchmark Datasets

We conduct experiments on four real-world multivariate time-series datasets: Boiler (Cai et al., 2021), WISDM (Kwapisz
et al., 2011), HAR (Anguita et al., 2013) and HHAR (Stisen et al., 2015). These datasets are widely recognized as benchmark
datasets in existing work on domain adaptation of multivariate time series. WISDM and HAR are two small-scale datasets,
while HHAR and Boiler are two large-scale datasets. Summary statistics for all datasets are provided in Table 3, and a more
detailed description of each dataset is given below:

WISDM: WISDM contains data from 36 participants collected using a 3-axis accelerometer sensor at 20 Hz. We use
non-overlapping segments of 128 time steps to predict each participant’s activity type. The dataset encompasses six activity

20



CauDiTS: Causal Disentangled Domain Adaptation of Multivariate Time Series

Table 3: Summary of the adopted datasets. (D: domains, M: channels, L: series length, C: classes.)

Dataset D M L C Train samples Val samples Test samples

WISDM 36 3 128 6 4731 1274 1287
HAR 30 9 128 6 7194 1542 1563

HHAR 9 3 128 6 10336 2214 2222
Boiler 3 20 36 2 160734 134074 134074

types: walking, walking upstairs, walking downstairs, standing, sitting, and lying down. However, this dataset is more
challenging due to a class-imbalance problem, where data from different participants may have only a small sample of
subclasses from all classes.

HHAR: HHAR contains data from 9 participants collected using a 3-axis accelerometer sensor at 50 Hz. We use non-
overlapping segments of 128 time steps to predict each participant’s activity type. The dataset encompasses six activity
types: biking, sitting, standing, walking, walking upstairs, and walking downstairs.

HAR: HAR contains data from three sensors, namely, 3-axis accelerometer, 3-axis gyroscope, and 3-axis body acceleration,
worn by 30 participants. The data is collected at 50Hz, and non-overlapping segments of 128 time steps are employed
to predict the type of activity of each participant. The dataset includes six types of activities: walking, walking upstairs,
walking downstairs, sitting, standing, and lying down.

Boiler: Boiler dataset records sensor data from three boilers spanning from March 24, 2014, to November 30, 2016. Each
boiler is treated as an individual domain, with the sensor data mainly comprising the status of the blowdown valves for
each boiler, including any associated mechanical faults. However, in routine operations, fault data is typically sparse.
Consequently, this dataset demonstrates a class sample imbalance compared to other datasets, presenting increased research
challenges.

We employ a dataset partitioning strategy consistent with CLUDA (Ozyurt et al., 2022), where each dataset is partitioned
into three distinct subsets: training, validation, and testing. This partitioning follows a 70:15:15 ratio, with the datasets being
mutually exclusive. The subsets serve specific purposes: the training set is used for model training, the validation set for
parameter tuning and optimal model selection, and the test set to evaluate the performance of the trained model.

E. Baselines
We compare CauDiTS to the following methods:

VRADA (Purushotham et al., 2016b): VRADA is based on a variational recurrent neural network (VRNN) and trains
adversarially to capture complex temporal relationships that are domain-invariant. It is the first attempt to capture and
transfer latent temporal dependencies in multivariate time-series data.

CoDATS (Wilson et al., 2020): CoDATS, based on weak unsupervised adversarial training, employs the convolutional
neural layer with gradient reversal as a feature extractor.

AdvSKM (Liu & Xue, 2021): AdvSKM performs time series domain matching by minimizing an extended version of the
maximum mean discrepancy (MMD) (Tzeng et al., 2014) embedded in a hybrid spectral kernel network.

CAN (Kang et al., 2019): CAN optimizes a novel metric that explicitly models both intra-class and inter-class domain
discrepancies, implementing an alternating update strategy for end-to-end training.

CDAN (Long et al., 2018): CDAN is a principled framework that conditions the adversarial adaptation models on the
discriminative information conveyed in the classifier predictions.

DDC (Tzeng et al., 2014): DDC proposes a CNN with an adaptation layer and a confusion loss to obtain a semantically
meaningful and domain-invariant representation, using a domain confusion metric for model selection.

DeepCORAL (Sun & Saenko, 2016): DeepCORAL learns a nonlinear transformation that aligns correlations of layer
activations in deep neural networks of the source and target distributions.
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DSAN (Zhu et al., 2020): DSAN learns a transfer network by aligning the relevant subdomain distributions of domain-
specific layer activations across different domains based on a local maximum mean discrepancy (LMMD).

HoMM (Chen et al., 2020): HoMM is a higher-order moment matching method that achieves fine-grained domain alignment
through arbitrary-order moment matching. By leveraging higher-order statistics, it effectively approximates complex
non-gaussian distributions.

MMDA (Rahman et al., 2020): MMDA fits the second-order statistics (covariances) as well as the maximum mean
discrepancy of the source and target data with a two-stream convolutional neural network.

SASA (Cai et al., 2021): SASA exploits the stability of causality to introduce a sparse associative structure alignment
model for domain adaptation. The alignment of associative structures serves as a guiding mechanism for knowledge transfer
between domains.

RAINCOAT (He et al., 2023): RAINCOAT is a domain adaptation method for time series that addresses feature and label
shifts by combining and aligning features in time and frequency space, correcting for misalignment, and detecting label
shifts.

CLUDA (Ozyurt et al., 2022): CLUDA proposes a novel framework for unsupervised domain adaptation (UDA) of time
series through contrastive learning. It is the first work to acquire domain-invariant contextual representations in UDA of
multivariate time series.

VRADA, CoDATS, AdvSKM, SASA, RAINCOAT and CLUDA are representative UDA methods tailored for multivariate
time series. MMDA, HOMM, DSAN, DeepCORAL, DDC, CDAN and CAN are originally proposed for domain adaptation
for non-time series but have been successfully adapted to time series with excellent performance (Liu & Xue, 2021; Cai
et al., 2021; Eldele et al., 2023).

F. Implementation
The training, validation, and testing of all baselines and CauDiTS are conducted on identical dataset splits using an NVIDIA
GeForce GTX 4090 with 24GB GPU memory and the PyTorch framework.

Table 4: Ranges of hyperparameter tuning.

Method Hyperparameter Tuning Range
Learning Rate 1·10−4 ∼ 1·10−1

Weight Decay 1·10−4, 1·10−3, 1·10−2

BatchNormalization True, False
Dropout 0.1, 0.2, 0.3, 0.4, 0.5
VRNN hidden dim 32, 64, 128
VRNN latent dim 32, 64, 128
VRNN num. layers 1, 2, 3

VRADA Discriminator hidden dim. 64, 128, 256
(Purushotham et al., 2016b) Weight discriminator loss 0.1, 0.5, 1

Weight KL divergence 0.1, 0.5, 1
Weight neg. log-likelihood 0.1, 0.5, 1

CoDATS Discriminator hidden dim 64, 128, 256
(Wilson et al., 2020) Weight discriminator loss 0.1, 0.5, 1

Spectral kernel hidden dim 32, 64, 128
Spectral kernel output dim 32, 64, 128

AdvSKM (Liu & Xue, 2021) Spectral kernel type Linear, Gaussian
Num. kernel (if Gaussian) 3, 5, 7
Weight MMD loss 0.1, 0.5, 1
Kernel type Linear Gaussian
Num. kernel (if Gaussian) 1, 3, 5, 7

CAN (Kang et al., 2019) Num. iterations k-means clustering (each loop) 1, 3,5
Sampling type Random, Class-aware
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Method Hyperparameter Tuning Range
Weight MMD loss 0.1, 0.5, 1
Discriminator hidden dim 64, 128, 256

CDAN (Long et al., 2018) Multiplier discriminator update 0.1, 1, 10
Weight discriminator loss 0.1, 0.5, 1
Weight conditional entropy loss 0.1, 0.5, 1
Kernel type Linear, Gaussian

DDC (Tzeng et al., 2014) Num. kernel (if Gaussian) 1, 3, 5, 7
Weight MMD loss 0.1, 0.5, 1

Deep-Coral (Sun & Saenko,
2016)

Weight Coral Loss 0.1, 0.3, 0.5, 1

Kernel multiplier 1, 2, 3
DSAN (Zhu et al., 2020) Num. kernel 3, 5, 7

Weight domain loss 0.1, 0.5, 1
Moment Order 1,2,3

HOMM (Chen et al., 2020) Weight domain discrepancy loss 0.1, 0.5, 1
Weight discriminative clustering loss 0.1, 0.5, 1
Kernel type Linear, Gaussian
Num. kernel (if Gaussian) 1, 3, 5, 7

MMDA Weight MMD loss 0.1, 0.5, 1
(Rahman et al., 2020) Weight CORAL loss 0.1, 0.5, 1

Weight Entropy loss 0.1, 0.5, 1
LSTM Hidden Dim 4, 8, 12
Num. Segments 4, 8, 12, 24

SASA (Cai et al., 2021) Segments Lengths 3, 6, 12, 24
Weight Intra-Attention Loss [1·10−1,1·100]
Weight Inter-Attention Loss [1·10−1,1·100]
Fourier frequency mode 10, 64, 200

RAINCOAT (He et al., 2023) Regularization term in Sinkhorn divergence 1·10−3

λ1, λ2, λ3 0 ∼ 1
Momentum 0.9, 0.95, 0.99
Queue size 24576, 49152, 98304
Discriminator hidden dim. 64, 128, 256

CLUDA (Ozyurt et al., 2022) Projector hidden dim. 64, 128, 256
λdis 0.1, 0.5, 1
λCL 0.05, 0.1, 0.2
λNNCL 0.05, 0.1, 0.2
Discriminator hidden dim 32, 64, 128
Weight (λ3) discriminator loss 0.1, 0.5, 1
λ1 0.75, 0.8, 0.85, 0.9, 0.95, 1.0
λ2 0.0001, 0.001, 0.01, 0.1, 1.0
φ1 0.1, 0.2, 0.4, 0.6, 0.8, 1.0
φ2 0.001, 0.01, 0.1

CauDiTS γ1 0.01, 0.1, 0.5, 1.0
γ2 0.01, 0.1, 1.0
γ3 0.0001, 0.001, 0.01, 0.1, 1.0
ProjectorH hidden dim 32, 64, 128
L 1, 2, 3
α 0.5, 0.6, 0.7, 0.8, 0.9
Nr 25, 50, 100, 150, 200, 300, 400, 500
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F.1. Details on Neural Networks of CauDiTS

We employ a 1D-convolutional neural network (CNN) for the feature extractors Fc(·) and Fo(·), similar to RAINCOAT
(He et al., 2023) and AdaTime (Ragab et al., 2022). The architecture of the 1D CNN is structured into three blocks,
each consisting of a sequence of components: a 1D convolutional layer, followed by a 1D batch normalization layer, a
rectified linear unit (ReLU) function to introduce non-linearity, and finally a 1D max-pooling layer. Corresponding ablation
experiments were conducted regarding the adoption of different feature extractors, with the results presented in Figure 5(b).
The evaluations indicates that CNN outperformes the more complex TCN and ResNet18 across all datasets, leading to the
selection of CNN for CauDiTS. TCN is found to exhibit lower performance, which is attributed to the dilated convolution
mechanism hindering its effective extraction of information from the augmented irregular time-series data.

The classifier C(·) employs a multi-layer perceptron. The LSTM model used is a single-layer unidirectional Long Short-
Term Memory (LSTM) (Graves & Graves, 2012) with a dropout rate of 0.2. GCNc(·) is a causal augmented multi-layer
graph neural networks. The non-linear projectorH(·) is a non-linear hidden layer with 64 units.

F.2. Details of Training, Validation and Testing

In this subsection, we provide a detailed description of the hyperparameter selection, tuning, and best model selection
for CauDiTS and all baselines. We train each method for a maximum of 15000 training steps with a batch size of 32 for
WISDM, HAR, and HHAR, and 128 for Boiler. All methods are optimized using an Adam optimizer with β1 = 0.5 and
β2 = 0.999. The sliding window τmax is set to 128 for WISDM, HAR and HHAR, and 36 for Boiler.

We adopt uniform strategies for hyperparameter tuning, early stopping, and model selection, similar to CLUDA (Ozyurt
et al., 2022). Specifically, we individually tune hyperparameters for each method using grid search on source validation
datasets. The hyperparameter search ranges are derived from the released original implementations or benchmark suites
(Ozyurt et al., 2022; Ragab et al., 2022). Table 4 lists the tuning ranges of all hyperparameters for all methods. The
parameters that appear in all methods are listed in the first rows of Table 4. The search range for the learning rates is from
1× 10−4 to 1× 10−1.

For early stopping, we rely on the validation loss and Macro-F1 scores from labeled source domain samples, excluding
the target domain data. The best model is selected based on the highest performance in metrics such as accuracy and
Macro-F1 scores on the source domain validation set. In our experimental, it is important to highlight that the tuning of
model parameters, the early stopping of training, and the selection of the optimal model do not incorporate any unlabeled
or labeled multivariate time-series data from the target domain. This configuration is chosen to better reflect real-world
applications. After model selection, we report the prediction results on the labeled test samples from the target domain that
were not seen during training and validation (parameter and model selection). We use the same setup for all baselines in
this paper to ensure a fair comparison. To capture the variability in test performance for each method, we perform each
experiment over 10 independent runs.

The transparency and reproducibility of our experiments with CauDiTS is achieved by providing these implementation
details and hyperparameter tuning ranges.

G. More Experiments
G.1. Full Results Compared to Baselines

The comprehensive comparison results between CauDiTS and the baselines, in terms of Macro-F1 and accuracy across
all datasets, are presented in Tables 5 and 6, respectively. Table 5 displays the Macro-F1 scores, while Table 6 shows the
accuracy scores. In both tables, the reported values are the average performance after 10 independent runs of 10 randomly
selected source→target pairs from each dataset. Notably, the Boilers dataset, with only three domains, yields a total of
6 different source→target pairs. Upon analyzing Table 5, it manifests the conspicuous superiority of CauDiTS over all
baselines is mainfested, securing optimal results in 35 out of 36 source→target pairs across all datasets. In terms of accuracy,
CauDiTS consistently outperforms the baseline methods, achieving optimal results in 33 out of 36 cross-domain pairs.
This underscores the effectiveness of CauDiTS in significantly improving the benchmark Macro-F1 and the accuracy of
unsupervised domain adaptation for multivariate time series.
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(a) VRADA (b) CoDATS (c) AdvSKM 

(d) RAINCOAT (f) CauDiTS (e) CLUDA

Figure 9: The t-SNE visualization depicts the representations learned on the HHAR 2 7→4 pair. Circle markers represent the
source samples, while squares represent the target.

G.2. t-SNE Visualizations of The Learned Representations

In this section, we visualize the representations learned by VRADA, CoDATS, AdvSKM, RAINCOAT, CLUDA and
CauDiTS using the t-SNE tool (Van der Maaten & Hinton, 2008). Figures 9 and 10 present visual representations
of the learned source domain and target domain feature distributions for each method on HHAR 2→4 and WISDM
19→2, respectively. Circular markers represent representations of source domain samples, while square markers represent
representations of target domain samples. Different colors of circular and square markers correspond to representations of
different classes. The t-SNE visualizations provide an intuitive observation of the differences in sample distribution between
the source domain and the target domain. This allows an assessment of whether each method can effectively promote the
compactness of the intra-class distribution and promote the discriminability of the inter-class distribution in a cross-domain
setting.

The t-SNE visualizations in Figures 9 and 10 reveal a clear drift between the source and target domains. Adaption from the
source 19 to the target 2 in the WISDM dataset proves challenging due to the limited traininng samples for each class and
the initial low discriminability between classes. In Figure 10, the visualizations indicate severe clustering overlap for all
baselines, whereas CauDiTS displays clear inter-class boundaries, resulting in more compact clusters. Overall, compared
to other methods, CauDiTS effectively consolidates representations belonging to the same class across different domains
and separates representations of different classes. While some overlap still exists, CauDiTS demonstrates a significant
improvement over other methods.

G.3. Visualization of The Disentangled Causal Rationales

In the visualizations of the adjacency matrix of disentangled causal rationales in Figure 11 (WISDM dataset, task 26→2)
and Figure 12 (HAR dataset, task 15→19), deeper colors signify more robust interdependencies. These visualizations
suggest causal relationship between variables within the domain adaptation of multivariate time.

Emphasizing that the disentangled causal rationales obtained in CauDiTS do not represent the true summary causal graph
between variables, as highlighted in causal discovery literature (Hasan et al., 2023; Löwe et al., 2022; Cheng et al., 2023).
In this paper, the causal rationales are regarded as potential weak causal relationships, and no constraints or optimizations
have been imposed on the authenticity and identifiability of causal rationales with respect to the true summary causal graph.
Our focus is not on revealing the true causal structure between variables but rather on disentangling domain-invariant and
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(a) VRADA (b) CoDATS (c) AdvSKM 

(e) CLUDA (f) CauDiTS (d) RAINCOAT 

Figure 10: The t-SNE visualization depicts the representations learned on the WISDM 19 7→2 pair. Circle markers represent
the source samples, while squares represent the target.

domain-variant components from the inter-variable interrelationships. The disentangled domain-invariant components are
defined as causal rationales, representing a potential form of weak causality that is cross-domain invariant and stable. These
disentangled causal rationales play a crucial role in guiding variables through the dimensions of time for information transfer
and representation aggregation, ultimately yielding domain-invariant representations. Our future work will involve a more
in-depth analysis and the imposition of constraints on the authenticity and identifiability of causal rationales. This is aimed
at promoting the validity of CauDiTS, particularly in more intricate multivariate dynamic systems.

In the domain adaptation tasks, the adjacency matrices of the disentangled causal rationales obtained by CauDiTS are
shown in Figures 11 and 12. Differences in the relationships between variables are evident, with deeper colors indicating
stronger causal relationships. We observe that the causal rationales for the same classes in different domains maintain
an essentially consistent structure, with variations in the strength of the relationships between variables. However, these
variations are not pronounced, reflecting, to some extent, the ability of CauDiTS to ensure consistency of causal rationales
across domains. Furthermore, there are also differences in whether causal relationships exist between variables and the
strength of relationships between variables for causal rationales in different classes. Overall, however, the differences
in causal rationales across classes are not obvious, suggesting that distinguishing causal rationales across classes is very
challenging. This anomaly highlights the problem with existing works, which neglects to explore the discriminability and
differences in causal rationales across classes. Such negligence is erroneous, as even subtle differences in causal rationales
can lead to significant error accumulation over time due to the ongoing process of information transfer and representational
aggregation between variables.

G.4. Runtime and Model Parameters

We conducted comparisons of runtime, inference time, and model parameter sizes between CauDiTS and baseline methods
for unsupervised domain adaptation of multivariate time series. Baseline methods in unsupervised domain adaptation for
time series data include primarily VRADA, CoDATS, AdvSKM, SASA, RAINCOAT, and CLUDA. In order to provide
a fair and comprehensive evaluation, we report the average runtime per 100 training steps for each method, taking into
account that the specific methods and application contexts may influence the overall runtime.

In this evaluation, we specifically considered the HHAR dataset, a large-scale dataset used in our experiments. The average
runtime for each method (per 100 training steps) is presented in the first row of Table 7. The second row of Table 7 reports
the logarithmically transformed inference time for each method. It can be seen that while our training time is significantly
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(a) Source

(b) Target

class 1 class 2 class 3 class 4 class 5 class 6

Figure 11: The visualizations of causal rationales adjacent matrix for the 26→2 in the WISDM. The deeper the color, the
stronger the causal relationship.

(a) Source

(b) Target

class 1 class 2 class 3 class 4 class 5 class 6

Figure 12: The visualizations of causal rationales adjacent matrix for 15→19 in the HAR. The deeper the color, the stronger
the causal relationship.

longer than that of the other methods, our inference time remains comparable to or even superior to most of the baselines.
CauDiTS exhibits superior log flops (see Equation G.1) compared to the baselines due to its use of a structurally simple
CNN as the domain-invariant representation extractor. In contrast, other methods rely on a relatively complex TCN structure
to achieve satisfactory performance. In addition, during testing, CauDiTS selectively activates the query branch in the target
domain and deactivates the remaining branches. This significantly reduces the time consumption.

log flops = log(
1

Inference time
). (G.1)

Furthermore, we conducted a comparative analysis of the CauDiTS parameter size against the baselines. The results,
depicted in Table 7, indicate that CauDiTS shows a marginal increase in model parameter size but achieves a significant
improvement in accuracy and Macro-F1, as shown in Table 5 and Table 6.

H. Ablation Study and Sensitivity Analysis
Contribution of Each Component. We conducted an ablation study of the model components using the benchmark
datasets WISDM, HAR, HHAR and Boiler. The model is composed of difference elements, including w/o UDA, also
known as source-only, where the model is trained exclusively on time-series samples from the source domain and then
used for inference on samples from the target domain after training. Lbs denotes the basic loss for domain adaptation
of time series and includes three widely used loss terms: supervised classification loss (Lcls) on the source domain,
unsupervised conditional entropy loss (Lucls) on the target domain, and domain classification loss (Ldis). ARAD is
proposed as an adaptive causal rationale disentanglement strategy, designed to effectively disentangle domain-specific
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Table 5: The results of selected source 7→ target pairs in four benchmark datasets in terms of mean Macro-F1 over 10
independent runs. The best results are shown in bold, and the second-best results are underlined.

Dataset Source 7→ Target VRADA CoDATS AdvSKM CAN CDAN DDC DeepCORAL DSAN HoMM MMDA SASA RAINCOAT CLUDA CauDiTS ↑

1 7→ 2 0.505 0.487 0.519 0.468 0.522 0.542 0.542 0.468 0.514 0.512 0.508 0.552 0.559 0.5798 +3.72%
1 7→ 3 0.664 0.660 0.739 0.890 0.718 0.923 0.929 0.934 0.933 0.580 0.909 0.935 0.929 0.9632 +3.02%

Boiler 2 7→ 1 0.487 0.495 0.585 0.497 0.499 0.563 0.523 0.490 0.519 0.500 0.494 0.591 0.570 0.6381 +7.96%
2 7→ 3 0.410 0.398 0.481 0.398 0.398 0.484 0.408 0.398 0.405 0.398 0.400 0.498 0.499 0.7251 +45.31%
3 7→ 1 0.496 0.640 0.844 0.621 0.425 0.778 0.805 0.476 0.809 0.631 0.810 0.807 0.847 0.9354 +10.44%
3 7→ 2 0.491 0.417 0.557 0.499 0.434 0.561 0.557 0.496 0.489 0.499 0.537 0.523 0.535 0.6219 +10.86%

Avg 0.509 0.525 0.621 0.562 0.599 0.642 0.627 0.544 0.612 0.520 0.610 0.651 0.657 0.7439 +13.23%

12 7→ 19 0.410 0.456 0.510 0.508 0.298 0.396 0.317 0.518 0.281 0.233 0.246 0.392 0.532 0.5758 +8.23%
12 7→ 7 0.437 0.612 0.655 0.636 0.546 0.632 0.486 0.574 0.442 0.539 0.633 0.684 0.678 0.7960 +16.37%

18 7→ 20 0.578 0.427 0.348 0.389 0.600 0.383 0.379 0.268 0.421 0.280 0.665 0.672 0.673 0.7002 +4.04%
19 7→ 2 0.615 0.403 0.460 0.327 0.312 0.459 0.501 0.428 0.522 0.306 0.496 0.432 0.458 0.7557 +22.88%

WISDM 2 7→ 28 0.688 0.688 0.742 0.610 0.644 0.669 0.726 0.654 0.691 0.677 0.708 0.700 0.788 0.7944 +0.81%
26 7→ 2 0.517 0.598 0.463 0.362 0.404 0.414 0.618 0.424 0.519 0.453 0.689 0.472 0.701 0.8098 +15.52%
28 7→ 2 0.473 0.492 0.484 0.412 0.400 0.484 0.495 0.451 0.511 0.430 0.701 0.623 0.710 0.7499 +5.62%

28 7→ 20 0.672 0.578 0.557 0.655 0.605 0.571 0.620 0.615 0.699 0.537 0.835 0.849 0.703 0.8512 +0.26%
7 7→ 2 0.399 0.494 0.476 0.490 0.543 0.496 0.490 0.481 0.494 0.459 0.558 0.611 0.576 0.6608 +8.15%
7 7→ 26 0.308 0.405 0.416 0.395 0.344 0.412 0.396 0.401 0.406 0.385 0.391 0.424 0.403 0.5249 +23.80%

Avg 0.510 0.515 0.511 0.479 0.469 0.492 0.503 0.482 0.498 0.430 0.592 0.586 0.622 0.7219 +16.06%

15 7→ 19 0.657 0.663 0.664 0.593 0.696 0.658 0.708 0.831 0.686 0.656 0.957 0.940 0.957 0.9657 +0.91%
18 7→ 21 0.668 0.428 0.445 0.434 0.718 0.427 0.539 0.458 0.486 0.440 1.000 1.000 0.923 1.0000 +0.00%
19 7→ 25 0.737 0.381 0.359 0.640 0.768 0.360 0.535 0.754 0.397 0.348 0.560 0.956 0.932 0.9831 +2.83%
19 7→ 27 0.723 0.643 0.652 0.723 0.752 0.683 0.689 0.852 0.650 0.684 0.936 0.992 0.996 1.0000 +0.40%

HAR 20 7→ 6 0.773 0.603 0.576 0.725 0.796 0.529 0.666 0.759 0.627 0.641 0.827 0.903 1.000 1.0000 +0.00%
23 7→ 13 0.696 0.440 0.436 0.410 0.660 0.447 0.616 0.606 0.549 0.527 0.709 0.778 0.762 0.8308 +6.79%
24 7→ 22 0.749 0.714 0.726 0.772 0.756 0.710 0.647 0.726 0.768 0.722 1.000 0.765 0.983 1.0000 +0.00%
25 7→ 24 0.782 0.516 0.503 0.702 0.765 0.527 0.625 0.873 0.538 0.641 0.989 0.988 0.992 0.9947 +0.27%
3 7→ 20 0.671 0.853 0.847 0.549 0.769 0.852 0.828 0.757 0.860 0.784 0.961 0.869 0.968 0.9833 +1.58%

13 7→ 19 0.696 0.738 0.769 0.729 0.837 0.752 0.763 0.662 0.798 0.752 0.943 0.946 0.911 0.9715 +2.70%

Avg 0.715 0.598 0.598 0.628 0.752 0.595 0.662 0.728 0.636 0.619 0.888 0.914 0.942 0.9729 +3.28%

0 7→ 2 0.536 0.598 0.628 0.667 0.611 0.605 0.569 0.205 0.627 0.612 0.699 0.627 0.710 0.7204 +1.46%
1 7→ 6 0.702 0.696 0.662 0.621 0.727 0.678 0.725 0.696 0.726 0.693 0.830 0.858 0.858 0.8816 +2.75%
2 7→ 4 0.415 0.320 0.219 0.294 0.431 0.231 0.305 0.143 0.230 0.192 0.447 0.523 0.526 0.6457 +22.76%
4 7→ 0 0.243 0.222 0.163 0.165 0.273 0.175 0.249 0.116 0.179 0.162 0.346 0.284 0.352 0.4296 +22.05%
4 7→ 1 0.545 0.469 0.466 0.523 0.667 0.456 0.461 0.488 0.607 0.517 0.775 0.799 0.751 0.8209 +2.74%

HHAR 5 7→ 1 0.756 0.723 0.692 0.813 0.848 0.707 0.766 0.285 0.738 0.765 0.916 0.964 0.950 0.9661 +0.22%
7 7→ 1 0.583 0.528 0.338 0.524 0.412 0.280 0.483 0.278 0.461 0.367 0.814 0.825 0.875 0.8806 +0.64%
7 7→ 5 0.529 0.374 0.154 0.546 0.480 0.175 0.496 0.192 0.323 0.283 0.624 0.633 0.626 0.6736 +6.32%
8 7→ 3 0.818 0.734 0.692 0.845 0.943 0.719 0.872 0.564 0.836 0.936 0.939 0.955 0.944 0.9615 +0.68%
8 7→ 4 0.715 0.539 0.580 0.596 0.710 0.550 0.578 0.434 0.606 0.636 0.855 0.644 0.891 0.8645 -2.97%

Avg 0.584 0.520 0.459 0.559 0.610 0.458 0.550 0.340 0.533 0.516 0.725 0.711 0.748 0.7845 +4.88%
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Table 6: The results of selected source 7→ target pairs in four benchmark datasets in terms of mean accuracy over 10
independent runs. The best results are shown in bold, and the second-best results are underlined.

Dataset Source 7→ Target VRADA CoDATS AdvSKM CAN CDAN DDC DeepCORAL DSAN HoMM MMDA SASA RAINCOAT CLUDA CauDiTS ↑

1 7→ 2 0.889 0.892 0.921 0.826 0.946 0.942 0.926 0.811 0.902 0.947 0.950 0.946 0.927 0.9672 +1.81%
1 7→ 3 0.766 0.764 0.744 0.897 0.794 0.929 0.944 0.942 0.938 0.725 0.923 0.931 0.889 0.9675 +2.49%

Boiler 2 7→ 1 0.897 0.899 0.899 0.902 0.905 0.884 0.891 0.907 0.885 0.905 0.901 0.907 0.905 0.9131 +0.67%
2 7→ 3 0.654 0.661 0.688 0.661 0.661 0.628 0.664 0.661 0.663 0.661 0.662 0.661 0.661 0.7997 +16.24%
3 7→ 1 0.862 0.768 0.955 0.742 0.596 0.941 0.947 0.910 0.948 0.947 0.936 0.932 0.939 0.9788 +2.49%
3 7→ 2 0.930 0.704 0.982 0.906 0.987 0.984 0.981 0.986 0.943 0.985 0.942 0.944 0.942 0.9883 +0.13%

Avg 0.833 0.781 0.865 0.822 0.815 0.885 0.892 0.869 0.880 0.862 0.886 0.887 0.877 0.9358 +5.50%

12 7→ 19 0.558 0.633 0.639 0.594 0.488 0.564 0.433 0.639 0.415 0.358 0.411 0.618 0.694 0.7813 +12.58%
12 7→ 7 0.708 0.721 0.742 0.588 0.771 0.692 0.592 0.625 0.546 0.679 0.750 0.785 0.792 0.8500 +7.32%

18 7→ 20 0.571 0.634 0.390 0.439 0.771 0.390 0.380 0.366 0.429 0.380 0.776 0.783 0.780 0.8063 +2.98%
19 7→ 2 0.644 0.395 0.434 0.322 0.346 0.459 0.473 0.366 0.488 0.385 0.575 0.361 0.561 0.9063 +40.73%

WISDM 2 7→ 28 0.729 0.809 0.809 0.760 0.813 0.782 0.827 0.773 0.787 0.813 0.809 0.798 0.849 0.8625 +1.59%
26 7→ 2 0.683 0.727 0.620 0.580 0.615 0.600 0.737 0.605 0.702 0.634 0.852 0.595 0.863 0.9125 +5.73%
28 7→ 2 0.688 0.717 0.707 0.561 0.580 0.702 0.649 0.673 0.644 0.668 0.725 0.566 0.741 0.7938 +7.13%

28 7→ 20 0.741 0.741 0.707 0.673 0.776 0.727 0.737 0.746 0.790 0.722 0.887 0.890 0.820 0.8813 -0.98%
7 7→ 2 0.605 0.610 0.610 0.571 0.649 0.620 0.624 0.620 0.605 0.605 0.706 0.759 0.712 0.7938 +4.58%
7 7→ 26 0.693 0.702 0.702 0.717 0.722 0.717 0.683 0.698 0.698 0.712 0.703 0.729 0.727 0.7875 +8.02%

Avg 0.662 0.669 0.636 0.580 0.653 0.625 0.613 0.611 0.610 0.596 0.719 0.688 0.754 0.8375 +11.07%

15 7→ 19 0.756 0.733 0.741 0.685 0.759 0.733 0.759 0.874 0.748 0.726 0.953 0.950 0.967 0.9625 -0.47%
18 7→ 21 0.794 0.552 0.555 0.552 0.803 0.548 0.610 0.558 0.581 0.555 1.000 1.000 0.910 1.0000 +0.00%
19 7→ 25 0.768 0.468 0.452 0.661 0.771 0.455 0.590 0.774 0.487 0.448 0.575 0.963 0.932 0.9875 +2.54%
19 7→ 27 0.793 0.709 0.723 0.782 0.807 0.747 0.744 0.891 0.726 0.754 0.950 0.991 0.996 1.0000 +0.40%

HAR 20 7→ 6 0.808 0.661 0.641 0.747 0.820 0.608 0.686 0.784 0.673 0.694 0.853 0.919 1.000 1.0000 +0.00%
23 7→ 13 0.736 0.504 0.504 0.476 0.700 0.504 0.668 0.628 0.604 0.572 0.722 0.803 0.788 0.8375 +4.30%
24 7→ 22 0.837 0.820 0.833 0.820 0.837 0.808 0.743 0.808 0.853 0.829 1.000 0.844 0.988 1.0000 +0.00%
25 7→ 24 0.817 0.583 0.566 0.721 0.790 0.593 0.648 0.883 0.607 0.666 0.988 0.991 0.993 0.9938 +0.08%
3 7→ 20 0.752 0.874 0.878 0.652 0.815 0.885 0.848 0.804 0.874 0.815 0.965 0.938 0.967 0.9813 +1.48%

13 7→ 19 0.752 0.793 0.807 0.785 0.841 0.800 0.793 0.726 0.815 0.800 0.938 0.941 0.904 0.9688 +2.95%

Avg 0.781 0.670 0.670 0.688 0.794 0.668 0.709 0.773 0.697 0.686 0.894 0.934 0.944 0.9731 +3.08%

0 7→ 2 0.593 0.650 0.681 0.721 0.676 0.659 0.618 0.292 0.680 0.671 0.710 0.689 0.726 0.7777 +7.12%
1 7→ 6 0.690 0.686 0.652 0.619 0.717 0.672 0.712 0.689 0.725 0.686 0.839 0.847 0.855 0.8723 +2.02%
2 7→ 4 0.476 0.381 0.291 0.391 0.472 0.304 0.332 0.229 0.332 0.238 0.537 0.582 0.585 0.7241 +23.78%
4 7→ 0 0.263 0.229 0.203 0.194 0.262 0.216 0.259 0.193 0.193 0.205 0.349 0.291 0.353 0.4479 +26.88%
4 7→ 1 0.558 0.501 0.494 0.549 0.690 0.502 0.482 0.504 0.628 0.551 0.814 0.823 0.774 0.8281 +0.62%

HHAR 5 7→ 1 0.775 0.761 0.737 0.829 0.857 0.744 0.787 0.407 0.784 0.790 0.917 0.963 0.948 0.9648 +0.19%
7 7→ 1 0.575 0.551 0.426 0.534 0.413 0.378 0.511 0.366 0.496 0.415 0.867 0.830 0.875 0.8866 +1.32%
7 7→ 5 0.523 0.380 0.192 0.592 0.492 0.229 0.489 0.233 0.328 0.320 0.617 0.646 0.636 0.6781 +4.97%
8 7→ 3 0.813 0.766 0.748 0.860 0.942 0.763 0.869 0.602 0.844 0.934 0.945 0.954 0.942 0.9598 +0.61%
8 7→ 4 0.720 0.601 0.650 0.660 0.712 0.629 0.618 0.516 0.658 0.701 0.880 0.660 0.896 0.8616 -3.84%

Avg 0.599 0.551 0.508 0.595 0.623 0.510 0.568 0.403 0.567 0.551 0.748 0.729 0.759 0.8001 +5.42%

Table 7: The training time, inference time and parameter size of each method.

Index
Method VRADA CoDATS AdvSKM SASA RAINCOAT CLUDA CauDiTS

Training Time (s) 4.025 4.807 5.375 1.382 1.921 7.256 18.056
Inference Time (log flops) 5.521 4.402 4.407 7.528 7.501 4.348 6.716

Parameters (M) 0.416 0.621 0.876 0.948 1.205 1.239 2.195

29



CauDiTS: Causal Disentangled Domain Adaptation of Multivariate Time Series

non-causal correlations and domain-common causal rationales from complex inter-variable interrelationships. Furthermore,
Lcon represents the in-domain intra-class embeddings contrastive loss. Additionally, Lcpc and Ldcls are novel losses specific
to CauDiTS, encompassing causal prototype consistency loss and domain intervention causally invariant classification loss.
We present the average prediction accuracy for each dataset, computed over 10 randomly selected source→target pairs
across 10 independent replicate experiments. The results are detailed in Table 8.

Table 8 illustrates a positive correlation between the increasing number of integrated components and the gradual improve-
ment in model accuracy. This observation underscores the crucial role of each loss term as an indispensable components
within CauDiTS, contributing significantly to the overall improvement of model accuracy. Particularly noteworthy is
the discernible impact of incorporating the ARAD module, resulting in a significant average accuracy improvement of
approximately 8% across all datasets, compared to exclusive reliance on Lbs. Furthermore, the introduction of the loss terms
Lcpc and Ldcls also demonstrates a noteworthy increase in model accuracy.

Analysis of Different Number of Nr. When calculating the causal prototype P, Nr represents the number of multivariate
time series data randomly sampled for each class from the dataset Ds. The choice of Nr in this paper should strike a balance,
neither too high nor too low. A low value may result in a lack of representativeness for the calculated causal prototypes,
while a high value introduces additional sampling noise and increases computational complexity. Therefore, we investigate
the impact of different values of Nr on the model accuracy, and the results are presented in Table 9. The experiments are
primarily conducted on the HHAR and Boiler datasets, as these are two large-scale datasets. WISDM and HAR are two
small-scale datasets where the number of time series samples allocated to each class in each domain is even much smaller
than the batch size. Therefore, we do not impose Nr value restrictions on the WISDM and HAR datasets when calculating
causal prototypes P.

For the Boiler dataset, we set the range of Nr to be between 150 and 500, while for the HHAR dataset, the search range is
between 25 and 200. Analyzing the results from Table 9, it becomes evident that both datasets perform optimally when Nr

is chosen at the mid-point of the search range. Additionally, we observe that smaller values of Nr generally yield better
results overall.

Robustness Analysis for Irregular Multivariate Time Series. Most existing methods assume a regular and structured
nature of the input data. However, their effectiveness can be significantly reduced in the presence of missing random
variables, random data, and non-uniform sampling frequencies in multivariate time series data. To validate the robustness
of the domain adaptation of CauDiTS to complex and noisy multivariate time series data, experiments are performed on
complex irregular time series data. Specifically, CauDiTS incorporates random data augmentation during model training,
generating two augmented views (details are shown in D.1). This augmentation strategy inherently covers scenarios with
missing random variable, random data, and uneven sampling frequencies. Consequently, we further investigate the domain
adaptation capability of CauDiTS for irregular multivariate time series data and compare it with baselines, as shown in
Table 10. In this experiment, we systematically apply random data augmentation to the test samples from the target domain.
The subsequent evaluation involves measuring the mean prediction accuracy and the mean Macro-F1 scores of the trained
models across all methods for the augmented time series samples.

I. More Results on Other Dataset
We conduct an additional experiment using the large-scale Wearable Stress and Affect Detection (WESAD) dataset (Schmidt
et al., 2018). WESAD is a dataset tailored for wearable stress and affect detectiion, incorporating physiological and motion
data collected from both wrist-worn (RespiBAN) and chest-worn (Empatica E4) devices during a controlled lab study
involving 15 subjects. The dataset comprises 63,000,000 samples. The RespiBAN device provides the following sensor
data: electrocardiogram (ECG), electrodermal activity (EDA), electromyogram (EMG), respiration, body temperature, and
three-axis acceleration. All signals are sampled at 700 Hz. The Empatica E4 device provides the following sensor data:
blood volume pulse (BVP, 64 Hz), electrodermal activity (EDA, 4 Hz), body temperature (4 Hz), and three-axis acceleration
(32 Hz).

For our experiment, We utilize the sensor modalities of chest-worn devices (RespiBAN) and split the samples into three
parts: training, testing and validation sets, with a ratio of 70:15:15. The window size τmax for WESAD is set to 200, with a
step size of 100, resulting in a 50% overlap between two multivariate time series.

WESAD is a complex, large-scale dataset with relatively low performance across all baselines. However, CauDiTS

30



CauDiTS: Causal Disentangled Domain Adaptation of Multivariate Time Series

Table 8: Ablation studies of each component of CauDiTS. The mean accuracy of selected source→target pairs from each
dataset was reported over 10 independent runs.

Dataset Source 7→ Target Mean Accuracy (%)

w/o UDA ✓
Lbs ✓ ✓ ✓ ✓ ✓

ARAD ✓ ✓ ✓ ✓
Component Lcon ✓ ✓ ✓

Lcpc ✓ ✓
Ldcls ✓

1 7→ 2 0.7616 0.8198 0.8745 0.9181 0.9256 0.9672
1 7→ 3 0.7499 0.8640 0.8719 0.9330 0.9346 0.9675
2 7→ 1 0.6956 0.8266 0.8677 0.8867 0.9098 0.9131

Boiler 2 7→ 3 0.4433 0.4964 0.6510 0.6610 0.6745 0.7997
3 7→ 1 0.7668 0.8408 0.9474 0.9654 0.9674 0.9788
3 7→ 2 0.7472 0.8518 0.8932 0.9231 0.9653 0.9883

Avg 0.6941 0.7832 0.8510 0.8812 0.8962 0.9358

12 7→ 19 0.7438 0.7438 0.7519 0.7594 0.7687 0.7813
12 7→ 7 0.6375 0.7188 0.7250 0.7344 0.7438 0.8500

18 7→ 20 0.5437 0.6500 0.6844 0.7513 0.7750 0.8063
19 7→ 2 0.4438 0.4625 0.7250 0.8187 0.8750 0.9063

WISDM 2 7→ 28 0.7375 0.7438 0.7875 0.7875 0.8125 0.8625
26 7→ 2 0.6813 0.7813 0.8094 0.8438 0.8875 0.9125
28 7→ 2 0.7013 0.7187 0.7437 0.7550 0.7813 0.7938

28 7→ 20 0.6250 0.6629 0.6938 0.8000 0.8205 0.8813
7 7→ 2 0.6875 0.6750 0.7406 0.7675 0.7812 0.7938
7 7→ 26 0.6188 0.6437 0.7344 0.7438 0.7531 0.7875

Avg 0.6420 0.6800 0.7396 0.7761 0.7999 0.8375

15 7→ 19 0.7123 0.7681 0.8245 0.8687 0.9375 0.9625
18 7→ 21 0.5688 0.6687 0.8719 0.9288 0.9625 1.0000
19 7→ 25 0.4687 0.5813 0.8469 0.9375 0.9428 0.9875
19 7→ 27 0.7625 0.8438 0.8938 0.9687 0.9844 1.0000

HAR 20 7→ 6 0.6875 0.7062 0.8563 0.9313 0.9687 1.0000
23 7→ 13 0.4500 0.5233 0.6781 0.7500 0.7688 0.8375
24 7→ 22 0.8000 0.8135 0.8968 1.0000 1.0000 1.0000
25 7→ 24 0.5813 0.7413 0.9000 0.9541 0.9625 0.9938
3 7→ 20 0.7187 0.7188 0.8593 0.9038 0.9500 0.9813

13 7→ 19 0.7125 0.7937 0.8345 0.8938 0.9125 0.9688

Avg 0.6462 0.7159 0.8462 0.9137 0.9390 0.9731

0 7→ 2 0.6469 0.6607 0.7067 0.6875 0.6991 0.7777
1 7→ 6 0.6393 0.6875 0.7674 0.7759 0.8571 0.8723
2 7→ 4 0.3665 0.4107 0.5915 0.6839 0.6897 0.7241
4 7→ 0 0.1830 0.1902 0.2710 0.3804 0.4018 0.4479
4 7→ 1 0.5672 0.6469 0.6813 0.7344 0.7563 0.8281

HHAR 5 7→ 1 0.7262 0.7609 0.8008 0.8633 0.9094 0.9648
7 7→ 1 0.4016 0.5203 0.6054 0.8102 0.8203 0.8866
7 7→ 5 0.2992 0.3468 0.4566 0.5898 0.6679 0.6781
8 7→ 3 0.6728 0.6705 0.7491 0.8225 0.9250 0.9598
8 7→ 4 0.6321 0.6563 0.6955 0.7937 0.8125 0.8616

Avg 0.5135 0.5551 0.6325 0.7142 0.7539 0.8001
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Table 9: Analysis of the impact of Nr. Report the mean Macro-F1 over 5 random initializations.

Dataset Source 7→ Target 150 200 300 400 500

1 7→ 2 0.5715 0.5804 0.5798 0.5523 0.5362
2 7→ 1 0.6117 0.6279 0.6384 0.6244 0.6240

Boiler 2 7→ 3 0.7199 0.7311 0.7248 0.7211 0.7153
3 7→ 2 0.6210 0.6218 0.6197 0.6143 0.6094

Avg 0.6310 0.6403 0.6407 0.6280 0.6212

Datasets Source 7→ Target 25 50 100 150 200

0 7→ 2 0.7054 0.7146 0.7208 0.6534 0.6753
2 7→ 4 0.5907 0.6270 0.6772 0.6352 0.6189

HHAR 4 7→ 0 0.4188 0.4248 0.4779 0.4123 0.3561
4 7→ 1 0.8143 0.8229 0.8244 0.8127 0.8031
7 7→ 5 0.6386 0.6435 0.6736 0.6694 0.6632

Avg 0.6336 0.6466 0.6748 0.6366 0.6233

Table 10: Robustness analysis for irregular multivariate time series. Report the mean Macro-F1 over 5 random initializations.

Dataset Source 7→ Target VRADA CoDATS AdvSKM SASA RAINCOAT CLUDA CauDiTS

1 7→ 2 0.3940 0.3941 0.4144 0.4874 0.5117 0.5155 0.5304
2 7→ 1 0.4873 0.4697 0.5093 0.4039 0.5487 0.5969 0.5764

Boiler 2 7→ 3 0.4096 0.3822 0.4037 0.3369 0.4953 0.4000 0.5979
3 7→ 1 0.4003 0.5814 0.7450 0.6350 0.6474 0.7097 0.7730
3 7→ 2 0.3937 0.3044 0.4198 0.4872 0.4664 0.4096 0.5182

Avg 0.4170 0.4264 0.4984 0.4701 0.5339 0.5263 0.5992

12 7→ 19 0.3113 0.1722 0.2963 0.2358 0.3961 0.4803 0.5230
12 7→ 7 0.3064 0.3695 0.4133 0.5761 0.6783 0.4839 0.6967

WISDM 19 7→2 0.3764 0.3750 0.3208 0.4847 0.4525 0.3683 0.5384
26 7→ 2 0.4484 0.5085 0.3674 0.5505 0.4478 0.5894 0.6733
28 7→ 2 0.5675 0.5026 0.3530 0.6007 0.6018 0.5751 0.7194

Avg 0.4020 0.3856 0.3502 0.4896 0.5153 0.4994 0.6302

15 7→ 19 0.4514 0.6285 0.5973 0.7968 0.7869 0.7712 0.9111
19 7→ 25 0.4868 0.3026 0.2970 0.5206 0.8139 0.8833 0.8103

HAR 23 7→ 13 0.4778 0.3344 0.3885 0.6490 0.4944 0.6800 0.7360
25 7→ 24 0.5240 0.3627 0.3109 0.8067 0.7103 0.9634 0.9800
3 7→ 20 0.5038 0.6719 0.4900 0.7190 0.8255 0.6524 0.8609

Avg 0.4888 0.4600 0.4167 0.6984 0.7262 0.7901 0.8597

0 7→ 2 0.4898 0.4197 0.4767 0.6453 0.5357 0.6479 0.6686
2 7→ 4 0.3594 0.1528 0.1703 0.4305 0.4866 0.4518 0.5085

HHAR 4 7→ 0 0.1588 0.1593 0.1569 0.3144 0.2673 0.2798 0.3422
4 7→ 1 0.5112 0.3606 0.2615 0.6944 0.7271 0.6158 0.7643
7 7→ 5 0.5097 0.2602 0.1400 0.6069 0.5746 0.6037 0.6521

Avg 0.4076 0.2705 0.2411 0.5383 0.5183 0.5198 0.5871
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Table 11: Robustness analysis for irregular multivariate time series. Report the mean accuracy over 5 random initializations.

Dataset Source 7→ Target VRADA CoDATS AdvSKM SASA RAINCOAT CLUDA CauDiTS

1 7→ 2 0.7984 0.7134 0.7326 0.8517 0.8414 0.8417 0.8556
2 7→ 1 0.6954 0.7355 0.7679 0.8934 0.8365 0.9045 0.9099

Boiler 2 7→ 3 0.6532 0.6579 0.6593 0.5935 0.6505 0.6606 0.6610
3 7→ 1 0.8600 0.7138 0.9294 0.8438 0.9097 0.9133 0.9419
3 7→ 2 0.8267 0.6596 0.8569 0.9007 0.8983 0.9029 0.9156

Avg 0.7667 0.6960 0.7892 0.8166 0.8273 0.8446 0.8568

12 7→ 19 0.4688 0.2500 0.4062 0.3594 0.5909 0.6406 0.7250
12 7→ 7 0.6500 0.6812 0.5938 0.6969 0.7625 0.6250 0.7813

WISDM 19 7→2 0.5312 0.3312 0.3438 0.5531 0.4049 0.4375 0.6563
26 7→ 2 0.5875 0.6500 0.5938 0.8344 0.5756 0.8125 0.8556
28 7→ 2 0.6500 0.6188 0.5938 0.5625 0.5122 0.6312 0.7375

Avg 0.5775 0.5062 0.5063 0.6013 0.5692 0.6294 0.7511

15 7→ 19 0.4688 0.6562 0.6562 0.7844 0.7938 0.8438 0.9063
19 7→ 25 0.5312 0.3750 0.3438 0.5343 0.8250 0.8750 0.8500

HAR 23 7→ 13 0.5625 0.4625 0.4625 0.6656 0.5375 0.7125 0.7438
25 7→ 24 0.5938 0.4375 0.4062 0.8094 0.7500 0.9688 0.9814
3 7→ 20 0.6250 0.7500 0.5938 0.7438 0.8625 0.7188 0.8750

Avg 0.5563 0.5362 0.4925 0.7075 0.7538 0.8238 0.8713

0 7→ 2 0.5357 0.4420 0.5179 0.6705 0.5911 0.6589 0.6786
2 7→ 4 0.4446 0.1473 0.2812 0.4098 0.5313 0.5027 0.5938

HHAR 4 7→ 0 0.1089 0.1562 0.1723 0.3214 0.2759 0.2946 0.3330
4 7→ 1 0.3491 0.3594 0.3125 0.7211 0.7344 0.6562 0.7734
7 7→ 5 0.2536 0.2461 0.1758 0.5976 0.5195 0.4992 0.5484

Avg 0.3384 0.2702 0.2919 0.5441 0.5304 0.5223 0.5854

demonstrates a significant improvement over other methods and achieves optimal performance, as shown in Table 12.

Table 12: The results of selected source 7→ target pairs on WESAD dataset in terms of mean accuracy (Acc) and mean
Macro-F1 (MF1) over 5 independent runs. The best results are shown in bold, and the second-best results are underlined.

VRADA CoDATS AdvSKM SASA RAINCOAT CLUDA CauDiTS
Method Acc MF1 Acc MF1 Acc MF1 Acc MF1 Acc MF1 Acc MF1 Acc MF1
2 7→ 3 0.3613 0.1588 0.4104 0.2168 0.2637 0.1884 0.4251 0.2743 0.4842 0.3056 0.3815 0.3046 0.4915 0.3650
3 7→ 8 0.3633 0.1995 0.2655 0.1109 0.2634 0.1063 0.2628 0.1048 0.3388 0.1973 0.3201 0.1644 0.4889 0.3871
4 7→ 10 0.3418 0.1838 0.2708 0.1171 0.2790 0.1272 0.2725 0.1189 0.6704 0.5291 0.5475 0.4194 0.7675 0.6843
11 7→ 5 0.3529 0.1548 0.8551 0.8224 0.6647 0.5425 0.8458 0.8183 0.8271 0.7733 0.8276 0.8100 0.8818 0.8346
6 7→ 17 0.3522 0.1475 0.6315 0.5056 0.7583 0.6129 0.7147 0.5659 0.6957 0.5255 0.7751 0.5893 0.7974 0.6347

Avg 0.3543 0.1689 0.4867 0.3546 0.4458 0.3155 0.5042 0.3764 0.6032 0.4662 0.6504 0.5375 0.6854 0.5811
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Algorithm 1 Training and inference of CauDiTS
Input: datasetDs andDt; epochs E;
Initialization: parameter ΘH for LSTM, parameters ΘARAD = {W1,W2, b1, b2, v,WM̄ , bM̄} for ARAD, parameters ΘRc = {W3,W4,W5, b5,W6, b6} for
GCNc(·), parameters ΘRo for GCNo(·), parameter ΘZc and ΘZo for Fc(·) and Fo(·), parameter ΘYc for Φ(·), parameter ΘYo for D(·), parameter ΘE forH(·).

Training:
for i← 1 to E do

best loss = 1000000
Compute: causal prototype P using Equation (9)
whileDt not exhausted do

Sample Xs and Y s fromDs, Xt fromDt

Multivariate time series augmentation for Xs and Xt.
{X̃s, X̂s} ← aug(Xs) // Source domain
{X̃t, X̂t} ← aug(Xt) // Target domain
Update hidden state. (use Equation (2))
H̃s = LSTM(X̃s), Ĥs = LSTM(X̂s) // Source domain
H̃t = LSTM(X̃t), Ĥt = LSTM(X̂t) // Target domain
Calculate attention coefficient. (use Equation (3))
Ĩs = Atten(H̃s), Îs = Atten(Ĥs) // Source domain
Ĩt = Atten(H̃t), Ît = Atten(Ĥt) // Target domain
Disentangle causal rationales. (use Equation (4))
Ãs, B̃s = ARAD(Ĩs), Âs, B̂s = ARAD(Îs) // Source domain
Ãt, B̃t = ARAD(Ĩt), Ât, B̂t = ARAD(Ît) // Target domain
Generate node representations. (use Equation (5))
R̃s

c = GCNc(Ãs, H̃s) and R̂s
c = GCNc(Âs, Ĥs), R̃s

o = GCNo(B̃s, H̃s) and R̂s
o = GCNc(B̂s, Ĥs) // Source domain

R̃t
c = GCNc(Ãt, H̃t) and R̂t

c = GCNc(Ât, Ĥt), R̃t
o = GCNo(B̃t, H̃t) and R̂t

o = GCNc(B̂t, Ĥt) // Target domain
Extract domain-invariant representation
Z̃s

c = Fc(R̃
s
c) // Source domain

Z̃t
c = Fc(R̃

t
c) // Target domain

Predict class label
Ỹ s
c = Φ(Z̃s

c ) // Source domain
Ỹ t
c = Φ(Z̃t

c) // Target domain
Extract domain-specific representation
Z̃s

o = Fo(R̃
s
o), Ẑs

o = Fo(R̂
s
o) // Source domain

Z̃t
o = Fo(R̃

t
o), Ẑt

o = Fo(R̂
t
o) // Target domain

Predict domain label
Ỹ s
o = D(Z̃s

o), Ŷ s
o = D(Ẑs

o) // Source domain
Ỹ t
o = D(Z̃t

o), Ŷ t
o = D(Ẑt

o) // Target domain

Compute: Lbs using Equation (8), Lcon using Equation (17), Lcpc using Equation (12), Ldcls using Equation (16)
L = Lbs + Lcpc + γ1 · Ldcls + γ2 · Ls

con + γ3 · Lt
con

Update ΘH , ΘARAD , ΘPc , ΘPo , ΘZc , ΘZo , ΘYc , ΘYo and ΘE with▽L.
if L< best loss then

Update causal prototype P using Equation (9)
best loss = L

end if
end while

end for

Inference:
whileDtest not exhausted do

Sample Xt fromDtest

H̃t = LSTM(X̃t)

Ĩt = Atten(H̃t)

Ãt, B̃t = ARAD(Ĩt)
R̃t

c = GCNc(Ãt, H̃t)

Z̃t
c = Fc(R̃

t
c)

Ỹ t
c = Φ(Z̃t

c)
end while
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